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resonance between two neutrally stable O(δ) modes. The resonant instability appears
as a consequence at order δ multiplied by the small parameter and is called parametric
instability.

Two types of parametric instabilities have been discovered for vortices: the
Moore–Saffman–Tsai–Widnall (MSTW) instability and the curvature instability. The
MSTW instability was first discovered by Moore & Saffman (1975) and Tsai & Widnall
(1976), and has since been revisited by Fukumoto (2003) among others. The basic state is
a vortex column with uniform vorticity inside the column and zero outside the column. It
is, hence, a Rankine vortex that extends uniformly in the third dimension. Linear analysis
shows that the O(1) vortex column is neutrally stable when disturbed by waves of O(δ).
Those O(δ) disturbances are Kelvin waves. Motivated by the goal of examining vortex
ring stability, weak strain, measured by the small parameter γ . This situation leads to the
MSTW instability, which is the focus of the present work. This is an approximation to the
vortex ring case with no basic-state curvature, but with the leading-order strain retained.
In the curvature instability studied in Chang & Llewellyn Smith (2021), hereafter Part 1 of
this work, the basic state is expanded in terms of the ratio of the core size of the vortex ring
to its radius of curvature, ε, and is curved at O(ε). Moore & Saffman (1975) and Tsai &
Widnall (1976) found that when a weak strain field is imposed on the vortex, perpendicular
to its axis, an instability emerges due to the strain field. The strain field is mathematically a
quadrupole, and enables a resonance between two Kelvin waves of azimuthal wavenumber
m and m + 2. The MSTW instability has been studied extensively since then (e.g. Éloy
& Le Dizès 2001; Fukumoto 2003). In the short-wavelength regime, it has been shown
to be the elliptic instability of Bayly (1986), Waleffe (1990) and Leweke & Williamson
(1998). Blanco-Rodriguez & Le Dizès (2016) theoretically studied the short-wave elliptic
instability of a Batchelor vortex (a Gaussian core). A recent study using direct numerical
simulations (DNS) by Hattori, Blanco-Rodriguez & Le Dizès (2019) showed that both
types of parametric instabilities exist in the short-wavelength regime, and that the elliptic
instability dominates over the curvature instability.

The stability of a strained vortex column was also investigated in the context of aircraft
trailing vortices. The mutual interaction between long waves causes the Crow instability
(Crow 1970). The Biot–Savart law is used to compute the induced velocity on one of
the trailing vortices owing to the presence of the other. In a frame fixed to one of the
vortices, a weak strain field is created by the other vortex in the thin-core limit providing
their separation is large. Moore & Saffman (1971) obtained a solution represented as a
perturbation series in γ , where γ � 1 is the strength of the strain field. The core boundary
deforms into an elliptic shape at O(γ ):

F = 1 + 1
2γ cos 2θ + O(γ 2). (1.1)

The stability of the strained vortex was also investigated by Moore & Saffman (1971)
for two- and three-dimensional long-wave disturbances. Moore & Saffman (1975) and
Tsai & Widnall (1976) studied the instability mechanism proposed by Widnall et al.

(1974) for short-wave disturbances. Fukumoto (2003) extended the stability calculation
for intersection points of Kelvin wave dispersion curves.

Historically, the curvature instability (Hattori & Fukumoto 2003; Fukumoto & Hattori
2005) was discovered later than the MSTW instability. We have examined it in the presence
of density and surface tension effects in Part 1 of this study (Chang & Llewellyn Smith
2021). In the asymptotic analysis by Fukumoto & Hattori (2005), the authors argued
that the curvature instability dominates over the MSTW instability provided that ε � 1.
However, in the recent numerical simulations by Hattori et al. (2019), the elliptic instability
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Density and surface tension on vortex stability. Part 2

(b)(a)

a
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θ

Γ –Γ

Figure 1. (a) Side view of two parallel vortex tubes and (b) a cross-section view of the counter-rotating
vortices. The shaded areas are occupied by fluid of density ρ2, whereas the ambient density is ρ1.

(short-wavelength MSTW) is found to be dominant for a vortex ring with or without
swirl, and the curvature instability is only detected when swirl is present. As shown in
the study by Blanco-Rodriguez & Le Dizès (2016), the MSTW instability can be applied
to different configurations such as a single vortex ring, an array of rings and vortex helix.
Here we just do not consider such generalisations and treat the simplest case of two parallel
counter-rotating vortices.

The effect of density (or stratification) on vortex instability has been in examined by Joly,
Fontane & Chassaing (2005), Sipp et al. (2005), Dixit & Govindarajan (2011), Saunders
(1973), among others (see also the references therein). However, the effect of density
on the MSTW instability has not been investigated previously. In the present paper, we
follow the formulation in Tsai & Widnall (1976) and Fukumoto (2003) but include density
and surface tension. In § 2, the mathematical formulation including governing equations,
boundary conditions and the basic state solution are given. Linearised equations at O(δ)

and O(δε) are also derived. The solutions at both orders with density and surface tension
are discussed in § 3. We shown results for stationary resonance between (m, m + 2) =

(−1, 1) in § 4, followed by resonance for m � 0 in § 5. We conclude in § 6.

2. Formulation

Two thin parallel vortex tubes are considered, as shown in figure 1(a). We assume that
γ = a/D � 1, where a is the core size and R is the separation between two vortices.
The outer region and the vortical cores have constant densities ρ1 and ρ2, respectively.
The circulation of the core is Γ for both vortices but with opposite sign. We normalise the
problem by length scale a, velocity scale Uc = Γ/(2πa) and time scale 2πa2/Γ , whereas
the pressure scale is taken to be ρ2(Γ/2πa)2. The velocity potential describing the outer
irrotational flow is scaled by Γ/2π.

Each vortex tube experiences a strain field perpendicular to its centreline owing to the
other vortex tube. The strain is a quadrupole field of strength O(γ ). We focus on the vortex
on the left (see figure 1b). This model can be seen as an approximation for a vortex ring,
with γ representing the local effect of the strain from the induced motion due to the rest
of the vortex ring. We neglect terms of O(γ 2) and higher in the following formulation.

2.1. Governing equations

We use cylindrical coordinates (r, θ, z), with velocity u = (u, v, w). The undisturbed core
boundary is taken to be r = 1. As the core is rotational, the governing equations for an
inviscid, incompressible flow are the Euler equations inside the core,

∇ · u = 0,
∂u

∂t
+ u · ∇u = −∇p. (2.1a,b)
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C. Chang and S.G. Llewellyn Smith

Vorticity is zero outside the core of the vortex ring, and the Laplace equation governing
the velocity potential in this irrotational region is

∇2Φ = 0. (2.2)

In cylindrical coordinates the Euler equations are

∂u

∂t
+ u · ∇u −

v2

r
= −

∂p

∂r
, (2.3)

∂v

∂t
+ u · ∇v +

uv

r
= −

1

r

∂p

∂θ
, (2.4)

∂w

∂t
+ u · ∇w = −

∂p

∂z
, (2.5)

where

u · ∇ = u
∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z
. (2.6)

The continuity equation is

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0. (2.7)

Outside the core, Laplace’s equation is

1

r

∂

∂r

(

r
∂Φ

∂r

)

+
1

r2

∂2Φ

∂θ2
+

∂2Φ

∂z2
= 0. (2.8)

The solution to (2.3) and (2.7) is called the inner solution, whereas the outer solution refers
to the solution of (2.8).

2.2. Boundary conditions

The boundary of the vortex is taken to be r = F, where F(θ; γ ) will be obtained as part of
the solution. The inner and outer solutions are matched on the core boundary where r = F.
For inviscid flows, the matching is given by the kinematic and the dynamic conditions. The
kinematic condition gives

D

Dt
(r − F)

∣

∣

∣

∣

r=F−

=
D

Dt
(r − F)

∣

∣

∣

∣

r=F+

= 0, (2.9)

where D/Dt = ∂/∂t + u · ∇ is the Lagrangian time derivative.
The dynamic condition requires pressure to be continuous without surface tension or to

have a jump given by surface tension. In terms of the inner pressure p and outer velocity
potential Φ, this becomes

ρ2

ρ1
p +

∂Φ

∂t
+

1

2
|∇Φ|2 = S∇ · n. (2.10)

Here S is dimensionless surface tension σ/[ρ1a(Γ/2πa)2] and n = ∇(r − F)/|∇(r − F)|

is the outward normal vector on the boundary.
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Density and surface tension on vortex stability. Part 2

2.3. The mean-flow solution

The solution to (2.3)–(2.8) (written using uppercase letters) can be obtained as a
perturbation series in γ :

U = U0 + γ U1 + · · · , P = P0 + γ P1 + · · · , Φ = Φ0 + γΦ1 + · · · , (2.11a–c)

where γ is the strength of the strain field.
The leading-order mean-flow solution is the Rankine vortex with velocity and pressure

fields

(U0, V0, W0) = (0, r, 0), P0 =
1

2

(

r2 − 1 −
ρ1

ρ2

)

+
ρ1

ρ2
S (2.12a,b)

and
Φ0 = θ. (2.13)

The strain field leads to the following O(γ ) solution of the mean flow (cf. the solution
in Moore & Saffman 1971):

U1 = −r sin 2θ, V1 = −r cos 2θ, P1 = 0 (2.14a–c)

in the inner region, whereas the outer solution is

Φ1 =
1

8

[

3

r2
− r2 −

ρ2

ρ1

(

1

r2
+ r2

)

+ 3S

(

1

r2
+ r2

)]

sin 2θ. (2.15)

The shape of the boundary to O(γ ) is

F(θ; γ ) = F0 + γ F1 + · · · = 1 + γ
1

2
cos 2θ + O(γ 2). (2.16)

See appendix A for the detailed calculations leading to (2.12a,b)–(2.16).

2.4. Linearised equations and boundary conditions for infinitesimal disturbances

We disturb the mean flow derived in § 2.3 as follows:

U + ũ, V + ṽ, W + w̃, P + p̃, Φ + φ̃, (2.17a–e)

and the disturbed boundary is r = F + f̃ . We use tildes over lowercase letters to represent
the disturbances. Disturbances are assumed to be of O(δ) compared with the O(1) basic
state with δ � 1. The usual stability analysis treats O(δ) disturbances. Here, these are
neutrally stable as shown in § 3.1, and it is the O(δγ ) solution that is of interest for
parametric instability. The disturbances are decomposed into normal modes in the axial
direction z and time t. As with the basic solution, disturbances are expanded in γ as

ũ = (ũ0 + γ ũ1 + · · · ) exp(i(kz − ωt)), (2.18)

p̃ = (p̃0 + γ p̃1 + · · · ) exp(i(kz − ωt)), (2.19)

φ̃ = (φ̃0 + γ φ̃1 + · · · ) exp(i(kz − ωt)). (2.20)

The axial wavenumber and the frequency are also expanded as

k = k0 + γ k1 + · · · , ω = ω0 + γω1 + · · · . (2.21a,b)

The core boundary disturbance is

f̃ = ( f̃0 + γ f̃1 + · · · ) exp(i(kz − ωt)). (2.22)

As the disturbances (ũ, p̃, φ̃) are small compared with the basic solution (U, P, Φ),
(2.3)–(2.8) can investigated at O(δ) and O(δγ ) in what follows.
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C. Chang and S.G. Llewellyn Smith

2.4.1. O(δ) linearised equations and boundary conditions

The linearised equations for disturbances at O(δ) are

−iω0ũ0 +
V0

r

∂ ũ0

∂θ
−

2V0ṽ0

r
= −

∂ p̃0

∂r
, (2.23)

−iω0ṽ0 + ũ0
∂V0

∂r
+

V0

r

∂ṽ0

∂θ
+

V0ũ0

r
= −

1

r

∂ p̃0

∂θ
, (2.24)

−iω0w̃0 +
V0

r

∂w̃0

∂θ
= −ik0p̃0, (2.25)

1

r

∂

∂r
(rũ0) +

1

r

∂ṽ0

∂θ
+ ik0w̃0 = 0 (2.26)

for the inside and

1

r

∂

∂r

(

r
∂φ̃0

∂r

)

+
1

r2

∂2φ̃0

∂θ2
− k2

0φ̃0 = 0 (2.27)

for the outside. The linearised boundary conditions at r = 1 are

−iω0 f̃0 +
∂ f̃0

∂θ
= ũ0, (2.28)

ũ0 =
∂φ̃0

∂r
, (2.29)

ρ2

ρ1
p̃0 − iω0φ̃0 +

∂φ̃0

∂θ
=

(

1 −
ρ2

ρ1

)

f̃0 − S

(

∂2 f̃0

∂θ2
− k2

0 f̃0

)

. (2.30)

The solutions are Kelvin waves given in appendix B.

2.4.2. O(δγ ) linearised equations and boundary conditions

We proceed to the next order in the expansion in γ . The equations for disturbances of
O(δγ ) are also linearised. The inner solution satisfies

−iω0ũ1 +
∂ ũ1

∂θ
− 2ṽ1 +

∂ p̃1

∂r

=

(

iω1 −
∂U1

∂r

)

ũ0 − U1
∂ ũ0

∂r
−

V1

r

∂ ũ0

∂θ
−

(

1

r

∂U1

∂θ
−

2V1

r

)

ṽ0, (2.31)

−iω0ṽ1 + 2ũ1 +
∂ṽ1

∂θ
+

1

r

∂ p̃1

∂θ

=

(

iω1 −
1

r

∂V1

∂θ
−

U1

r

)

ṽ0 − U1
∂ṽ0

∂r
−

V1

r

∂ṽ0

∂θ
−

(

∂V1

∂r
+

V1

r

)

ũ0, (2.32)

−iω0w̃1 +
∂w̃1

∂θ
+ ik0p̃1 = −ik1p̃0 + iω1w̃0 − U1

∂w̃0

∂r
−

V1

r

∂w̃0

∂θ
(2.33)

with the continuity equation

∂ ũ1

∂r
+

ũ1

r
+

1

r

∂ṽ1

∂θ
+ ik0w̃1 = −ik1w̃0. (2.34)
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Density and surface tension on vortex stability. Part 2

The velocity potential outside satisfies

∂2φ̃1

∂r2
+

1

r

∂φ̃1

∂r
+

1

r2

∂2φ̃1

∂θ2
− k2

0φ̃1 = 2k0k1φ̃0. (2.35)

The linearised kinematic boundary conditions at r = 1 are

−iω0 f̃1 +
∂ f̃1

∂θ
− ũ1 = iω1 f̃0 − V1

∂ f̃0

∂θ
−

dF1

dθ
ṽ0 +

∂U1

∂r
f̃0 + F1

∂ ũ0

∂r
, (2.36)

ũ1 −
∂φ̃1

∂r
=

(

−
∂Φ1

∂θ
+ V1

)

∂ f̃0

∂θ
+

(

2
dF1

dθ
+

∂2Φ1

∂r2
−

∂U1

∂r

)

f̃0

+
dF1

dθ

(

ṽ0 −
∂φ̃0

∂θ

)

+ F1

(

2
∂ f̃0

∂θ
+

∂2φ̃0

∂r2
−

∂ ũ0

∂r

)

. (2.37)

The linearised dynamic condition at r = 1 is

ρ2

ρ1
p̃1 − iω0φ̃1 +

∂φ̃1

∂θ

= iω1φ̃0 −
∂Φ1

∂r

∂φ̃0

∂r
−

∂Φ1

∂θ

∂φ̃0

∂θ
+

(

1 −
ρ2

ρ1

)

f̃1 +

(

2
∂Φ1

∂θ
−

∂2Φ1

∂r∂θ

)

f̃0

− F1

[

ρ2

ρ1

∂ p̃0

∂r
− iω0

∂φ̃0

∂r
+

∂2φ̃0

∂r∂θ
− 2

∂φ̃0

∂θ

]

− F1

[

ρ2

ρ1

∂2P0

∂r2
+ 3

(

∂Φ0

∂θ

)2
]

f̃0

− S

(

∂2 f̃1

∂θ2
− k2

0 f̃1 − 2k0k1 f̃0 − 2F1
∂2 f̃0

∂θ2

)

. (2.38)

Solutions for the disturbance waves at O(δ) and O(δγ ) are given in the next section. The
dispersion relation is obtained by matching the boundary conditions.

3. Solutions

Solutions for both O(δ) and O(δγ ) disturbance waves are written as

ũ(r, θ) = u
(m)(r) eimθ , p̃(r, θ) = p(m)(r) eimθ , φ̃(r, θ) = φ(m)(r) eimθ , (3.1a–c)

where m is the azimuthal wavenumber. The resonance condition is when two Kelvin waves
of azimuthal wavenumber differing by two are coupled by the quadrupole at O(δ). The
solutions at O(δ) and O(δγ ) are written as m and m + 2 waves.

3.1. Kelvin waves at O(δ)

The solution at O(δ) is a Kelvin wave, which is described in appendix B. The Kelvin
waves are coupled with the quadrupole field (2.14a–c) through the right-hand sides of
(2.31)–(2.33). When two Kelvin waves with azimuthal wavenumber m and m + 2 appear
in the forcing terms on the right-hand side of (2.31)–(2.33), the solution at the O(δγ ) will
possess modes for m − 2, m, m + 2 and m + 4. The resonances are between pairs of two
adjacent modes separated by two. We focus on the resonance between a pair of Kelvin
waves (m, m + 2) in this paper, because the cases for (m − 2, m), (m + 2, m + 4) can be
obtained by using different value of m.
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C. Chang and S.G. Llewellyn Smith

The solution (B1) and (B4) contains coefficients (Kelvin wave amplitudes) α0 and
β0 that are determined using the boundary conditions. The boundary conditions for
wavenumber m become

−i(ω0 − m)f
(m)
0 = u

(m)
0 =

dφ0

dr

(m)

, (3.2)

ρ2

ρ1
p
(m)
0 − i(ω0 − m)φ

(m)
0 =

(

1 −
ρ2

ρ1

)

f
(m)
0 + S(m2 + k2

0)f
(m)
0 . (3.3)

Substituting p
(m)
0 , u

(m)
0 , φ

(m)
0 and f

(m)
0 (see appendix B) into the equations above, we obtain

a set of homogeneous linear equations for α
(m)
0 and β

(m)
0 . For non-trivial α

(m)
0 and β

(m)
0 ,

the determinant must be zero, which gives the dispersion relation for mode m (see Part 1):
[

1 +
E1

(ω0 − m)2

(

m − k0
Km+1(k0)

Km(k0)

)]

Jm+1(η1)

=

{

−m
ω0 − m

ω0 − m + 2
+

[

ρ2

ρ1
− E1

m

(ω0 − m)(ω0 − m + 2)

] (

m − k0
Km+1(k0)

Km(k0)

)}

×
η1

k2
0

Jm(η1), (3.4)

where E1 = 1 − ρ2/ρ1 + S(k2
0 + m2). Here Jm is the Bessel function of the first kind and

Km is the modified Bessel function of the second kind; η1 is the radial wavenumber defined
in (B2). For the second set of Kelvin waves, the azimuthal wavenumber is m + 2 in the
MSTW instability instead of m + 1 in the curvature calculation. The boundary conditions
are the same formulae as in (3.3) except that m is replaced by m + 2, and similarly for
the solution in appendix B. Using the boundary conditions and the solution for the m +

2-mode, we obtain the dispersion relation
[

1 −
E2

(ω0 − m − 2)2

(

m + 2 + k0
Km+1(k0)

Km+2(k0)

)]

Jm+1(η2)

=

{

−(m + 2)
ω0 − m − 2

ω0 − m − 4
+

[

ρ2

ρ1
+ E2

m + 2

(ω0 − m − 2)(ω0 − m − 4)

]

×

(

m + 2 + k0
Km+1(k0)

Km+2(k0)

)}

η2

k2
0

Jm+2(η2), (3.5)

where E2 = 1 − ρ2/ρ1 + S[k2
0 + (m + 2)2] and η2 is the radial wavenumber for m + 2.

The intersection points between the two sets of Kelvin waves give possible candidates
for parametric instability. The actual modes can be found by finding the roots for (3.4) and
(3.5) with ω0 ∈ [m, m + 2]. For Kelvin waves with azimuthal wavenumber m, there are
cograde branches going upward where ω0 > m and retrograde branches going downward
where ω0 < m (see figure 2 for m = 2). The cograde branches are labelled from the top as
the first, second, . . . cograde modes, whereas the retrograde branches are labelled from the
bottom. The cograde branches of the m waves and the retrograde branches of the m + 2
waves cross in ω0 ∈ [m, m + 2] setting up possible modes for resonance. We follow the
definition used by Fukumoto (2003) for the case (ρ2/ρ1, S) = (1, 0). The principal modes
are the intersection point of the first cograde branch for m and the isolated branch for
m + 2, and also the intersection points of the i + 1th cograde branches for m and the
ith retrograde branches for m + 2. This definition is slightly different from that in § 3 of
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Figure 2. Dispersion curves for the Kelvin wave with m = 2 for density ratios from one to zero. Red curves
are cograde branches and blue curves are retrograde branches. Only the first five branches of each are plotted.
An isolated branch (thick black curve) can be seen below the retrograde branches. Surface tension is zero for
all plots.

Part 1 for the curvature instability, where the cograde branches for m never cross the
isolated branch for m + 1 when (ρ2/ρ1, S) = (1, 0).

As discussed in Part 1, density and surface tension act to ‘isolate’ the first cograde mode
when (ρ2/ρ1, S) /=(1, 0). In figure 2, the first cograde mode (the uppermost red curve with
the largest value of |ω0 − 2|) departs from the other cograde modes and shifts upward as
the density ratio decreases. The isolated branch (thick black line) also shifts downward
from its initial position when ρ2/ρ1 = 1, and the short-wavelength part (large k0) of
the isolated branch drops below ω0 = m − 2. On the other hand, when the density ratio
increases above one, the situation reverses: the first cograde mode and the isolated mode
move closer toward other cograde and retrograde modes. In all cases, Kelvin waves stay
neutrally stable. The branch that extends beyond ω0 ∈ [m − 2, m + 2] still has purely real
ω0. A special scenario is two counter-winding helical waves with azimuthal wavenumber
m = −1 and 1 whose dispersion curves are symmetric about the k0-axis (figure 3). In this
case, the principal modes are always on the k0-axis, and ω0 = 0.

3.2. Resonance at O(δγ )

The solution of the O(δγ ) disturbances governed by (2.31)–(2.34) is given in appendix
A of Fukumoto (2003). We do not reproduce it here, given its complexity. The solution
contains undetermined coefficients α1, β1 (appearing in the linear systems in (C7) and
(C8)) which must be non-zero. The boundary conditions in (2.37) and (2.38) are used to
obtain the dispersion relation. Note that in order to include surface tension, we need to
compute f̃1 from (2.36) before using the dynamic condition for the dispersion relation.
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Figure 3. The first three cograde modes of the Kelvin wave for m = −1 (red) and the first three retrograde
modes of the Kelvin wave for m = 1 (blue dashed); their isolated branches (thick solid and dashed) can be seen
emanating from (k0, ω0) = (0, 0). Circles are the first four principal modes with ω0 = 0. Here S = 0 for all
cases.

In Moore & Saffman (1975), Tsai & Widnall (1976) and Fukumoto (2003), computing f̃1
is not necessary because ρ2/ρ1 = 1 and surface tension is omitted.

Substituting the basic solution (2.14a–c)–(2.16) into the boundary conditions (2.37) and
(2.38) gives

ũ1 −
∂φ̃1

∂r
= sin 2θ

[

∂φ̃0

∂θ
− ṽ0 +

(

1 −
ρ2

ρ1
+ 3S

)

f̃0

]

+
1

2
cos 2θ

[

−

(

1 −
ρ2

ρ1
+ 3S

)

∂ f̃0

∂θ
+

∂2φ̃0

∂r2
−

∂ ũ0

∂r

]

; (3.6)

ρ2

ρ1
p̃1 − iω0φ̃1 +

∂φ̃1

∂θ

= iω1φ̃0 + sin 2θ
∂φ̃0

∂r
+

(

1 −
ρ2

ρ1

)

f̃1 −
1

2

(

−1 −
ρ2

ρ1
+ 3S

)

cos 2θ
∂φ̃0

∂θ

+
3

2

(

1 −
ρ2

ρ1
+ 2S

)

cos 2θ f̃0 −
1

2
cos 2θ

[

ρ2

ρ1

∂ p̃0

∂r
− iω0

∂φ̃0

∂r
+

∂2φ̃0

∂r∂θ

]

− S

(

∂2 f̃1

∂θ2
− k2

0 f̃1 − 2k0k1 f̃0 − cos 2θ
∂2 f̃0

∂θ2

)

. (3.7)
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Density and surface tension on vortex stability. Part 2

k0 σ1max �k1

2.504982369 0.5707533917 2.145502816
4.349076726 0.5694562098 3.518286549

Fukumoto (2003) 6.174012330 0.5681222780 4.883945142
7.993536550 0.5671646287 6.247280752
9.810807288 0.5664714116 7.609553122

2.50498236892631 0.570753391682824 2.14548262220342
4.34907672483174 0.569456209750883 3.51827586739091

Present work 6.17401232939918 0.568122278011138 4.88395077269524
7.99353654972030 0.567164628732371 6.24727962008910
9.81080728697861 0.566471411560612 7.60954536410281

Table 1. For the m = −1 and 1 resonances, present results for ρ2/ρ1 = 1 compared with table 1 of
Fukumoto (2003). Each row represents a principal mode with k0 = 0.

Using the above equations, we obtain two sets of equations for m and m + 2 in (C1)–(C4).
They can be written as two inhomogeneous linear systems (C7) and (C8) for α1 and β1. The
dispersion relation (C14) is given by requiring that α1 and β1 do not vanish (see the details
in appendix C). A dispersion relation for (k1, ω1) determines the stability, and the flow
is unstable for Im{ω1} > 0. The maximum growth rate σ1max is given by the maximum
imaginary part of ω1 at k1 = 0; and the half-bandwidth of instability, �k1, by the range
over which the imaginary part of ω1 does not vanish. The expressions for all formulae
are too cumbersome to handle manually, and so computer symbolic algebra is utilised to
obtain the dispersion relation (C14) and ω1 and �k1. A description of procedure is given in
detailed in appendix C, and the symbolic algebra files are provided in the supplementary
material available at https://doi.org/10.1017/jfm.2020.1157 (as Matlab scripts). We show
numerical results for m = −1 and 1 in the next section, followed by the case for m � 0 in
§ 5.

4. Resonance between waves m = −1 and 1

We first discuss the special case of the resonance pair (−1, 1) in this section. When m =

−1, the resonance is between right- and left-handed helical waves. Fukumoto (2003) gives
a detailed discussion of this resonance pair. Widnall et al. (1974) and Moore & Saffman
(1975) imply that the stationary mode is most unstable. The two dispersion curves are
mirrored about ω0 = 0 (see figure 3), and therefore their principal modes are exactly on
the k0-axis.

4.1. Principal modes (ω0 = 0)

We substitute m = −1 and ω0 = 0 for the principal modes of stationary waves (circles
in figure 3). The maximum growth rate σ1max and half the instability bandwidth �k1 are
then calculated using computer symbolic algebra. To verify the result of the symbolic
calculation, results for (ρ2/ρ1, S) = (1, 0) are compared with those in Fukumoto (2003)
in table 1. The present study has σ1max accurate to 10 significant figures and �k1 up to
five significant figures. As seen in figure 3, the first principal mode at (k0, ω0) = (0, 0) is
independent of ρ2/ρ1 and S, so we do not include it in the comparison here.

The principal modes’ maximum growth rates and instability half-bandwidths are plotted
as functions of ρ2/ρ1 in figure 4(a) for S = 0. The second principal mode (blue curve) is
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Figure 4. Principal modes (k0, 0) for (m, m + 2) = (−1, 1), the maximum growth rate σ1max and the
instability half-bandwidth �k1 plotted versus: (a) density ratio ρ2/ρ1 ∈ [0.005, 100] for S = 0; (b) surface
tension S ∈ [0, 500] with ρ2/ρ1 = 0.001. The second to sixth principal modes are the blue, red, amber, purple
and green curves.

the most unstable mode. The largest growth rate is at ρ2/ρ1 = 0 with a value of σ1max =

0.882. The least unstable density ratio is 0.915, where the second and third principal modes
have a growth rate of 0.5696. The instability half-bandwidth, �k1, is strongly correlated
with the axial wavenumber k0, and the principal mode with higher k0 has wider instability
bandwidth. Figure 4(b) shows the effect of surface tension when ρ2/ρ1 = 0.001. The
density ratio 0.001 is picked because it is close to the typical ratio between air and water.
Surface tension merely changes the locations of principal modes. The second principal
mode dominates the instability. The growth rate is 0.8803 at S = 10−4 and drops to 0.585
when S = 500.

The growth rate and the instability half-bandwidth are calculated for large k0 in figure 5
with different values of ρ2/ρ1 ∈ [0, 1] and S ∈ [0, 100]. Density only has an effect on the
growth rate σ1max for principal modes with k0 < 10. The growth rates for different values
of ρ2/ρ1 and S all converge to a fixed value 0.5625 as k0 → ∞. The short-wavelength
limit given in (5.13), (5.14) of Fukumoto (2003) for (ρ2/ρ1, S) = (1, 0) as

σ1max ≈
9

16

(

1 +
1

12k0
−

7

48k2
0

+
5

64k3
0

)

, (4.1a)

�k1 ≈
3k0

4

(

1 +
1

3k0
+

5

24k3
0

)

, (4.1b)

is plotted as dashed lines in figure 5.

4.2. Non-principal modes

For stationary waves m = ±1, non-principal modes are intersection points where ω0 /= 0.
Theoretically, an infinite number of non-principal modes exist because the two Kelvin
waves have an infinite number of intersection points. Here we show only those
non-principal modes for k0 ∈ [0, 20] and ω0 ∈ (0, 0.5] in figure 6. In the case ρ2/ρ1 = 1
and S = 0, the growth rates of non-principal modes are at least two orders of magnitude
smaller than that of the principal modes (see figure 6a). As the density ratio decreases to
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Figure 5. Maximum growth rate σ1max and unstable half-bandwidth �k1 of principal modes with axial
wavenumber k0 < 20 for helical waves (m, m + 2) = (−1, 1): (a) different ρ2/ρ1 with S = 0; (b) different S

with ρ2/ρ1 = 0.001. The dashed line is the short-wavelength asymptotic result (4.1) for ρ2/ρ1 = 1 and S = 0.

zero, the maximum growth rates of non-principal modes grow and become one order of
magnitude smaller than those of the principal modes. The trend reverses for increasing
surface tension. The maximum growth rate of non-principal modes is one order of
magnitude less than that of the principal modes and that difference widens to more than
two orders of magnitude for S = 10 in figure 6(b). With variations in either density or
surface tension, the instability of the principal modes always dominates over non-principal
modes.

5. Resonance between waves m and m + 2 (m � 0)

We continue to explore resonant pairs of (m, m + 2) other than (−1, 1). Among those
pairs, the case of (0, 2) is particular interesting. As Fukumoto (2003) states, this is a result
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Figure 6. Maximum growth rate σ1max for the modes of the (−1, 1) resonance with variations of (a) ρ2/ρ1 for
S = 0 and (b) S for ρ2/ρ1 = 0.001. Principal modes (with k0 � 20) are marked by blue crosses whereas other
modes are red circles. The black dashed line is the short-wavelength asymptotic result (4.1) for ρ2/ρ1 = 1 and
S = 0.

of its resistance to viscous dissipation when the Reynolds number is not sufficiently large
(Éloy & Le Dizès 2001). We first discuss the (0, 2) resonant pair, followed by other helical
waves.

5.1. The case m = 0

We calculate the growth rate σ1max and half the unstable bandwidth �k1 for the first five
principal modes. The definition of principal modes is the same as in Éloy & Le Dizès
(2001) and Fukumoto (2003): the first principal mode is the intersection between the first
cograde mode for m = 0 and the isolated mode for m = 2, the second principal mode is
the second cograde mode for m = 0 intersected by the first retrograde mode for m = 2,
and so on. The location (k0, ω0) of the principal modes in figure 7(a) shows that k0 shifts
to lower wavelengths as the density ratio ρ2/ρ1 drops below one. The growth rate of the
first principal mode has a cusp at ρ2/ρ1 = 0.215 with σ1max ≈ 4.32. The mode is then
stable below ρ2/ρ1 < 0.215, and this mode does not exist for ρ2/ρ1 � 0.09 because the
two branches on which the first principal mode is located do not cross each other when
the density ratio drops below 0.09 (as explained in § 3.1). The third principal mode is the
most unstable with σ1max = 0.5668647793 for ρ2/ρ1 = 1 in the calculation of Fukumoto
(2003). In our calculation with density variations, the second principal mode is the most
unstable mode as ρ2/ρ1 → 0 with σ1max = 0.6028, whereas the first principal mode is the
most unstable for ρ2/ρ1 → 100 with σ1max = 0.6167. The trend in �k1 is very similar to
that in k0: as the density ratio decreases the unstable bandwidth decreases. We also extend
our calculation to other principal modes with higher axial wavenumber k0 in figure 9.
The growth rate is asymptotically close to that of (4.1) in the short-wavelength regime for
ρ2/ρ1 = 1. For large k0, �k1 increases linearly with k0 and the slopes are identical except
for k0 < 4.

The disturbed boundary of the first principal mode in the (0, 2) resonance is shown in
figure 8. The shape of the resonant disturbance transitions from helical waves to bulging
waves as density ratio decreases. The axial wavelength of the disturbance increases (k0
decreases) as the density ratio decreases. This is due to the effect of density on the Kelvin
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Figure 7. Principal modes for (m, m + 2) = (0, 2), maximum growth rate σ1max and the instability
half-bandwidth �k1 plotted versus: (a) density ratio ρ2/ρ1 ∈ [0.005, 100] for S = 0; (b) surface tension
S ∈ [0, 500] at ρ2/ρ1 = 0.2. The first to fifth principal modes are the blue, red, amber, purple and green curves.
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Figure 8. Disturbed boundary for the first principal mode of the (0, 2) resonance with different
density ratio: (a) ρ2/ρ1 = 1, (k0, ω0) = (1.242233570, 0.8326707800); (b) ρ2/ρ1 = 0.4, (k0, ω0) =

(0.7529505549, 0.6784320753); (c) ρ2/ρ1 = 0.22, (k0, ω0) = (0.5503572727, 0.6335367950). The
disturbance transitions from helical mode into bulging mode as ρ2/ρ1 decreases.

wave dispersion relation. Consequently the location of the intersection point changes.
Given that the strain field is applied uniformly along the z-direction, bulging modes
(figure 8c) are more susceptible to the strain field. Because a bulging mode is axisymmetric
with respect to the z-axis, it has no preferred direction and can deform more easily. For
helical modes, the twist makes the core structure vary constantly per unit length in z, so
that the core is more resistant to a strain of uniform direction.

The dependence on surface tension S is shown in figure 7(b) for ρ2/ρ1 = 0.2. The first
principal mode does not exist as surface tension increases to a value above S ≈ 0.14 and is
always unstable below that threshold. The effect on the other four principal modes is not
significant. The second principal mode (red curve) has the biggest drop in σ1max from a
value of 0.6049 to 0.5482 at S = 100. The mitigation of the instability by surface tension is

913 A15-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
57

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 U

CS
D

 U
ni

ve
rs

ity
 o

f C
al

ifo
rn

ia
 S

an
 D

ie
go

, o
n 

14
 Ju

l 2
02

1 
at

 1
4:

42
:5

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.



C. Chang and S.G. Llewellyn Smith

0.2

15

10

5

0 2 4 6 8 10 12 14 16 18 20

0 2 4 6 8 10 12 20

0.4

0.6

ρ2 /ρ1 = 1

ρ2 /ρ1 = 0.4

ρ2 /ρ1 = 0.2

ρ2 /ρ1 = 0.1

ρ2 /ρ1 = 0.01

ρ2 /ρ1 = 0

Shortwave
σ

1
m

a
x

�
k

1

k0

(b)

(a)

Figure 9. Maximum growth rate σ1max and unstable half-bandwidth �k1 of principal modes with axial
wavenumber k0 < 20 for (m, m + 2) = (0, 2) with different ρ2/ρ1 with S = 0. The dashed line is the
short-wavelength asymptotic result (4.1) for ρ2/ρ1 = 1.

as expected, since surface tension makes the interface more resistant to deformation when
subjected to a strain.

5.2. Other pairs (m, m + 2)

Moving on to higher resonance pairs, e.g. (m, m + 2) = (4, 6), we found the change in the
positions (k0, ω0) of principal modes (see figure 10a) to be qualitatively similar to that
for the (0, 2) pair. The first principal mode (in blue in figure 10) disappears near a larger
density ratio at the value of ρ2/ρ1 = 0.72. The most significant difference is how the
growth rate behaves before the first principal mode disappears. For (m, m + 2) = (0, 2),
the growth rate of the first principal mode increases drastically and then drops to zero
before the first principal mode vanishes (figure 7a), whereas for (m, m + 2) = (4, 6), σ1max

plunges to zero in figure 10(a) and never exceeds 0.6. The dependence on surface tension
S is shown in figure 10(b). The growth rate σ1max decreases only slightly, and is almost
independent of surface tension for S � 1.

Resonance pairs with higher azimuthal wavenumber m have smaller growth rate σ1max

for the MSTW instability, whereas the curvature instability is more unstable for larger
m (see Chang & Llewellyn Smith 2021). In figure 11 we plot the maximum growth rate
among intersection points (resonant modes) that include the principal modes and a few
non-principal modes for axial wavenumber k0 � 20, as a function of density ratio ρ2/ρ1.
The maximum growth rate decreases as m increases. This is due to the strain field, which
kills the small-scale disturbances on the boundary. For a fixed value of m, the growth
rate is constant for very large and small ρ2/ρ1, and the curve has a dip in the middle at
ρ2/ρ1 = 0.925. That is where the most unstable mode (that with the largest growth rate)
jumps from one intersection point of Kelvin waves to another. As shown in figure 12, the
most unstable mode, represented by a black dot, switches from the seventh principal mode
to the fourth principal mode as the density ratio increases from 0.925 to 1.069.

Given that the whole calculation is based on discrete intersection points of Kelvin waves,
the largest growth rate among all modes can have a discontinuity while it switches from
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Figure 10. Principal modes for (m, m + 2) = (4, 6), the maximum growth rate σ1max and the instability
half-bandwidth �k1 are plotted versus: (a) density ratio ρ2/ρ1 ∈ [0.01, 100] for S = 0; (b) surface tension
S ∈ [0, 100] at ρ2/ρ1 = 0.2. The first to fifth principal modes are the blue, red, amber, purple and green curves.
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Figure 11. Maximum growth rate for modes with ρ2/ρ1 ∈ [0.01, 100] and S = 0. Blue, red, amber and purple
curves are for resonance pairs (m, m + 2), m = 2, 4, 8 and 16, respectively. The vertical dashed line is the value
ρ2/ρ1 = 0.925 where the growth rate has a dip.

one intersection point to another. That happens when the previous most unstable mode had
decayed or disappeared, and another mode takes over. The instability of a resonant mode is
a function of its location (k0, ω0) and the location is a function of density ratio and surface
tension. The migrations of the first cograde mode and the isolated mode discussed in § 3
also have a huge influence on the location of intersection points.

6. Conclusion

The parametric instability of a vortex column subjected to a weak strain field has
been investigated for varying density ratio and surface tension. The instability, the
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Figure 12. Intersection points of the pair (m, m + 2) = (8, 10): (a) ρ2/ρ1 = 0.925; (b) ρ2/ρ1 = 1.069; and
(c) ρ2/ρ1 = 10. Surface tension is zero. Principal modes are labelled by numbered circles; the black dot is the
mode with largest growth rate. The most unstable mode switches from the seventh principal mode to the fourth
principal mode, then back to the seventh, causing the discontinuity in σ1max.

MSTW instability, is the result of the resonance between two Kelvin waves of azimuthal
wavenumber m and m + 2. The resonance is fed by a quadrupole field which comes from
the correction to the basic state at O(γ ). We have extended the calculation by Fukumoto
(2003) to a parameter space (ρ2/ρ1, S), where (ρ2/ρ1, S) = (1, 0) is the previous result.

Two distinguished types of resonances are examined. The first corresponds to stationary
helical waves with azimuthal wavenumber m = ±1. The strained vortex is most unstable
when the density ratio is very small (ρ2/ρ1 → 0): the maximum growth rate is σ1max ≈

0.88 compared with a minimum of 0.57 near ρ2/ρ1 = 1. Surface tension mitigates the
instability of the vortex for S > 0.01, and the maximum growth rate drops from 0.88 to
0.58 as S → ∞. We have also shown that the most unstable modes are dominated by
the principal modes in the resonances for m = ±1 stationary waves. The second type of
resonances is for azimuthal wavenumber m � 0, and m = 0 is a particular case of bulging
modes. For the (0, 2) resonance, the maximum growth rate from the first principal mode
is maximised near ρ2/ρ1 = 0.215 with a very large value, and that mode vanishes as
ρ2/ρ1 → 0 whereas the second principal mode takes over to become most unstable. We
have also shown that the maximum growth rate decreases as the azimuthal wavenumber m

increases, which is in contrast to the curvature instability.
In the recent study by Hattori et al. (2019) using DNS, the short-wavelength MSTW

instability (the elliptic instability) was shown to be more unstable than the curvature
instability for a vortex ring of Gaussian core structure. This result demonstrates the
validity of the theoretical prediction in Blanco-Rodriguez & Le Dizès (2016) of the elliptic
instability for the Batchelor vortex (a vortex with a Gaussian core). Furthermore, the
analytical result of curvature instability for a Gaussian core (Blanco-Rodriguez & Le
Dizès 2017) has also been confirmed in Hattori et al. (2019). This is the first numerical
evidence for the curvature instability after its discovery by Hattori & Fukumoto (2003) and
Fukumoto & Hattori (2005) for vortex rings. The present study considers uniform cores
with a jump in density across the boundary. It would be of interest to extend this result
to continuous vorticity and density distributions. It will be more complicated to carry
out a full numerical simulation for this kind of problem with large density jumps at the
boundary of the vortices. Direct numerical simulations to detect the curvature and MSTW
instabilities of vortices with density differences hence remain tasks for future investigation.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2020.1157.
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Appendix A. The mean-flow solution

The basic solution is written as a perturbation series in γ in (2.11a–c). The leading-order
solution is the Rankine vortex with a circular boundary. The pressure comes from solving

−
V2

0

r
= −

∂P0

∂r
(A1)

inside the vortex and the Bernoulli equation outside. The pressure at r = 1 is matched
using

ρ2

ρ1
P0 +

1

2

(

∂Φ0

∂θ

)2

= S. (A2)

At O(γ ), (2.12a,b)–(2.15) give

∂U1

∂θ
− 2V1 = −

∂P1

∂r
, (A3)

2U1 +
∂V1

∂θ
= −

1

r

∂P1

∂θ
, (A4)

∂U1

∂r
+

U1

r
+

1

r

∂V1

∂θ
= 0 (A5)

for r < 1 + γ F1 and

∂2Φ1

∂r2
+

1

r

∂Φ1

∂r
+

1

r2

∂2Φ1

∂θ2
= 0 (A6)

for r > 1 + γ F1. The matching condition from (2.9) and (2.10), linearised on r = 1, is

U1 −
dF1

dθ
= 0, (A7)

∂Φ1

∂r
−

dF1

dθ
= 0, (A8)

ρ2

ρ1
P1 +

∂Φ1

∂θ
+ F1

(

ρ2

ρ1
− 1

)

= −S

(

F1 +
∂2F1

∂θ2

)

. (A9)
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Appendix B. The solution for Kelvin waves

Kelvin waves satisfying (2.23)–(2.27) with azimuthal wavenumber m are given by

p
(m)
0 = Jm(η1r)β

(m)
0 ,

u
(m)
0 =

i

ω0 − m + 2

[

−
m

r
Jm(η1r) +

ω0 − m

ω0 − m − 2
η1Jm+1(η1r)

]

β
(m)
0 ,

v
(m)
0 =

1

ω0 − m + 2

[

m

r
Jm(η1r) +

2

ω0 − m − 2
η1Jm+1(η1r)

]

β
(m)
0 ,

w
(m)
0 =

k0

ω0 − m
Jm(η1r)β

(m)
0

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(B1)

for r < 1 + f̃0. The radial wavenumber is

η2
1 =

[

4

(ω0 − m)2
− 1

]

k2
0. (B2)

The boundary disturbance is given by

f
(m)
0 =

−1

i(ω0 − m)
u
(m)
0 , (B3)

using the kinematic boundary condition. For r > 1 + f̃0,

φ
(m)
0 = Km(k0r)α

(m)
0 . (B4)

The (m + 2) waves are obtained by replacing m in the formulae by m + 2. Appropriate
recurrence relations are then used to reduce the order of the Bessel functions.

Appendix C. Solvability conditions and dispersion relation for (k1, ω1)

Writing the boundary conditions (2.37) and (2.38) for the O(δγ ) solutions gives

u
(m)
1 −

dφ1

dr

(m)

= −
m + 2

2
φ

(m+2)
0 −

i

2
v

(m+2)
0 +

1

4

[

d2φ0

dr2

(m+2)

−
du0

dr

(m+2)
]

+
i

2

(

1 −
ρ2

ρ1
+ 3S

)

f
(m+2)
0 −

i(m + 2)

4

(

1 −
ρ2

ρ1
+ 3S

)

f
(m+2)
0 , (C1)

ρ2

ρ1
p
(m)
1 − i(ω0 − m)φ

(m)
1

= iω1φ
(m)
0 −

1

4

[

ρ2

ρ1

dp0

dr

(m+2)

− i(ω0 − m)
dφ0

dr

(m+2)
]

−
i(m + 2)

4

(

−1 −
ρ2

ρ1
+ 3S

)

φ
(m+2)
0 +

3

4

(

1 −
ρ2

ρ1
+ 2S

)

f
(m+2)
0

+ S

[

2k0k1f
(m)
0 −

(m + 2)2

2
f
(m+2)
0

]

+

[

1 −
ρ2

ρ1
+ S(m2 + k2

0)

]

f
(m)
1 (C2)
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for wave m, and

u
(m+2)
1 −

dφ1

dr

(m+2)

=
m

2
φ

(m)
0 +

i

2
v

(m)
0 +

1

4

[

d2φ0

dr2

(m)

−
du0

dr

(m)
]

−
i

2

(

1 −
ρ2

ρ1
+ 3S

)

f
(m)
0 −

im

4

(

1 −
ρ2

ρ1
+ 3S

)

f
(m)
0 , (C3)

ρ2

ρ1
p
(m+2)
1 − i(ω0 − m − 2)φ

(m+2)
1

= iω1φ
(m+2)
0 −

1

4

[

ρ2

ρ1

dp0

dr

(m)

− i(ω0 − m − 2)
dφ0

dr

(m)
]

−
im

4

(

−1 −
ρ2

ρ1
+ 3S

)

φ
(m)
0 +

3

4

(

1 −
ρ2

ρ1
+ 2S

)

f
(m)
0

+ S

[

2k0k1f
(m+2)
0 −

m2

2
f
(m)
0

]

+

{

1 −
ρ2

ρ1
+ S[(m + 2)2 + k2

0]

}

f
(m+2)
1 (C4)

for wave m + 2 (cf. (4.8) and (4.9) in Fukumoto (2003), for ρ2/ρ1 = 1, S = 0). Unlike
the case of Tsai & Widnall (1976) and Fukumoto (2003), f1 needs to be obtained from the
above equations in order to calculate the dispersion relation. We have

f
(m)
1 =

−1

i(ω0 − m)

[

u
(m)
1 + iω1f

(m)
0 +

i

2
v

(m+2)
0 +

i(m + 1)

2
f
(m+2)
0 +

1

4

du0

dr

(m+2)
]

, (C5)

f
(m+2)
1 =

−1

i(ω0 − m − 2)

[

u
(m+2)
1 + iω1f

(m+2)
0 −

i

2
v

(m)
0 +

i(m + 1)

2
f
(m)
0 +

1

4

du0

dr

(m)
]

.

(C6)

The dispersion relation relating k1 and ω1 for disturbances at O(δγ ) is determined
as follows. The O(δγ ) disturbance satisfies (2.31)–(2.35) with undetermined coefficients
(wave amplitudes) α1, β1 in the solution, which need to be determined using the boundary
conditions at O(δγ ). The boundary conditions (C1) and (C2) for mode m lead to an
inhomogeneous linear system of the form

[

M11 M12

M21 M22

]

[

α
(m)
1

β
(m)
1

]

=

[

F1

F2

]

, (C7)

whereas (C3) and (C4) for mode m + 2 become

[

N11 N12

N21 N22

]

[

α
(m+2)
1

β
(m+2)
1

]

=

[

G1

G2

]

. (C8)

The vectors F and G consist of the O(δ) solution which has undetermined coefficients α0
and β0. They also depend on known quantities, m, k0, ω0, ρ2/ρ1, S, and on the unknowns
k1 and ω1.
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The matrices M and N on the left-hand side of (C7) and (C8) depend on m, ω0, k0,
ρ2/ρ1, S. (M , N and F , G can be found in the Matlab supplementary material. We do
not give them here because of their length.) The two linear systems are singular, i.e. their
determinants are zero. The solvability condition requires that the vectors F and G lie in
the image space of M and N , i.e.

M11F2 − M21F1 = 0,

N11G2 − N21G1 = 0.

}

(C9)

Using the relations

α
(m)
0 = −

iJm(η1)

(ω0 − m)Km(k0)
β

(m)
0 , α

(m+2)
0 = −

iJm+2(η2)

(ω0 − m − 2)Km+2(k0)
β

(m+2)
0 ,

(C10a,b)

we substitute α
(m)
0 and α

(m+2)
0 into (C9) and convert it into a homogeneous linear system

[

D11 D12

D21 D22

]

[

β
(m)
0

β
(m+2)
0

]

= 0. (C11)

For non-trivial β
(m)
0 and β

(m+2)
0 , the resulting determinant equation

D11D22 − D12D21 = 0 (C12)

leads to the dispersion relation for (k1, ω1). This is a quadratic equation for ω1, where ω1
is obtained from D11 and D22 via

D11 = µ1ω1 + µ2, D22 = µ3ω1 + µ4. (C13a,b)

The dispersion relation is hence

µ1µ3ω
2
1 + (µ1µ4 + µ2µ3)ω1 + µ2µ4 − D12D21 = 0. (C14)

Expressions for µi and D12, D21 are given in the supplementary material (Matlab scripts).
These quantities are functions of k1 with m, ω0, k0, ρ2/ρ1 and S all given. The growth

rate σ1 = |Im(ω1)| has a maximum when k1 = 0 where µ2 = µ4 = 0, giving

σ1max =

√

−
D12D21

µ1µ3
. (C15)

One half of the unstable bandwidth �k1 is calculated by finding the root k1 of

(µ1µ4 + µ2µ3)
2 − 4µ1µ3(µ2µ4 − D12D21) = 0, (C16)

and �k1 is calculated by solving a quadratic equation for the maximum root of k1 in (C16).
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