
1. Introduction
Paleomagnetic records indicate that the Earth's geomagnetic field has existed for at least 3 billion years, 
with a roughly reversal rate of hundreds of thousands of years. Earth's magnetic field is generated and 
maintained by a strongly coupled mechanism known as geodynamo (Roberts, 2007). As emerging from 
numerical simulations, details of these mechanisms achieve a self-sustaining magnetic field (Aubert, 2020; 
Buffett, 2000; Yadav et al., 2015). From 1950 to 1990, the dynamo theory has shown that the principle of a 
homogeneous dynamo process is possible and has elucidated the parameter prerequisites and model con-
straints. In 1995, there was a breakthrough in the numerical simulation of magnetohydrodynamic (MHD) 
flow by Glatzmaiers and Roberts, called GR95 (Glatzmaiers & Roberts, 1995b). The GR95 model showed 
that such models could describe and explain many basic properties of the geomagnetic field, including di-
pole-dominated morphology, reversals, and westward drift (Glatzmaiers & Roberts, 1995a).

Furthermore, they studied viscous and electromagnetic coupling between the inner core and the outer core, 
which brought differential rotation of the inner core (Glatzmaiers & Roberts, 1995a). A couple of years 
later, numerous numerical geodynamo models emerged, for a comprehensive review see Christensen and 
Wicht (2007). For those models, the magnetic field properties closely match the geomagnetic field in terms 
of spatial spectra and magnetic field morphology, secular variation, and occasionally the characteristics of 
dipole reversals (Aubert, 2020; Calkins et al., 2017; Wicht & Sanchez, 2019; Yadav et al., 2016).

Nevertheless, the huge gap between the simulations' parameter and their expected values in the Earth's 
core still exists (Aubert, 2018; Schaeffer et al., 2017; Schwaiger et al., 2019). Most models have four critical 
dimensionless parameters: the Rayleigh number aR , measures thermal driven force; the Ekman number E, 
measures the relative importance of viscous forces to Coriolis forces; the Prandtl number rPr, measures the 
ratio of viscosity to thermal diffusivity; and the magnetic Prandtl number mPm, measures the ratio of viscosity 
to magnetic diffusivity (Christensen et al., 1999). Among the unsolved issues, the value space of controlling 
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parameters, such as the Ekman number and the magnetic Prandtl number, differs dramatically from the 
realistic planetary parameters (Christensen & Aubert, 2006).

Numerical geodynamo simulations require massive parallel computers than currently available to solve the 
rapid rotation against the outer core's low viscosity (corresponding to the low value of E). Physically, E is es-
timated as small as 15

10 . However, nowadays, geodynamo simulations have only been capable of operating 
down to 8

10  in practice (Aubert et al., 2017). A huge gap cannot be captured by limited supercomputing ca-
pacity. For instance, Christopher et al. (2010) showed that even 9

10E  would require at least 13,000 days 
to calculate one single magnetic diffusion time on a 54,000-processor supercomputer, a formidable com-
putational challenge from both the numerically stable schemes and reliable parallel solvers of the ill-con-
ditioned linear system arising from the multiscale intrinsic nature of the geodynamo mechanism. More 
importantly, more recent investigations pointed out the sensitivity of these model parameters to the Earth-
like dynamo simulation (Aubert, 2019; Wicht & Sanchez, 2019). Therefore, these parameters' effects on the 
dynamo system, such as the relationship between parameter variations and their impacts on the magnetic 
field generated, the sustainable velocity field, and temperature perturbations, are of significant importance.

So, the fundamental purpose of second-generation geodynamo models is to explore the parameter space 
and derived scaling laws (Aubert, 2020; Christensen & Aubert, 2006; Schaeffer et al., 2017). Previous studies 
have shown promising results with regards to this problem, for example, by analyzing the effects of one 
single parameter: aR  (Aubert et al., 2017; Davidson, 2013; Kuang et al., 2008; Olson et al., 1999; Sreenivasan 
et  al.,  2014; Wang et  al.,  2013), E (Kuang et  al.,  2017; Sarson et  al.,  1998), and mPm (Calkins et  al.,  2017; 
Christensen & Aubert, 2006; Schaeffer et al., 2017; Simitev & Busse, 2005), or by performing comprehen-
sive study in parameter space (Christensen & Aubert, 2006; Christensen et al., 1999; Davidson, 2013; Gil-
let & Jones, 2006; Jones, 2011). Many scaling laws and quantitative conclusions have thus been derived. 
Jones (2011) investigated in which parameter space does the geodynamo behaves as dipole-dominated or 
multipole-dominated. Starchenko and Jones (2002) discovered how to estimate the strength of the flow and 
the magnetic field from a given parameter. Christensen and Aubert (2006) studied whether the magnetic 
field's power was related to various diffusion coefficients. However, the four major dimensionless param-
eters mentioned above usually depend on all of the physical coefficients for different geodynamo models. 
Thus, their variations are not self-dependable, which leads to the doubt on the applicability of existing 
conclusions. Besides, some scaling laws related to additional dimensionless parameters which make the 
scaling rules more physically complex. It is significantly difficult to understand the physical mechanisms 
behind them.

A majority of works about Earth's core's viscosity focus on the effects on the geodynamo process. Sarson 
et al. (1998) studied the impact of the variation of E on the dynamo and found that both the magnetic and 
the flow field are concentrated near the ICB. Soderlund et al. (2012) highlighted the significant role of vis-
cosity in their numerical simulation. Magnetic forces did not seem to play a major role, contrary to what is 
expected for the real Earth. King and Buffett (2013) confirmed the non-negligible of viscosity diffusion in 
their simulation. Cheng and Aurnou (2016) showed that the diffusionless scaling laws were hiding an ac-
tual dependency upon viscosity. Oruba and Dormy (2014) derived alternative scaling statutes in which the 
magnetic field intensity depends upon viscosity and rotation rate. In conclusion, viscosity plays a significant 
role in the geodynamo process. However, previous studies do not directly determine the quantitative impact 
of viscosity, nor does it provide an intuitive physical mechanism.

To investigate the effects of viscosity on the geodynamo mechanism and deduce the output when the esti-
mated numerical model parameters are close to the physical parameters, we adopt the Modular, Scalable, 
Self-consistent, and Three-dimensional (MoSST) model and conduct numerical experiments to address 
these issues. MoSST model has been developed from the KB97 model (Kuang & Bloxham, 1997). In addition 
to some improvements in the numerical schemes, it also includes some additional functional modules/fea-
tures. In most of the numerical geodynamo models in practice, the viscous diffusion time is introduced as a 
typical timescale. While in the MoSST model, the magnetic diffusion time is used. Of all the dimensionless 
parameters, only the Ekman number contains the viscous term. Therefore, the advantage of using MoSST 
model to study the influence of viscosity is that changing E can be directly equivalent to change , without 
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involving the covariant changes of other model parameters. Those uncertainties thus are avoided, and more 
reliable conclusions are expected.

This study is structured as follows: The MoSST model is introduced in the Section 2. In the Section 3, we 
study the effects of viscosity on fields and the length scale in the outer core and analyze the system's force 
balance. In the Section 4, the physical mechanisms behind the geodynamo model are investigated. Finally, 
the summary and discussions are delivered in Section 5.

2. The MoSST Model
The geodynamo model's governing equations in the spherical coordinates are composed of the momen-
tum equation (Navier-Stokes equation), the magnetic induction equation, the energy equation (conduction/
diffusion equation of thermal field), and the nondivergent constraints of both the velocity and magnetic 
fields. Under the Boussinesq approximation, dimensionless forms of the above equations are (Kuang & 
Bloxham, 1997)

2

0

0,

o z aR rΘ

B

 (1)

where oR  is the magnetic Rossby number, u is the flow velocity in the outer core, P is the pressure after the 
correction, B is the magnetic induction intensity, E is the Ekman number, aR  is the Rayleigh number, Θ is 
the temperature perturbation, r is the radius, q  is the modified Prandtl number, and 0T0 is the conducting 
background state ( 0u B ).

The dimensionless parameters in Equation 1 are defined as:
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which  is the magnetic diffusion, Ω is the angular velocity, oro is the radius of the outer core,  is the kin-
ematic viscosity,  is the thermal expansion coefficient in the outer core, Th  is the temperature gradient at 
ICB, g is gravitational acceleration, and  is the thermal diffusivity.

It is worthwhile to mention that, of the four parameters in Equation 2,  appears only in the definition of E, 
which is significantly different from the dimensionless description of other models (Kono & Roberts, 2002). 
Therefore, this dynamo parameter definition allows easy isolation of the viscous effect by changing only 
the Ekman number. Meanwhile, taking magnetic diffusion time 2

/o  as the typical time scale is 
direct and appropriate. Other nondimensional scales are: / ou r/ o, 2ΩB , T oT h rT o (Kuang & 
Bloxham, 1999).

The boundary conditions chosen in our numerical simulation model are as follows: The velocity field at ICB 
and CMB is free-slip, which holds for 1 1 1 0n n1 , where 1n  is the normal vector of the bound-
aries, and  is the viscous stress tensor. The magnetic field at ICB and CMB obeys the finite electrically 

conducting boundary condition as 0 , where [] denotes the difference across 
the boundaries, E is the dimensionless electrical field. A D″ layer with 1 / 10 conductivity of the CMB is in-
cluded outside the CMB. Fixed heat flux boundary condition / 0, at both ICB and CMB, is adopted 
for the temperature field. The initial state of our model is derived from previous simulation results.

The MoSST model is discretized by the fourth-order compact finite difference scheme in the radial direc-
tion, using zero points of Chebyshev polynomial expansion as the radial mesh configuration nodes. The 
number of nodes is 35, 39 and 19 for the inner core, outer core, and D″ layer, respectively. On the spherical 
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surface (horizontal direction), spherical harmonic expansion and the pseudospectral method are adopted, 
and fast spectral transform (FFT) is performed. The truncation order of spherical harmonic expansion is 
max max 21maxl mmax 33, . According to the truncation orders, the number of spherical direction nodes is 50 at 

direction and 64 at  direction. The total number of meshes in the simulation is 277,830.

To avoid high truncation for the initial transient period and to reduce the CPU time for the process, hyper-
diffusion for viscosity  is introduced by (Kuang & Bloxham, 1999):

0

20

0

0 , for ,0

,0l l
2

for
 (3)

where 0 is the original viscosity,  is an artificially selected small number, l is the spherical harmonic order, 
and 0l  is an artificially selected spherical harmonic order. Similarly, thermal hyperdiffusion and magnetic 
hyperdiffusion are also introduced. This approach was first introduced by Glatzmaiers and Roberts (1995a), 
who obtained the first three-dimensional self-consistent dynamo model of GR95. The hyperdiffusion 
scheme of Equation 3 is a relatively weaker form than GR95. We choose 

0 4, 0.05l0  in our simulation. 
The impacts of hyperdiffusion on our scaling laws will be discussed in Section 4.4.

3. Numerical Simulation Results
Dimensionless parameters control numerical simulation results. The MoSST model has four dimensionless 
parameters: do aR E R q, , , and,o a, ,, . The details are shown in Table 1. The outer core values estimated in Table 1 
are calculated from the physical parameters estimated by Olson (2007) and Christensen and Wicht (2007). 
The four parameters indicate a large gap between the numerical model and the realistic Earth. Unfortu-
nately, a high-performance parallel machine's current computing power is far below the capacity required 
to reach Earth parameter values. So far, significant efforts have to be made in the future.

3.1. Diagnostic Outputs

Since the governing equations are strongly nonlinear systems with highly coupled physical fields, huge iter-
ation steps are needed to reach a stable electromagnetism output state after the initial state is input. To deter-
mine whether the system has been self-evolved to this state, we rely on the diagnostic outputs. An example 
of the diagnostic output plot is shown in Figure 1, with the horizontal coordinate as the magnetic free decay 
time, measured by the free diffusion time as 2 2

f o  ( 6 2 4
3.5 10 m, 1 m / s, 4 10 yr

6 2 42
o f3.5 10 m, 1 m / s,ro ). 

The vertical ordinates of Figures 1a–1f show the velocity field (u), the magnetic field (B), and the temperature 
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Name (Symbol) Definition Physical significance Core Simulations

Magnetic Rossby ( oRo)
2

2Ω oro

The ratio between inertial forces and Coriolis forces 9
10 6

1.25 10

Ekman (E)
2

2Ω oro

The ratio between viscous and Coriolis forces 15
10 7 5

6 10 5 10
7

Rayleigh ( aRa) 2

2Ω

T oh r g2
T o

Thermal driven force ∗ 4 4
1.2 10 5 10

4

Magnetic Prandtl (q ) The ratio of thermal diffusivity to magnetic diffusivity 6
10 1

*Leaving aR  blank here because the super adiabatic heat flow (or, more generally, the buoyancy flux) is not well constrained for the Earth's core yet.
MoSST, Modular, Scalable, Self-consistent, and Three-dimensional.

Table 1 
Definitions of Dimensionless Parameters in MoSST
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perturbation (Θ), respectively. The typical spatial scales are corresponding to the three physical fields, ve-
locity field length scale ( ul ), magnetic field length scale ( Bl ), and temperature perturbation length scale ( Θl ).

With these definitions, we estimate the stable output basing on the fact that all physical quantities and their 
typical scales have been stabilized for at least one f . The final result is an average over the stable period, 
as indicated by the red line in Figure 1. The transient time depends on the parameter selection, boundary 
conditions, initial state, and hyper diffusion scheme. As limited by the computing capacity, in general, it 
takes 4–5 days to obtain a stable output. For some extreme cases, it may need 2 weeks or more to receive 
one sound output.

3.2. Variations of Physical Fields With Ekman Number

By changing the dimensionless parameter E when 12,000aR , a series of stable output results are ob-

tained, as shown in Table 2. According to the former study of Kuang and Bloxham (1999), the aR  here is first 

selected between m
aR  (the threshold of aR  for dynamo action occurs, 6,300

m
aR  for 5

10E ) and S
aR  (the 

threshold of aR  for strong dynamo occurs, 13,000
S
aR  for 5

2 10E ). It should be mentioned that since 

we use a different 6
1.25 10oR , which is smaller than that of Kuang and Bloxham (1999) by one order 
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Figure 1. The diagnostic output of the MoSST model. All the panels' values are the RMS of the calculated physical values in the entire outer core. As 

an example, the outer core flow velocity is defined as u u u u u
Nu u uu

2
1

2

2

2 2

outer core
, and the typical scale is also the RMS result, calculated by 

l
u u u uu

2 2

// /u . MoSST, Modular, Scalable, Self-consistent, and Three-dimensional.
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and more close to the real value in Earth's core ( 9
10 ), m

aR , S
aR  and the 

following force balance may be different with those of Kuang and Blox-
ham  (1999). Since the geodynamo system operates at a very nonlinear 
state, and the initial condition may affect the final results, we have select-
ed the suitable outputs and get rid of the singular data set when searching 
for and analyzing the regularity. As shown in Table 2, the flow velocity u 
increases significantly with E, and its amplitude varies by more than one 
order. Similarly, the temperature perturbation Θ increases monotonically 
with E, but the change is very small ( 6%), suggesting that even a tiny 
temperature perturbation can lead to a significant increase in flow veloc-
ity. By contrast, the magnetic field B changes nonmonotonically with E, 
and it appears a trend of up first (from 7

6 10E  to 6
1.25 10 ), then 

down (to 5
1.25 10 ) and up again (to 5

5 10 ). The variation in the se-
lected range is not significant, and the maximum does not exceed 30%. 
The results also show that a substantial increase in flow velocity does not 
necessarily result in considerable magnetic field growth.

In Table 2, we also list the typical spatial scales of the physical fields. As 
can be seen, ul  increases monotonically with E by a variation of 53%. For 
the typical length scale of B, Bl  does not change monotonically with E. Bl  
does not change much, and its variation is as small as 8%. In contrast 
to the Θ variation, the temperature perturbation length scale Θl  decreases 
monotonically with E, and the amplitude is less than 16%.

In our model, we take 3,500 kmoro  and 1,200 kmiri , so the flow field's 
typical scale is equivalent to 2–3 wavelengths in the outer core. From our 

numerical results, there are ∼10 wavelengths of the magnetic field in the outer core, and the scale is ∼1/3–
1/5 of the flow field. The temperature perturbation is about half the wavelengths in the outer core, larger 
than the convection's typical scale. The specific scales of these three physical fields are all shown to be typi-
cally in large scales. The spatial scale of the temperature perturbation is larger than the scale of convection, 
and the scale of convection is larger than the scale of the magnetic field. These may reflect the fact that the 
temperature perturbation motivates convection, and convection motivates the magnetic field. Details of 
these dynamics at different scales, and the stacking of energy at various scales, can be found in the work of 
Huguet and Amit (2012) and Calkins et al. (2015).

Figure 2 illustrates the data in Table 2. It is clear that the influence of 
viscosity on the geodynamo occurs mainly in the flow field: the higher 
the viscosity, the more vigorous the convection. For quantitative studies, 
former scaling relations fitted the numerical results with power laws, 
such as f E  (Christensen & Aubert, 2006; King & Buffett, 2013). In 
this form, both fields and their typical length scales would vanish in the 
inviscid limit ( 0E ). Thus, here we assume a different scaling law of 
the form:

0 ,f f0 (4)

where 
0f0

 is the independent of E, and represents its inviscid limit. Then 
the least square fit is used to estimate the three parameters 0f0, , and .

By applying Equation 4 to the velocity field u and its typical length scale 
ul , we have

0.11 1 1.43e7 or 0.11 1 1.43e7 ,u (5)
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Ekman Θ ΘΘ

6.00E−07 839.4 0.3684 0.0779 0.1508 0.0663 0.4830

8.00E−07 1002.2 0.3768 0.0791 0.1742 0.0657 0.4760

1.00E−06 1154.8 0.3863 0.0812 0.1932 0.0657 0.4755

1.25E−06 1294.0 0.3883 0.0807 0.2109 0.0660 0.4622

2.00E−06 1584.9 0.3847 0.0841 0.2429 0.0645 0.4642

2.50E−06 1679.0 0.3826 0.0841 0.2530 0.0640 0.4563

4.00E−06 2023.7 0.3759 0.0861 0.2769 0.0647 0.4524

5.00E−06 2348.0 0.3706 0.0865 0.2900 0.0649 0.4481

6.00E−06 2620.4 0.3694 0.0866 0.2979 0.0653 0.4436

8.00E−06 3199.5 0.3585 0.0870 0.3082 0.0664 0.4391

1.00E−05 4060.8 0.3498 0.0870 0.3150 0.0672 0.4336

1.25E−05 4450.0 0.3397 0.0877 0.3172 0.0683 0.4328

2.00E−05 6059.9 0.3018 0.0874 0.3206 0.0698 0.4219

2.50E−05 7540.0 0.3092 0.0883 0.3215 0.0689 0.4218

5.00E−05 8332.0 0.3794 0.0893 0.3212 0.0653 0.4095

Table 2 
Output Results With Different Values of Ekman Number When 

12,000aR

Figure 2. Variations in physical fields and their typical length scales with 
different values of Ekman number when 12,000aRa . Solid lines represent 
the physical fields, dashed lines are the corresponding typical scales, and 
different colors represent different physical fields, as shown in the legend. 
The black line is the result of the linear fitting (LF) of velocity changes.
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0.01 1 84.32 ,ul 0.01u (6)

as for the magnetic field, we will have

0.05 1 4.32 .B 0 05 (7)

3.3. Force Balance

The fluid motion in the outer core is affected by various forces. And the 
force equilibrium mechanisms determine the dynamics in the outer core. 
In this part, we analyze details of the force balance under different viscos-
ities. The momentum equation in Equation 1 gives

R
o ztt

P
zu B B

Inertia Coriolis
pressure

1

LorentzLL viscous buoyancy

B R
a

2
r .

(8)

Equation 8 includes five forces: inertial force IFI , Coriolis force CFC, pres-
sures gradient PFP, Lorentz force LFL, viscous force VFV , and thermal buoy-
ancy AFA (Archimedes force).

Among them, the leading-order force balance is between CFC and PFP, with the remaining puny part compen-
sated by others, which is called the quasi-geostrophic (QG) state (Schwaiger et al., 2019). If LFL is close to CFC
and far beyond other forces ( dA I V, ,andF F FandA I V, ,and ), this will be called the magneto-quasi-geostrophic state, in that 
the uncompensated part of C PF FC P (also called the ageostrophic Coriolis) is mainly balanced by LFL at zeroth 
order. Traditionally, geodynamo is assumed to operate on a QG-MAC state (shorted for MAC), in which the 
ageostrophic CFC is balanced by A LF FA L at first order. A MAC balance is usually treated as equal to the so-
called strong field dynamo, while a discrepancy exists between the two definitions. In strong field dynamos, 
the ratio between LFL and CFC defined as the Elsasser number (in dimensional form) is

2

Λ ,

C

F BL

FC
(9)

is of O . A MAC state is somewhat different from a strong field in that the Λ of the former could be as small 
as O  as long as LFL compensates a significant portion of the ageostrophic CFC and it satisfies L IF FL I and 

L VF FL V. If Λ 1 while the magnetic field could be self-sustained, it is called a weak field dynamo.

In the MoSST model, the magnetic field is nondimensionalized by Ω , thus Equation 9 becomes 2
Λ B

in the nondimensional form. In our numerical results of 12,000aR , B is averaged as 0.36 for all Ekmans, 
then we have Λ 0.13, which supports that they are weak field dynamos, but the possibility that a MAC 
balance exists cannot be ruled out according to Λ. The force balance according to Λ could be misleading 
(Soderlund et al., 2012) since that is only a rough order estimation. The real force balance should be based 
on each force's exact calculation in Equation 8 with the numerical results. By following Kuang (1999), we 
use the local force defined by (taking LFL as example)

2 2

0 0

,L dL (10)

to study the exact force balance. The final Lorentz force LFL is the RMS value of LL , and other forces are 
treated the same as LFL. Force balance (except PFP since that we are only interested in the ageostrophic part) 
results for different E are plotted in Figure 3.

As can be seen from Figure 3, all forces vary nonmonotonically with E except that AFA (green) is kept constant 
since the driving force (measured by aR ) doesn't change. The Coriolis force CFC (black) is always dominant 
by at least one order for all E, which indicates that they are all in the QG state. The Lorentz force LFL (red) is 
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Figure 3. Force balance with different values of Ekman number when 
12,000aRa . Different colors represent different forces, as shown in the 

legend.
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always about three orders smaller than the Coriolis force and at least one order smaller than other forces for 
all E, which proves that the systems are all far from MAC state. Furthermore, we divide the force balance 
into four regions: , , , and . In region , the ageostrophic CFC is mainly compensated by IFI  (cyan) and 

AFA, which is called the QG-CIA balance (shorted for CIA). In region , with the fast increase of IFI , the age-
ostrophic CFC is mainly compensated by IFI , which is called the QG-CI balance (shorted for CI). Similarly, we 
call region  the CIV and region  the CV balance. Though fluctuating, VFV  (blue) is generally increasing 
and becomes more and more significant in force balance with increasing of E, which is consistent with the 
increase of the fluid core's viscosity. When E decreases toward the real value for physical Earth, the system 
is expected to enter into a CIA balance in this weak field regime.

To check if there is a local distribution of the MAC state, we calculated the local effective Elsasser number 
Λ and effective Rayleigh number R defined as (Kuang, 1999):

2

0

2

0 0

Λ ,
0

2 2

d

d
 (11)

2

0

2 2

0 0

.
a

a0

R dΘaR
d

 (12)

The curls in the above two equations are used to get the ageostrophic force. When Λ 0.5 means that the 
ageostrophic Lorentz force is comparative to the ageostrophic Coriolis force, and it is similar for R. Snapshot 
of Λ and R distribution for 12,000aR , 6

2.5 10E  is shown in Figure 4. As can be seen from Figure 4a, 
Λ (magnified by 50 times) is very small as a whole, though some relatively large values (>0.02) appear near 
the rotational axis. In contrast, R is generally large (>0.25), especially outside the tangent cylinder (TC, 
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Figure 4. Snapshots of effective Elsasser number Λ (the right part of Figure 4a, multiplied by a factor of 50) and effective Rayleigh number R (the left part 
of Figure 4a) for 12,000aRa , 6

2.5 10E . Figure 4b shows the distribution of Λ  with grid points at different r, , and Figure 4c shows the histogram 
distribution of Λ.
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whose axis coincides with the rotation axis and tangents with the inner 
core at ICB). Both of Λ and R show symmetry about the equator to a large 
extent. Figure 4b shows the distribution of Λ with grid points of different 
r (from iori  to oro),  (from 0 to / 2). There are some relatively obvious 
Λ near the ICB. The histogram distribution of Λ is plotted in Figure 4c, 
which shows that most areas have a typical Λ of about 3

2 10 . Figure 4 
indicates that the ageostrophic Coriolis force is mainly compensated by 

AFA outside TC but by IFI  inside TC. LFL only plays a negligible role in the 
force balance in this weak field regime.

The ratio between magnetic energy density ( mE ) and kinematic energy 
density ( kE ) is another criterion to evaluate dynamo states. In a strong 
field dynamo, usually one has m kE Em  (at least two orders). The energy 
ratio is calculated by

2 2

2 2

/
.

/ 2

m
o

k

BE B2
/ 2m R

E u u/ 2
(13)

We use the numerical results of Table 2 to calculate it and use Equation 4 
to fit its variation, then get Figure 5. As can be seen, the energy ratio al-
most decreases monotonically with E by a fitted exponent of 0.94, which 
results from increasing of u but not decreasing of B (see Figure 2). Anoth-

er noticed character is that the magnetic energy is always smaller than the kinematic energy, proving that 
the system is in a weak field regime and far from a MAC balance.

3.4. Field Configuration

To figure out the effect of viscosity variation on the dynamo system, we mapped the flow fields with respect 
to different E, as shown in Figure 6. Each figure contains two halves. The left-colored half represents the 
axisymmetric ( 0m ) toroidal flow, and the right half represents the axisymmetric poloidal flow. The re-
sults are all time-averaged outputs over one f  The toroidal flow ( Tu ) and poloidal flow ( Pu ) are defined as

.T P u r u ru u u 1 1uPu (14)

The left part of Figure 6 is the axisymmetric zonal component of velocity u , the right part is the axisym-
metric streamline (Ψu), defined by

Ψ
,u

S s
uS 1 (15)
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Figure 5. The ratio between magnetic energy density and kinematic 
energy density for 12,000aRa . Red and black lines are for numerical and 
fitted results, respectively.

Figure 6. Variation in the axisymmetric velocity against different values of Ekman number in the meridian plane sections when 12,000aRa . Figures 6a–6c, 
in correspond to the output at different values of Ekman number: 6 6 5

2.5 10 , 5 10 , and1.25 10
6 66E , respectively. The left-colored half represents the 

axisymmetric ( 0m ) toroidal flow, and the right linear half represents the axisymmetric poloidal flow.

a) c)b)
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where Su  is the axisymmetric velocity, sins r  is the distance from the field point to Earth's rotation 
axis.

As can be seen from Figure 6, the mean flow velocity increases with E. When 6
2.5 10E , the liquid iron 

flow mainly concentrates on the TC's profile. As E increases gradually, the flow concentrates on the TC and 
extends toward CMB on the equator plane. These two features are both reflected in the toroidal flow (left 
half). For the poloidal flow (right half), a significant increase of flow scales can be found both inside and 
outside the TC.

The axisymmetric magnetic field is shown in Figure 7. As can be seen, for the toroidal field, it could be 
locally strong, especially inside the TC, though the system is in a weak field regime as a whole. The toroidal 
field strength decreases and tends to concentrate in the TC with increasing of E. There appears no signif-
icant difference for the poloidal magnetic field, and the dipolar field outside CMB (where only a poloidal 
field exists) all dominate.

3.5. Numerical Results of a Quasi-MAC Regime

Our 12,000aR  results are all proven to be in the weak field regime. To study the strong field mode, we 
gradually increase aR  and two typical values, 30,000aR  and 50,000 are selected and listed in Table 3. Dy-
namo simulations at higher S

aR  consumed more computational cost to evolve, thus fully developed results 
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Figure 7. Variations in the axisymmetric magnetic field with different Ekman numbers when 12,000aRa . Figures 7a–7c, corresponding to outputs with 
different Ekman numbers: 6 6 5

2.5 10 , 5 10 , and1.25 10
6 66E  respectively. The left-colored half respects the axisymmetric ( 0m ) toroidal field, and the 

right linear half represents the axisymmetric poloidal field.

a) b) c)

Ekman u B Θ lu lB lΘ

Ra = 30,000 5.00e−06 362 1.4464 0.0907 0.0811 0.0640 0.3800

6.00e−06 337 1.4593 0.0907 0.0790 0.0625 0.3791

8.00e−06 381 1.4918 0.0909 0.0934 0.0660 0.3765

1.25e−05 382 1.4088 0.0910 0.0997 0.0661 0.3750

Ra = 50,000 2.50e−05 364 1.9885 0.0922 0.0952 0.0657 0.3619

5.00e−05 390 1.8377 0.0923 0.1127 0.0681 0.3612

1.25e−04 424 1.2897 0.0924 0.1353 0.0613 0.3617

Table 3 
Output Results With Different Values of Ekman Number Under the Strong Field
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are not many here. Compared to results of 12,000aR  in Table 1, when aR  increases, significant variations 
appear in both of B and u: B increases by about five times but u decreases by over an order, which mani-
fests energy transfer and conservation (not rigorous since there are also variations in input and dissipated 
energy). As for variations with E, u, and ul  appear monotonically increase while B appears monotonically 
decrease for 50,000aR , but all of them vary nonmonotonically for 30,000aR . Θ increases slightly and 
monotonically, and Bl , Θl  fluctuate with E for both of two S

aR .

Figure 8 shows variations of the fields and their typical length scales with E. The exponential relationship 
between u and the E (viscosity) is

0.60 ,u (16)

0.32 .u (17)

The exponential factor is about 0.10 for both equations, which is much smaller than that for the weak 
field regime . This suggests that the influence of viscosity on the velocity field is much little under a 
stronger field. The impact of E on B when 30,000aR  is as small as that in the weak field regime. While 

50,000aR , B is significantly weakened with E, the association factor is 
0.20. The relationship between ul  and E for 30,000aR  and 50,000aR

are, respectively

,ul (18)

.ul (19)

Next, we check the force balance, taking 50,000aR  for example. First, 
the Elsasser numbers ( 2

Λ B ) are O  (from 1.6 to 4), which indicates 
that the system may be in a strong field regime. Second, we calculated 
the RMS values of the local forces defined by Equation 10 and normal-
ized all of them by CFC. The results are shown in Figure 9. As can be seen, 
rvc increases monotonically with E and the other three force ratio fluc-
tuate. With increasing of E, rvc varies from ∼15% to 50%. rmc and rvc are 
always comparable to each other, and they are about 20%. ric is as small 
as 5%, which indicates that inertial plays a tiny role in the force balance. 
According to the above variances of force ratios, Figure 9 is divided into 
three regions: -MAC, where the ageostrophic CFC is mainly compensat-
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Figure 8. Variations of fields and their typical scales with E  for 30,000aRa  and 50,000aRa . Different lines and 
colors represent different fields and forces, as shown in the legend.

Figure 9. Relative forces for different E  when 50,000aRa . Different 
colors represent different forces, as shown in the legend, of which the 
forces are normalized by CFC, rmc /L C/ F/ C/ , rac /A C/ F/ C/ , rvc /V C/ F/ C/ , 
and ric /I C/ F/ C/ .
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ed by A LF FA L; -MAVC, where the ageostrophic CFC is mainly compensated by A L VF F FA L VL  and -VC, 
where the ageostrophic CFC is mainly compensated by VFV . As E decreases toward the real value, the system 
is expected to be more close to a MAC state, which is consistent with geodynamo theoretical consensus. 

We call the two solutions for 50,000aR  ( 5
2.5 10E  and 5

5 10 ) in 
a quasi-MAC state, since VFV  still plays a role but will turn into more and 
more insignificant with decreasing of E.

Third, the local quasi-MAC balance is checked by the effective Elsass-
er number Λ and effective Rayleigh number R defined in Equations 11 
and 12. Results are shown in Figure 10. As can be seen, the ageostrophic 

CFC is mainly compensated by LFL near ICB, by AFA near CMB, and by VFV  
near the rotational axis (refer to Figure 9). Figure 10b shows that large Λ 
distributes at ICB and some part of CMB, while Figure 10c shows that Λ 
has a typical value of ∼0.2.

Lastly, we check the energy density ration /m k/E E/m / , as defined by Equa-
tion  13, using the RMS u and B listed in Table  3. The result is shown 
in Figure  11. As can be seen, when E increases from 5

2.5 10  to 
4

1.25 10 , the energy ratio decreases from 23.9 to 7.4. As E varies, the 
magnetic energy is larger than the kinematic energy by about an order. 
This again proves that the system is in a quasi-MAC balance. If E de-
creases to the real value, this ratio is expected to become even larger, con-
sistent with MAC's theoretical predictions or strong field dynamo regime 
(Schaeffer et al., 2017).
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Figure 10. Snapshots of effective Elsasser number Λ (right in Figure 10a) and effective Rayleigh number R (left in Figure 10a) for 50,000aRa  and 
5

2.5 10E . Figure 10b shows the distribution of Λ with grid points at different r, , and Figure 10c shows the histogram distribution of Λ.

a) b)

c)

Figure 11. The ratio between magnetic energy density and kinematic 
energy density for 50,000aRa . Red and black lines are for numerical and 
fitted results, respectively.
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4. Discussions
The outer core flow increases with viscosity, especially under a weak field, significantly different from the 
hydrodynamics system's general concept. Previous studies on geodynamo proposed the same conclusion. 
Here, we discuss the similarities and differences with previous studies and analyze the variation mechanism.

4.1. Influence of Viscosity on the Critical Driving Force and Flow Scales

The fluid motion in the outer core is strongly affected by Earth's rotation, and the rotation, therefore, induc-
es a fundamental change in the dynamo pattern of the outer core. The leading-order momentum equation 
is the geostrophic equilibrium (which can also be seen in Figure 3, where Coriolis forces dominate through-
out), where only Coriolis forces and the pressure gradient are retained for Equation 8

.z P1 uz (20)

Taking the curl of both sides of Equation 20, we have

0.
z
u

 (21)

This shows that dynamo flow is essentially two-dimensional and is constant along the rotation axis, namely 
the Taylor-Proudman (T-P) theorem. Taylor (1963) first proposed that the convection pattern is a series of 
parallel cylindrical convection rolls parallel to the rotation axis and rotating along the rotation axis. Howev-
er, in a closed spherical system, this form of flow can neither transfer heat to the outside nor maintain the 
dynamo process. Therefore, the T-P constraint must be broken so that the governing equation's first-order 
term is ageostrophic. To study the influence of viscosity alone, by neglecting AFA, LFL and IFI  (e.g., Region  in 
Figure 3 and Region  in Figure 9), taking the curl of Equation 8 and obtaining the vorticity equation, and 
taking the radial component of the vorticity equation, then we obtain

2
,r

r
u
z

1 (22)

where  is vorticity. From Equation 22, it is apparent that, under the 0ru  boundary conditions, 
larger E will result in larger ru . This may partly and qualitatively explain why u increase with E or . u is also 
affected by other velocity components, together with the vorticity in the right-hand side of the equation and 
other forces. Therefore, u does not exhibit a simple proportional relationship with E.

From another point of view, increasing the viscosity help break the T-P constraint by lowering the critical 
Rayleigh number acR , Which marks the critical driving force for thermal convection in a fast-rotating sys-
tem. Chandrasekhar (1981) introduced the steady state rotational thermal convection theory and presented 
that

2/34

33 .3
acR 3a (23)

Since the definition of aR  is different from MoSST, so Equation 23 can be derived as 1/3
acR or 1/3

acR Ea . 

Roberts and Chandrasekhar (1968) then deduced that OacR Oa . Later on, with their numerical simu-

lations of acR and E, Kuang and Bloxham (1999) proposed that 1/3
10.1acR E10.1a , and Roberts and King (2013) 

proposed that 1/3
8.696acR E8.696a . All these results indicate that convection occurs more easily with increasing 

viscosity. Meanwhile, core convections also become more active with larger E.

Some studies have also analyzed the convective roll diameter convl , and found that 1/3
conv Hl Econv

, where 
H o ir ro i is the spherical shell thickness (Aurnou et al., 2015; Chandrasekhar, 1981; Johnson & Consta-
ble, 1998; Roberts & King, 2013). Figure 12 shows the sketch map of convection roll diameter convl  and the 
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previously mentioned TC in the right. Using our results of 12,000aR  (referred to Figure 2), the increase 
of viscosity facilitates the flow velocity and stretches fluid flow in the outer core.

Although researches on E through acR  and
convlc  are many, only King and Buffett (2013) provided a quan-

titative result on the effect of E on u by 1/2 1/3u C E1/2 . However, this result cannot be simply interpreted 
as the direct relationship between velocity and viscosity in the outer core because their work is based on

1/2 1/3
eR C E1/2
e , where /eR ule  is the Reynolds number and 33

0C PH / A
3 is the convection energy. If 

we assume that P and A are independent of , we can derive: 1/6u . This inference contradicts to the 
dynamo system. Therefore, the most significant contribution of this study is that it provides the only direct 
and reliable quantitative relationship between u and  to date by fitting numerical dynamo data.

The variation of with  is weaker than other studies, especially under a weak field (exponential fac-
tor 0.12). The convective column results from the ideal approximation, and realistic dynamo convection 
is complex and affected by various forces. It can also be seen from the distribution of ru on the equatorial 
plane, as shown in Figure 12, where convection rolls are elongated and twisted in the radial direction. They 
are no longer an ideal cylindrical shape, and their spatial scale could not be simply represented by the di-
ameter of convection rolls anymore.

When the T-P constraint is broken, the convection becomes quasi-three-dimensional. There is a radial com-
ponent, whose amplitude is only 2% of u  (referred to Figure 6). Stress-free boundaries lead to larger zonal 
flows, so it might also explain why our results differ from others researches in that most studies use the 
no-slip boundaries conditions, which will be affected by the Ekman layer (Wicht & Sanchez, 2019; Yadav 
et al., 2016). However, this 2% radial portion is critical to the generation and maintenance of the geodynamo 
process. Were it not for this small ru , the heat cannot be transported outside, and the flow will degenerate 
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Figure 12. Distribution of radial velocity ru on the equatorial plane ( 6
12,000, 2.5 10aR 12,000,a ). The red and blue stand in different velocity directions. The 

convection columns are paralleled to the TC, which is shown on the right. TC, tangent cylinder.
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into two-dimensional. According to Cowling's (1933) antidynamo principle, two-dimensional flow cannot 
maintain the dynamo process.

4.2. The Role of Viscosity on the Magnetic Field and Flow Field

Next, we focus on the determining factors for the magnitude of the magnetic field. As is mentioned, geody-
namo is speculated to operate at a strong field regime, such that B satisfies Λ O . In this situation, the 
force balance determines the magnitude of B. Starchenko and Jones (2002) proposed that it is rather the 
driving force and force balance than diffusion coefficients that determine the flow velocity and the mag-
netic field. Christensen and Aubert (2006) assumed that the diffusion effects do not play a major role in the 
governing equations, and they found that the available energy (represented by the flow Rayleigh number

aQR ), rather than the force balance, determined the magnitude of the magnetic field. Christensen (2010) 
summarized scaling laws for the magnetic field and proposed that the magnitude of B depended on the 
available energy flux, which could overcome the ohmic loss. They argued that rotation only determines 
whether a dipole field is generated. Jones (2011) also used the aQR  concept to provide an estimation of the 
velocity field and the magnetic field.

In this study, under the weak field regime ( 12,000aR ), the magnetic field B only changes by 22.3% when 
E varies by two orders of , which partly supports the conclusion that the magni-
tude of B is not strongly associated with viscosity. While when, the magnetic field is annihilated, indicating 
that  has a significant impact on magnetic field generation upon a critical point (via c

aR  to m
aR ). 7

6 10E
For quasi-MAC regime, the magnetic field decreases significantly with (decreases by 35.4% as E is 5 times 
larger), and the increase of flow is also noticeable (16.5%), indicating that the influence of viscosity on the 
flow and magnetic field cannot be ignored.

4.3. The Role of Viscosity on Geodynamo Force Balance

Geodynamo is expected to run in the MAC state. The existing geodynamo simulations can explain a couple 
of observations in principle. Those model parameters adopted in simulations are still far from physical. It 
leads to active arguments on whether existing geodynamo models can run in a good regime representing 
the physical Earth. After checking the exact force balance or fitting the numerical data, studies showed 
that viscosity, instead of the magnetic field, plays a major role in the force balance for most of the existing 
geodynamo simulation results (King & Buffett, 2013; Oruba & Dormy, 2014; Soderlund et al., 2012). Most 
existing dynamo models are, in fact running in VAC, not MAC balance (Yadav et al., 2016), and a real MAC 
state is hard to reach except using a more physical parameter (e.g., 5 000

c
a a5,000R R5,000a a5,000 , 7

10E ) and simulating 
at very high resolution (Aubert, 2019; Schaeffer et al., 2017).

Variations of  can bring substantial changes to the force balance. In the weak field regime, as is shown in 
Figure 3, as E increases, the system gradually transfers from CIA mode to VC mode. CIA mode may result 
in a strongly driven but nonmagnetic system or multiple dynamo regimes (Soderlund et al., 2012). When 

6
3 10E , VFV  grows more and more obvious in the force balance. Though fluctuates with E, LFL is always 

fairly weak (Figure 3), rendering it only plays a minor role in the force balance, and the dynamo state is 
far from a MAC balance (Figure 4). The energy ratio between mE  and kE  increases as E decreases, while 
we always have m kE Em  in our parameter space (Figure 5). In the quasi-MAC regime, as E increases, the 
system transfers from a quasi-MAC mode to VC mode (Figure 9). When 5

5 10E , CFC grows more and 
more important in the force balance. When 5

5 10E , the system enters into a quasi-MAC regime, ver-
ified by the force ratio distribution (Figure 9), the local effective R and Λ distribution (Figure 10), and the 
energy ratio (Figure 11). As E decreases toward the real value, LFL plays a more and more important role in 
core dynamics, and the system is expected to evolve into a real MAC regime, as is estimated theoretically.

The exponent of scaling relation of u and  decreases from 0.52 for 12,000aR  (Figure  2) to 0.10 for 
50,000aR  (Figure 8), which indicates that the effects of viscosity on fluid velocity is much smaller for 

strong-driven and in the quasi-MAC regime than the weakly driven and in the weak field regime. The 
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reason is not that the relative important of VFV  is smaller in a quasi-MAC balance (compare Figure 3 with 
Figure 9), but that LFL enters into the first-order ageostophic balance (Figure 10) and replaces IFI , and much 
of the kinematic energy is transferred into the magnetic energy (compare Figure 5 with Figure 11).

4.4. The Effect of the Hyperdiffusion Assumption

Hyperdiffusion could be avoided, while the temporal and spatial resolution must be improved. To improve 
the computational efficiency, especially simulate at high aR  and low E, hyperdiffusion is retained in this 
study. Hyperdiffusion mainly suppresses the development of small-scale convection and has no significant 
effect on large-scale flow, which is one of the major reasons that the typical spatial scale of various physical 
fields is all large in our simulations. Researches on the influences of hyperdiffusion are many. For example, 
Zhang and Jones (1997) found that hyperviscosity significantly increased the equivalent Ekman number 
and changed the convection kinetics. Grote et  al.  (2000) concluded that hyperdiffusion could affect the 
magnetic field generation mechanism and even reverse polarity.

In our simulations, we choose 
0 4, 0.05l  in Equation 3. To give a proper quantification of the hyper-

diffusion and implication to the scaling laws and get a clear understanding of the hyperdiffusion effects on 
the MoSST model, a general assessment is made in this work.

To obtain quantitative properties and provide quantified “large-scale patterns” which will be used to derive 
the scaling laws, we should find the highest spherical harmonic degree HLH, above which the hyperdiffusive 
effect will be dominant. Only use the part of the solutions with spherical harmonic coefficients of degrees 

Hl LH in our analysis. With this approach, we would hope to find asymptotic behaviors of the “large-scale” 
dynamo solutions. Then we can see the effective Ekman number HE  to account for the hyperdiffusivity used 
in the simulation, and derive the scaling laws with respect to HE .

The relative importance of the hyperdiffusivity for large-scale solutions ( Hl LH) can be described by the 
ratios of the following viscous dissipation terms,

22
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where m
lv  and m

l  are the poloidal and toroidal spherical harmonic coefficients of degrees l and orders m, 
respectively.
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The maximum degree HLH can then be determined if the ratios 
0.1, to make sure the hyperdiffusion is 

of secondary importance. The effective Ekman number HE  can also be 

calculated based on Equations 24–27:

.

vH vH v v
H P T P T

v v
P T

E E E EvH vH vvH v
P T PT PE EH

E Ev
P

(28)

The HLH and HE  are calculated and listed in Table 4. As can be seen, in 
the weak field regime, the effective Ekman numbers are overall 10 30

times the Ekman numbers used in the analyses as mentioned earlier. 
Though this will affect the quantitative results for each E, it would not 
change the whole regularity (e.g., the exponential in the scaling law). 
The effects of hyperdiffusion are equivalent to multiply each E in our 
scaling laws by a factor of ∼20. The maximum degree for hyperdiffusion 

HLH is about 5–7, and scales smaller than these ( Hl LH) will be affected 
substantially. These effects should be kept in mind for references to this 
study.

5. Conclusions
To systematically study the effects of viscosity on the geomagnetic field 
dynamo both in a weak and strong field, we adopt the newly developed 
MoSST model to perform numerical experiments on the dynamo process. 
The advantage of the MoSST model is that, since the magnetic diffusion 
time is used as the typical time scale,  is only included in E, making the 
variation of E equivalent to that of . Major conclusions reached through 
our numerical investigations are as follows

1.  The role of core viscosity on dynamo is non-negligible and different for weak field and quasi-MAC re-
gime. In a weak field regime, variations of  may affect the fluid velocity and its typical length scale 
(Figure 2), the force balance (Figure 3), energy ratio (Figure 5), configurations of flow (Figure 6), and 
magnetic field (Figure 7). The magnitude of B is not so sensitive to . While in the quasi-MAC regime, 
the effect of  on u and ul  is much smaller, but B decreases fast with  (Figure 8). The force balance varies 
solely with the relative importance of VFV  (Figure 9).

2.  As  decreases toward the real value, the dynamo system involves into CIA balance for the weak field re-
gime and MAC balance for the quasi-MAC regime. Our scaling relations are different from existing scal-
ing laws not only in the scaling form but also in the exponent. For example, in a CIA state, former studies 
(King & Buffett, 2013) gave 0.2u E , while we got 0.0 11u 0.11  for the weak field regime. 

By contrast, in a MAC state, former studies gave 0.5u E  while we got 0 30 32u 0.32  in 
the quasi-MAC regime.

3.  The drop of fitted exponent from 0.52 for the weak field to 0.10 for the quasi-MAC state is not attributed 
to the relative importance of VFV  becomes weaker (comparing Figures 3 and 9), but because that LFL in-
stead of IFI  plays a more important role in the latter regime.

There are limitations in this study. When changing the value of E and .aR  The other two-dimensionless 
parameters ( oR  and q ) are kept constant. Changes in them may quantitatively affect the conclusions drawn 
here. Solutions of the quasi-MAC state maybe not sufficient, and the resolutions need to be improved. 
Hyperdiffusion still has effects on core dynamics especially for smaller length scales ( 7l ). We will aim to 
solve these in future research.
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Ra E EH LH

Ra = 12,000 6.00E−07 1.82E−5 6

8.00E−07 1.99E−5 6

1.00E−06 2.06E−5 6

1.25E−06 2.22E−5 6

2.00E−06 2.79E−5 5

2.50E−06 4.12E−5 6

4.00E−06 5.79E−5 6

5.00E−06 8.46E−5 7

6.00E−06 1.13E−4 6

8.00E−06 1.41E−4 6

1.00E−05 2.81E−4 6

1.25E−05 4.75E−4 5

2.00E−05 8.08E−4 6

2.50E−05 1.00E−3 6

5.00E−05 2.14E−3 7

Ra = 30,000 5.00E−06 2.14E−4 5

6.00E−06 2.58E−4 6

8.00E−06 3.44E−4 6

1.25E−05 5.36E−4 6

Ra = 50,000 2.50E−05 1.08E−3 6

5.00E−05 2.15E−3 6

1.25E−04 5.38E−3 6

Table 4 
The Values of the HLH and Effective Ekman Number HE
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Data Availability Statement
The relevant data are in Tables  2–4, and the simulation data can be download at https://zenodo.org/
record/4561773.
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