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The curvature instability of thin vortex rings is a parametric instability discovered from
short-wavelength analysis by Hattori & Fukumoto (Phys. Fluids, vol. 15, 2003, pp.
3151-3163). A full-wavelength analysis using normal modes then followed in Fukumoto
& Hattori (J. Fluid Mech., vol. 526, 2005, pp. 77-115). The present work extends these
results to the case with different densities inside and outside the vortex core in the
presence of surface tension. The maximum growth rate and the instability half-bandwidth
are calculated from the dispersion relation given by the resonance between two Kelvin
waves of m and m + 1, where m is the azimuthal wavenumber. The result shows that
vortex rings are unstable to resonant waves in the presence of density and surface tension.
The curvature instability for the principal modes is enhanced by density variations in the
small axial wavenumber regime, while the asymptote for short wavelengths is close to
the constant density case. The effect of surface tension is marginal. The growth rates of
non-principal modes are also examined, and long waves are most unstable.

Key words: parametric instability, vortex instability

1. Introduction

Vortices are coherent fluid entities that can transport properties and mass through an
ambient fluid. A number of geometries such as vortex columns, vortex rings and helical
vortices have been the focus of specific studies. Given their apparent vulnerability to
small fluctuations and susceptibility to disruption, their stability has drawn attentions from
scientists and engineers, including the laboratory experiments of Maxworthy (1972, 1977),
Widnall & Sullivan (1973) on vortex rings and the theoretical studies of Widnall & Bliss
(1971) and Widnall (1972) on helical vortices. For vortex rings, Widnall, Bliss & Tsai
(1974) found that a vortex ring is unstable to bending waves (see also Widnall & Tsai
1977; Saffman 1978).

We start our discussion with the simplest three-dimensional geometry. A straight vortex
column with uniform vorticity inside its core is the simplest geometry in which to study the
three-dimensional instabilities of vortices. Infinitesimal disturbances of this basic state of a
vortex column are found to be neutrally stable and called Kelvin waves (see Saffman 1992,
§ 12.1). However, an instability mechanism proposed by Widnall et al. (1974) showed the
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FIGURE 1. (a) Top view of a thin vortex ring and () a cross-section view of the xy-plane.
The ring moves in the x-direction (6 = 0).
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potential for instability: if a vortex column is perturbed by a small parameter, €, to account
for a small geometric or physical effect, the resulting steady-state solution can be written
as a perturbation series of €. This basic solution is then disturbed by Kelvin waves, which
can interact with the O(¢e) part of the basic state, potentially leading to instabilities. For
example, a vortex column subjected to the external strain field (ey, —ex, 0) perpendicular
to the axis of the vortex column, is unstable as was discovered by Moore & Saffman (1975)
and Tsai & Widnall (1976). This is known as the Moore—Saffman—Tsai—Widnall (MSTW)
instability. The strained vortex column disturbed by Kelvin waves whose interaction leads
to a resonance between two Kelvin waves with azimuthal wavenumber separated by
two. This resonance leads to the exponential growth of infinitesimal waves. The MSTW
instability has been studied extensively by, for example, Eloy & Le Dizes (2001) and
Fukumoto (2003), and is related to the elliptic instability in the short-wave limit (see Bayly
1986; Waleffe 1990; Leweke & Williamson 1998).

The same perturbation expansion in € can be used for the stability analysis of a thin
vortex ring. For a thin vortex ring, € is defined as

€=z (1.1)
where a is its core size and R is the ring radius. If € < 1, the ring appears locally as
a vortex tube perturbed by small curvature €. We obtain the basic state solution for a
vortex ring as an expansion in €. Using the coordinates in figure 1, the resulting instability
problem was first set up for a thin vortex ring with an uniform core in Widnall & Tsai
(1977). Their short-wavelength analysis shows that the MSTW instability arises from
the interaction between Kelvin waves and the basic state at O(e?). They concluded that
the MSTW instability is responsible for the instability of a thin vortex ring observed in
the experiments of Widnall & Sullivan (1973). However, Hattori & Fukumoto (2003)
discovered another instability that they named curvature instability. They showed that
disturbances are then also unstable in the short-wavelength limit by calculating the growth
rate using the geometric optics method. Fukumoto & Hattori (2005) then carried out a
normal mode analysis using the setup of Widnall & Tsai (1977). A dipole field arising
from the basic state in O(¢) leads to resonances between two Kelvin waves of wavenumber
separated by 1 and instability emerges. All possible resonant pairs of Kelvin waves with
azimuthal wavenumber m and m + 1 were examined, and larger m were found to be
more unstable. Fukumoto & Hattori (2005) also argued that curvature instability is more
unstable than the MSTW instability for a uniform core when € < 1.

Recent studies have examined vortices with a non-uniform core. Blanco-Rodriguez
& Le Dizes (2016, 2017) used Gaussian distributions of vorticity for the vortex core
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and subjected to elliptic and curvature instabilities. Hattori, Blanco-Rodriguez & Le
Dizes (2019) studied the short-wavelength instabilities of a vortex ring with Gaussian
distributions of vorticity and swirl. They found from direct numerical simulations that
only the elliptic instability is observed when there is no swirl flow, while the curvature
instability emerges when swirl is present but is limited to certain wavenumber range. This
is the first numerical evidence confirming the curvature instability of a vortex ring.

All the studies cited previously are for constant-density flows. There are, however, many
example of vortex rings in natural and industrial situations for which density effects are
important. Vortex rings generated by density differences are examples of thermals (Turner
1973), and are important in geological and environmental safety applications. Saffman
(1992, §5.8) discussed the motion of buoyant vortex rings using conserved quantities,
while Baumann, Joseph & Mohr (1992) examined their fall. Dolphins are known to create
air-filled bubble rings (Marten et al. 1996). Once created, these thin hollow rings seem to
survive until the dolphins destroy them, raising the question of their stability. Here we aim
to extend the linear stability analysis to a vortex ring with density differing from that of its
ambient.

The densities are unequal but constant inside and outside the core. Surface tension is
also considered. This configuration is consistent with previous work, and we follow them
by taking a Rankine vortex as the ring’s core. In part 1 of the present work, we follow the
calculation in Fukumoto & Hattori (2005) and carry out a normal mode analysis for the
curvature instability. In § 2, the linearised governing equations and boundary conditions
for infinitesimal disturbances are given. The basic state solution as a perturbation series
up to O(e) is also given. We discuss Kelvin waves with densities and surface tension in
§ 3. The growth rate and the half-bandwidth of the curvature instability and numerical
examples are presented in § 4. We draw conclusions in § 5, while some technical results
are presented in the appendices and a symbolic computer algebra code is available as
supplementary material available at https://doi.org/10.1017/jfm.2020.845. We return to the
MSTW instability in Part 2 (Chang & Llewellyn Smith 2021).

2. Formulation

A vortex ring with radius R and core size a is considered. The core is taken to be thin,
so that e = a/R < 1. The outer region and the vortical core have constant densities p; and
02 respectively. The circulation around the core is I". The problem is non-dimensionalised
using length scale a, velocity scale U. = I'/(2ma) and time scale 2wa®/I", while the
pressure scale is taken to be p,(I"/2ma)?. The velocity potential describing the outer
irrotational flow is scaled by I"/2.

Density differences in the presence of a gravity field lead to buoyancy effects acting on
the vortex ring. However, buoyant vortex rings (whether light or heavy, p; # p,) do not
move steadily (see e.g. Turner 1957; Pedley 1968; Chang & Llewellyn Smith 2018). Light
vortex rings expand with the radius growing like /7, and the speed slows down as t~'/? In .
To avoid this complication, we consider buoyancy to have a slowly-varying effect so that
the mean flow is ‘frozen’ in time. This is justified on the basis that the Froude number

B I'/(2ma)
- Jag

is very large. The time scale of the rotational motion inside the core ~ a*>/I", while the
time scale of buoyant motion is ~ \/a/g. Then v/a/g > a*/I is equivalent to Fr > 1, so

Fr 2.1
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the vortex ring can be considered frozen on the time scale of a®/I". Therefore, the gravity
term is omitted in the governing equations.

2.1. Governing equations
Following Fukumoto & Hattori (2005), we use a coordinate system (r, 6, s) co-moving
with the ring, as shown in figure 1, with velocity # = (u, v, w). The undisturbed core
boundary is taken to be r = 1. Since the core is rotational, the governing equations in the
inner region are the Euler equations,

9
V.ou=0, a—‘: Yu-Vu=—Vp. (2.2a,b)

Vorticity is zero outside the core of the vortex ring, and the Laplace equation in the outer
irrotational region is

2P =0, (2.3)

where @ is the velocity potential.
In the (7, 8, s) coordinates, the Euler equations become

ou v? w? sin 6 op
o vu— L — 2.4
ot tueVu r € hy ar 24)

v uv  wicos _lap
- .V — — = 2.5
T T T T T T T e @)
8_w+u.vw+€w(usin0+vcose)z_l@ 2.6)

ot hy h, 9s’
where hy, = 1 4+ ersin, and
0 v o w o
V=u—~+—+ ——. 2.7
" “or Voo T as @7

The continuity equation is

10 1ov 1w
——(ru)+——+——+—(usm9+vcos€)—O (2.8)
ror h ds
Outside the core, Laplace’s equation becomes
10 oD 4 1 0%® n 1 3’ L € 0 cos@ 0P 0 (2.9)
—_— r— _—— _—— —_— - = . .
ror \ or r? 002 h? 9s>  hy 8r r 90

2.2. Boundary conditions

The boundary of the vortex is taken to be r = F(6; €), where F(6; €) will be found as
part of the solution. The inner and outer solutions are matched on the core boundary.
For inviscid flows, the matching conditions are given by the kinematic and the dynamic
conditions. The kinematic condition is

D (r—F) D (r—F) 0 (2.10)
— (7 — = —I(r — — N .
Dr Dt o

r—F-

where D/Dt is the usual Lagrangian time derivative and = represent the inside and outside
of the boundary, respectively.
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The dynamic condition relates the jump in pressure across the boundary to surface
tension. Because the outer flow is irrotational, we can use the unsteady Bernoulli equation
to express the pressure there in terms of a velocity potential. Taking pressure to vanish at
infinity without loss of generality, one obtains

pp 0D 1 _
—p+ -+ 5V =5V.n (2.11)
1

Here S is dimensionless surface tension o /[p1a(I"/2na)*] andn = V(r — F)/|V(r — F)|
is the outward normal vector on the boundary.

2.3. The mean flow solution

Linear stability analysis needs a steady-state solution as a base to be ‘perturbed’ by
infinitesimal disturbances. At O(1), a steady-state solution exists describing the vortex
ring in a moving coordinate system. The solution (written using uppercase letters) can be
obtained as a perturbation series in €:

U=Uy+eU;+---, P=Py+ePi+---, @=P)+€P +---, (2.12a—c)

as in § 2 of Fukumoto & Hattori (2005) who take p; = p,. The leading-order solution
corresponds to a vortex column perturbed by the small dimensionless curvature of the
vortical core. The shape of the boundary is formally expanded in €, but is taken to be
circular, so that the expansion is redundant.

Here we use the same basic state with a correction for p; #= p,. A normal mode analysis
of the disturbances then leads to a dispersion relation and possible instability. We now
obtain the basic solution for the stability calculation using (2.12a—c). The leading-order
mean flow solution is the Rankine vortex with velocity and pressure fields

L Pi P1
(U()v V07 WO) = (Oa r, O)’ PO ==-\r-1-—\]+-=5 (213a,b)
2 P2 L2

inside the core (r < 1). The boundary of the vortex is circular, so that Fy = 1. The velocity
potential outside (r > 1) is

Dy =0. (2.14)

Curvature leads to the following O(e€) contribution to the mean flow:

Uy=3(1-r)cosh, Vy=¢(0r =5)sin6, Py =(3r —3r)sin6 (215a—)

in the inner region, while the outer solution is a dipole field:

1 1 02 1 1
O =—|2|lr——)——\(r+-)—4S{r+—) —4rlogr|cosf. (2.16)
8 r 01 r r

The shape of the boundary has been taken to remain circular to O(e), that is, F; = 0. See
appendix A for detailed calculations yielding (2.13a,b)—(2.16). The mean flow solution
can be compared with the result of Fukumoto & Hattori (2005) by taking p,/p; = 1 and
S=0.
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Disturb
{ Basic solution, U= O(1) J 1Sr Disturbances, #= O(5)

U=Uy+e€eU +..., d=dy+eli; + . ..

iK1
{ O(1) solution: vortex column, U }(— Kelvin waves, iy = O(8)

k1
[ O(e) solution: thin vortex ring, U, }(— Resonances, i#; = O(8¢)

FIGURE 2. Schematic structure of the present calculation.

2.4. Linearised equations and boundary conditions for infinitesimal disturbances

We disturb the mean flow derived in the previous subsection, and write
U+i, V+, WH+w, P+p &+9, (2.17a-e)

where the disturbed boundary is r = F + f. The structure of the solution is outlined in
figure 2. Disturbances, denoted by tilde, are O(5) compared with the mean flow with
8 < 1. In parallel, the solution is expanded in €, the small non-dimensional core size.
For this stability analysis, we are interested in disturbances at O(§) and O(§¢€). The vortex
column solution given by U, is neutrally stable, supporting Kelvin waves &,. However,
when a small parameter € is introduced, instability can be excited corresponding to
resonance or parametric instability. Disturbances are decomposed into normal modes in s
and ¢, that are expanded in € as

i = (g + €ty +---)elks=on (2.18)
p=Po+ep+---)edn, (2.19)
¢ = (P +ep+---)eb, (2.20)

where the real part is implicit with no loss of generality. The wavenumber and the
frequency are also expanded as

k=k0+€k1+"', w=wy+€ew +---. (221a,b)
The core boundary disturbance is
f=o+efi+-)e®en. (2.22)

As the disturbances (u, p, ¢~>) are small compared with the basic solution (U, P, @),
(2.6)—(2.9) can be linearised.
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2.4.1. O($) linearised equations and boundary conditions
The linearised equations for disturbances at O(5) are

V() 317[0 2V0170 N 8[30

—iwpity + e (2.23)
—iwyvy + %%—{;O (% + E) iy = —;%—%, (2.24)
—lwewy + %2—? = —88—13;), (2.25)
%%(rﬁo) + %% + % =0 (2.26)
inside and ) i )

() e S

outside the core. The linearised boundary conditions at » = 1 are
ity = % = —iwo fy + g—]z), (2.28)
%ﬁo—iww?wa%“:(1—%)%—5(%—%%). (2.29)

The solutions to this problem are Kelvin waves, as detailed in the following and in
appendix B.

2.4.2. O(b¢) linearised equations and boundary conditions
We proceed to O(S¢€). The inner solution satisfies

. - 3L~t1 ~ aﬁl . aU] ~ aito V] 8»70
_ LI e = _q 2o F1o%%
o+ g Tt ( ! )”" or T 96
1oU,  2V)\ _ 030
—-————) 7o, .
r 00 r 0
. - - 8171 1 aﬁl . 1 aV] V] ~ 850 Vl 817()
_ o) R g < I T | D & Ot U S
ot St 50 ("”1 P r)° Yor T r 96
ovy Vi .
-\ =+ — ) i, (2.31)
ar r
Ciwgiy + N ke = —i(ky — korsin 6) + (g — rcos 6)irg
awy V) 9w
_p, 2 oW (2.32)
or r 00

ou u 100
ah + ll + au + ikgw; = —i(k; — korsin0)wy — it Sinf — vy cos 6. (2.33)
or r r 06
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The velocity potential outside satisfies

3’ 13;;51 1 9%, dgy cosb 8;;50

— K21 = 2(kok; — K2rsin6)¢y — sin 6 — —

arr ' roor 12 36? or ro90
(2.34)
The linearised boundary conditions at r = 1 are
. R LT
- G = —y 2y iy 2.35
1w fi + 20 W 1wy fo 190 + P fo (2.35)
.
=29 (2.36)
ar
Pr. . o 0P . - 3P Ay P\ 2 .
- 9 _ _ % (o2 28 sin @
P o1 + 20 1w ¢y 59 38 +< p])fl+ sin 0o
s s of;
—S(afozl—kéfl — 2koky fy + 2 sin 6 k§ﬁ)+cos98—9°). (2.37)

The dispersion relations at O(§) and O(S¢) are obtained from ((2.28)—(2.29)), and
((2.36)—(2.37)) respectively. The condition (2.35) is used only to determine the boundary

shape f1, and is not required to calculate the dispersion relation when surface tension term
vanishes (Fukumoto & Hattori 2005).

3. O(9) solution: Kelvin waves on a vortex column

The disturbances satisfying (2.23)—(2.27) are written as
ito(r, 0) = ug” (NS, po(r,0) =pg” (N, Go(r,0) = ¢ (N, (3.lac)

where m is the azimuthal wavenumber. The solution at leading order is a Kelvin wave,
described in appendix B. The Kelvin waves are coupled to the dipole field (2.15a—c)—(2.16)
through the right-hand sides of (2.30)—(2.34). When two Kelvin waves with wavenumber
m and m + 1 appear in the forcing terms on the right-hand side of (2.30)—(2.34), the
solution at the O(S¢) will possess modes for m — 1, m, m 4+ 1 and m + 2. We focus on
the resonance between pairs of Kelvin waves (i, m + 1) in this paper.

The solution (B 1) and (B 3) contains the amplitudes of Kelvin waves, «g, By, that are
determined using the boundary conditions. The boundary conditions (2.28) and (2.29) for
wavenumber m become

d¢0 (m)
dr ~

p—zpé ' —i(wy — m)gy” = (1 - p_2> L S(m? + kD™, (3.3)
1

1

—i(wp — m)f" = ul” =

(3.2)

Substituting p"”, ul”, ¢\ and f\" (see appendix B) into the previous equations, we

(m) (m)
0

obtain a set of homogeneous linear equations for a." and B\". For non-trivial a{" and
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ﬂ(()m), the determinant must be zero, which gives the dispersion relation for mode m:

[1 + _ B <m — koM)] T () = {_mﬂ

(wo — m)? K (ko) wy—m+2
0> m Kit1(ko) \ | m
2= _E By Anianhiia) B G0 SR 3.4
* [m 1(wo—m)(wo—m+2)] ('" * Ko (ko) >} ko o GH
where
E =1-2 150 +m). (3.5)

P1
Here J,, is the Bessel function of the first kind and K,, is the modified Bessel function of
the second kind; 7, is the radial wavenumber for the Kelvin wave defined in (B 2). For
the m + 1 wave, the boundary conditions are the same formulae as in (3.3) except that m
is replaced by m + 1, and similarly for the solution in appendix B. Using the boundary
conditions and the solution for the m + 1-mode, we obtain the dispersion relation,

E2 Km(ko) _ ) wy —m — 1
[1 T @o—m—1y <m+ : +k“Km+1<ko)>} In) = { bt 3
02 m+1 Ko (ko) m
L B e ) (1 TR ) e

(3.6)

for it, where E; = 1 — py/p1 + S[k3 + (m + 1)*] and n, is also the radial wavenumber for
m+ 1.

If we set the density ratio to one and surface tension to zero, we can easily recover (3.6)
and (3.4) from the dispersion relation for Kelvin waves ((B 6) and (B 7) in Fukumoto
& Hattori 2005). The dispersion curves for modes for m = 1 are plotted in figures 3 and
4 as functions of density ratio and surface tension. There are infinitely many branches
of cograde and retrograde modes for each Kelvin wave with wavenumber m. Figures 3
and 4 show the first five branches in each of the cograde and the retrograde modes. An
isolated branch is also shown. We designate the branch with the largest value of |wy — m]|
for a given k; as the first cograde/retrograde branch and then counting the branches toward
wo = m. Thus, the uppermost cograde branch and the bottommost retrograde branch are
the first cograde and first retrograde modes. Every mode of m has cograde branches going
upward where w, > m and retrograde branches going downward where wy < m, plotted
in red and blue, respectively. All the cograde and retrograde branches radiate out from
(ko, wp) = (0, m) when p,/p; = 1. There is an isolated branch starting from (0, m — 1)
that only appears when m # 0. In figure 3, we can see how decreasing the density ratio
from one to zero changes the dispersion relation of Kelvin waves: all the branches move
away from the centreline wy, = m, the cograde branches shift toward wy, = m + 2 and the
retrograde and isolated branches shift toward wy = m — 2. While the branches shift, the
starting point of all the branches remains the same. One exception is the outermost cograde
branch: its starting point moves from (0, m) upward to (0, m 4 1) when p,/p; drops to
zero in figure 3. We refer this as ‘isolation’ of the cograde mode. Similar changes are
also observed when surface tension increases from zero to one in figure 4: the cograde
branches move toward w, = m + 2, the retrograde and isolated branches move toward
wo = m — 2. The uppermost cograde mode departs from the other cograde modes and
becomes isolated. The effect of this change is that a intersection point could disappear
when (p,/p1, S) deviates from (1, 0) (see figure 5).



Downloaded from https://www.cambridge.org/core. UCSD University of California San Diego, on 14 Jul 2021 at 14:42:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2020.845

913 A14-10 C. Chang and S. G. Llewellyn Smith

/p1=1 /p1=0.4
(@) 3 P2/p1 ) 3 P2/p1
2 2
ith cograde
(O} 1 1
ith retrograde
-1 -1
0 5 10 15 20 0 5 10 15 20
p2/p1=0.2 p2/p1=0
©)3 2/01 )3 2/01
2 2
[0 1 1
0 \ 0
-1 -1
0 5 10 15 20 0 5 10 15 20
ko ko

FIGURE 3. Dispersion curves for the Kelvin wave with m = 1 for density ratios from one to
zero. Red curves are cograde branches and blue curves are retrograde branches. Only the first
five branches are plotted, which have the largest value of |wy — m| in each of the cograde and
retrograde modes. An isolated branch (thick black curve) can be seen emanating from (kg, wg) =
(0, m — 1). Surface tension is zero for all plots.

There is another significant change to the Kelvin waves with density and surface
tension: the top branches and the bottom downward branches, that is, the first cograde
mode and the isolated mode, respectively, have a real part w, that disappears at some
point (kg, m £ 2) on the top or the bottom edge of the plot. Since k; is always real, the
radial wavenumber 1, = ko\/ 4/(wg —m)? — lisreal only if wy € (m — 2, m + 2). For the
case of p/p; =1 and § = 0, all the branches lie between wy = m — 2 and m + 2, so
the Kelvin waves are always neutrally stable. When p,/p; < 1 and S #0, the isolated
branch reaches wy = m — 2 on the edge of the plot, for example at ky = 4.2 in the plot for
S = 0.01 of figure 4. The uppermost cograde branch reaches wy = m + 2 at ky ~ 5.2. For
|wop — m| > 2, the radial wavenumber 1, becomes pure imaginary. We can replace it by id;
where A, is real, then replace the Bessel function of the first kind J,, in (3.4) by i"1,,(4;).
The new dispersion relation is real for |wy — m| > 2, and the upward cograde branch and
the downward isolated branch extend beyond wy = m £ 2.

When two Kelvin waves for wavenumber differing by 1 resonate, all their branches result
in infinitely many intersection points when they cross through each other. As mentioned
in Fukumoto & Hattori (2005), only the intersection points between the cograde modes
m and the retrograde modes m + 1 are candidates for curvature instability; see figure 5(a)
for an example. For the convenience of discussion, we follow Fukumoto & Hattori (2005)
to define ‘principal modes’. The ith principal mode is referred to as the intersection point
of ith cograde and ith retrograde modes, and we indicate the first five principal modes
by black dots in figure 5. Their growth rates are larger than those of other intersection




Downloaded from https://www.cambridge.org/core. UCSD University of California San Diego, on 14 Jul 2021 at 14:42:26, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/jfm.2020.845

Density and surface tension on vortex stability. Part 1 913 Al4-11

(a)3 §=0 (b)s §=0.01

6()01 1

(=]
S

i

0 2 4 6 8 10 0 2 4 6 8 10
§=0.1 S=1
(@3 (d)3
2 / 2 //
[O0) 1 1
1 \ 1 \
0 2 4 6 8 10 0 2 4 6 8 10
ko ko

FIGURE 4. Dispersion curves for the Kelvin wave with m = 1 as surface tension increases from
zero to one. The density ratio is fixed at pa/p; = 0.4; other ratios give qualitatively similar
results.

points when p,/p; = 1 and S = 0, so they will be the focus of our curvature instability
calculations. Although we will show later that they do not always dominate over other
intersection points when p,/p; =1 or S #0 (see § 4.4). The reader should be aware of
that only four dots are shown for p,/p; = 0.4 or below. This is due to the ‘isolation’ of the
first cograde branch of m as discussed earlier. As it is moving away from the other cograde
branches, it no longer crosses the first retrograde branch of m + 1. The first principal mode
then disappears. The migration of first few principal modes and the disappearance of the
first mode are demonstrated in figure 5(b).

Note that the ‘principal modes’ refer here to the set of principal modes when p,/p; = 1
and § = 0. If we choose an arbitrary value of density ratio and plot its dispersion curve,
we will obtain a plot like that for p,/p; = 0.4 in figure 5. By looking at that single plot, we
would not be able to see that a process of isolation had taken place, and another sequence
of intersection points (just below the back dots) would have been taken as principal modes
by definition. Since our goal is to investigate the effects of density and surface tension,
we to keep track of the same sequence of intersection points, the principal modes for
p2/pr=1and S = 0.

4. O(8¢) solution: curvature as a small perturbation

The solution of the O(§¢) disturbances governed by (2.30)—(2.34) is given in appendix C
of Fukumoto & Hattori (2005). We do not reproduce it here, given its complexity.
The solution contains undetermined coefficients (wave amplitudes) o, B, which must
be non-zero. The boundary conditions in (2.36) and (2.37) are used to obtain the
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FIGURE 5. (a) Dispersion curves for a pair of Kelvin waves m = (5, 6) for density ratio varying
from one to zero; surface tension is zero. Solid curves are for m = 5 and dotted curves for m = 6;
red is for cograde branches, blue is for retrograde branches and the black thick curve is the
isolated branch. The black dots represent the first five principal modes. One of the back dots
disappears when p;/p; drops to 0.4 or less. (b) The migration of the principal modes as density
ratio decreases. There is no mode ‘1’ when p>/p; = 0.4.
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dispersion relation. Note that in order to include surface tension, we need to compute
fi from (2.35) before using the second and the third equations for the dispersion relation.
In Fukumoto & Hattori (2005), fl is not necessary since surface tension is omitted.

The result of substituting the O(§¢) solutions for modes m and m + 1 into (2.36) and
(2.37) and the O(6¢) boundary disturbance fi for the two modes is given in appendix C.
Using these results and requiring the coefficients «;, B, not to vanish leads to the
dispersion relation for k; and w;. The detailed calculation is outlined in appendix C. The
dispersion relation takes the form given in (C 14). Given the cumbersome algebra, which is
impractical to carry out manually, we use computer-aided symbolic algebra. We validate
the result obtained from symbolic algebra with the formulae for the maximum growth
rate oy,,,, and the instability half-bandwidth Ak, given in (2.23) and (2.24) of Fukumoto
& Hattori (2005). Unfortunately, the two new parameters, p,/p0; and S, lead to too much
complexity to check the formulae algebraically. Hence, we compare our results with those
of Fukumoto & Hattori (2005) for specific values. Using the formulae returned by the
symbolic algebra, we calculate o,,,, and Ak, for given values of m and (ky, ). Then
we set po/p; = 1 and § = 0 and compared the numbers with those from Fukumoto &
Hattori (2005), as listed in table 1 for m = 0 and table 2 for m = 5. Each row in the tables
represents a mode of resonance between a (m, m + 1) pair, while the first row corresponds
to the first principal mode. The results agree very well with Fukumoto & Hattori (2005)
for each of wavenumber m and principal modes.

4.1. Effect of density variations

In this section, we set surface tension to 0 and focus on the effect of density differences.

4.1.1. Heavy core: p,/p; > 1

We first examine p,/p; > 1. In this case, the vortex ring core is denser than the fluid
surrounding it (for instance Rayleigh—Taylor instability could create vortex rings when
heavier fluid falls through a lighter fluid and rolls up; see, e.g., Baker, Meiron & Orszag
1980; Joly, Fontane & Chassaing 2005). The first five principal modes for the resonance
between (0, 1) and (5, 6) are shown in figures 6(a) and 6(b) respectively. For the (0, 1)
resonance pair, the first principal mode (blue) is most unstable. The growth rates of all
five modes decrease sharply as p,/p; increases from 1 to 1.2. The first, second (red) and
fifth (green) principal modes then climb up and flatten out as p,/p; further increases to
100. The third (amber) principal mode has a stable region between p,/p; = 5.4 and 9.8,
while the fourth (purple) principal modes has a stable points at p,/p; = 1.8.

For the resonance between the higher pair (m, m + 1) = (5, 6) shown in figure 6(b), the
growth rate of all the modes increase between p,/p; = 1 and 1.38, then remain almost
constant beyond p,/p; = 2. Hence, a dense vortex core is more unstable than one with

p2/p1 = 1.

4.1.2. Light core: py/p; <1

We then set the density ratio p,/p; between 0 and 1, where zero corresponds to a
hollow core and one to for constant-density flow. For resonances between m = 0 and 1,
we calculate the first five principal modes (see figure 6¢). The plot shows that instability
exists for the whole range of density ratios. The maximum growth rate of each principal
mode exhibits a maximum value between p,/p; = 0.5 and 0.8, except for the first principal
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Fukumoto & Hattori (2005) 2.433397462 5.529409164 0.31952046180 1.693646977
2.794997045 5.600007679 0.05182563467 0.3171404496
3.052129222 5.648538465 0.02232672268 0.1506487379
Present work 2.43339746175187  5.52940916372963  0.31952046183259  1.69364697715343

2.79499704501124  5.60000767929704  0.05182563467115  0.31714044960814
3.05212922225546  5.64853846454917  0.02232672267673  0.15064873789249

TaBLE 2. For the m = 5 and 6 resonances, present results for p2 /01 = 1 compared with table 2 of Fukumoto & Hattori (2005).
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FIGURE 6. First five principal modes (ko, wg) for (a,c) (0, 1) and (b,d) (5, 6), the maximum
growth rate oq,,,, and the instability half-bandwidth Ak are plotted versus density ratio p2/p1
between (a,b) [1, 100] and (c,d) [0, 1]. The first to fifth principal modes are blue, red, amber,
purple and green curves.

mode (blue line) which has a maximum at p,/p; = 0.2. The instability disappears for the
first principal mode when the density ratio is between 0.15 and 0.2.

The calculation is extended to include more principal modes of the (0, 1) pair with
wavenumber &y up to 20 in figure 7(a). Each cross represents a principal mode and the
spectrum is discrete. The dotted line connects the principal modes with the same density
ratio. Note that for different curves, the value of &, of the same ith principal mode will
vary because the position of principal mode shifts from case to case. The first five data
points of each curve correspond to the first five principal modes we showed in figure 6(c).
In general, the maximum growth rate oy,,,, decreases as k, increases for all density ratios,
and they all tend to a same value roughly 0.02487 for large ky. The increase of instability
half-bandwidth is almost linear in k.

For the higher wavenumber resonance pair for m = 5 and 6, the first five principal modes
are shown in figure 6(d). The first principal mode only exists for a density ratio above
0.6 because the first cograde branch of the mode for m = 5 no longer crosses the first
retrograde branch of the mode for m = 6, as discussed earlier in § 3. We can see that the
first five principal modes have maxima of the growth rate near p,/p; = 0.8-0.9. Compared
with the lower-mode resonance, that is, (0, 1), we see that the most unstable density ratio
is closer to one for a higher value of (m, m + 1) pair. The maximum of the growth rate is
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FIGURE 7. Maximum growth rate oy,,,, and unstable half-bandwidth Ak; of principal modes
ko < 20 for (a) (m,m+ 1) = (0, 1) and (b) (m,m+ 1) = (5, 6). The black dashed line is the
short-wavelength asymptote (4.1) for p2/p1 = 1.

slightly greater for large m and the unstable half-bandwidth Ak; is much wider. We again
extended the calculation for principal modes to ky < 20 in figure 7(b). The result is very
different compared with the m = 0 case. The largest maximum growth rate and widest
unstable half-bandwidth appear at p,/p, = 1. The first principal mode with the lowest
ko is most unstable and the growth rate decays for higher principal modes. However, for
density ratios less than one, the first principal mode has the lowest maximum growth rate.
The growth rate increases as kj increases and converges to a value of 0.04904 as for the
case p,/p; = 1. The unstable half-bandwidth also converge to a value close to that of
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FIGURE 8. Maximum growth rate oy, and instability half-bandwidth Ak; for the (0O, 1)
resonance, (a) p2/p1 = 0.2 and (b) p2/p1 = 0. Surface tension, S, increases from O to 1. The
black dashed line is the short-wavelength asymptote (4.1) for p»/p; = 1 and S = 0.

p2/p1 = 1. The short-wavelength asymptote for the growth rate for the case of p,/p; = 1,
given in (5.1) of Fukumoto & Hattori (2005) as

15 \/B@(g 1) 1(_9\/3 2 V15 1) @)

Timae = a2 T30k |2\ 8 T2) T2

T T e
is plotted as a black dashed line in figures 7 and 8.

In general, the density difference affects the curvature instability of a vortex ring, but
the change is only significant for the first few principal modes with smaller kq. For large
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ks =1.0472

FIGURE 9. (a) The shape of disturbed boundary for the first principal mode of the (0, 1)
resonance at (kg, wg) = (0.6647548585, 0.6183157195) and py/p1 = 0.4; (b) pressure contours
at different meridional cross-sections kos. Red curves are disturbed boundaries.

ko, the maximum growth rate and the instability half-bandwidth converge to those for
p2/p1 = 1. As pointed out by Fukumoto & Hattori (2005), local vortex stretching in
the toroidal direction (along s) is the mechanism for short-wavelength instability. The
stretching due to the local strain field is a kinematic mechanism so that should not be
affected by density. For long waves, the possible reason for increasing instability is that
the fore—aft symmetry of the vortex core is broken due to the distorted boundary (p. 87
in Fukumoto & Hattori 2005). As shown in figure 9, the sausage-like distortion and the
asymmetric pressure on the vortex boundary could result in a pressure distribution in s, and
this non-uniform distribution of force acts to break up the ring. In the case of a vortex core
that is lighter than the outside fluid, the acceleration by the exterior pressure is amplified
because the same force is acting on a smaller mass (given the same volume of the core),
and the vortex becomes more unstable.

4.2. Surface tension

We now include surface tension S in the calculation. Adding surface tension introduces
another degree of freedom into the parameter space. Calculations for the first five principal
modes are shown in figure 10. In the (0, 1) case, the first principal mode (blue) is stable,
while the growth rates of other four modes gradually decrease between S = 1072 and 1,
and the second principal mode is the most unstable. The first principal mode disappears
near S = 100 due to the isolation of the first cograde mode from the waves for m = 0
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FIGURE 10. First five principal modes (ko, wp) for (a) (0, 1); (b) (5, 6), the maximum growth
rate o,y and the instability half-bandwidth Ak; are plotted versus surface tension S. p2/p1 =
0.2. The first to fifth principal modes are blue, red, amber, purple and green curves.

(cf. §3). The first principal mode is absent in the (5, 6) resonance, again because of
isolation. The growth rates of other four principal modes for the (5, 6) resonance vary
when surface tension is less then 1 but become constant when S is greater than 1.
Therefore, we pick two density ratios, p,/p; = 0.2 and 0. Since (6) shows that results
do not vary for § > 1, we now let surface tension varies from zero to one and examine the
effect of different density ratios.

The (0, 1) resonant pair with no surface tension is unstable for all density ratios except
for the first principal mode of p,/p; = 0.2 (see figure 7a). Adding surface tension does
not change the growth rate significantly. The growth rate of the first few principal modes
decrease slightly, but for ky > 6, the growth rates are identical with different surface
tension. For the density ratio p,/p; = 0, the principal modes with higher k, all have the
same growth rate. On the other end of the spectrum for smaller k, the first principal mode
becomes stabilised when S = 1, while the second principal mode has the largest growth
rate.

A resonant pair of higher wavenumbers (5, 6) is shown in figure 11. In both figure 11(a)
and 11(b), surface tension barely changes the maximum growth rate and the unstable
half-bandwidth. In the short-wavelength regime, the curves for different values of surface
tension collapse.

To summarise briefly from what we have demonstrated numerically: for resonant pairs
with small (m, m 4 1), long waves with the smallest k, are most unstable and the growth
rate decays to a constant for large ky. The largest growth rate occurs approximately at
p2/p1 = 0.2 for the most unstable mode, and other modes have maximum growth rate
between p,/p; = 0.5 and 1. Surface tension has a small influence on the instability.
For a larger value of (m,m + 1) pairs, for example, the (5, 6) pair in figure 6(b), the
instability is divided into two regimes aroundp,/p; = 0.68: the principal mode with
smallest wavenumber k, has the largest growth rate when the density ratio is above 0.68,
while it has the lowest, but non-zero, growth rate when density ratio drops below 0.68. In
both cases, the growth rates converge to the same value for short wavelengths, when the
effect of surface tension is minimal.
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FIGURE 11. Maximum growth rate oy, and instability half-bandwidth Ak; for the (5, 6)
resonance, (a) p2/p1 = 0.2 and (b) p2/p1 = 0. Surface tension, S, increases from 0 to 1.

4.3. Wave energy

We calculate the energy of a resonant pair of Kelvin waves using Krein’s theory of
parametric resonance (see Krein 1950; MacKay 1986). The instability can be predicted
by inspecting the energy of Kelvin waves without a calculation using the O(§¢) dispersion
relation. A formula for the wave energy is given in Cairns (1979) and Fukumoto (2003):

Em =T, ‘ <m>‘ (4.2)
2 86()()

where D is the dispersion relation obtained from (2.11) written in the form

Df\"™ exp(i(mb + ks — wt)) = 0. (4.3)
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This agrees with (7.6) in Fukumoto (2003) when p,/p; = 1 and § = 0. (Fukumoto (2003)
used the Bessel function of order m — 1 in their formula, while we use m + 1, but the two
are easily verified to be equivalent.)

According to Krein’s theory, the resonance between modes for m and m+ 1 is
unstable if the cograde mode for the m waves and the retrograde mode for m 4 1 waves
possess energies of opposite sign, since resonance between a positive-energy and a
negative-energy wave is a necessary and sufficient conditions for instability (see Fukumoto
& Hattori 2005, § 4.3). Figure 12 shows the first three cograde modes (solid red) and the
first three retrograde modes (dashed blue) for m = 5, 6 and p,/p; = 0.1. All the cograde
modes of m =5 have positive energy while all the retrograde modes of m = 6 have
negative energy, therefore the first three principal modes created from their intersections
are unstable.

4.4. Non-principal modes

As discussed in § 3 and demonstrated in figure 5, changing the value of (p./p1, S) from
(1, 0) leads to the isolation of the first cograde branch of Kelvin wave for wavenumber
m. Once it migrates out of the region of w, € (m, m + 1), it no longer intersects the first
retrograde branch of m + 1. As a result the first principal mode will no longer exist, so
that the sequence of principal modes now starts with the second principal mode. Our
discussion and calculations so far have been limited to those principal modes.

Other than the principal modes, any intersection point of the ith cograde branch for m
and the jth retrograde branch for m 4+ 1 when i #j will be called a non-principal mode.
Growth rates for some non-principal modes are shown in figure 13. The nature of the
instability changes with the isolation of the first cograde branch of Kelvin waves. The
growth rates of principal modes are not always larger than that of non-principal modes for
p2/p1 = 0.8 (figure 13a, top right) as they were in the case of p,/p; = 1 (top left), but
the first principal mode is still the most unstable. As p,/p; diminishes further, the first
principal mode disappears (figure 5) and the rest of the principal modes are no longer the
most unstable for smaller ky, while remaining the most unstable in ky — 20. The same
trend can be seen in figure 13(b) for surface tension variation. The most unstable mode
is the mode with the smallest value of k;, no matter whether it belongs to the sequence
of principal modes or not. This result indicates that a vortex ring is most unstable for the
longest wavelength able to fit inside its circumference when subject to curvature instability
given any pair of (p2/p1, S).

The maximum growth rate for all modes is shown in figure 14 as functions of the density
ratio. The growth rate as m — oo for p,/p; = 1 from Fukumoto & Hattori (2005) is
165/256 = 0.64453125 (dashed line). In our calculation for p,/p; # 1, the growth rate
is not always bounded by that value. Taking m = 2 for example, a cusp at p,/p; = 0.4786
can be observed in figure 14, where o4, = 0.8013. This can be related to the isolation
of the first cograde mode from the other cograde modes for m (see figure 15a, with
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m=5
T

FIGURE 12. The energy of the first three cograde modes (solid) and the first three retrograde
modes (dashed) of Kelvin waves for m = 5, 6. The solid thick line is the isolated mode. The sign
of the energy of the cograde modes for m = 5 and the retrograde mode for m = 6 govern the
stability of the (5, 6) resonance.

Pyl =1
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Py, =0.4 py/p =02

03— 10
0 5 10 15 20 0 5 10 15 20

ko ko

FIGURE 13. Maximum growth rate oy, for the modes of the (5, 6) resonance with variations
of (a) p2/p1 and (b) S. Principal modes are marked by blue crosses while the other modes are
red circles. The black dashed line is short-wavelength asymptotic (4.1) for po/p; = 1 and § = 0.
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|
/p, = 0.4786
0.8+ P N 1

O lmax

0.4 -

0.2+

py/p; =1.079

O L L L
102 107! 100 10! 102

102/101

FIGURE 14. Maximum growth rate for modes with p>/p; € [0.01, 100]. Blue, red, amber and
purple curves are for m = 2, 4, 8 and 16, respectively. The growth rate for po/p; = 1 is indicated
by a circle. The dashed line is the value 165/256 when m — oo from Fukumoto & Hattori
(2005).

(a) 28 S (b)28 (c) 28
27 27 27
26 26 26
Wy 2.5 25 25
24 24 24
23 23 23
22 22 22
005 15 25 35 005 15 25 35

FIGURE 15. Intersection points of pair (m, m + 1) = (2, 3): (a) p2/p1 = 0.4083, (b) p2/p1 =
1 and (¢) p2/p1 = 1.2. Principal modes are labelled by numbers; the others are non-principal
modes. The black dot is the mode that has the largest growth rate. The most unstable mode
switches from point 1 to the new mode and causes the jump at p»/p; = 1.079 in figure 14.

the first cograde branch in the top left corner). As discussed in § 3, the isolation made
the first principal mode, that is, the intersection point between the first cograde and the
first retrograde modes, moves toward @y = m + 1. Once it has moved out of the domain
wo € (m, m+ 1), the first principal mode disappears and a non-principal mode has the
largest growth rate. A steep drop of the curve to the left of the cusp in figure 14 correspond
to this transition of the largest growth rate from a principal mode to a non-principal mode.

Another steep elevation of growth rate is observed near p,/p; = 1.079 because of a
reversed version of the isolation: when p,/p; increases beyond one, the isolated branch for
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m 4+ 1 wave migrates upward to its retrograde branches. In that case the isolated branch
intersects with the cograde modes for m wave (see figure 15¢, with the isolated branch
in the bottom left corner), which creates a new set of non-principal modes including
one with the largest growth rate. The principal modes only possess the largest growth
rate in the interval between the two ‘cliffs’ where p,/p; € (0.4786, 1.079) in figure 14,
and non-principal modes have the largest growth rate in the rest of the region. The
discontinuities in figure 14 may seem problematic, but they are reasonable given that the
stability calculation takes a set of discrete points (the intersection points between Kelvin
waves for m and m + 1) as the candidates for instability. Figure 14 shows the largest growth
rate among those points, and it is not guaranteed that the largest growth rate always comes
from exactly the same intersection point. The maximum growth rate will switch from
mode to mode.

For other waves with wavenumber m > 2, the growth rate as a function of p,/p; is
qualitatively similar. The growth rate for m = 4 has peak value 1.023 at p,/p; = 0.5 for
m = 4. The range of p,/p; where a principal mode is most unstable becomes narrower
as m increases. In the region away from the cusp, that is, p,/p; < 0.1, p2/p; > 10 and
p2/p1 = 1, the growth rate is independent of p,/p; and gradually approaches the value
of 165/256 as m increases. To the right of the plot, where p,/p; > 10, the growth
rate is higher than that to the left, where p,/p; < 0.1, for example, oy,,., = 0.3341 at
p2/p1 = 100 compared with 0.2822 at p,/p; = 0.01, and they are both higher than 0.2146
at p,/p; = 1 for m = 2. That indicates that a heavy core is more unstable than a light core.
However, the difference shrinks as m increases: for m = 8, it is 07y,,,,, = 0.4903 to 0.4885.
The numerics were unable to resolve beyond wavenumber m = 32 except for p,/p; = 1.

5. Conclusion

We have carried out a linear stability analysis to investigate the density and surface
tension effects on a vortex ring, which is a generalisation of the calculations of Fukumoto
& Hattori (2005) for p,/p; = 1 and S = 0. Curvature instability for the principal modes
of resonances between Kelvin waves for wavenumber m and m + 1 are calculated. In the
long-wavelength regime k, < 10, the instability is enhanced for the symmetric (m = 0)
and bending (m = 1) modes when p,/p; # 1, but is suppressed for m > 1. Surface tension
mitigates the instability for long waves, but the effect is minor. For the short-wavelength
regime ko > 10, the effects of density and surface tension are minimal, and the principal
modes are asymptotically similar to the case of p,/p; =1 and § = 0. For all the
resonances, including principal and non-principal modes, the longest wavelength is the
most unstable. The principal modes are not guaranteed to be the most unstable modes for
(p2/p1, ) #(1,0).

We have presented results for a wide range of values of p,/p; and S. It is now of interest
to consider the values of these quantities for real-world situations. These might include
bubble rings in water, for which p,/p; is approximately 0.001. Surface tension between
water and air is 7.2 x 107* kg s2, and S depends on the strength of circulation I" and
the size of the ring. If we assume a thin bubble ring of diameter 1.5 m and core radius
1 cm that travels roughly at 2 m s~!, S is of the order 1.8 x 10~*. Another possible example
is a vortex ring made of hot air or gases, possibly formed as a thermal. The core density
depends on temperature: at 950 °C, the density ratio is approximately 0.3. Surface tension
is negligible under this circumstance. Our calculations indicate that both of these two cases
are linearly unstable. The growth rate for principal modes in the former case is 0.09304,
a 70 % increase on the value 0.05434 for the (p,/p1,S) = (1, 0) case; while the latter
example has a growth rate 0.2807, more than five times that of a constant-density ring.
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The present work can be seen as a stepping stone to further stability analysis for a
buoyant vortex ring which requires gravity in the formulation. In the present framework,
we have made the ‘frozen-state’ assumption for the linear stability problem, which is
justified by arguing that the Froude number is larger than the order of (8¢)~'/2. It is well
known that a buoyant vortex propagates in an unsteady fashion (Turner 1957; Pedley 1968;
Chang & Llewellyn Smith 2018), so it is challenging to carry out a full analysis with
gravity by the usual method of normal modes. We leave this approach to later, however,
and continue with the present method to investigate density and surface tension effects on
the MSTW instability in Part 2 of this work.
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Appendix A. The mean flow solution

The basic solution is obtained as a perturbation series in € as shown in (2.12a—c).
The leading-order solution is the Rankine vortex and the boundary is circular. Pressure
is obtained from

% aP
20 _ 70 (A1)
r ar
inside and from the Bernoulli equation outside. The dynamic boundary condition for
pressure on r = 1 gives

pr, 1 (90
o o+ 3 < 50 ) (A2)
At O(e), the governing equations lead to
oUu oP
—l oy =, (A3)
200 or
oV, 10P;
200+ — = ———, A4
IR r 90 A
ou, U, 193V,
I T T 0 AS
ar + r + r 00 reos (AS)
in the core and
’d, 109 1 0% 0
1 1 1 L 1 _ _COS (A6)
or? r or 2 062 r
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outside the core. The matching conditions (2.10)—(2.11) give
oF 0P
=—=—, (A7)
00 ar
P2 09, 02 . 0°F,
—P+—+F|{——-1)=-S|—sin6 +F A8
p11+89+1<p1 ) (Sm+1+392 (A9

at r=1. Solving this system with the condition F; =0 leads to the solution
((2.15a—¢)-(2.16)).

Appendix B. The solution for Kelvin waves

Solutions to (2.23)—(2.27) with the basic state given by (2.13a,b), independent of s with
wavenumber m in 0 and k in s, are known as Kelvin waves. They take the form

Py = Lu(mnB",
(m) i m @o — (m)
=——|-=1, — i, ,
Uy wo—m+2[ p (U1F)+w0_m_2771 +1(U1V)] 0
(m) 1 mJ J (m) ( (B l)
v, —m " m(771”)+w0_m_2771 me1 (M) | By
m k m
wy" = ———J,,(mr "
wy —m
for r < 1 + fy. The radial wavenumber is
4
2| ——— — 1|k B2
n |:(w0 _ m)2 i| 0 B2)
Forr > 1 —I—fo,
0" = Ky (kor)org”, (B3)

where g, By are the amplitudes of Kelvin waves. The (m + 1)-waves are obtained by
replacing m in the formulae by m + 1. Recurrence relations are used to reduce the order
of the Bessel functions.

The kinematic boundary condition (2.28) leads to

(m) __

(m)
0 u

= —u, . B4

(o —m) " B
The dispersion relation is obtained by enforcing the dynamic boundary condition from
(3.3), which includes both surface tension and the density ratio. The resulting relation is
discussed in detail in § 3.
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Appendix C. Solvability conditions and dispersion relation

Substituting the O(§¢) solutions for modes m and m + 1 into (2.36) and (2.37) gives

(m) __ d¢1 m
u

LT (C1H

p m . m m m + 1 m
2p(1 ) i(wg — m)¢i ) 1a)1¢( ) ( +4S> (() +D)
L1 8 P1

m m —"_ m
+ [1 - % +S(k(2)+m2)] " 1 2Skoky £ — (m2 +ko = 1) (€
1

and

+1
L — do, ol

1 - d}" ’ (C 3)

m . m . m m m
&Pi D i(wy — m— D" = i, “)——(&+4S) ()
P1 8 \ o1

[1 — Z S0+ m+ 1) )]ff’"*” +28koki 3" — (% — B+ 1)if" €4
01

respectively. The O(é¢€) boundary disturbance f; for the two modes is obtained from (2.35)
as

(mt1) _ ! ZuD g, ) g Mgt S m) C6)
! i(wyg —m—1) ! g0 g0 |

The dispersion relation relating k; and w; for disturbances at O(5¢) is determined as
follows. The O(8¢) disturbance satisfies (2.30)—(2.34) with undetermined coefficients «;,
B in the solution, which need to be determined using the boundary conditions at O(5e€).
The boundary conditions for mode m lead to an inhomogeneous linear system of the form

My M, af’") F,
— 7
e e =R ©
while the result for mode m + 1 becomes
N|1 N|2 (XEm-H) B G1
|: Ny Ny i||: 1(m+1) T Gy | €8

The vectors F and G consist of the O(§) solution that has undetermined coefficients
and fy. They also depend on known quantities, m, ko, wg, p2/p1, S and on the unknowns
kl and wq.
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The matrices M and N depend on m, wy, ko, p>/p1 and S. The two linear systems are
singular, that is, their determinants are zero. The solvability condition requires that the
vectors F and G lie in the image space of M and N, that is,

My F, — My Fy =0,

(C9)
NG, — Ny G = 0.
Using the relations
iJm m m lJm m
o = — (m) g +1012) D (C 10a,b)
(wo —m)K,, (ko) (wo —m — DKy1(ko)
to replace a((,m) and a((f"H), (C9) can be converted into a homogeneous linear system
Dll D12 (()m) =0 (C 11)
Dy Dx AR I
For non-trivial ,3(()'") and ,8(()'"“), the resulting determinant equation
DDy, — DDy =0 (C12)

leads to the dispersion relation for (k;, w;). This is a quadratic equation for w;, where w,
is obtained from D;; and D,, as

Dy = mwy + (o, Dy = paw; + pg. (C 13a,b)
The dispersion relation is, hence,

3] + (11 s + [2ft3) @1 + papts — DDy = 0. (C14)

Expressions for u; and Dy, Dy, are given in the supplementary material.
These quantities are functions of k; with m, wy, kg, p2/p1 and S all given. The growth
rate o; = |Imw;| has a maximum when k; = 0 where u, = uy = 0, giving

D, D
Olmax = - e J (C 15)
K13
One half of the unstable bandwidth Ak, is calculated by finding the root k; of
(ipea + paps)” — dpai iz (nopts — DiaDay) = 0. (C16)
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