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1. Abstract

Analytical solutions based on the Boltzmann transport equation (BTE) within the
relaxation time approximation are developed to relate the Nernst coefficient to
materials band structure and relaxation times parameters in simple conductors.
The dependence of the Nernst coefficient on the effective mass, anisotropy of
bands, energy bandgap, and scattering parameters are investigated. The obtained
relations are compared to the existing solutions presented in the past using
different approximations.

2. Introduction:

Thermomagnetic energy conversion based on the Nernst effect and
thermomagnetic refrigeration based on the Ettingshausen cooling provides a solid-state
technique for direct conversion of heat to electricity and pumping of heat from the cold
reservoir to the hot one. Thermomagnetic modules are similar to thermoelectric modules
(see Fig. 1). A temperature gradient applied to a conductor results in a longitudinal
Seebeck voltage which is the base of the thermoelectric heat to electricity, energy
conversion. When a magnetic field is applied normal to the imposed temperature



gradient, there will be a secondary transverse a) Seebeck effect b) Nernst effect
1 ar

voltage, the so-called Nernst voltage. [1] The &,
Nernst coefficient, N, is then defined as the o

transverse voltage gradient divided by the

temperature gradient (we do not divide by the

AV ‘
magnetic field and assume N is in the units of a=— 4 En=NBx7T
V/K), has the same dimensions as the Seebeck Refrigeration

¢) Thermoelectrics d)Thermomagnetics

coefficientt and is the base of the

thermomagnetic energy conversion. (Figure 1).

The thermomagnetic efficiency of materials

for power generation and refrigeration

applications is evaluated by their Figure 1. Schematic of the a)Seebeck effect b)
Nernst effect c) Thermoelectric module for

dimensionless figure of merit, zry T defined as refiigeration d) Thermomagnetic modules for
(N%6,,T)/Ky, where gy, is the electrical refrigeration.

conductivity in the y-direction (direction of

the Nernst voltage), k,, is the thermal conductivity along the direction of the applied
thermal gradient, and T is the average temperature of the material [2]. Historically, the
Nernst coefficient was first observed in Bismuth in 1886. [1] It was then measured in
many metals [3-7] semimetals [8-11] and narrow-gap semiconductors [12-15]. Previous
studies have shown that extremely mobile quasi-particles in dilute metals generate a
noticeable Nernst signal. [16] Within the Fermi liquid picture, it is shown that the Nernst
effect roughly measures the ratio of electron mobility to Fermi energy in a given
metal. [17,18]

In addition to power generation and cooling, the Nernst effect has been used as an
experimental probe in studying various physical systems, for instance, in determining
the carrier-scattering mechanisms involved in semiconductors and semimetals [14,19-
22].

The theory of the Seebeck coefficient is well developed and the analytical solutions
for the Seebeck coefficient are well known. For instance, we know that the Seebeck
coefficient, @, in metals follow Mott’s formula and is an increasing function of the

derivative of the logarithm of the electrical conductivity, o, with respect to energy, ¢, at
m2k3T dlog (o)
T de

temperature, and e = 1.6 x 1071°C is the unit of charge). This suggests that materials with

the Fermi energy, & (a = e, where kg is the Boltzmann constant, T is the

a large slope of the density of states and relaxation times with respect to energy own a
large Seebeck coefficient.



In non-degenerate semiconductors, the Seebeck coefficient increases as the
bandgap increases. Within the single-band model, the further the chemical potential from
the band edge, the larger the Seebeck coefficient. Within the two-band model that
includes the conduction band and the valence band, the Seebeck coefficient increases with
the ratio of the effective masses of the two bands and is zero close to the middle of the
bandgap. Understanding how the Seebeck coefficient depends on the materials
parameters helps in the design of highly efficient thermoelectric materials. [23-25]
Perhaps, a better criterion is the thermoelectric power factor, but the Seebeck coefficient
comes as the first step.

Similarly, the Nernst theory has also been studied in the past. Sondheimer studied
the galvanometric and thermomagnetic effects in metals with s and d bands [17,26].
Putley [15] studied the Nernst signal in semiconductors through the Lorentz-
Sommerfeld theory [27]. He started from a formalism developed by Sommerfeld and
Frank [28] for metals and extended it to semiconductors and mixed conductors. [29]
Theoretical predictions of the Nernst coefficient of PbTe and PbSe appeared to be
reasonably close to experimental values. Price [30] obtained a relatively simple formula
for the Nernst coefficient in the case of isotropic two-band semiconductors using
Boltzmann statistics. In terms of electrical conductivity (o), and Hall mobility (uy) of

each band, the Nernst coefficient was defined as N = kg/e [(%) ul + uiH(a, + ap) +
CePe+OTnPn Td(logn;)

o ar
represented by Einstein [31], y parameter relates diffusion coefficient to mobility by y; =

T
% and A7 is a mobility developed by both magnetic field and temperature gradient.
i"B

Jetfrey Clayhold studied the Nernst effect in anisotropic materials and found that the

]B where a; = +y; and ¢; = y;(A7 — uf). Based on the kinetic theory

value of the Nernst coefficient depends on the correlation between the Hall angle and
thermopower at different points on the Fermi surface [6]. Masuki et. al., using a
momentum-dependent relaxation time approximation, showed that in FeSbz, a second
peak appears in the temperature dependence of the Nernst coefficient due to the phonon-
drag effect [32]. Pikulin et. al. compared the value of the Nernst coefficient in cuprate
superconductors calculated using constant relaxation time approximation (CRTA) and
momentum-dependent relaxation time approximation [33]. They found that in the
combined presence of the band and scattering anisotropy, the CRTA is a poor
approximation and can result in an error significant enough to result in a Nernst
coefficient of the wrong sign. It is noteworthy to mention here that, in their calculation,
only the single band elastic quasi-particle scattering was considered, and the response in
the low magnetic field limit was computed. In recent years, there has been a surge in



research activity concentrated on the Nernst effect in Weyl and Dirac semimetals.
Consequently, several theoretical studies focusing on both the conventional and the
anomalous part of the Nernst coefficient have been performed using the Boltzmann
transport equation (BTE) [34,35]. The contribution of Berry curvature [35-38], conformal
anomaly [39], gravitational and thermal chiral anomaly [40] in the anomalous part of the
Nernst coefficient in these material systems have also recently been theoretically
investigated. These works focus on the topological aspects of the problem but use
approximations such as Mott’s formula, Sommerfeld expansion, and small magnetic
tields.

The goal of this paper is to find explicit and general analytical expressions for the
Nernst coefficient in simple semiconductors and to develop an understanding of when
large Nernst coefficient values are expected theoretically, hence narrowing down the
search for good thermomagnetic materials. We use the term simple semiconductors in
contrast to topological and ferromagnetic materials which are often used in the study of
the Nernst coefficient. When possible and needed, we study the thermomagnetic power
factor and lay the criteria for thermomagnetic transport. While similar results are
available in old literature, there are several problems. First, they are scattered in old
papers. Second, they are obtained sometimes using phenomenological assumptions and
sometimes with little details of the assumptions used, and third, different authors
obtained different equations using different assumptions. Here we use a BTE approach
within the relaxation time approximation to study the Nernst coefficient under different
band structures and scattering rates. When possible, we compare our results with
previously obtained equations for the Nernst coefficient in simple semiconductors.

3. Analytical solutions:
3.1. General definition of the response functions:

First, we obtain the general solutions for the Nernst coefficient following
Lundstrom's [41] and Smith's [42] notations. We start by expressing the electrical current
(/ ) in terms of the electric field (E) and the gradient of the inverse temperature (V (%))
J = 0E + fV (%) 1

where o and f are 3 X 3 response function tensors representing respectively the
electrical conductivity and thermoelectric function. In the presence of an external
magnetic field (B), moving electrons experience an additional force F = —eE — ev X B. As



a result, the response functions are modified, i.e., they become a function of the magnetic
field (¢(B) and B(B)).

We start by first expressing the Nernst coefficient in terms of these matrices. The
isothermal Nernst coefficient is defined as the ratio of the transverse voltage to an applied
thermal gradient when the applied magnetic field is perpendicular to the directions of
measured voltage and temperature gradient: Ny = E,,/V, T . This is subject to open-circuit

electrical boundary conditions, i.e., J] = 0.

1

Denoting the resistivity tensor by p = 6~%, we have E = ppVT/T?. In the presence of a

magnetic field, we define the generalized Seebeck tensor as:

_PB 2

(X—TZ

In the case where the temperature gradient is along x, and the applied magnetic field
along z, the longitudinal xx component in the B=0 limit is the ordinary Seebeck coefficient,
while the transverse xy component contains the Nernst coefficient. We will show the
explicit formula for Ny = a,,, in the next section.

3.2. General Solution of the BTE in the presence of a magnetic field within the

relaxation time approximation:

If we denote the equilibrium distribution function by f°, for every electronic state of
momentum, k, and band index, n, the BTE is:

Ui | 3y Y i — e(E + Vi X B).Vp fy = — LenJfim 3
at kn* VrJkn e Vin . kfkn -

Tkn

From now on, for simplicity, we omit the indices k,n from the velocities, electron
energies, and distribution functions. Following Smith et al. [42] we write the solution to
this equation in the form:
of0
f=f0+T'l7.S(—i) 4
oe
where ¢ is the electron energy and the unknown vector § is assumed to be only a function

of energy ¢. Plugging this expression into BTE (3) yields the equation satisfied by S. It is
well-known that in the absence of a magnetic field, S is the driving electrothermal force



F on the electrons: § = F = —Vg; — ? VT, where & is the electrochemical potential (we

are using p to denote mobility). In the presence of B, and in steady-state, the BTE
simplifies to:

(1 +10)f; = w.F(-2L) 5

where we defined Q = _76 (v X B).V,, and f; = f — f°. The operator Q and namely V,, acts

0
on f; which is postulated to be of the form: tv. S (— aa%)
This expression can be simplified if we assume the relaxation times depend only on the
pcor _ oot
ok 9e ' 0¢

effective mass tensor at the point k: V,v = h% where M is the effective mass tensor.

energy so that V,7 = Furthermore, its action on the velocity gives the

Inserting these relations into Eq. 5, one finds that § must satisfy.

S—wiBxXNS=F 6

Where B is the unit vector along the direction of the magnetic field, w = :1—8 is the
0

cyclotron frequency, and the dimensionless 3 X 3 tensor N is the inverse effective mass
matrix normalized by the bare electron mass m,. Note that one can substitute the cross
product by the multiplication by an antisymmetric matrix which we call B:

~

0o -B, B
B=—-wt| B, 0 -B,
-B, B, 0

So that the equation satisfied by S becomes a simple 3 X 3 linear system easily invertible.

S=QF with Q= (I +8N)! 8
Therefore, in an actual calculation, if the band structure is known at any k-point of
interest, one needs to calculate the group velocity and inverse effective mass tensor at
that k-point, and use the solution to Eq. 8 to deduce the components of S, which will give

the electrical current as:

—e af
J= 72knvkn Q) Vin-Skn Tkn (_ a};n) 7



This general solution has the advantage that is valid for any arbitrary orientation of the
fields with respect to each other (no need to be perpendicular) or to the crystalline axes,
is valid even at moderately large magnetic fields (within the semiclassical approximation)
as long as we have a relaxation time that is only energy-dependent. If that is not the case,
as an approximation, one may take its angular average over the constant energy surfaces
of interest: 7, (¢) = Xx Tk 6(€ — €nx)

Before proceeding further, we need to point out that although the Nernst coefficient is
linear in B at small magnetic fields, the solution obtained above has in principle full
magnetic field dependence as the distribution function has not been Taylor expanded in
powers of B as is commonly done. In this limit, since we have § + BN § = F, the solution
becomes § = (1 + BN)"'F ~ F — BN F, i.e. we obtain the standard distribution function
plus a correction linear in B: BN = eBt/m” usually denoted by wt.

Behavior at high magnetic fields: From the above equation defining S, we can note that the
behavior of response functions will then start with a constant plus a term linear in B at
low B, and decays as 1/ B at large fields. The crossover point is when wt = uB =~ 1 where
p = e {(t/m") is the mobility of the sample. The behavior at these intermediate fields may
be less straightforward in complex materials with large anisotropies in effective mass and
relaxation time, but the limiting behavior will remain linear in B at low B and linear in
1/B at high B. At yet higher fields such that the cyclotron radius defined by IZ = #/qB
becomes smaller than other length scales in the problem such as the electron mean free
paths, quantization effects become important, and the semiclassical BTE approach ceases
to be valid.

Throughout the rest of this article, we fix the direction of the applied thermal gradient to
be in the x-direction and the external magnetic field to be in the z-direction, irrespective
of the crystalline axes. The Nernst voltage is then collected along y.

We focus on the isothermal Nernst coefficient Ny, where it is assumed there is no thermal
gradient along y or z.

Using Egs. 8 and 9, we can obtain the transport functions. First, to simplify notations, we
define un-normalized transport averages as:

1 i fn
<<A>>ij = ;an Ank v111k vflk QU (n) (_% 10



where implicit summation over repeated Cartesian indices (i,j,[,...) is implied. From
their definition in Eq. 1, the general equations defining the response functions can be

written as:
o = q*( )i ; Bij =qT ((t(e— &) )y 11

. 0
The normalizing factor ({1)); = %an vie vhe Qu (n)(— %) can be derived to be ml in
the isotropic case where the effective mass tensor is a scalar (n is the so-called free-
electron density).

The Nernst voltage is measured under open-circuit conditions implying J, = J, = 0.
Setting these currents to zero, and solving for E, and E,, in terms of V, T by using Egs. 1,
in agreement with previous work [10], the Nernst and Seebeck coefficients become:

No. = Ey 1 OxxPyx—0yxBxx | _ Ex _ 1 0yyPaxx—0yxPxy
=== s — X _— _Yyrxx YyxXPXy

= axx =
VxT T2 OxxOyy—0yx Oxy VxT T2 OxxOyy—0Oyx Oxy 12

Equation 12 is valid for any arbitrary band structure as long as the x, y, z directions are
defined along VT, AV, B directions respectively.

3.3. Weak magnetic field limit:

In this section, we proceed to solve the problem in special cases where it can be solved
analytically. Starting from Eqs. 12 and the following definitions, we need to find explicit
solutions for ¢(B) and B(B).

In the case of weak magnetic fields, Eq. 5 simplifies to f; = (1 — tQ)tv. F (— %). The first

0
term is independent of the magnetic field and we express it as f' = tv. F (— %) and the
0
second term is linear to B and we can express it as " = 72 % (vx B).V,(v.F) (— aais)' In

writing f", we assumed 7 depends only on energy. The current is then written as J =

_—ezk vf;. Using the notation of Eq. 1 and after inserting f; into the current equation, we
v 8 q 8 q
obtain: [41].

_e? ofo e ov;

Oij = 72k T (_ E) vi(vj + ET emnp VmBn a) 13
— ekBTz afO e 017]

Bij = ——,—ZkT (— E) vi(x —xf) (v + =T €mnp VmbBn 3k, 14

Implicit summation over repeated indices is implied. kj is the Boltzmann constant, €,,,,
is the antisymmetric Levi-Civita symbol, and x refers to dimensionless (reduced) energy

x = — throughout this work.
kgT



3.4. Special cases
3.4.1. Case of isotropic single band: A single band with isotropic effective
mass is the simplest possible band structure and hence that will be our starting point. In
this case, the derivative of the velocity with respect to momentum is the inverse of the

=h %). Considering the magnetic field is in the z-direction, Eq. 13 for

the isotropic case simplifies to:

__ZR,T( )vlv] + = Zke - ( aa_f:) Emzj viUmBz 15

If we now define normalized transport averages by: (A);; = XxAx v;vj (— aa_,:’) /

ar°
Yk vivj (— E) we have:

e? af° e? N
Oxx = Oyy = VZRT (_ a_) UxVx = 5 = 0o 16
1 e37? of°
Oxy = —Oyx = _;Zk m ( 9e )vxva = —pUpoyB, 17

are, . . e <t?>
where N = Y, m" v;v; (— a—fg) is the number of free carriers, and uy = —

mobility. Since we are dealing with isotropic band structure, we drop the xx index from
the averaging.

Similarly, Eq.14 under isotropic conditions is:

Brxx = Byy = ek3T2 XkT ( o )Uxe(x - xf) = = Bo 18

_ _ k)gT2 e?r? af 19
ﬂxy - _ﬂyx - TZk A ( de ) vxva (x xf) - _.BO.M,B

e <t%(e-gf)>

where ug = and we refer to it as thermal mobility.

m* <t (s—sf)>
By substituting all transport functions obtained above in Eq. 12 we find:

N, (ug—nn) 20

= A0 (57 B, where the zero-field Seebeck is ay, = B,/T?0,

This is our first significant result stating that the Nernst coefficient is proportional to the
Seebeck coefficient (a,;) and also to the difference between the thermal and Hall
mobilities. We notice that under constant relaxation time approximation, uz and uy are
identical and the Nernst coefficient is zero! Hence, in the isotropic single band model, the
Nernst coefficient is merely the result of energy-dependent scattering rates.



We can further include power laws for the relaxation times to better understand
the relation between the Nernst coefficient and the energy dependence of the relaxation
times. It is shown that the relaxation times can be approximated by power laws in the
form of T = 7yx° for several common scattering mechanisms. For instance the scattering
parameter (or characteristic exponents), s, is -0.5 for acoustic phonon scattering and 1.5
for weakly screened ionized impurity scattering. [41] In general since only electrons in a
narrow Fermi window contribute to transport, it is possible to fit the scattering rates with
a power law form. Assuming a power law for scattering rates, we obtain:

e <t?> _  (2s+1.5) Fasp05(xf)l(25+1.5) 71
Hn = o = Ho (s+1.5) Fsyos(xf)r(s+1.5)
(25+2.5)(25+1.5)Fp541.5(Xf)~Xf(25+1.5)Fa540.5(xf) I(25+1.5) 22
Hp = Ho

(s+2.5)(s+1.5)Fsy15(xf)—xf(s+1.5)Fspo5(xf)  I'(s+1.5)

. . __ €eTg . 1 _ & .
Here, s is the scattering parameter, p, = 70 is the constant mobility, and x; = o 18 the

reduced chemical potential. As can be seen, it is possible to obtain analytical solutions in
the general case, but not simple to interpret as they include Fermi Dirac integrals (F;(x;))
and gamma functions (T'). Figure 2 shows the plot of these solutions for the Nernst
coefficient as a function of the modified chemical potential for several s-values. We note
that solutions do not exist for all possible s-values. The Nernst coefficient increases as
the s-parameter increases. We can conclude that the Nernst coefficient is larger when
there is a stronger energy dependence of the differential conductivity.

102 Figure 2. The ratio of the Nernst to Seebeck coefficient as
a function of the reduced chemical potential (x; = kg—fT).

B
101k 3 Zero is the band edge. Dashed lines are the general
s=15 solutions of the isotropic bands, Eq. 20, obtained by

subtracting Eq. 21 from 22 (the two mobilities). Solid lines
at the negative side are showing the non-degenerate
solutions of Eq. 24. As expected only at negative Fermi
levels, non-degenerate solutions match the full solutions.
Solid lines at positive Fermi levels are degenerate
approximations using the Sommerfeld expansion Eq. 27.
Note that the absolute values are plotted, and the second
order B terms (uyB,)? are ignored.

Nondegenerate case: Using non-degenerate (Maxwell-Boltzmann) statistics, it is possible
to further simplify the equations. Doing so, we obtain

_ s r(2s+2.5) 23
Hp = Hu = Ho (s+2.5—xf> r(s+2.5)
N = o ( s >r(25+2.5) 24
'™ (1+(uuB)?) \s+2.5-x5) I'(s+2.5) Koz



The results of Eq. 24 are only valid in the non-degenerate limit when the chemical
potential is in the gap (negative). The analytical solutions of Eq. 24 are plotted in Figure
2 (solid lines in the negative x; range. They can closely reproduce the full solutions

represented in Egs. 20, 21, and 22 (dashed lines). In the nondegenerate case, the aﬁ ratio
0
)-

1
However, we note that the a, increases linearly as the chemical potential moves away

decreases as the chemical potential moves away from the band-edge (as
S+2.5—-xf

from the band edge as (x; —s — 2.5). Hence, N does not have any significant chemical
potential dependence! The results obtained in Eq. 24 are similar to what Delves [10]
presented in his comprehensive review for spherical bands and non-degenerate statistics

(see Eq. 5.10 of Ref. 10). The difference is the extra factor of H2s25)

in our results. Delves
I'(s+2.5)

obtained his results by modifying the distribution function by a ; factor in the

_r
(1+(wT)2
presence of an external magnetic field where (w = :n—B*) is the cyclotron resonance

frequency.
Degenerate case: We can also estimate the solutions in the metallic (degenerate case). To

. . af° -
find uy, we approximate ——~§ (& — &) and we obtain:

if‘rZS(s—sf)vxvxg(s)ds _ s
mx [18(e—ef)vxvrg(e)de = Ho Xf 25

Ug =

The same approximation for Up gives zero due to the (s - ef) term and hence, we use the

Sommerfeld expansion to obtain:

0
= 1 fxzs(%)vxvxg(s)(s—sf)ds _ 2(25+1.5)x)2r5+°'5 — & (2541.5) o
Plugging Egs. 25 and 26 into 20 we obtain:
_ (243} s S
Nt = Gt T s Mo 27

The results of Eq. 27 are only valid in the degenerate (metallic) case when the chemical
potential is well-inside the band (positive). These results are also plotted in Figure 2 (solid
lines on the positive x; side) and can reproduce full solutions especially when s is larger

than 1. In Eq. 27, when s is positive, % increases with the chemical potential. When s is
0



negative, the ratio decreases with increasing the chemical potential. We also remind the

reader that «, itself has xi dependence. Hence in this limit, N is proportional to x7~*.
f

Within the same approximations used to obtain Eq. 27, the Seebeck coefficient can be

2
expressed as (ap = %%B(SJ;;S)) and hence the Nernst coefficient is Ny =
f

kg Sx; !
3 e (1+(unBz)?)
w2 kB 1

to) Ny = e % UoB, obtained by Feiber et.al. [43,44]. They used nearly free-electron

UoB;, ignoring the second-order B term. This is similar to (but not identical

picture with a phenomenological relaxation time approximation and assumed the Fermi
level is much larger than the thermal energy (strong metal) to obtain their expression.

Moreau [45] has developed a phenomenological relation for the Nernst coefficient in

metals (N = Ryo ( %) B). It seems that Moreau argument has been an analogy to the

Hall effect which he attributed to some sort of deformation. While he has not provided a
convincing proof, he has shown that his relation can explain some of the experimental
observations in metals. [46] It has shown that his relation can also explain some of the
semiconductor trend. [14,47] We notice that within single band degenerate model, aj is

. . da . .
linear in T and hence Td—T0 = ao and Ryo = uy = po x;. Hence, Moureau’s relation is

similar to what we obtained here in Eq. 27. Ignoring the second-order B term, the
S

(s+1.5)°

difference is a factor of

3.4.2. Case of ellipsoidal single-band: The analysis of the isotropic case points to
the fact that anisotropy can increase the Nernst coefficient. Hence, here we study the case
where the effective mass is different along different axes and the dispersion relation is

h? (k3 | ky | kZ : : dv; _ 6ij
£== (—x + =X+ —Z) Using the same steps as before and observing that — = £, we can
2 \my my, my, dp; m;
start from Eq. 13 to obtain:
e? ar°
Oxx = 721’ T(— E) Uy Uy 28
1 e372 afo
Oxy = _;Zp m;, (_ E) vaxBZ - _.unyo-xsz 29
2(_2f°
e Lp T\ ~%5 Jvavx _ e <t?>yy 30
HHey = 0 af0 T oml <>
p T\~ 3z JVxVx y xx

In defining mobility, the first index refers to the direction of velocities over which the
averaging is performed, and the second index refers to the effective mass direction.

o(B) = [ 31

Oxx _O-xx.unyBl

Hu,, OyyB Oyy



The transport matrices are 3 X 3 but since we fixed B in the z-direction, to keep things
simple, we only use 2 X 2 matrices. Similarly

B ~Prxbp,, B
ﬁ(B):l - ""’”l 32
K, Pyy Byy
_q <t%(e—gf)>xx
KBy = mj, <t (e—ef)>xx 33
The Seebeck tensor is then
pB 1 Ax t+ 'uny /”lﬁyxaysz _axx'uﬁxyB + ayyHnyB
a (B ) = ) = > 2 34
(1+MHX3’ HiyyB ) _axx'tuxB + ‘uﬁyxayyB QAyy + .tuxaxx 'quyB
And the Nernst coefficient is the xy component of the Seebeck tensor.
(ayy HHyy = ®xx ﬂﬁxy)B
Nr = axy(B) = (1 2 35
+tUHyy HHyy B )
Within the constant relaxation time, this equation simplifies to
Ny = Ly 36

Ho Bz
(1+”ny HHysx BZ) ¥y

eTy

Here p,,, = — is the mobility in the y-direction. Eq. 36 shows that the Nernst coefficient

my
is proportional to the difference between the Seebeck coefficients in the x and y directions.
The more anisotropic a sample is, the higher the Nernst coefficient. For instance, in
layered materials and superlattices, the in-plane transport coefficients are very different
compared to the cross-plane transport coefficients. Hence these are good candidates to
explore large Nernst coefficients. An extreme case would be if there is p-type transport
in the x-direction and n-type transport in the y-direction. While unusual, materials with
different polarity transport in in-plane and cross-plane directions have been observed
and studied in the past. [48-53] It would be interesting to measure the Nernst coefficient
of these materials.

Similar to the isotropic case, one can include energy-dependent relaxation times in a
power-law form. Upon doing so we obtain:



No. = Moy, B (a 0y 25+2.5—xf)r(25+2.5) 37 4
T (1+RHgy iy B2) 7YY 7 s+2.5-xp ) I(s+2.5) (non-degenerate)
(ayy_axx(25+1.5))
Ny = SIS o, B 38 (degenerate )
T 2) “fF0yy
(1+HnyﬂnyB )
10*

Figure 3. Ellipsoidal case: The absolute value of
the Nernst coefficient divided by the y component
of the Seebeck coefficient versus reduced

chemical potential (x; = kg—fT). The curves are
B

plotted after Eq. 37and 38 in the non-degenerate
and degenerate limits, respectively. Solid lines are

referring to when (% = 1) which is then like the

isotropic case. Dashed lines are referring to when
((? = 4) and dotted lines are plotted for (? =
X X

107 s=05 1 10). Red, black, and purple refer to s parameters
of -0.5, 0.5, and 1.5, respectively. Second order
102 . . 1 terms in B are ignored.
-20 -10 0 10 20

As seen in Eq. 37 (non-degenerate)37, 38, and Figure 3, the larger the ratio of the Seebeck
coefficients in the two directions, the larger the Nernst coefficient. As before the Nernst
coefficient is also an increasing function of the s-parameter.

3.4.3. The two-band model: The case of two bands is important since it
allows investigation of the effect of bandgap and mass mismatch between electrons and
holes. To keep the equations simple, here we assume that there are two isotropic bands,
one is the conduction band labeled by e for electrons hereafter, and the other is the valence
band labeled by h for holes. We start from Eq. 12 and define each component in the
presence of two bands. Since the current of electrons and holes are additive, we find that

o;j = 0f; + al-'} 39
.Bijz.geij-l'ﬁi};' 40

We note that the conductivity term that does not have B dependence has the same sign
for electrons and holes, while the conduction term that is linear in B has opposite signs
for electrons and holes. In the thermoelectric coefficients f however, the terms with no B-



field are linear in charge (and opposite in sign) and those linear in B are in e?. We note
that equations for single-band were developed for electrons assuming a charge of -e,
hence some of the signs are modified for the case of holes. To be able to address the two
bands properly, we revise our definitions with the isotropic conditions for each band in
mind. Each band starts at &y and goes to infinity. (That is the axis is flipped when dealing
with the valence band)
Defining;:
[ g, —f e T( )vxvxg(e—so)de

af°

de

Bo = f eTT( )vxvx(s &) g(e — go)de

e <t*>
Hu = m* <t>
e <t?(e-gf)>

\ Hp = <t(e-gf)>

41

And using superscripts e/h for electrons and holes we obtain

( Oxx = OE + o
Oxy = (_ﬂfl% + ﬂHG(;l)B
Bex = —B5 + B¢ 42
Bxy = (.80 ﬂ[,’ glﬂlﬁl)BZ

Plugging Eq. 42 into Eq. 12 and ignoring second-order B terms, we find:

-1 (a5 +0ag )(30#3"‘50 Ug )"‘(Hflag #1}}103)(_33*'5(})1)
T2
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Ny = (ngNe*'U(’)lzNh) _ i%ﬁo (Hﬁ*‘ﬂl—l)"“’(’)lﬁg(ﬂfg"'ﬂli-ll) B, 44
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B, 43

B§ (ﬂﬁ HH)
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Where N, = iz B, is the Nernst coefficient of the conduction band alone and

1 Bo (#ﬁ #H)

Nh_TZ

B, is the Nernst coefficient of the valence band alone.

The first term in the Nernst coefficient is a weighted average of the Nernst coefficients of
the electrons and holes, weighted by conductivity squared. The second term is a mixed
contribution of the two bands. We refer to the first term as the “average Nernst” and the
second term as the “mixed Nernst” term.



To keep the calculations simple, we study Eq. 44 under constant relaxation time
approximation (CRTA). In the isotropic single band model case, the Nernst coefficient
was found to be zero under CRTA. The two mobilities uy = g = fnﬁ were identical, hence
N, = N, = 0. In the two-band model, and under CRTA, the average Nernst term is
therefore zero. However, the mixed Nernst term containing the cross terms between the
two bands results in a nonzero Nernst coefficient (see Eq. 44).

Under CRTA, uy = ug = o = —; Defmlng Ay =—=— Eq 44 simplifies to:

Uo"o

N =—

(ao + “0)(#0 + 1) 45

Observe that ao is s1m11ar to the Seebeck coefficient, but it has the contribution of only 1

band, and it is positive for both the conduction band and the valence band. A puzzling
observation is that even when the two bands are identical and when we are at the center
of the gap (full symmetry), the Nernst coefficient is not zero and it is equal to N =
—ayloB,. While everything in our analysis of a single band model pointed to the
requirement of asymmetry, here, we observe that the cross terms between the two bands
result in a nonzero Nernst coefficient in the case of symmetrical bands.

We can further study Eq.45 assuming non-degenerate statistics (chemical potential in the
gap). In the non-degenerate limit, we can define:

a5 = neus; ag = pes
n= N e_(xc_xf)-p — N e_(xf_xv)

k K 5 46
al = eB(xC—xf+>a6‘— B(xf—xv+2)
using these definitions, Eq .45 simplifies to:
Np = —"2(x, + 5) ) N N, ool B, 47

(nug+pul)”
Figure 4 demonstrates the effect of bandgap and effective mass ratio on the Nernst

coefficient. Here we plot the absolute value of Nernst divided by u, B, B versus

reduced chemical potential, we take the middle of the gap as zero and we assumed both
electrons and holes have the relaxation time of 7y. Hence the only relevant parameters

are the reduced bandgap (x,; = ) the reduced chemical potential and the effective
kpT
mass ratio (m, = m—), and the electronic mass (m,, this is the mass relative to the free

electron mass mg, note that we could have divided everything by m,, instead and the
results would be similar).

(my+1)m; %>

x o 2
G e %) 18

N k _
#OZZ = :B(xg +5)e ™




In the middle of the gap, where the Seebeck coefficient is normally zero, the Nernst
coefficient has its peak value. Similar to the Seebeck coefficient, the values of the Nernst
coefficient increase as the bandgap increases. This is clear in Figure 4b where we fixed
the mass ratio of electrons to holes to 1 (m, = m;, = 1) and only modified x,. We observe
that the Nernst coefficient in this case linearly increases with the bandgap. Increasing the
mass ratio of the electrons to holes (or vice versa) increases the Seebeck coefficient.
However, this is not the case for the Nernst coefficient. Increasing the mass ratio lowers
the Nernst coefficient as shown in Figure 4a. Finally, we notice that in Eq. 48, there is a
mass in the denominator. This means that the Nernst coefficient is larger for smaller
effective mass values. Reducing the mass values to half increases the Nernst coefficient
by a factor of 2.

Let us compare these results with that of Putley [15]. For mixed conductors, Putley
3nkp (?ud+p?up)-npueun(un+ue)(7+2x4)

" 16e (npe+pun)?

the individual contribution of conduction and valence band which is the equivalent of

obtained: N; =

B The first paranthesis in Putley is

our average Nernst term. As discussed under CTRA this term is zero. Hence his

KB (7 + 2x,) Bpitetninthe) p v hich differs from our equation
16e 97 (nuetpun)?

by a factor of i—z (7 + 2x,)/(5 + x,). Putley’s work is based on drift-diffusion model and

expression reduces to Ny =

assumes that the scattering is dominated by Debye longitudinal lattice model. We can
also compare our results with what is presented by Aono [54] where he assumed the same
scattering mechanism for electrons and holes. Similarly, keeping only mixed band

contributions, Aono’s expression can be written as Ny = % (—ono.)(uy + ue)(S + 3s +

x4)B. The A parameter is described by Aono as a positive numerical coefficient that is
function of s. If we ignore this parameter and set s=0 (CRTA), then the results of Aono is
similar to what we obtained in Eq. 47. However, we note that the start-point of both Aono
and Putley seems to be degenerate conductors and the equations were then extended to
mixed conductors. Finally, we compare the results to those of Price who obtained the
Nernst coefficient for two isotropic bands using drift-diffusion model. The mixed term in

Price’s analysis (See Eq. 12" of Ref. [30]) is Nr = %B (xg +3+7y. + yh) (et tn)

o2

O-eUth
wherein vy, and yy, are unitless numbers connecting thermal diffusion coefficient and
Einstein diffusion coefficients for electrons and holes. We see that the only difference
between Eq. 47 and this one is the replacement of (y, + yy) by 2, meaning our treatment
is equivalent of ratio of 1 between the thermal and normal diffusion constants in Price
analysis.

Beyond CTRA, it is easier to study the results numerically. What we obtained previously
for isotropic single-bands and ellipsoidal bands remains valid. For instance, when



N
considering power law for relaxation times [ 7 = 1 (ﬁ) ], the Nernst coefficient
B
increases as the s-parameter increases. This is shown in Fig. 4c where we assumed
identical bands (effective mass of 1 and the same s-parameter for the two bands) and x; =
10. Results are plotted on the logarithmic axis and indicate enhancement in the Nernst

coefficient as the s-parameter increases. Note that Fig. 4c is obtained numerically.

0
10 s=1.5
s=1
5=0.5
s=0

5 10°

10 0 10
%
Figure 4. The absolute value of the Nernst coefficient divided by (uoB = fnﬂB) is plotted
0

versus reduced chemical potential (x;) for the two-band model assuming isotropic bands
under CRTA and assuming same T, for both electrons and holes. Zero is the middle of the
bandgap (a) The bandgap is x, = 20, m,. is the ratio of effective mass of the two bands. If
holes are heavier, the shift of the peak is toward the conduction band and vice-versa. e.g.,
m,.=2 is plotted once for m,=1 and m,=2 and again for m=1 and m,=2 (b) The mass ratio is
set to 1 and the bandgap is changed.

In analyzing the Nernst coefficient, we observed that the Nernst coefficient
increases as the bandgap increases. This observation is against the general knowledge
that the best thermomagnetic materials are semi-metals. To understand the benefit of the
semimetals, it is not sufficient to study the Nernst coefficient, and we need to study the
thermomagnetic power factor.

Nt
UoBz

PF ==
Ho

2 2K} (2mkT ; )2 o-2%g (my+1)2 49
e ( h? ) (xg + ) ¢ 15( _<x79_xf> —(xf+x79>>3
mymg>| e +mye

Figure 5 shows the behavior of the power factor. We observe that the power factor has a
similar dependence on mass ratio as the Nernst coefficient. We also note that the power
factor increases as the effective mass decreases. The optimum Power factor is when the
mass ratio is 1. In this case, the optimum power factor is in the middle of the bandgap.
Under these conditions, the thermomagnetic power factor can be simplified to

PF o (xg+5)2e_7

mé.s

50

The power factor as a function of the reduced bandgap (x,) is plotted in Figure
5b. We notice that the power factor decreases as the bandgap increases. This is



consistent with our understanding that narrow gap semiconductors and semimetals are
good thermomagnetic candidates. Hence while the Nernst coefficient increases with
bandgap, the thermomagnetic power factor decreases with bandgap.

ey (@ (®)
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Figure 5. Power factor (anyz) plotted after Eq. 52 using arbitrary unit. Parameters
are similar to Fig.4 parameters. a) xg=20for all graphs; for m, = 1.:m, =my, = 1;
form,=2m,=1my =2andm, =2my, =1, form, =5:m, =1my, =5and
m, =5my, =1.b) m, =m, =1, optimum PF (Eq.50 ) plotted vs reduced bandgap
(xg).

4. Conclusions:

In this work, we presented a description of the Nernst coefficient in simple conductors.
Within an isotropic single band model, we obtained that the Nernst coefficient is zero in
the CTRA. A nonzero Nernst coefficient in this case is the result of energy-dependent
relaxation times and is proportional to the difference between thermal and Hall mobilities
times the Seebeck coefficient. When using power laws and s-parameter to describe the
relaxation times, we obtained that the Nernst coefficient is an increasing function of s. It
is proportional to the Seebeck coefficient times mobility times magnetic field ( N «

QoloB;). There is a factor of m which comes from the determinant of the
HBz

conductivity tensor. In the nondegenerate limit, the Nernst coefficient does not have any
explicit dependence on the chemical potential, and in the degenerate limit, it is

proportional to x7 ™"

When the bands are anisotropic, the Nernst coefficient is nonzero even within the
CTRA and it is proportional to the difference in the Seebeck coefficient of x and y
directions. Hence, within one band model anisotropy in x-y crystallographic directions is



desired. Within the two-band model, we observed however that identical bands result in
larger Nernst coefficient values. The Nernst coefficient peaks close to the middle of the
bandgap where the Seebeck coefficient is zero. It increases linearly as the bandgap
increases. However, we also obtained that the thermomagnetic power factor reduces as
the bandgap increases.

We conclude that identical electron and hole bands that are anisotropic (in the
crystallographic directions perpendicular to the magnetic field) with large s-parameters
and zero or overlapping bands are the best candidates for good thermomagnetic

materials.
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