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1. Abstract 

Analytical solutions based on the Boltzmann transport equation (BTE) within the 

relaxation time approximation are developed to relate the Nernst coefficient to 

materials band structure and relaxation times parameters in simple conductors. 

The dependence of the Nernst coefficient on the effective mass, anisotropy of 

bands, energy bandgap, and scattering parameters are investigated. The obtained 

relations are compared to the existing solutions presented in the past using 

different approximations.  

 

2. Introduction: 

Thermomagnetic energy conversion based on the Nernst effect and 

thermomagnetic refrigeration based on the Ettingshausen cooling provides a solid-state 

technique for direct conversion of heat to electricity and pumping of heat from the cold 

reservoir to the hot one. Thermomagnetic modules are similar to thermoelectric modules 

(see Fig. 1). A temperature gradient applied to a conductor results in a longitudinal 

Seebeck voltage which is the base of the thermoelectric heat to electricity, energy 

conversion. When a magnetic field is applied normal to the imposed temperature 



gradient, there will be a secondary transverse 

voltage, the so-called Nernst voltage. [1] The 

Nernst coefficient, N, is then defined as the 

transverse voltage gradient divided by the 

temperature gradient (we do not divide by the 

magnetic field and assume N is in the units of 

V/K), has the same dimensions as the Seebeck 

coefficient, and is the base of the 

thermomagnetic energy conversion. (Figure 1).  

The thermomagnetic efficiency of materials 

for power generation and refrigeration 

applications is evaluated by their 

dimensionless figure of merit, 𝑧𝑇𝑀𝑇 defined as 

(𝑁2𝜎𝑦𝑦𝑇)/𝜅𝑥𝑥 where  𝜎𝑦𝑦 is the electrical 

conductivity in the y-direction (direction of 

the Nernst voltage), 𝜅𝑥𝑥 is the thermal conductivity along the direction of the applied 

thermal gradient, and 𝑇 is the average temperature of the material [2]. Historically, the 

Nernst coefficient was first observed in Bismuth in 1886. [1] It was then measured in 

many metals  [3–7] semimetals [8–11] and narrow-gap semiconductors [12–15]. Previous 

studies have shown that extremely mobile quasi-particles in dilute metals generate a 

noticeable Nernst signal. [16] Within the Fermi liquid picture, it is shown that the Nernst 

effect roughly measures the ratio of electron mobility to Fermi energy in a given 

metal. [17,18] 

In addition to power generation and cooling, the Nernst effect has been used as an 

experimental probe in studying various physical systems, for instance, in determining 

the carrier-scattering mechanisms involved in semiconductors and semimetals  [14,19–

22].  

The theory of the Seebeck coefficient is well developed and the analytical solutions 

for the Seebeck coefficient are well known. For instance, we know that the Seebeck 

coefficient, 𝛼, in metals follow Mott’s formula and is an increasing function of the 

derivative of the logarithm of the electrical conductivity, 𝜎, with respect to energy, 𝜀, at 

the Fermi energy, 𝜀𝑓 (𝛼 =
𝜋2𝑘𝐵

2𝑇

3𝑞

𝑑𝑙𝑜𝑔(𝜎)

𝑑𝜀
|𝜀𝑓 where 𝑘𝐵 is the Boltzmann constant, T is the 

temperature, and 𝑒 = 1.6 × 10−19𝐶 is the unit of charge). This suggests that materials with 

a large slope of the density of states and relaxation times with respect to energy own a 

large Seebeck coefficient.  

Figure 1. Schematic of the a)Seebeck effect b) 
Nernst effect c) Thermoelectric module for 
refrigeration d) Thermomagnetic modules for 
refrigeration.  



In non-degenerate semiconductors, the Seebeck coefficient increases as the 

bandgap increases. Within the single-band model, the further the chemical potential from 

the band edge, the larger the Seebeck coefficient. Within the two-band model that 

includes the conduction band and the valence band, the Seebeck coefficient increases with 

the ratio of the effective masses of the two bands and is zero close to the middle of the 

bandgap. Understanding how the Seebeck coefficient depends on the materials 

parameters helps in the design of highly efficient thermoelectric materials. [23–25] 

Perhaps, a better criterion is the thermoelectric power factor, but the Seebeck coefficient 

comes as the first step. 

Similarly, the Nernst theory has also been studied in the past. Sondheimer studied 

the galvanometric and thermomagnetic effects in metals with s and d bands  [17,26]. 

Putley  [15] studied the  Nernst signal in semiconductors through the Lorentz-

Sommerfeld theory  [27]. He started from a formalism developed by Sommerfeld and 

Frank [28] for metals and extended it to semiconductors and mixed conductors. [29] 

Theoretical predictions of the Nernst coefficient of PbTe and PbSe appeared to be 

reasonably close to experimental values. Price  [30] obtained a relatively simple formula 

for the Nernst coefficient in the case of isotropic two-band semiconductors using 

Boltzmann statistics.  In terms of electrical conductivity (𝜎), and Hall mobility (𝜇𝐻) of 

each band, the  Nernst coefficient was defined as 𝑁 = 𝑘𝐵/𝑒 [(
𝜎𝑒𝜎ℎ

𝜎2
) (𝜇𝑒

𝐻 + 𝜇ℎ
𝐻)(𝛼𝑒 + 𝛼ℎ) +

𝜎𝑒𝜑𝑒+𝜎ℎ𝜑ℎ

𝜎
] 𝐵 where 𝛼𝑖 =

𝑇𝑑(𝑙𝑜𝑔𝑛𝑖)

𝑑𝑇
+ 𝛾𝑖 and 𝜑𝑖 = 𝛾𝑖(𝜆𝑖

𝐻 − 𝜇𝑖
𝐻). Based on the kinetic theory 

represented by Einstein  [31], 𝛾 parameter relates diffusion coefficient to mobility by 𝛾𝑖 =
𝑒𝐷𝑖

𝑇

𝜇𝑖𝑘𝐵
 and 𝜆𝐻 is a mobility developed by both magnetic field and temperature gradient. 

Jeffrey Clayhold studied the Nernst effect in anisotropic materials and found that the 

value of the Nernst coefficient depends on the correlation between the Hall angle and 

thermopower at different points on the Fermi surface  [6]. Masuki et. al., using a 

momentum-dependent relaxation time approximation, showed that in FeSb2, a second 

peak appears in the temperature dependence of the Nernst coefficient due to the phonon-

drag effect [32]. Pikulin et. al. compared the value of the Nernst coefficient in cuprate 

superconductors calculated using constant relaxation time approximation (CRTA) and 

momentum-dependent relaxation time approximation [33]. They found that in the 

combined presence of the band and scattering anisotropy, the CRTA is a poor 

approximation and can result in an error significant enough to result in a Nernst 

coefficient of the wrong sign. It is noteworthy to mention here that, in their calculation, 

only the single band elastic quasi-particle scattering was considered, and the response in 

the low magnetic field limit was computed. In recent years, there has been a surge in 



research activity concentrated on the Nernst effect in Weyl and Dirac semimetals. 

Consequently, several theoretical studies focusing on both the conventional and the 

anomalous part of the Nernst coefficient have been performed using the Boltzmann 

transport equation (BTE)  [34,35]. The contribution of Berry curvature [35–38], conformal 

anomaly [39], gravitational and thermal chiral anomaly [40] in the anomalous part of the 

Nernst coefficient in these material systems have also recently been theoretically 

investigated. These works focus on the topological aspects of the problem but use 

approximations such as Mott’s formula, Sommerfeld expansion, and small magnetic 

fields. 

The goal of this paper is to find explicit and general analytical expressions for the 

Nernst coefficient in simple semiconductors and to develop an understanding of when 

large Nernst coefficient values are expected theoretically, hence narrowing down the 

search for good thermomagnetic materials. We use the term simple semiconductors in 

contrast to topological and ferromagnetic materials which are often used in the study of 

the Nernst coefficient. When possible and needed, we study the thermomagnetic power 

factor and lay the criteria for thermomagnetic transport. While similar results are 

available in old literature, there are several problems. First, they are scattered in old 

papers. Second, they are obtained sometimes using phenomenological assumptions and 

sometimes with little details of the assumptions used, and third, different authors 

obtained different equations using different assumptions. Here we use a BTE approach 

within the relaxation time approximation to study the Nernst coefficient under different 

band structures and scattering rates. When possible, we compare our results with 

previously obtained equations for the Nernst coefficient in simple semiconductors.  

3. Analytical solutions: 

3.1. General definition of the response functions: 

First, we obtain the general solutions for the Nernst coefficient following 

Lundstrom's [41] and Smith's [42] notations. We start by expressing the electrical current 

(𝐽 ) in terms of the electric field (𝐸) and the gradient of the inverse temperature (∇ (
1

𝑇
)).               

 𝑱 = 𝜎𝑬 + 𝛽𝜵(
1

𝑇
)  1 

          where 𝜎 and 𝛽 are 3 × 3 response function tensors representing respectively the 

electrical conductivity and thermoelectric function. In the presence of an external 

magnetic field (B), moving electrons experience an additional force 𝑭 = −𝑒𝑬 − 𝑒𝒗 × 𝑩. As 



a result, the response functions are modified, i.e., they become a function of the magnetic 

field (𝜎(𝐵) and 𝛽(𝐵)). 

We start by first expressing the Nernst coefficient in terms of these matrices. The 

isothermal Nernst coefficient is defined as the ratio of the transverse voltage to an applied 

thermal gradient when the applied magnetic field is perpendicular to the directions of 

measured voltage and temperature gradient: 𝑁𝑇 = 𝐸𝑦/∇x𝑇 . This is subject to open-circuit 

electrical boundary conditions, i.e., 𝑱 = 0.   

Denoting the resistivity tensor by 𝜌 = 𝜎−1, we have 𝑬 = 𝜌𝛽𝛁𝑇/𝑇2. In the presence of a 

magnetic field, we define the generalized Seebeck tensor as:   

𝛼 =
𝜌𝛽

𝑇2
  2 

 

 In the case where the temperature gradient is along x, and the applied magnetic field 

along z, the longitudinal xx component in the B=0 limit is the ordinary Seebeck coefficient, 

while the transverse xy component contains the Nernst coefficient.  We will show the 

explicit formula for 𝑁𝑇 = 𝛼𝑥𝑦 in the next section.  

3.2. General Solution of the BTE in the presence of a magnetic field within the 

relaxation time approximation: 

If we denote the equilibrium distribution function by 𝑓0, for every electronic state of 

momentum, 𝑘, and band index, 𝑛, the BTE is:   

        

𝜕𝑓𝑘𝑛

𝜕𝑡
+ 𝒗𝑘𝑛. 𝛁𝑟𝑓𝑘𝑛 − 𝑒(𝑬 + 𝒗𝑘𝑛 × 𝑩). 𝛁𝑘𝑓𝑘𝑛 = −

𝑓𝑘𝑛−𝑓𝑘𝑛
0

𝜏𝑘𝑛
  3 

 

From now on, for simplicity, we omit the indices 𝑘, 𝑛 from the velocities, electron 

energies, and distribution functions. Following Smith et al. [42] we write the solution to 

this equation in the form:  

𝑓 = 𝑓0 + 𝜏𝒗. 𝑺 (−
𝜕𝑓0

𝜕𝜀
)  4 

 

where 𝜀 is the electron energy and the unknown vector 𝑺 is assumed to be only a function 

of energy 𝜀. Plugging this expression into BTE (3) yields the equation satisfied by 𝑺. It is 

well-known that in the absence of a magnetic field, 𝑺 is the driving electrothermal force 



𝑭 on the electrons: 𝑺 = 𝑭 = −𝛁𝜀𝑓 −
𝜀−𝜀𝑓

𝑇
 𝛁𝑇, where 𝜀𝑓 is the electrochemical potential (we 

are using μ to denote mobility). In the presence of B, and in steady-state, the BTE 

simplifies to:  

(1 + 𝜏Ω)𝑓1 = 𝜏𝒗. 𝑭 (−
𝜕𝑓0

𝜕𝜀
)  5 

 

where we defined Ω =
−𝑒

ℏ
(𝒗 × 𝑩). 𝛁𝑘  and 𝑓1 = 𝑓 − 𝑓

0. The operator Ω and namely 𝛁𝑘 acts 

on 𝑓1 which is postulated to be of the form: 𝜏𝒗. 𝑺 (−
𝜕𝑓0

𝜕𝜀
) 

This expression can be simplified if we assume the relaxation times depend only on the 

energy so that 𝛁𝑘𝜏 =
𝜕𝜀

𝜕𝒌
 
𝜕𝜏

𝜕𝜀
= ℏ𝒗 

𝜕𝜏

𝜕𝜀
. Furthermore, its action on the velocity gives the 

effective mass tensor at the point 𝑘: 𝛁𝑘𝒗 = ℏ
1

𝑀
  where M is the effective mass tensor. 

Inserting these relations into Eq. 5, one finds that 𝑺 must satisfy. 

𝑺 − 𝜔𝜏 𝑩̂ × ℕ 𝑺 = 𝑭  6 

Where 𝐵̂ is the unit vector along the direction of the magnetic field, 𝜔 =
𝑒𝐵

𝑚0
 is the 

cyclotron frequency, and the dimensionless 3 × 3 tensor ℕ is the inverse effective mass 

matrix normalized by the bare electron mass 𝑚0. Note that one can substitute the cross 

product by the multiplication by an antisymmetric matrix which we call 𝔅: 

  

𝔅 = −𝜔𝜏(

0 −𝐵̂𝑧 𝐵̂𝑦

𝐵̂𝑧 0 −𝐵̂𝑥
−𝐵̂𝑦 𝐵̂𝑥 0

)  
 

7 

 

So that the equation satisfied by S becomes a simple 3 × 3 linear system easily invertible. 

 𝑺 = ℚ 𝑭  with  ℚ = (𝕀 + 𝔅ℕ)−𝟏 8 

Therefore, in an actual calculation, if the band structure is known at any k-point of 

interest, one needs to calculate the group velocity and inverse effective mass tensor at 

that k-point, and use the solution to Eq. 8 to deduce the components of 𝑺, which will give 

the electrical current as: 

𝑱 =
−𝑒

𝑉
∑ 𝒗𝑘𝑛𝑘𝑛 ⊗𝒗𝑘𝑛. 𝑺𝑘𝑛  𝜏𝑘𝑛  (−

𝜕𝑓𝑘𝑛
0

𝜕𝜀
)    9 

 



This general solution has the advantage that is valid for any arbitrary orientation of the 

fields with respect to each other (no need to be perpendicular) or to the crystalline axes, 

is valid even at moderately large magnetic fields (within the semiclassical approximation) 

as long as we have a relaxation time that is only energy-dependent. If that is not the case, 

as an approximation, one may take its angular average over the constant energy surfaces 

of interest: 𝜏𝑛 (𝜀) = ∑ 𝜏𝑛𝑘 𝛿(𝑘 𝜀 − 𝜀𝑛𝑘)   

Before proceeding further, we need to point out that although the Nernst coefficient is 

linear in 𝐵 at small magnetic fields, the solution obtained above has in principle full 

magnetic field dependence as the distribution function has not been Taylor expanded in 

powers of B as is commonly done. In this limit, since we have 𝑺 + 𝔅ℕ 𝑺 = 𝑭 , the solution 

becomes 𝑺 = (1 + 𝔅ℕ)−1𝑭 ≈ 𝑭 − 𝔅ℕ 𝑭 , i.e. we obtain the standard distribution function 

plus a correction linear in 𝐵:  𝔅ℕ = 𝑒𝐵𝜏/𝑚∗ usually denoted by 𝜔𝜏.  

Behavior at high magnetic fields: From the above equation defining 𝑺, we can note that the 

behavior of response functions will then start with a constant plus a term linear in 𝐵 at 

low  𝐵, and decays as 1/ 𝐵 at large fields. The crossover point is when 𝜔𝜏 = 𝜇𝐵 ≃ 1 where 

𝜇 = 𝑒 ⟨𝜏/𝑚∗⟩ is the mobility of the sample. The behavior at these intermediate fields may 

be less straightforward in complex materials with large anisotropies in effective mass and 

relaxation time, but the limiting behavior will remain linear in 𝐵 at low 𝐵 and linear in 

1/𝐵 at high 𝐵. At yet higher fields such that the cyclotron radius defined by 𝑙𝑐
2 = ℏ/𝑞𝐵 

becomes smaller than other length scales in the problem such as the electron mean free 

paths, quantization effects become important, and the semiclassical BTE approach ceases 

to be valid. 

Throughout the rest of this article, we fix the direction of the applied thermal gradient to 

be in the x-direction and the external magnetic field to be in the z-direction, irrespective 

of the crystalline axes. The Nernst voltage is then collected along y.  

We focus on the isothermal Nernst coefficient 𝑁𝑇 , where it is assumed there is no thermal 

gradient along y or z.   

Using Eqs.  8 and 9, we can obtain the transport functions. First, to simplify notations, we 

define un-normalized transport averages as: 

   〈⟨𝐴〉⟩𝑖𝑗  =
1

𝑉
∑ 𝐴𝑛𝑘  𝑣𝑛𝑘

𝑖  𝑣𝑛𝑘
𝑙  ℚ𝑙𝑗  (𝑛) (−𝑛𝑘

𝜕𝑓𝑛𝑘
0

𝜕𝜀
)   10 

 



where implicit summation over repeated Cartesian indices (𝑖, 𝑗, 𝑙, … ) is implied. From 

their definition in Eq. 1, the general equations defining the response functions can be 

written as:  

𝜎𝑖𝑗 = 𝑞2〈〈 𝜏 〉〉𝑖𝑗   ; 𝛽𝑖𝑗 = 𝑞𝑇 〈〈 𝜏(𝜀 − 𝜀𝑓) 〉〉𝑖𝑗  11 

The normalizing factor  〈〈1〉〉𝑖𝑖 =
1

𝑉
∑  𝑣𝑛𝑘

𝑖  𝑣𝑛𝑘
𝑙  ℚ𝑙𝑖 (𝑛)(−𝑛𝑘

𝜕𝑓𝑛𝑘
0

𝜕𝜀
) can be derived to be  

𝑛

𝑚∗ in 

the isotropic case where the effective mass tensor is a scalar (𝑛 is the so-called free-

electron density).  

The Nernst voltage is measured under open-circuit conditions implying  𝐽𝑥 = 𝐽𝑦 = 0. 

Setting these currents to zero, and solving for 𝐸𝑥 and 𝐸𝑦 in terms of ∇𝑥𝑇 by using Eqs. 1, 

in agreement with previous work  [10], the Nernst and Seebeck coefficients become:  

𝑁𝑇  =
𝐸𝑦

𝛻𝑥𝑇
=

1

𝑇2

𝜎𝑥𝑥𝛽𝑦𝑥−𝜎𝑦𝑥𝛽𝑥𝑥

𝜎𝑥𝑥𝜎𝑦𝑦−𝜎𝑦𝑥 𝜎𝑥𝑦
    ;    𝛼𝑥𝑥  =

𝐸𝑥

𝛻𝑥𝑇
=

1

𝑇2

𝜎𝑦𝑦𝛽𝑥𝑥−𝜎𝑦𝑥𝛽𝑥𝑦

𝜎𝑥𝑥𝜎𝑦𝑦−𝜎𝑦𝑥 𝜎𝑥𝑦
   12 

  Equation 12 is valid for any arbitrary band structure as long as the x, y, z directions are 

defined along   ∇𝑇, ∆𝑉, 𝐵 directions respectively.                  

  

3.3. Weak magnetic field limit: 

In this section, we proceed to solve the problem in special cases where it can be solved 

analytically. Starting from Eqs. 12 and the following definitions, we need to find explicit 

solutions for 𝜎(𝐵) and 𝛽(𝐵).  

In the case of weak magnetic fields, Eq. 5 simplifies to 𝑓1 ≈ (1 − 𝜏Ω)𝜏𝒗. 𝑭 (−
𝜕𝑓0

𝜕𝜀
). The first 

term is independent of the magnetic field and we express it as 𝑓′ = 𝜏𝒗. 𝑭 (−
𝜕𝑓0

𝜕𝜀
) and the 

second term is linear to 𝑩 and we can express it as 𝑓" = 𝜏2
𝑒

ℏ
(𝒗 × 𝑩). 𝛁𝑘(𝒗. 𝑭) (−

𝜕𝑓0

𝜕𝜀
). In 

writing 𝑓", we assumed 𝜏 depends only on energy. The current is then written as   𝑱 =
−𝑒

𝑉
∑ 𝒗𝑓1𝑘 . Using the notation of Eq. 1 and after inserting 𝑓1 into the current equation, we 

obtain:  [41]. 

𝜎𝑖𝑗 =
𝑒2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑖(𝑣𝑗 +

𝑒

ℏ
𝜏 ∈𝑚𝑛𝑝 𝑣𝑚𝐵𝑛

 𝜕𝑣𝑗

𝜕𝑘𝑝
)𝑘   13 

𝛽𝑖𝑗 = −
𝑒𝑘𝐵𝑇

2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑖(𝑥 − 𝑥𝑓)𝑘 (𝑣𝑗 +

𝑒

ℏ
𝜏 ∈𝑚𝑛𝑝 𝑣𝑚𝐵𝑛  

 𝜕𝑣𝑗

𝜕𝑘𝑝
)    14 

Implicit summation over repeated indices is implied. 𝑘𝐵 is the Boltzmann constant, ∈𝑚𝑛𝑝 

is the antisymmetric Levi-Civita symbol, and 𝑥 refers to dimensionless (reduced) energy 

𝑥 =
𝜀

𝑘𝐵𝑇
  throughout this work.  



3.4. Special cases  

3.4.1. Case of isotropic single band: A single band with isotropic effective 

mass is the simplest possible band structure and hence that will be our starting point.  In 

this case, the derivative of the velocity with respect to momentum is the inverse of the 

effective mass (
 𝜕𝑣𝑗

𝜕𝑘𝑖
= ℏ

𝛿𝑗𝑖

𝑚∗). Considering the magnetic field is in the z-direction, Eq. 13 for 

the isotropic case simplifies to:  

𝜎𝑖𝑗 =
𝑒2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑖𝑣𝑗𝑘   +

1

𝑉
∑

𝑒3𝜏2

𝑚∗ (−
𝜕𝑓0

𝜕𝜀
) ∈𝑚𝑧𝑗 𝑣𝑖𝑣𝑚𝐵𝑧 𝑘    15 

       

If we now define normalized transport averages by: ⟨𝐴⟩𝑖𝑗 = ∑ 𝐴𝑘 𝑣𝑖𝑣𝑗  (−𝑘
𝜕𝑓0

𝜕𝜀
)/

∑  𝑣𝑖𝑣𝑗  (−𝑘
𝜕𝑓0

𝜕𝜀
) we have: 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 =
𝑒2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥𝑘 =

𝑒2

𝑉

𝑁

𝑚∗
〈𝜏〉 = 𝜎0  16 

𝜎𝑥𝑦 = −𝜎𝑦𝑥 = −
1

𝑉
∑

𝑒3𝜏2

𝑚∗ (−
𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥𝐵𝑧 𝑘 = −𝜇𝐻𝜎0𝐵𝑧  17 

                                       

where 𝑁 = ∑ 𝑚∗ 𝑣𝑖𝑣𝑗  (−𝑘
𝜕𝑓0

𝜕𝜀
)  is the number of free carriers, and 𝜇𝐻 =

𝑒

𝑚∗

<𝜏2>

<𝜏>
 is the Hall 

mobility. Since we are dealing with isotropic band structure, we drop the xx index from 

the averaging.                                                  

Similarly, Eq.14 under isotropic conditions is:  

𝛽𝑥𝑥 = 𝛽𝑦𝑦 = −
𝑒𝑘𝐵𝑇

2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥(𝑥 − 𝑥𝑓)𝑘 = −

𝑒𝑇

𝑉
〈 𝜏(𝜀 − 𝜀𝑓) 〉

𝑁

𝑚∗ = 𝛽0   18 

𝛽𝑥𝑦 = −𝛽𝑦𝑥 =
𝑘𝐵𝑇

2

𝑉
∑

𝑒2𝜏2

ℏ𝑚∗ (−
𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥𝐵𝑧 (𝑥 − 𝑥𝑓)𝑘 = −𝛽0𝜇𝛽 𝐵𝑧   

19 

 

where 𝜇𝛽 =
𝑒

𝑚∗

<𝜏2 (𝜀−𝜀𝑓)>

<𝜏 (𝜀−𝜀𝑓)>
  and we refer to it as thermal mobility.                                 

By substituting all transport functions obtained above in Eq. 12 we find: 

𝑁𝑇 = 𝛼0
(𝜇𝛽−𝜇𝐻)

(1+(𝜇𝐻𝐵𝑧)2)
𝐵𝑧   where the zero-field Seebeck is 𝛼0 = β0/𝑇

2σ0 20 

This is our first significant result stating that the Nernst coefficient is proportional to the 

Seebeck coefficient (𝛼0) and also to the difference between the thermal and Hall 

mobilities. We notice that under constant relaxation time approximation, 𝜇𝛽 and 𝜇𝐻 are 

identical and the Nernst coefficient is zero! Hence, in the isotropic single band model, the 

Nernst coefficient is merely the result of energy-dependent scattering rates.  



We can further include power laws for the relaxation times to better understand 

the relation between the Nernst coefficient and the energy dependence of the relaxation 

times. It is shown that the relaxation times can be approximated by power laws in the 

form of   𝜏 = 𝜏0𝑥
𝑠 for several common scattering mechanisms. For instance the scattering 

parameter (or characteristic exponents), s, is -0.5 for acoustic phonon scattering and 1.5 

for weakly screened ionized impurity scattering. [41] In general since only electrons in a 

narrow Fermi window contribute to transport, it is possible to fit the scattering rates with 

a power law form. Assuming a power law for scattering rates, we obtain:          

𝜇𝐻 =
𝑒

𝑚∗

<𝜏2>

<𝜏>
= 𝜇0

(2𝑠+1.5)

(𝑠+1.5)

Ϝ2𝑠+0.5(𝑥𝑓)𝛤(2𝑠+1.5)

Ϝ𝑠+0.5(𝑥𝑓)𝛤(𝑠+1.5)
       21 

𝜇𝛽 = 𝜇0
(2𝑠+2.5)(2𝑠+1.5)Ϝ2𝑠+1.5(𝑥𝑓)−𝑥𝑓(2𝑠+1.5)Ϝ2𝑠+0.5(𝑥𝑓)

(𝑠+2.5)(𝑠+1.5)Ϝ𝑠+1.5(𝑥𝑓)−𝑥𝑓(𝑠+1.5)Ϝ𝑠+0.5(𝑥𝑓)

𝛤(2𝑠+1.5)

𝛤(𝑠+1.5)
     

22 

 

Here, s is the scattering parameter, 𝜇0 =
𝑒𝜏0

𝑚∗  is the constant mobility, and 𝑥𝑓 =
𝜀𝑓

𝑘𝐵𝑇
 is the 

reduced chemical potential. As can be seen, it is possible to obtain analytical solutions in 

the general case, but not simple to interpret as they include Fermi Dirac integrals (Ϝ𝑗(𝑥𝑓)) 

and gamma functions (Γ). Figure 2 shows the plot of these solutions for the Nernst 

coefficient as a function of the modified chemical potential for several s-values. We note 

that solutions do not exist for all possible s-values.  The Nernst coefficient increases as 

the s-parameter increases. We can conclude that the Nernst coefficient is larger when 

there is a stronger energy dependence of the differential conductivity.   

Nondegenerate case: Using non-degenerate (Maxwell-Boltzmann) statistics, it is possible 

to further simplify the equations. Doing so, we obtain 

𝜇𝛽 − 𝜇𝐻 = 𝜇0 (
𝑠

𝑠+2.5−𝑥𝑓
)
𝛤(2𝑠+2.5)

𝛤(𝑠+2.5)
      23 

𝑁𝑇 =
𝛼0

(1+(𝜇𝐻𝐵𝑧)2)
(

𝑠

𝑠+2.5−𝑥𝑓
)
𝛤(2𝑠+2.5)

𝛤(𝑠+2.5)
𝜇0𝐵𝑧   

24 

 

Figure 2. The ratio of the Nernst to Seebeck coefficient as 

a function of the reduced chemical potential (𝑥𝑓 =
𝜀𝑓

𝑘𝐵𝑇
). 

Zero is the band edge.  Dashed lines are the general 
solutions of the isotropic bands, Eq. 20, obtained by 
subtracting Eq. 21 from 22 (the two mobilities). Solid lines 
at the negative side are showing the non-degenerate 
solutions of Eq. 24. As expected only at negative Fermi 
levels, non-degenerate solutions match the full solutions. 
Solid lines at positive Fermi levels are degenerate 
approximations using the Sommerfeld expansion Eq. 27.  
Note that the absolute values are plotted, and the second 
order B terms (𝜇𝐻𝐵𝑧)

2 are ignored. 



The results of Eq. 24 are only valid in the non-degenerate limit when the chemical 

potential is in the gap (negative). The analytical solutions of Eq. 24 are plotted in Figure 

2 (solid lines in the negative 𝑥𝑓 range. They can closely reproduce the full solutions 

represented in Eqs. 20, 21, and 22 (dashed lines). In the nondegenerate case, the 
𝑁

𝛼0
  ratio 

decreases as the chemical potential moves away from the band-edge (as 
1

s+2.5−𝑥𝑓
 ). 

However, we note that the 𝛼0 increases linearly as the chemical potential moves away 

from the band edge as (𝑥𝑓 − s − 2.5). Hence, N does not have any significant chemical 

potential dependence! The results obtained in Eq. 24 are similar to what Delves [10] 

presented in his comprehensive review for spherical bands and non-degenerate statistics 

(see Eq. 5.10 of Ref. 10). The difference is the extra factor of 
Γ(2s+2.5)

Γ(s+2.5)
 in our results. Delves 

obtained his results by modifying the distribution function by a 
1

(1+(𝜔𝜏)2)
 factor in the 

presence of an external magnetic field where (𝜔 =
𝑒𝐵

𝑚∗)  is the cyclotron resonance 

frequency.  

Degenerate case: We can also estimate the solutions in the metallic (degenerate case). To 

find 𝜇𝐻, we approximate 
𝜕𝑓0

𝜕𝜀
~𝛿(𝜀 − 𝜀𝑓) and we obtain: 

𝜇𝐻 =
𝑒

𝑚∗

∫𝜏2𝛿(𝜀−𝜀𝑓)𝑣𝑥𝑣𝑥𝑔(𝜀)𝑑𝜀

∫ 𝜏𝛿(𝜀−𝜀𝑓)𝑣𝑥𝑣𝑥𝑔(𝜀)𝑑𝜀
= 𝜇0 𝑥𝑓

𝑠   25 

 

The same approximation for 𝜇𝛽 gives zero due to the (𝜀 − 𝜀𝑓) term and hence, we use the 

Sommerfeld expansion to obtain: 

𝜇𝛽 = 𝜇0
∫𝑥2𝑠(

𝜕𝑓0

𝜕𝜀
)𝑣𝑥𝑣𝑥𝑔(𝜀)(𝜀−𝜀𝑓)𝑑𝜀

∫𝑥𝑠(
𝜕𝑓0

𝜕𝜀
)𝑣𝑥𝑣𝑥𝑔(𝜀)(𝜀−𝜀𝑓)𝑑𝜀

= 𝜇0
2(2𝑠+1.5)𝑥𝑓

2𝑠+0.5

2(𝑠+1.5)𝑥𝑓
𝑠+0.5 = 𝜇0𝑥𝑓

𝑠 (2𝑠+1.5)

(𝑠+1.5)
   26 

 

Plugging Eqs. 25 and 26 into 20 we obtain: 

𝑁𝑇 =
𝛼0

(1+(𝜇𝐻𝐵𝑧)2)
𝑥𝑓
𝑠 𝑠

(𝑠+1.5)
𝜇0𝐵𝑧   27 

 

The results of Eq. 27 are only valid in the degenerate (metallic) case when the chemical 

potential is well-inside the band (positive). These results are also plotted in Figure 2 (solid 

lines on the positive 𝑥𝑓 side) and can reproduce full solutions especially when s is larger 

than 1. In Eq. 27, when s is positive, 
𝑁𝑇

𝛼0
 increases with the chemical potential. When s is 



negative, the ratio decreases with increasing the chemical potential. We also remind the 

reader that 𝛼0 itself has 
1

𝑥𝑓
 dependence. Hence in this limit, N is proportional to 𝑥𝑓

𝑠−1.  

Within the same approximations used to obtain Eq. 27, the Seebeck coefficient can be 

expressed as (α0 =
𝜋2

3

𝑘𝐵

𝑒

(𝑠+1.5)

𝑥𝑓
 ) and hence the Nernst coefficient is 𝑁𝑇 =

𝜋2

3

𝑘𝐵

𝑒
 

𝑠 𝑥𝑓
𝑠−1

(1+(𝜇𝐻𝐵𝑧)2)
𝜇0𝐵𝑧, ignoring the second-order B term. This is similar to (but not identical 

to) 𝑁𝑇 =
𝜋2

6

𝑘𝐵

𝑒

1

𝑥𝑓
𝜇0𝐵𝑧 obtained by Feiber et.al. [43,44]. They used nearly free-electron 

picture with a phenomenological relaxation time approximation and assumed the Fermi 

level is much larger than the thermal energy (strong metal) to obtain their expression.  

Moreau [45] has developed a phenomenological relation for the Nernst coefficient in 

metals (𝑁𝑇 = 𝑅𝐻𝜎 (𝑇
𝑑𝛼0

𝑑𝑇
)𝐵). It seems that Moreau argument has been an analogy to the 

Hall effect which he attributed to some sort of deformation. While he has not provided a 

convincing proof, he has shown that his relation can explain some of the experimental 

observations in metals. [46] It has shown that his relation can also explain some of the 

semiconductor trend. [14,47] We notice that within single band degenerate model, 𝛼0 is 

linear in T and hence 𝑇
𝑑𝛼0

𝑑𝑇
= 𝛼0 and 𝑅𝐻𝜎 = 𝜇𝐻 = 𝜇0 𝑥𝑓

𝑠 . Hence, Moureau’s relation is 

similar to what we obtained here in Eq. 27. Ignoring the second-order B term, the 

difference is a factor of 
𝑠

(𝑠+1.5)
.  

3.4.2. Case of ellipsoidal single-band: The analysis of the isotropic case points to 

the fact that anisotropy can increase the Nernst coefficient. Hence, here we study the case 

where the effective mass is different along different axes and the dispersion relation is 

𝜀 =
ℏ2

2
(
𝑘𝑥
2

𝑚𝑥
+

𝑘𝑦
2

𝑚𝑦
+

𝑘𝑧
2

𝑚𝑧
). Using the same steps as before and observing that 

𝑑𝑣𝑖

𝑑𝑝𝑗
=

𝛿𝑖𝑗

𝑚𝑖
 , we can 

start from Eq. 13 to obtain: 

𝜎𝑥𝑥 =
𝑒2

𝑉
∑ 𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥𝑝   28 

𝜎𝑥𝑦 = −
1

𝑉
∑

𝑒3𝜏2

𝑚𝑦
∗ (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥𝐵𝑧 𝑝 = −𝜇𝐻𝑥𝑦𝜎𝑥𝑥𝐵𝑧  29 

𝜇𝐻𝑥𝑦 =
𝑒

𝑚𝑦
∗

∑ 𝜏2(−
𝜕𝑓0

𝜕𝜀
)𝑣𝑥𝑣𝑥 𝑝

∑ 𝜏(−
𝜕𝑓0

𝜕𝜀
)𝑣𝑥𝑣𝑥𝑝

=
𝑒

𝑚𝑦
∗

<𝜏2>𝑥𝑥

<𝜏>𝑥𝑥
  30 

In defining mobility, the first index refers to the direction of velocities over which the 

averaging is performed, and the second index refers to the effective mass direction.  

𝜎(𝐵) = [
𝜎𝑥𝑥 −𝜎𝑥𝑥𝜇𝐻𝑥𝑦𝐵

𝜇𝐻𝑦𝑥𝜎𝑦𝑦𝐵 𝜎𝑦𝑦
]    31 



           

The transport matrices are 3 × 3 but since we fixed B in the z-direction, to keep things 

simple, we only use 2 × 2 matrices. Similarly                                                                       

𝛽(𝐵) = [
𝛽𝑥𝑥 −𝛽𝑥𝑥𝜇𝛽𝑥𝑦𝐵

𝜇𝛽𝑦𝑥𝛽𝑦𝑦𝐵 𝛽𝑦𝑦
]    32 

𝜇𝛽𝑥𝑦 =
𝑞

𝑚𝑦
∗

<𝜏2 (𝜀−𝜀𝑓)>𝑥𝑥

<𝜏 (𝜀−𝜀𝑓)>𝑥𝑥
  33 

 

The Seebeck tensor is then 

𝛼(𝐵) =
𝜌𝛽

𝑇2
=

1

(1+𝜇𝐻𝑥𝑦  𝜇𝐻𝑦𝑥𝐵
2)
[
𝛼𝑥𝑥 + 𝜇𝐻𝑥𝑦  𝜇𝛽𝑦𝑥𝛼𝑦𝑦𝐵

2 −𝛼𝑥𝑥𝜇𝛽𝑥𝑦𝐵 + 𝛼𝑦𝑦𝜇𝐻𝑥𝑦𝐵

−𝛼𝑥𝑥𝜇𝐻𝑦𝑥𝐵 + 𝜇𝛽𝑦𝑥𝛼𝑦𝑦𝐵 𝛼𝑦𝑦 + 𝜇𝐻𝑦𝑥𝛼𝑥𝑥 𝜇𝛽𝑥𝑦𝐵
2 ]      34 

 

And the Nernst coefficient is the xy component of the Seebeck tensor.  

𝑁𝑇 = 𝛼𝑥𝑦(𝐵) =
(𝛼𝑦𝑦 𝜇𝐻𝑥𝑦−𝛼𝑥𝑥 𝜇𝛽𝑥𝑦)𝐵

(1+𝜇𝐻𝑥𝑦  𝜇𝐻𝑦𝑥  𝐵
2)

     35 

 

Within the constant relaxation time, this equation simplifies to 

𝑁𝑇 =
𝛼𝑦−𝛼𝑥

(1+𝜇𝐻𝑥𝑦  𝜇𝐻𝑦𝑥  𝐵
2)
 𝜇0𝑦𝑦𝐵𝑧     

36 

 

Here 𝜇0𝑦𝑦 =
𝑒𝜏0

𝑚𝑦
∗  is the mobility in the y-direction. Eq. 36 shows that the Nernst coefficient 

is proportional to the difference between the Seebeck coefficients in the x and y directions. 

The more anisotropic a sample is, the higher the Nernst coefficient. For instance, in 

layered materials and superlattices, the in-plane transport coefficients are very different 

compared to the cross-plane transport coefficients. Hence these are good candidates to 

explore large Nernst coefficients. An extreme case would be if there is p-type transport 

in the x-direction and n-type transport in the y-direction. While unusual, materials with 

different polarity transport in in-plane and cross-plane directions have been observed 

and studied in the past. [48–53] It would be interesting to measure the Nernst coefficient 

of these materials.  

Similar to the isotropic case, one can include energy-dependent relaxation times in a 

power-law form. Upon doing so we obtain: 



𝑁𝑇 =
𝜇0𝑦𝑦𝐵

(1+𝜇𝐻𝑥𝑦𝜇𝐻𝑦𝑥𝐵
2)
(𝛼𝑦𝑦 − 𝛼𝑥𝑥

2𝑠+2.5−𝑥𝑓

𝑠+2.5−𝑥𝑓
)
𝛤(2𝑠+2.5)

𝛤(𝑠+2.5)
      37 (non-degenerate) 

𝑁𝑇 =
(𝛼𝑦𝑦−𝛼𝑥𝑥

(2𝑠+1.5)

(𝑠+1.5)
)

(1+𝜇𝐻𝑥𝑦𝜇𝐻𝑦𝑥𝐵
2)
 𝑥𝑓
𝑠𝜇0𝑦𝑦𝐵  38 (degenerate ) 

 

 

As seen in Eq. 37 (non-degenerate)37, 38, and Figure 3, the larger the ratio of the Seebeck 

coefficients in the two directions, the larger the Nernst coefficient. As before the Nernst 

coefficient is also an increasing function of the s-parameter.  

3.4.3. The two-band model: The case of two bands is important since it 

allows investigation of the effect of bandgap and mass mismatch between electrons and 

holes. To keep the equations simple, here we assume that there are two isotropic bands, 

one is the conduction band labeled by e for electrons hereafter, and the other is the valence 

band labeled by h for holes. We start from Eq. 12 and define each component in the 

presence of two bands. Since the current of electrons and holes are additive, we find that 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑒 + 𝜎𝑖𝑗

ℎ      39 

𝛽𝑖𝑗 = 𝛽e
𝑖𝑗
+ 𝛽𝑖𝑗

ℎ      40 

         

We note that the conductivity term that does not have B dependence has the same sign 

for electrons and holes, while the conduction term that is linear in B has opposite signs 

for electrons and holes. In the thermoelectric coefficients 𝛽 however, the terms with no B-

Figure 3. Ellipsoidal case: The absolute value of 
the Nernst coefficient divided by the y component 
of the Seebeck coefficient versus reduced 

chemical potential (𝑥𝑓 =
𝜀𝑓

𝑘𝐵𝑇
). The curves are 

plotted after Eq. 37and 38 in the non-degenerate 

and degenerate limits, respectively. Solid lines are 

referring to when (
𝛼𝑦

𝛼𝑥
= 1) which is then like the 

isotropic case. Dashed lines are referring to when 

((
𝛼𝑦

𝛼𝑥
= 4) and dotted lines are plotted for (

𝛼𝑦

𝛼𝑥
=

10). Red, black, and purple refer to s parameters 
of -0.5, 0.5, and 1.5, respectively. Second order 
terms in B are ignored.   



field are linear in charge (and opposite in sign) and those linear in B are in 𝑒2. We note 

that equations for single-band were developed for electrons assuming a charge of -e, 

hence some of the signs are modified for the case of holes. To be able to address the two 

bands properly, we revise our definitions with the isotropic conditions for each band in 

mind. Each band starts at 𝜀0 and goes to infinity. (That is the axis is flipped when dealing 

with the valence band)  

Defining: 

{
  
 

  
 𝜎0 = ∫ 𝑒2𝜏 (−

𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥

∞

𝜀0
𝑔(𝜀 − 𝜀0)𝑑𝜀

𝛽0 = ∫ 𝑒𝜏𝑇 (−
𝜕𝑓0

𝜕𝜀
) 𝑣𝑥𝑣𝑥(𝜀 − 𝜀𝑓)

∞

𝜀0
𝑔(𝜀 − 𝜀0)𝑑𝜀

𝜇𝐻 =
𝑒

𝑚∗

<𝜏2>

<𝜏>

𝜇𝛽 =
𝑒

𝑚∗

<𝜏2(𝜀−𝜀𝑓)>

<𝜏(𝜀−𝜀𝑓)>
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And using superscripts e/h for electrons and holes we obtain 

 

{
 
 

 
 

𝜎𝑥𝑥 = 𝜎0
𝑒 + 𝜎0

ℎ

𝜎𝑥𝑦 = (−𝜇𝐻
𝑒𝜎0

𝑒 + 𝜇𝐻
ℎ𝜎0

ℎ)𝐵𝑧

𝛽𝑥𝑥 = −𝛽0
𝑒 + 𝛽0

ℎ

𝛽𝑥𝑦 = (𝛽0
𝑒𝜇𝛽

𝑒 + 𝛽0
ℎ𝜇𝛽

ℎ)𝐵𝑧
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Plugging Eq. 42 into Eq. 12 and ignoring second-order B terms, we find: 

 

𝑁𝑇 =
−1

𝑇2

(𝜎0
𝑒+𝜎0

ℎ)(𝛽0
𝑒𝜇𝛽

𝑒+𝛽0
ℎ𝜇𝛽

ℎ  )+(𝜇𝐻
𝑒 𝜎0

𝑒−𝜇𝐻
ℎ𝜎0

ℎ)(−𝛽0
𝑒+𝛽0

ℎ)

(𝜎0
𝑒+𝜎0

ℎ)
2  𝐵𝑧  43 

𝑁𝑇 =
(𝜎0

𝑒2𝑁𝑒+𝜎0
ℎ2𝑁ℎ)

(𝜎0
𝑒+𝜎0

ℎ)
2 −

1

𝑇2

𝜎0
𝑒𝛽0

ℎ(𝜇𝛽
ℎ+𝜇𝐻

𝑒 )+𝜎0
ℎ𝛽0

𝑒(𝜇𝛽
𝑒+𝜇𝐻

ℎ)

(𝜎0
𝑒+𝜎0

ℎ)
2 𝐵𝑧     44 

 

Where 𝑁𝑒 =
1

𝑇2

𝛽0
𝑒(𝜇𝛽

𝑒−𝜇𝐻
𝑒 )

𝜎0
𝑒 

𝐵𝑧 is the Nernst coefficient of the conduction band alone and 

𝑁ℎ =
1

𝑇2

𝛽0
ℎ(𝜇𝛽

ℎ−𝜇𝐻
ℎ)

𝜎0
ℎ 

𝐵𝑧 is the Nernst coefficient of the valence band alone.   

The first term in the Nernst coefficient is a weighted average of the Nernst coefficients of 

the electrons and holes, weighted by conductivity squared.  The second term is a mixed 

contribution of the two bands. We refer to the first term as the “average Nernst” and the 

second term as the “mixed Nernst” term.  



To keep the calculations simple, we study Eq. 44 under constant relaxation time 

approximation (CRTA). In the isotropic single band model case, the Nernst coefficient 

was found to be zero under CRTA. The two mobilities 𝜇𝐻 = 𝜇β =
𝑒τ0

𝑚∗  were identical, hence 

𝑁𝑒 = 𝑁ℎ = 0. In the two-band model, and under CRTA, the average Nernst term is 

therefore zero. However, the mixed Nernst term containing the cross terms between the 

two bands results in a nonzero Nernst coefficient (see Eq. 44).  

Under CRTA, 𝜇𝐻 = 𝜇𝛽 = 𝜇0 =
𝑒𝜏0

𝑚∗
. Defining 𝛼0 =

1

𝑇2
𝛽0

𝜎0
 , Eq. 44 simplifies to: 

𝑁 = −
𝜎0
𝑒𝜎0

ℎ

(𝜎0
𝑒+𝜎0

ℎ)
2  (𝛼0

𝑒 + 𝛼0
ℎ)(𝜇0

𝑒 + 𝜇𝑜
ℎ) 𝐵𝑧  45 

 Observe that 𝛼0 is similar to the Seebeck coefficient, but it has the contribution of only 1 

band, and it is positive for both the conduction band and the valence band. A puzzling 

observation is that even when the two bands are identical and when we are at the center 

of the gap (full symmetry), the Nernst coefficient is not zero and it is equal to 𝑁 =

−𝛼0𝜇0𝐵𝑧. While everything in our analysis of a single band model pointed to the 

requirement of asymmetry, here, we observe that the cross terms between the two bands 

result in a nonzero Nernst coefficient in the case of symmetrical bands.  

We can further study Eq.45  assuming non-degenerate statistics (chemical potential in the 

gap). In the non-degenerate limit, we can define: 

{

𝜎0
𝑒 = 𝑛𝑒𝜇0

𝑒; 𝜎0
ℎ = 𝑝𝑒𝜇0

ℎ

𝑛 = 𝑁𝑐𝑒
−(𝑥𝑐−𝑥𝑓); 𝑝 = 𝑁𝑣𝑒

−(𝑥𝑓−𝑥𝑣)

𝛼0
𝑒 =

𝑘𝐵

𝑒
(𝑥𝑐 − 𝑥𝑓 +

5

2
) ; 𝛼0

ℎ =
𝑘𝐵

𝑒
(𝑥𝑓 − 𝑥𝑣 +

5

2
)
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using these definitions, Eq .45  simplifies to: 

𝑁𝑇 = −
𝑘𝐵

𝑒
(𝑥𝑔 + 5)

(𝜇0
𝑒+𝜇0

ℎ)

(𝑛𝜇0
𝑒+𝑝𝜇0

ℎ)
2𝑁𝑐𝑁𝑣𝑒

−𝑥𝑔𝜇0
𝑒𝜇0

ℎ𝐵𝑧  47 

Figure 4 demonstrates the effect of bandgap and effective mass ratio on the Nernst 

coefficient. Here we plot the absolute value of Nernst divided by 𝜇0 𝐵𝑧 =
𝑒𝜏0

𝑚0
𝐵𝑧 versus 

reduced chemical potential, we take the middle of the gap as zero and we assumed both 

electrons and holes have the relaxation time of 𝜏0. Hence the only relevant parameters 

are the reduced bandgap (𝑥𝑔 =
𝜀𝑔

𝑘𝐵𝑇
), the reduced chemical potential and the effective 

mass ratio (𝑚𝑟 =
𝑚ℎ

𝑚𝑒
), and the electronic mass (𝑚𝑒, this is the mass relative to the free 

electron mass 𝑚0, note that we could have divided everything by 𝑚ℎ instead and the 

results would be similar).  

|
𝑁𝑇

𝜇0𝐵𝑧
| =

𝑘𝐵

𝑒
(𝑥𝑔 + 5)𝑒

−𝑥𝑔
(𝑚𝑟+1)𝑚𝑟

−0.5

𝑚𝑒(𝑒
−(
𝑥𝑔
2
 − 𝑥𝑓)+√𝑚𝑟𝑒

−(𝑥𝑓+
𝑥𝑔
2
)
)

2  
48 



In the middle of the gap, where the Seebeck coefficient is normally zero, the Nernst 

coefficient has its peak value. Similar to the Seebeck coefficient, the values of the Nernst 

coefficient increase as the bandgap increases. This is clear in Figure 4b where we fixed 

the mass ratio of electrons to holes to 1 (𝑚𝑒 = 𝑚ℎ = 1) and only modified 𝑥𝑔. We observe 

that the Nernst coefficient in this case linearly increases with the bandgap. Increasing the 

mass ratio of the electrons to holes (or vice versa) increases the Seebeck coefficient. 

However, this is not the case for the Nernst coefficient. Increasing the mass ratio lowers 

the Nernst coefficient as shown in Figure 4a. Finally, we notice that in Eq. 48, there is a 

mass in the denominator. This means that the Nernst coefficient is larger for smaller 

effective mass values. Reducing the mass values to half increases the Nernst coefficient 

by a factor of 2.   

Let us compare these results with that of Putley [15]. For mixed conductors, Putley 

obtained:  𝑁𝑇 = −
3π𝑘𝐵

16𝑒

(𝑛2𝜇𝑒
3+𝑝2𝜇ℎ

3)−𝑛𝑝𝜇𝑒𝜇ℎ(𝜇ℎ+𝜇𝑒)(7+2𝑥𝑔)

(𝑛𝜇𝑒+𝑝𝜇ℎ)
2 𝐵 The first paranthesis in Putley is 

the individual contribution of conduction and valence band which is the equivalent of 

our average Nernst term. As discussed under CTRA this term is zero. Hence his 

expression reduces to 𝑁𝑇 =
3π𝑘𝐵

16𝑒
(7 + 2𝑥𝑔)

𝑛𝑝𝜇𝑒𝜇ℎ(𝜇ℎ+𝜇𝑒)

(𝑛𝜇𝑒+𝑝𝜇ℎ)
2 𝐵 which differs from our equation 

by a factor of 
3π

16
(7 + 2𝑥𝑔)/(5 + 𝑥𝑔). Putley’s work is based on drift-diffusion model and 

assumes that the scattering is dominated by Debye longitudinal lattice model. We can 

also compare our results with what is presented by Aono [54] where he assumed the same 

scattering mechanism for electrons and holes. Similarly, keeping only mixed band 

contributions, Aono’s expression can be written as  𝑁𝑇 =
𝐴𝑘𝐵

𝑒𝜎2
(−𝜎ℎ𝜎𝑒)(𝜇ℎ + 𝜇𝑒)(5 + 3𝑠 +

𝑥𝑔)𝐵. The A parameter is described by Aono as a positive numerical coefficient that is 

function of s. If we ignore this parameter and set s=0 (CRTA), then the results of Aono is 

similar to what we obtained in Eq. 47. However, we note that the start-point of both Aono 

and Putley seems to be degenerate conductors and the equations were then extended to 

mixed conductors.  Finally, we compare the results to those of Price who obtained the 

Nernst coefficient for two isotropic bands using drift-diffusion model. The mixed term in 

Price’s analysis (See Eq. 12’ of Ref.  [30]) is 𝑁𝑇 =
𝑘𝐵

𝑒
(𝑥𝑔 + 3 + 𝛾𝑒 + 𝛾ℎ)

(𝜇𝑒+𝜇ℎ)

𝜎2
𝜎𝑒𝜎ℎ𝐵𝑧 

wherein γe and γh are unitless numbers connecting thermal diffusion coefficient and 

Einstein diffusion coefficients for electrons and holes. We see that the only difference 

between Eq. 47 and this one is the replacement of (γe + γh) by 2, meaning our treatment 

is equivalent of ratio of 1 between the thermal and normal diffusion constants in Price 

analysis.   

Beyond CTRA, it is easier to study the results numerically. What we obtained previously 

for isotropic single-bands and ellipsoidal bands remains valid. For instance, when 



considering power law for relaxation times [ 𝜏 = 𝜏0 (
𝜀

𝑘𝐵𝑇
)
𝑠

], the Nernst coefficient 

increases as the s-parameter increases. This is shown in Fig. 4c where we assumed 

identical bands (effective mass of 1 and the same s-parameter for the two bands) and 𝑥𝑔 =

10. Results are plotted on the logarithmic axis and indicate enhancement in the Nernst 

coefficient as the s-parameter increases. Note that Fig. 4c is obtained numerically.  

 

                             

 

 

 

 

 

 

 

In analyzing the Nernst coefficient, we observed that the Nernst coefficient 

increases as the bandgap increases. This observation is against the general knowledge 

that the best thermomagnetic materials are semi-metals. To understand the benefit of the 

semimetals, it is not sufficient to study the Nernst coefficient, and we need to study the 

thermomagnetic power factor. 

𝑃𝐹 =
𝜎

𝜇0
|
𝑁𝑇

𝜇0𝐵𝑧
|
2

=
2𝑘𝐵

2

𝑒
(
2𝜋𝑘𝑇

ℎ2
)

3

2
(𝑥𝑔 + 5)

2
 𝑒−2𝑥𝑔

(𝑚𝑟+1)
2

𝑚𝑟𝑚𝑒
1.5(𝑒

−(
𝑥𝑔
2
 − 𝑥𝑓)+√𝑚𝑟𝑒

−(𝑥𝑓+
𝑥𝑔
2
)
)

3    
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Figure 5 shows the behavior of the power factor. We observe that the power factor has a 

similar dependence on mass ratio as the Nernst coefficient. We also note that the power 

factor increases as the effective mass decreases. The optimum Power factor is when the 

mass ratio is 1. In this case, the optimum power factor is in the middle of the bandgap. 

Under these conditions, the thermomagnetic power factor can be simplified to 

𝑃𝐹 ∝
(𝑥𝑔+5)

2
𝑒
−
𝑥𝑔
2

𝑚𝑒
1.5   
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           The power factor as a function of the reduced bandgap (𝑥𝑔) is plotted in Figure 

5b. We notice that the power factor decreases as the bandgap increases. This is 

Figure 4. The absolute value of the Nernst coefficient divided by (𝜇0𝐵 =
𝑒𝜏0

𝑚0
𝐵) is plotted 

versus reduced chemical potential (𝑥𝑓)  for the two-band model assuming isotropic bands 

under CRTA and assuming same 𝜏0 for both electrons and holes. Zero is the middle of the 
bandgap (a) The bandgap is 𝑥𝑔 = 20, 𝑚𝑟 is the ratio of effective mass of the two bands. If 

holes are heavier, the shift of the peak is toward the conduction band and vice-versa. e.g., 
𝑚𝑟=2 is plotted once for 𝑚𝑒=1 and 𝑚ℎ=2 and again for 𝑚ℎ=1 and 𝑚𝑒=2 (b) The mass ratio is 
set to 1 and the bandgap is changed.  



consistent with our understanding that narrow gap semiconductors and semimetals are 

good thermomagnetic candidates. Hence while the Nernst coefficient increases with 

bandgap, the thermomagnetic power factor decreases with bandgap.                                            

 

 

 

 

 

 

 

 

 

 

  

 

4. Conclusions: 

In this work, we presented a description of the Nernst coefficient in simple conductors. 

Within an isotropic single band model, we obtained that the Nernst coefficient is zero in 

the CTRA. A nonzero Nernst coefficient in this case is the result of energy-dependent 

relaxation times and is proportional to the difference between thermal and Hall mobilities 

times the Seebeck coefficient. When using power laws and s-parameter to describe the 

relaxation times, we obtained that the Nernst coefficient is an increasing function of s. It 

is proportional to the Seebeck coefficient times mobility times magnetic field ( 𝑁 ∝

𝛼0𝜇0𝐵𝑧). There is a factor of 
1

(1+(𝜇𝐻𝐵𝑧)2)
 which comes from the determinant of the 

conductivity tensor. In the nondegenerate limit, the Nernst coefficient does not have any 

explicit dependence on the chemical potential, and in the degenerate limit, it is 

proportional to 𝑥𝑓
𝑠−1. 

When the bands are anisotropic, the Nernst coefficient is nonzero even within the 

CTRA and it is proportional to the difference in the Seebeck coefficient of x and y 

directions. Hence, within one band model anisotropy in x-y crystallographic directions is 

Figure 5. Power factor (𝜎𝑦𝑦𝑁
2) plotted after Eq. 52 using arbitrary unit. Parameters 

are similar  to Fig.4 parameters. a) 𝑥𝑔=20 for all graphs; for  𝑚𝑟 = 1 :𝑚𝑒 = 𝑚ℎ = 1; 

for  𝑚𝑟 = 2 :𝑚𝑒 = 1 𝑚ℎ = 2 and 𝑚𝑒 = 2 𝑚ℎ = 1; for 𝑚𝑟 = 5 :𝑚𝑒 = 1 𝑚ℎ = 5 and 

𝑚𝑒 = 5 𝑚ℎ = 1. b)  𝑚𝑟 = 𝑚𝑒 = 1, optimum PF (Eq.50 ) plotted vs reduced bandgap 

(𝑥𝑔). 



desired. Within the two-band model, we observed however that identical bands result in 

larger Nernst coefficient values. The Nernst coefficient peaks close to the middle of the 

bandgap where the Seebeck coefficient is zero. It increases linearly as the bandgap 

increases. However, we also obtained that the thermomagnetic power factor reduces as 

the bandgap increases.  

We conclude that identical electron and hole bands that are anisotropic (in the 

crystallographic directions perpendicular to the magnetic field) with large s-parameters 

and zero or overlapping bands are the best candidates for good thermomagnetic 

materials. 
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