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Abstract Exploring geodynamo's scaling laws is of great importance when a tremendous gap still
lies between realistic physics and estimated model parameters. Existing scaling laws need to be tested

by numerical simulations. To boost these, taking the outer core viscosity v, we studied its impacts on
weak and strong field geodynamo outputs by varying v in two orders of magnitudes. In the weak field
mode, the fluid velocity u varies with v by a scaling law of u ~ v***. While in the strong field mode, u
varies very slowly by a scaling law of u ~ v*!°. The magnetic field B does not change much with v when
the driving force is not too strong (R, = 12,000) but decreases with v by a scaling law of B ~ v % when
geodynamo operates in a very vigorous mode (R, = 50,000). The reason that u increases with v is essential
that increasing v breaks the Taylor-Proudman constraint and drops the critical Rayleigh number, but this
kind of increase of u does not give a stronger B. Furthermore, we conducted a local force balance analysis
and demonstrated that the balance shifts under different v. In a quasi-MAC regime, the Lorentz force
instead of the inertial force enters into the first-order agostrophic force balance, though the viscous force
still plays a role. Comparing with other scaling laws previous wisdom holds, we propose that the effect of
viscosity diffusion is non-negligible for both existing weak and strong dynamo regimes. Still, appropriate
assumptions can be made to take this variation into account.

1. Introduction

Paleomagnetic records indicate that the Earth's geomagnetic field has existed for at least 3 billion years,
with a roughly reversal rate of hundreds of thousands of years. Earth's magnetic field is generated and
maintained by a strongly coupled mechanism known as geodynamo (Roberts, 2007). As emerging from
numerical simulations, details of these mechanisms achieve a self-sustaining magnetic field (Aubert, 2020;
Buffett, 2000; Yadav et al., 2015). From 1950 to 1990, the dynamo theory has shown that the principle of a
homogeneous dynamo process is possible and has elucidated the parameter prerequisites and model con-
straints. In 1995, there was a breakthrough in the numerical simulation of magnetohydrodynamic (MHD)
flow by Glatzmaiers and Roberts, called GR95 (Glatzmaiers & Roberts, 1995b). The GR95 model showed
that such models could describe and explain many basic properties of the geomagnetic field, including di-
pole-dominated morphology, reversals, and westward drift (Glatzmaiers & Roberts, 19952).

Furthermore, they studied viscous and electromagnetic coupling between the inner core and the outer core,
which brought differential rotation of the inner core (Glatzmaiers & Roberts, 1995a). A couple of years
later, numerous numerical geodynamo models emerged, for a comprehensive review see Christensen and
Wicht (2007). For those models, the magnetic field properties closely match the geomagnetic field in terms
of spatial spectra and magnetic field morphology, secular variation, and occasionally the characteristics of
dipole reversals (Aubert, 2020; Calkins et al., 2017; Wicht & Sanchez, 2019; Yadav et al., 2016).

Nevertheless, the huge gap between the simulations’ parameter and their expected values in the Earth's
core still exists (Aubert, 2018; Schaeffer et al., 2017; Schwaiger et al., 2019). Most models have four critical
dimensionless parameters: the Rayleigh number R, measures thermal driven force; the Ekman number E,
measures the relative importance of viscous forces to Coriolis forces; the Prandtl number P,, measures the
ratio of viscosity to thermal diffusivity; and the magnetic Prandtl number F,,, measures the ratio of viscosity
to magnetic diffusivity (Christensen et al., 1999). Among the unsolved issues, the value space of controlling
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parameters, such as the Ekman number and the magnetic Prandtl number, differs dramatically from the
realistic planetary parameters (Christensen & Aubert, 2006).

Numerical geodynamo simulations require massive parallel computers than currently available to solve the
rapid rotation against the outer core's low viscosity (corresponding to the low value of E). Physically, E is es-
timated as small as 10", However, nowadays, geodynamo simulations have only been capable of operating
down to 10 ¥ in practice (Aubert et al., 2017). A huge gap cannot be captured by limited supercomputing ca-
pacity. For instance, Christopher et al. (2010) showed that even E = 10 ° would require at least 13,000 days
to calculate one single magnetic diffusion time on a 54,000-processor supercomputer, a formidable com-
putational challenge from both the numerically stable schemes and reliable parallel solvers of the ill-con-
ditioned linear system arising from the multiscale intrinsic nature of the geodynamo mechanism. More
importantly, more recent investigations pointed out the sensitivity of these model parameters to the Earth-
like dynamo simulation (Aubert, 2019; Wicht & Sanchez, 2019). Therefore, these parameters' effects on the
dynamo system, such as the relationship between parameter variations and their impacts on the magnetic
field generated, the sustainable velocity field, and temperature perturbations, are of significant importance.

So, the fundamental purpose of second-generation geodynamo models is to explore the parameter space
and derived scaling laws (Aubert, 2020; Christensen & Aubert, 2006; Schaeffer et al., 2017). Previous studies
have shown promising results with regards to this problem, for example, by analyzing the effects of one
single parameter: R, (Aubert et al., 2017; Davidson, 2013; Kuang et al., 2008; Olson et al., 1999; Sreenivasan
et al., 2014; Wang et al., 2013), E (Kuang et al., 2017; Sarson et al., 1998), and F,, (Calkins et al., 2017;
Christensen & Aubert, 2006; Schaeffer et al., 2017; Simitev & Busse, 2005), or by performing comprehen-
sive study in parameter space (Christensen & Aubert, 2006; Christensen et al., 1999; Davidson, 2013; Gil-
let & Jones, 2006; Jones, 2011). Many scaling laws and quantitative conclusions have thus been derived.
Jones (2011) investigated in which parameter space does the geodynamo behaves as dipole-dominated or
multipole-dominated. Starchenko and Jones (2002) discovered how to estimate the strength of the flow and
the magnetic field from a given parameter. Christensen and Aubert (2006) studied whether the magnetic
field's power was related to various diffusion coefficients. However, the four major dimensionless param-
eters mentioned above usually depend on all of the physical coefficients for different geodynamo models.
Thus, their variations are not self-dependable, which leads to the doubt on the applicability of existing
conclusions. Besides, some scaling laws related to additional dimensionless parameters which make the
scaling rules more physically complex. It is significantly difficult to understand the physical mechanisms
behind them.

A majority of works about Earth's core’s viscosity focus on the effects on the geodynamo process. Sarson
et al. (1998) studied the impact of the variation of E on the dynamo and found that both the magnetic and
the flow field are concentrated near the ICB. Soderlund et al. (2012) highlighted the significant role of vis-
cosity in their numerical simulation. Magnetic forces did not seem to play a major role, contrary to what is
expected for the real Earth. King and Buffett (2013) confirmed the non-negligible of viscosity diffusion in
their simulation. Cheng and Aurnou (2016) showed that the diffusionless scaling laws were hiding an ac-
tual dependency upon viscosity. Oruba and Dormy (2014) derived alternative scaling statutes in which the
magnetic field intensity depends upon viscosity and rotation rate. In conclusion, viscosity plays a significant
role in the geodynamo process. However, previous studies do not directly determine the quantitative impact
of viscosity, nor does it provide an intuitive physical mechanism.

To investigate the effects of viscosity on the geodynamo mechanism and deduce the output when the esti-
mated numerical model parameters are close to the physical parameters, we adopt the Modular, Scalable,
Self-consistent, and Three-dimensional (MoSST) model and conduct numerical experiments to address
these issues. MoSST model has been developed from the KB97 model (Kuang & Bloxham, 1997). In addition
to some improvements in the numerical schemes, it also includes some additional functional modules/fea-
tures. In most of the numerical geodynamo models in practice, the viscous diffusion time is introduced as a
typical timescale. While in the MoSST model, the magnetic diffusion time is used. Of all the dimensionless
parameters, only the Ekman number contains the viscous term. Therefore, the advantage of using MoSST
model to study the influence of viscosity is that changing E can be directly equivalent to change v, without
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involving the covariant changes of other model parameters. Those uncertainties thus are avoided, and more
reliable conclusions are expected.

This study is structured as follows: The MoSST model is introduced in the Section 2. In the Section 3, we
study the effects of viscosity on fields and the length scale in the outer core and analyze the system's force
balance. In the Section 4, the physical mechanisms behind the geodynamo model are investigated. Finally,
the summary and discussions are delivered in Section 5.

2. The MoSST Model

The geodynamo model's governing equations in the spherical coordinates are composed of the momen-
tum equation (Navier-Stokes equation), the magnetic induction equation, the energy equation (conduction/
diffusion equation of thermal field), and the nondivergent constraints of both the velocity and magnetic
fields. Under the Boussinesq approximation, dimensionless forms of the above equations are (Kuang &
Bloxham, 1997)

R0(6,+u~V)u+lzxu:—VP+V><B><B+EV2u+Ru®r
(8[7V2)B=Vx(uxB)

(6, - a.v2)0 = —u- V[T (r) + 0] @
V-u=0
VB =0,

where R, is the magnetic Rossby number, u is the flow velocity in the outer core, P is the pressure after the
correction, B is the magnetic induction intensity, £ is the Ekman number, R, is the Rayleigh number, © is
the temperature perturbation, r is the radius, ¢, is the modified Prandtl number, and 7j is the conducting
background state (u = B = 0).

The dimensionless parameters in Equation 1 are defined as:

2
n 14 anrr, & K
F-—Y R, - Mg, K @
2Qr; 2Qr; 2Qn n

R =

0

which 7 is the magnetic diffusion, Q is the angular velocity, 7, is the radius of the outer core, v is the kin-
ematic viscosity, « is the thermal expansion coefficient in the outer core, %; is the temperature gradient at
ICB, g is gravitational acceleration, and « is the thermal diffusivity.

It is worthwhile to mention that, of the four parameters in Equation 2, v appears only in the definition of E,
which is significantly different from the dimensionless description of other models (Kono & Roberts, 2002).
Therefore, this dynamo parameter definition allows easy isolation of the viscous effect by changing only
the Ekman number. Meanwhile, taking magnetic diffusion time % = r, /77 as the typical time scale is
direct and appropriate. Other nondimensional scales are: u* = i/ r,, B* = \[2Qupn , T* = h;r, (Kuang &
Bloxham, 1999).

The boundary conditions chosen in our numerical simulation model are as follows: The velocity field at ICB
and CMB is free-slip, which holds for1, -u =1, x (av - ln) = 0, where 1, is the normal vector of the bound-
aries, and o, is the viscous stress tensor. The magnetic field at ICB and CMB obeys the finite electrically

conducting boundary condition as [B] = [ln x J } = [1” x E} = 0, where [] denotes the difference across
the boundaries, E is the dimensionless electrical field. A D” layer with 1 / 10 conductivity of the CMB is in-
cluded outside the CMB. Fixed heat flux boundary condition 66 / or = 0, at both ICB and CMB, is adopted
for the temperature field. The initial state of our model is derived from previous simulation results.

The MoSST model is discretized by the fourth-order compact finite difference scheme in the radial direc-
tion, using zero points of Chebyshev polynomial expansion as the radial mesh configuration nodes. The
number of nodes is 35,39 and 19 for the inner core, outer core, and D” layer, respectively. On the spherical
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Table 1

Definitions of Dimensionless Parameters in MoSST

Name (Symbol) Definition Physical significance Core Simulations

Magnetic Rossby (R,) Ui The ratio between inertial forces and Coriolis forces 107° 125 x 106
2017

Ekman (E) v The ratio between viscous and Coriolis forces 10713 6 x 107 ~5x 10
2017

Rayleigh (R,) ahyrlg Thermal driven force * 12%x10* ~ 5x10%
2Qn

Magnetic Prandtl (9.) K The ratio of thermal diffusivity to magnetic diffusivity 10°° 1

n

*Leaving R, blank here because the super adiabatic heat flow (or, more generally, the buoyancy flux) is not well constrained for the Earth's core yet.
MOoSST, Modular, Scalable, Self-consistent, and Three-dimensional.

surface (horizontal direction), spherical harmonic expansion and the pseudospectral method are adopted,
and fast spectral transform (FFT) is performed. The truncation order of spherical harmonic expansion is
Lyax = 33,m,,, = 21. According to the truncation orders, the number of spherical direction nodes is 50 at &
direction and 64 at ¢ direction. The total number of meshes in the simulation is 277,830.

To avoid high truncation for the initial transient period and to reduce the CPU time for the process, hyper-
diffusion for viscosity v is introduced by (Kuang & Bloxham, 1999):

0 ,forl </,

v=vo[l+a(1)}a(1): 3)

5(1 - IG)ZA, forl > {,

where Vo is the original viscosity, ¢ is an artificially selected small number, / is the spherical harmonic order,
and [, is an artificially selected spherical harmonic order. Similarly, thermal hyperdiffusion and magnetic
hyperdiffusion are also introduced. This approach was first introduced by Glatzmaiers and Roberts (1995a),
who obtained the first three-dimensional self-consistent dynamo model of GR95. The hyperdiffusion
scheme of Equation 3 is a relatively weaker form than GR95. We choose [, = 4,¢ = 0.05 in our simulation.
The impacts of hyperdiffusion on our scaling laws will be discussed in Section 4.4.

3. Numerical Simulation Results

Dimensionless parameters control numerical simulation results. The MoSST model has four dimensionless
parameters: R , E,R,, and g¢,. The details are shown in Table 1. The outer core values estimated in Table 1
are calculated from the physical parameters estimated by Olson (2007) and Christensen and Wicht (2007).
The four parameters indicate a large gap between the numerical model and the realistic Earth. Unfortu-
nately, a high-performance parallel machine's current computing power is far below the capacity required

to reach Earth parameter values. So far, significant efforts have to be made in the future.

3.1. Diagnostic Outputs

Since the governing equations are strongly nonlinear systems with highly coupled physical fields, huge iter-
ation steps are needed to reach a stable electromagnetism output state after the initial state is input. To deter-
mine whether the system has been self-evolved to this state, we rely on the diagnostic outputs. An example
of the diagnostic output plot is shown in Figure 1, with the horizontal coordinate as the magnetic free decay
time, measured by the free diffusion time as T, = r,,2 / 7r277 (r,=35x 10° m, n=i m? /s, T, ~4x 10* yr).
The vertical ordinates of Figures 1a—1f show the velocity field (u), the magnetic field (B), and the temperature
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Figure 1. The diagnostic output of the MoSST model. All the panels' values are the RMS of the calculated physical values in the entire outer core. As

an example, the outer core flow velocity is defined as u =

o], = v

L= ul +u3 +---+ ul , and the typical scale is also the RMS result, calculated by

2 . MoSST, Modular, Scalable, Self-consistent, and Three-dimensional.

uouter core

perturbation (@), respectively. The typical spatial scales are corresponding to the three physical fields, ve-
locity field length scale (/,), magnetic field length scale (/), and temperature perturbation length scale (/g).

With these definitions, we estimate the stable output basing on the fact that all physical quantities and their
typical scales have been stabilized for at least one 7. The final result is an average over the stable period,
as indicated by the red line in Figure 1. The transient time depends on the parameter selection, boundary
conditions, initial state, and hyper diffusion scheme. As limited by the computing capacity, in general, it
takes 4-5 days to obtain a stable output. For some extreme cases, it may need 2 weeks or more to receive
one sound output.

3.2. Variations of Physical Fields With Ekman Number

By changing the dimensionless parameter £ when R, = 12,000, a series of stable output results are ob-
tained, as shown in Table 2. According to the former study of Kuang and Bloxham (1999), the R, here is first
selected between R, (the threshold of R, for dynamo action occurs, R, ~ 6,300 for E = 10°) and R (the
threshold of R, for strong dynamo occurs, R¥ ~13,000 for E = 2 x 10™). It should be mentioned that since
we use a different R, = 1.25 x 10~%, which is smaller than that of Kuang and Bloxham (1999) by one order
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Table 2
Output Results With Different Values of Ekman Number When
R, =12,000

Ekman u B (0] L Iy Iy

6.00E—07 839.4  0.3684  0.0779  0.1508  0.0663  0.4830
8.00E—07 1002.2  0.3768  0.0791  0.1742  0.0657 0.4760
1.00E—06 1154.8  0.3863  0.0812  0.1932  0.0657 0.4755
1.25E-06 1294.0  0.3883  0.0807  0.2109  0.0660 0.4622
2.00E—06 1584.9  0.3847  0.0841 0.2429  0.0645 0.4642
2.50E—06 1679.0  0.3826  0.0841 0.2530  0.0640 0.4563
4.00E—-06 2023.7  0.3759  0.0861 0.2769  0.0647 0.4524
5.00E—06 2348.0 0.3706  0.0865  0.2900  0.0649 0.4481
6.00E—06 2620.4  0.3694  0.0866  0.2979  0.0653 0.4436
8.00E—06 3199.5  0.3585  0.0870  0.3082  0.0664 0.4391
1.00E—05 4060.8  0.3498  0.0870  0.3150  0.0672  0.4336
1.25E—-05 4450.0 0.3397  0.0877 0.3172  0.0683  0.4328
2.00E—05 6059.9  0.3018  0.0874  0.3206  0.0698  0.4219
2.50E—-05 7540.0  0.3092  0.0883  0.3215  0.0689 0.4218
5.00E—05 8332.0 0.3794  0.0893  0.3212  0.0653  0.4095

and more close to the real value in Earth's core (10’9), RY, R,f and the
following force balance may be different with those of Kuang and Blox-
ham (1999). Since the geodynamo system operates at a very nonlinear
state, and the initial condition may affect the final results, we have select-
ed the suitable outputs and get rid of the singular data set when searching
for and analyzing the regularity. As shown in Table 2, the flow velocity u
increases significantly with E, and its amplitude varies by more than one
order. Similarly, the temperature perturbation ® increases monotonically
with E, but the change is very small (~ 6%), suggesting that even a tiny
temperature perturbation can lead to a significant increase in flow veloc-
ity. By contrast, the magnetic field B changes nonmonotonically with E,
and it appears a trend of up first (from E = 6 x 107 to 1.25x 107™°), then
down (to 1.25x107) and up again (to 5 x 107%). The variation in the se-
lected range is not significant, and the maximum does not exceed 30%.
The results also show that a substantial increase in flow velocity does not
necessarily result in considerable magnetic field growth.

In Table 2, we also list the typical spatial scales of the physical fields. As
can be seen, /, increases monotonically with E by a variation of 53%. For
the typical length scale of B, Iz does not change monotonically with E. I
does not change much, and its variation is as small as ~ 8%. In contrast
to the @ variation, the temperature perturbation length scale /g decreases
monotonically with E, and the amplitude is less than 16%.

In our model, we take r, = 3,500 km and r, = 1,200 km, so the flow field's
typical scale is equivalent to 2-3 wavelengths in the outer core. From our

numerical results, there are ~10 wavelengths of the magnetic field in the outer core, and the scale is ~1/3-
1/5 of the flow field. The temperature perturbation is about half the wavelengths in the outer core, larger
than the convection's typical scale. The specific scales of these three physical fields are all shown to be typi-
cally in large scales. The spatial scale of the temperature perturbation is larger than the scale of convection,
and the scale of convection is larger than the scale of the magnetic field. These may reflect the fact that the
temperature perturbation motivates convection, and convection motivates the magnetic field. Details of
these dynamics at different scales, and the stacking of energy at various scales, can be found in the work of
Huguet and Amit (2012) and Calkins et al. (2015).

0.5 -
——
e e
‘h**"’ﬂ—@‘\‘_*““
0.4 -
>~ S —— —
803 N\W 10
°
[ g
02 » -
u=011x (1+1.43e7x E*5?) 2B ETE
=&
0.1 o .
‘:+0—4——-0—0———0—«4—0—4—0———0—-0—___,
102
106 10°
E

Figure 2. Variations in physical fields and their typical length scales with
different values of Ekman number when R, = 12,000. Solid lines represent
the physical fields, dashed lines are the corresponding typical scales, and
different colors represent different physical fields, as shown in the legend.
The black line is the result of the linear fitting (LF) of velocity changes.

Figure 2 illustrates the data in Table 2. It is clear that the influence of
viscosity on the geodynamo occurs mainly in the flow field: the higher
the viscosity, the more vigorous the convection. For quantitative studies,
former scaling relations fitted the numerical results with power laws,
such as f = E“ (Christensen & Aubert, 2006; King & Buffett, 2013). In
this form, both fields and their typical length scales would vanish in the
inviscid limit (£ = 0). Thus, here we assume a different scaling law of
the form:

f = folt+aE?), )

where f; is the independent of E, and represents its inviscid limit. Then
the least square fit is used to estimate the three parameters fo, «, and £.

By applying Equation 4 to the velocity field « and its typical length scale
1,, we have

189
2

w=011x (1 +143¢7 x E*S )(or w=0.11x (1 +1.43¢7 x " 52)), (5)
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\ — 3.3. Force Balance
100 1 I I [V|—Lorentz . - . .
— Archimedes The fluid motion in the outer core is affected by various forces. And the
‘ eal force equilibrium mechanisms determine the dynamics in the outer core.
1078 10 In this part, we analyze details of the force balance under different viscos-
Ekman ities. The momentum equation in Equation 1 gives
Figure 3. Force balance with different values of Ekman number when R, ( 5, tu- V)u +1 xu= -VP +VxB xB + EV2u+ RO .
R, = 12,000. Different colors represent different forces, as shown in the A S —— T = L — " (8)

legend.

S -
Inortia Coriolis pressure Lorentz VISCOus  buoyancy
Equation 8 includes five forces: inertial force F,, Coriolis force F, pres-
sures gradient F),, Lorentz force F,, viscous force F,, and thermal buoy-
ancy F, (Archimedes force).

Among them, the leading-order force balance is between F. and F),, with the remaining puny part compen-
sated by others, which is called the quasi-geostrophic (QG) state (Schwaiger et al., 2019). If F; is close to F,.
and far beyond other forces (F,,F;,and F,), this will be called the magneto-quasi-geostrophic state, in that
the uncompensated part of F,. + Fj (also called the ageostrophic Coriolis) is mainly balanced by F, at zeroth
order. Traditionally, geodynamo is assumed to operate on a QG-MAC state (shorted for MAC), in which the
ageostrophic F. is balanced by F, + F; at first order. A MAC balance is usually treated as equal to the so-
called strong field dynamo, while a discrepancy exists between the two definitions. In strong field dynamos,
the ratio between F, and F defined as the Elsasser number (in dimensional form) is

AT B

Fe  Qupn’

)

isof 0(1). A MAC state is somewhat different from a strong field in that the A of the former could be as small

as 0(0.1) as long as F, compensates a significant portion of the ageostrophic F, and it satisfies F; > F; and
F, > F,. If A < 1while the magnetic field could be self-sustained, it is called a weak field dynamo.

In the MoSST model, the magnetic field is nondimensionalized by \/Qup7, thus Equation 9 becomes A = B’
in the nondimensional form. In our numerical results of R, = 12,000, B is averaged as 0.36 for all Ekmans,
then we have A ~ 0.13, which supports that they are weak field dynamos, but the possibility that a MAC
balance exists cannot be ruled out according to A. The force balance according to A could be misleading
(Soderlund et al., 2012) since that is only a rough order estimation. The real force balance should be based
on each force's exact calculation in Equation 8 with the numerical results. By following Kuang (1999), we
use the local force defined by (taking F, as example)

(;»’5)) = ZJ!Z[FL (;ﬁ,e,gg)dq) = ZJ{[V x B x Bdo, (10)
0 0

F,

Lo

to study the exact force balance. The final Lorentz force F is the RMS value of F, ,, and other forces are
treated the same as F, . Force balance (except F, since that we are only interested in the ageostrophic part)
results for different E are plotted in Figure 3.

As can be seen from Figure 3, all forces vary nonmonotonically with E except that F, (green) is kept constant
since the driving force (measured by R,) doesn't change. The Coriolis force F¢ (black) is always dominant
by at least one order for all E, which indicates that they are all in the QG state. The Lorentz force F, (red) is
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Figure 4. Snapshots of effective Elsasser number A (the right part of Figure 4a, multiplied by a factor of 50) and effective Rayleigh number R (the left part
of Figure 4a) for R, =12,000, E = 2.5 x 107°. Figure 4b shows the distribution of A with grid points at different r, 6, and Figure 4c shows the histogram

distribution of A.

always about three orders smaller than the Coriolis force and at least one order smaller than other forces for
all E, which proves that the systems are all far from MAC state. Furthermore, we divide the force balance
into four regions: I, II, III, and IV. In region I, the ageostrophic F,. is mainly compensated by F; (cyan) and
F,, which is called the QG-CIA balance (shorted for CIA). In region II, with the fast increase of F}, the age-
ostrophic Fj, is mainly compensated by F;, which is called the QG-CI balance (shorted for CI). Similarly, we
call region III the CIV and region IV the CV balance. Though fluctuating, F, (blue) is generally increasing
and becomes more and more significant in force balance with increasing of E, which is consistent with the
increase of the fluid core’s viscosity. When E decreases toward the real value for physical Earth, the system
is expected to enter into a CIA balance in this weak field regime.

To check if there is a local distribution of the MAC state, we calculated the local effective Elsasser number

A and effective Rayleigh number R defined as (Kuang, 1999):

. [57|V (4 xB)|dg

ol + [ (7% Bdg ()

2
0

. R, VO x r|d(p

. 12
[o7|0.ulde + [)7|R VO x 1|dp a2

The curls in the above two equations are used to get the ageostrophic force. When A = 0.5 means that the
ageostrophic Lorentz force is comparative to the ageostrophic Coriolis force, and it is similar for R. Snapshot
of A and R distribution for R, = 12,000, E = 2.5 x 10 % is shown in Figure 4. As can be seen from Figure 4a,
A (magnified by 50 times) is very small as a whole, though some relatively large values (>0.02) appear near
the rotational axis. In contrast, R is generally large (>0.25), especially outside the tangent cylinder (TC,
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Figure 5. The ratio between magnetic energy density and kinematic

energy density for R, = 12,000. Red and black lines are for numerical and

fitted results, respectively.

whose axis coincides with the rotation axis and tangents with the inner
core at ICB). Both of A and R show symmetry about the equator to a large
extent. Figure 4b shows the distribution of A with grid points of different
r (from %, to 1), & (from O to 7 / 2). There are some relatively obvious
A near the ICB. The histogram distribution of A is plotted in Figure 4c,
which shows that most areas have a typical A of about 2 x 10~°. Figure 4
indicates that the ageostrophic Coriolis force is mainly compensated by
F, outside TC but by F, inside TC. F, only plays a negligible role in the
force balance in this weak field regime.

The ratio between magnetic energy density (E,,) and kinematic energy
density (E)) is another criterion to evaluate dynamo states. In a strong
field dynamo, usually one has E,, > E, (at least two orders). The energy
ratio is calculated by

Em

B*/2 B?
:2—‘” = R0_2. (13)
E, pu'l2 u

We use the numerical results of Table 2 to calculate it and use Equation 4
to fit its variation, then get Figure 5. As can be seen, the energy ratio al-
most decreases monotonically with E by a fitted exponent of —0.94, which
results from increasing of u but not decreasing of B (see Figure 2). Anoth-

er noticed character is that the magnetic energy is always smaller than the kinematic energy, proving that

the system is in a weak field regime and far from a MAC balance.

34.

Field Configuration

To figure out the effect of viscosity variation on the dynamo system, we mapped the flow fields with respect
to different E, as shown in Figure 6. Each figure contains two halves. The left-colored half represents the
axisymmetric (m = 0) toroidal flow, and the right half represents the axisymmetric poloidal flow. The re-
sults are all time-averaged outputs over one 7y The toroidal flow (u;) and poloidal flow (u,) are defined as

u=u; +u, =VxT 1l +VxVxP]1,. (14)

The left part of Figure 6 is the axisymmetric zonal component of velocity U,, the right part is the axisym-

metric streamline (¥,), defined by

-3000 -2800 -2600 -2400 -2200 -2000 -1800

15)

[/ —— |
-4000 -3800 -3600 -3400 -3200 -3000 -2800 -6600 -6400 -6200 -6000 -5800 -5600 -5400

Figure 6. Variation in the axisymmetric velocity against different values of Ekman number in the meridian plane sections when R, = 12,000. Figures 6a-6c,
in correspond to the output at different values of Ekman number: £ = 2.5x 107,5x107%,and 1.25x 107, respectively. The left-colored half represents the
axisymmetric (m = 0) toroidal flow, and the right linear half represents the axisymmetric poloidal flow.
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Figure 7. Variations in the axisymmetric magnetic field with different Ekman numbers when R, = 12,000. Figures 7a-7c, corresponding to outputs with
different Ekman numbers: E = 2.5 x 107°,5 x 107, and1.25 x 107> respectively. The left-colored half respects the axisymmetric (m = 0) toroidal field, and the
right linear half represents the axisymmetric poloidal field.

where ug is the axisymmetric velocity, s = r - sin @ is the distance from the field point to Earth's rotation
axis.

As can be seen from Figure 6, the mean flow velocity increases with E. When £ = 2.5 x 1076, the liquid iron
flow mainly concentrates on the TC's profile. As E increases gradually, the flow concentrates on the TC and
extends toward CMB on the equator plane. These two features are both reflected in the toroidal flow (left
half). For the poloidal flow (right half), a significant increase of flow scales can be found both inside and
outside the TC.

The axisymmetric magnetic field is shown in Figure 7. As can be seen, for the toroidal field, it could be
locally strong, especially inside the TC, though the system is in a weak field regime as a whole. The toroidal
field strength decreases and tends to concentrate in the TC with increasing of E. There appears no signif-
icant difference for the poloidal magnetic field, and the dipolar field outside CMB (where only a poloidal
field exists) all dominate.

3.5. Numerical Results of a Quasi-MAC Regime

Our R, = 12,000 results are all proven to be in the weak field regime. To study the strong field mode, we
gradually increase R, and two typical values, R, = 30,000 and 50,000 are selected and listed in Table 3. Dy-
namo simulations at higher R? consumed more computational cost to evolve, thus fully developed results

g?tlt);l)zs Results With Different Values of Ekman Number Under the Strong Field
Ekman u B (€] L, lg lo

R, = 30,000 5.00e—06 362 1.4464 0.0907 0.0811 0.0640 0.3800
6.00e—06 337 1.4593 0.0907 0.0790 0.0625 0.3791
8.00e—06 381 1.4918 0.0909 0.0934 0.0660 0.3765
1.25e—05 382 1.4088 0.0910 0.0997 0.0661 0.3750

R, = 50,000 2.50e—05 364 1.9885 0.0922 0.0952 0.0657 0.3619
5.00e—05 390 1.8377 0.0923 0.1127 0.0681 0.3612
1.25e—04 424 1.2897 0.0924 0.1353 0.0613 0.3617
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Figure 8. Variations of fields and their typical scales with E for R, = 30,000 and R, = 50,000. Different lines and
colors represent different fields and forces, as shown in the legend.

are not many here. Compared to results of R, = 12,000 in Table 1, when R, increases, significant variations
appear in both of B and u: B increases by about five times but u decreases by over an order, which mani-
fests energy transfer and conservation (not rigorous since there are also variations in input and dissipated
energy). As for variations with E, u, and /, appear monotonically increase while B appears monotonically
decrease for R, = 50,000, but all of them vary nonmonotonically for R, = 30,000. @ increases slightly and

monotonically, and /, [ fluctuate with E for both of two R;f .

Figure 8 shows variations of the fields and their typical length scales with E. The exponential relationship
between u and the E (viscosity) is

i = 0.60 x (1 +2.02¢3 x E‘“O)(Ra = 30,000), (16)
u =032 x (1 +3.25¢3 x E° ‘“)(Ra = 50,000). 17

The exponential factor is about 0.10 for both equations, which is much smaller than that for the weak
field regime (0.52). This suggests that the influence of viscosity on the velocity field is much little under a
stronger field. The impact of E on B when R, = 30,000 is as small as that in the weak field regime. While
R, = 50,000, B is significantly weakened with E, the association factor is
—0.20. The relationship between /, and E for R, = 30,000 and R, = 50,000

are, respectively
100 1
; I, = (6.16c - 4) (1 +1.00e4x E°%) (R, =30,000),  (18)
I
£ — = I, = (936 —4)x (1 +1.00e4 x E“Z)(RU = 50,000). (19)
£ 1o 1 . .
®© Next, we check the force balance, taking R, = 50,000 for example. First,
cqf the Elsasser numbers (A = B?) are 0(1) (from 1.6 to 4), which indicates
I 1 —orele that the system may be in a strong field regime. Second, we calculated
e the RMS values of the local forces defined by Equation 10 and normal-
2 ‘ ‘ ric ized all of them by F.. The results are shown in Figure 9. As can be seen,
10 2 8 10 12 x10° rvc increases monotonically with £ and the other three force ratio fluc-
Ekman tuate. With increasing of E, rvc varies from ~15% to 50%. rmc and rvc are
always comparable to each other, and they are about 20%. ric is as small
Figure 9. Relative forces for different £ when R, = 50,000. Different as 5%, which indicates that inertial plays a tiny role in the force balance.
colors represent different forces, as shown in the legend, of which the According to the above variances of force ratios, Figure 9 is divided into

forces are normalized by F, rme = F; / F, rac = F, | Fp, rve = F, [ F,

and ric = F; / F.

three regions: I-MAC, where the ageostrophic F. is mainly compensat-
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Figure 10. Snapshots of effective Elsasser number A (right in Figure 10a) and effective Rayleigh number R (left in Figure 10a) for R, = 50, 000 and
E = 2.5x10". Figure 10b shows the distribution of A with grid points at different r, 6, and Figure 10c shows the histogram distribution of A.

ed by F, + F;; II-MAVC, where the ageostrophic F is mainly compensated by F + F; + F, and III-VC,
where the ageostrophic F is mainly compensated by Fy. As E decreases toward the real value, the system
is expected to be more close to a MAC state, which is consistent with geodynamo theoretical consensus.

We call the two solutions for R, = 50,000 (E = 2.5x107° and 5x 107) in

26 . ‘ . ‘ a quasi-MAC state, since Fy still plays a role but will turn into more and
—e— Numerical results more insignificant with decreasing of E.

247 ——Fitted curve | ) ) . .
9 | Third, the local quasi-MAC balance is checked by the effective Elsass-
er number A and effective Rayleigh number R defined in Equations 11
20 1 and 12. Results are shown in Figure 10. As can be seen, the ageostrophic
<18 i Fc is mainly compensated by F; near ICB, by F, near CMB, and by fy
w near the rotational axis (refer to Figure 9). Figure 10b shows that large A
LIJE 16 | distributes at ICB and some part of CMB, while Figure 10c shows that A

14
12
10

1 has a typical value of ~0.2.

Lastly, we check the energy density ration E,, / E,, as defined by Equa-
i tion 13, using the RMS u and B listed in Table 3. The result is shown
in Figure 11. As can be seen, when E increases from 2.5x 107 to

1.25x 107, the energy ratio decreases from 23.9 to 7.4. As E varies, the

-5
2 4 6 8 10 12 x10 magnetic energy is larger than the kinematic energy by about an order.

This again proves that the system is in a quasi-MAC balance. If E de-
Figure 11. The ratio between magnetic energy density and kinematic creases to the real value, this ratio is expected to become even larger, con-
energy density for R, = 50,000. Red and black lines are for numericaland  Sistent with MAC's theoretical predictions or strong field dynamo regime
fitted results, respectively. (Schaeffer et al., 2017).
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4. Discussions

The outer core flow increases with viscosity, especially under a weak field, significantly different from the
hydrodynamics system's general concept. Previous studies on geodynamo proposed the same conclusion.
Here, we discuss the similarities and differences with previous studies and analyze the variation mechanism.

4.1. Influence of Viscosity on the Critical Driving Force and Flow Scales

The fluid motion in the outer core is strongly affected by Earth's rotation, and the rotation, therefore, induc-
es a fundamental change in the dynamo pattern of the outer core. The leading-order momentum equation
is the geostrophic equilibrium (which can also be seen in Figure 3, where Coriolis forces dominate through-
out), where only Coriolis forces and the pressure gradient are retained for Equation 8

1. xu=-VP. (20)

z

Taking the curl of both sides of Equation 20, we have

ou
—=0. 21
P (21)

This shows that dynamo flow is essentially two-dimensional and is constant along the rotation axis, namely
the Taylor-Proudman (T-P) theorem. Taylor (1963) first proposed that the convection pattern is a series of
parallel cylindrical convection rolls parallel to the rotation axis and rotating along the rotation axis. Howev-
er, in a closed spherical system, this form of flow can neither transfer heat to the outside nor maintain the
dynamo process. Therefore, the T-P constraint must be broken so that the governing equation's first-order
term is ageostrophic. To study the influence of viscosity alone, by neglecting F,, F, and F; (e.g., Region IV in
Figure 3 and Region III in Figure 9), taking the curl of Equation 8 and obtaining the vorticity equation, and
taking the radial component of the vorticity equation, then we obtain
ou,

L~ =FE1, - Vo, (22)
0z

where @ = V x u is vorticity. From Equation 22, it is apparent that, under the u, = 0 boundary conditions,
larger £ will result in larger #,. This may partly and qualitatively explain why u increase with E or v. u is also
affected by other velocity components, together with the vorticity in the right-hand side of the equation and
other forces. Therefore, u does not exhibit a simple proportional relationship with E.

From another point of view, increasing the viscosity help break the T-P constraint by lowering the critical
Rayleigh number R, , Which marks the critical driving force for thermal convection in a fast-rotating sys-
tem. Chandrasekhar (1981) introduced the steady state rotational thermal convection theory and presented
that

71 5 2/3
R, =3E 3[”7] . (23)

Since the definition of R, is different from MoSST, so Equation 23 can be derived as R, ~ v Bor R, ~E o,
Roberts and Chandrasekhar (1968) then deduced that R, = O( EY3 ) Later on, with their numerical simu-
lations of R, and £, Kuang and Bloxham (1999) proposed that R, ~ 10.1E 3 and Roberts and King (2013)
proposed that R, =~ 8.696E 13, All these results indicate that convection occurs more easily with increasing

viscosity. Meanwhile, core convections also become more active with larger E.

ony ~ E'°H, where
H = r, —r; is the spherical shell thickness (Aurnou et al., 2015; Chandrasekhar, 1981; Johnson & Consta-
ble, 1998; Roberts & King, 2013). Figure 12 shows the sketch map of convection roll diameter /,,, and the

Some studies have also analyzed the convective roll diameter /.,,, and found that/
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Figure 12. Distribution of radial velocity u,on the equatorial plane (R, = 12,000, E = 2.5 x 10™°). The red and blue stand in different velocity directions. The
convection columns are paralleled to the TC, which is shown on the right. TC, tangent cylinder.

previously mentioned TC in the right. Using our results of R, = 12,000 (referred to Figure 2), the increase
of viscosity facilitates the flow velocity and stretches fluid flow in the outer core.

Although researches on E through R, and]

.ony are many, only King and Buffett (2013) provided a quan-
titative result on the effect of £ on u by u ~ C"E'"® . However, this result cannot be simply interpreted
as the direct relationship between velocity and viscosity in the outer core because their work is based on
R, ~ C"2E", where R, = ul / v is the Reynolds number and C = PH® / Ap, is the convection energy. If
we assume that P and A are independent of v, we can derive: u ~ v~ V6. This inference contradicts to the
dynamo system. Therefore, the most significant contribution of this study is that it provides the only direct

and reliable quantitative relationship between x and v to date by fitting numerical dynamo data.

The variation of with v is weaker than other studies, especially under a weak field (exponential fac-
tor = 0.12). The convective column results from the ideal approximation, and realistic dynamo convection
is complex and affected by various forces. It can also be seen from the distribution of u, on the equatorial
plane, as shown in Figure 12, where convection rolls are elongated and twisted in the radial direction. They
are no longer an ideal cylindrical shape, and their spatial scale could not be simply represented by the di-
ameter of convection rolls anymore.

When the T-P constraint is broken, the convection becomes quasi-three-dimensional. There is a radial com-
ponent, whose amplitude is only 2% of u,, (referred to Figure 6). Stress-free boundaries lead to larger zonal
flows, so it might also explain why our results differ from others researches in that most studies use the
no-slip boundaries conditions, which will be affected by the Ekman layer (Wicht & Sanchez, 2019; Yadav
et al., 2016). However, this 2% radial portion is critical to the generation and maintenance of the geodynamo
process. Were it not for this small %, the heat cannot be transported outside, and the flow will degenerate
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into two-dimensional. According to Cowling's (1933) antidynamo principle, two-dimensional flow cannot
maintain the dynamo process.

4.2. The Role of Viscosity on the Magnetic Field and Flow Field

Next, we focus on the determining factors for the magnitude of the magnetic field. As is mentioned, geody-
namo is speculated to operate at a strong field regime, such that B satisfies A ~ 0(1). In this situation, the
force balance determines the magnitude of B. Starchenko and Jones (2002) proposed that it is rather the
driving force and force balance than diffusion coefficients that determine the flow velocity and the mag-
netic field. Christensen and Aubert (2006) assumed that the diffusion effects do not play a major role in the
governing equations, and they found that the available energy (represented by the flow Rayleigh number
RaQ ), rather than the force balance, determined the magnitude of the magnetic field. Christensen (2010)
summarized scaling laws for the magnetic field and proposed that the magnitude of B depended on the
available energy flux, which could overcome the ohmic loss. They argued that rotation only determines
whether a dipole field is generated. Jones (2011) also used the RaQ concept to provide an estimation of the
velocity field and the magnetic field.

In this study, under the weak field regime (R, = 12,000), the magnetic field B only changes by 22.3% when
E varies by two orders of (6 x107 < E <5%x107 ) which partly supports the conclusion that the magni-
tude of B is not strongly associated with viscosity. While when, the magnetic field is annihilated, indicating
that v has a significant impact on magnetic field generation upon a critical point (via R to R,"). E < 6 x 1077
For quasi-MAC regime, the magnetic field decreases significantly with (decreases by 35.4% as E is 5 times
larger), and the increase of flow is also noticeable (16.5%), indicating that the influence of viscosity on the
flow and magnetic field cannot be ignored.

4.3. The Role of Viscosity on Geodynamo Force Balance

Geodynamo is expected to run in the MAC state. The existing geodynamo simulations can explain a couple
of observations in principle. Those model parameters adopted in simulations are still far from physical. It
leads to active arguments on whether existing geodynamo models can run in a good regime representing
the physical Earth. After checking the exact force balance or fitting the numerical data, studies showed
that viscosity, instead of the magnetic field, plays a major role in the force balance for most of the existing
geodynamo simulation results (King & Buffett, 2013; Oruba & Dormy, 2014; Soderlund et al., 2012). Most
existing dynamo models are, in fact running in VAC, not MAC balance (Yadav et al., 2016), and a real MAC
state is hard to reach except using a more physical parameter (e.g., R, = 5,000R’, E = 107") and simulating
at very high resolution (Aubert, 2019; Schaeffer et al., 2017).

Variations of v can bring substantial changes to the force balance. In the weak field regime, as is shown in
Figure 3, as E increases, the system gradually transfers from CIA mode to VC mode. CIA mode may result
in a strongly driven but nonmagnetic system or multiple dynamo regimes (Soderlund et al., 2012). When
E>3x10°F, grows more and more obvious in the force balance. Though fluctuates with E, F; is always
fairly weak (Figure 3), rendering it only plays a minor role in the force balance, and the dynamo state is
far from a MAC balance (Figure 4). The energy ratio between E,, and E; increases as E decreases, while
we always have E,, < E, in our parameter space (Figure 5). In the quasi-MAC regime, as E increases, the
system transfers from a quasi-MAC mode to VC mode (Figure 9). When E > 5 x 1073, Fr grows more and
more important in the force balance. When E < 5 x 107, the system enters into a quasi-MAC regime, ver-
ified by the force ratio distribution (Figure 9), the local effective R and A distribution (Figure 10), and the
energy ratio (Figure 11). As E decreases toward the real value, F; plays a more and more important role in
core dynamics, and the system is expected to evolve into a real MAC regime, as is estimated theoretically.

The exponent of scaling relation of » and v decreases from 0.52 for R, = 12,000 (Figure 2) to 0.10 for
R, = 50,000 (Figure 8), which indicates that the effects of viscosity on fluid velocity is much smaller for
strong-driven and in the quasi-MAC regime than the weakly driven and in the weak field regime. The
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reason is not that the relative important of F;, is smaller in a quasi-MAC balance (compare Figure 3 with
Figure 9), but that F; enters into the first-order ageostophic balance (Figure 10) and replaces F;, and much
of the kinematic energy is transferred into the magnetic energy (compare Figure 5 with Figure 11).

4.4. The Effect of the Hyperdiffusion Assumption

Hyperdiffusion could be avoided, while the temporal and spatial resolution must be improved. To improve
the computational efficiency, especially simulate at high R, and low E, hyperdiffusion is retained in this
study. Hyperdiffusion mainly suppresses the development of small-scale convection and has no significant
effect on large-scale flow, which is one of the major reasons that the typical spatial scale of various physical
fields is all large in our simulations. Researches on the influences of hyperdiffusion are many. For example,
Zhang and Jones (1997) found that hyperviscosity significantly increased the equivalent Ekman number
and changed the convection kinetics. Grote et al. (2000) concluded that hyperdiffusion could affect the
magnetic field generation mechanism and even reverse polarity.

In our simulations, we choose [, = 4,¢ = 0.05 in Equation 3. To give a proper quantification of the hyper-
diffusion and implication to the scaling laws and get a clear understanding of the hyperdiffusion effects on
the MoSST model, a general assessment is made in this work.

To obtain quantitative properties and provide quantified “large-scale patterns” which will be used to derive
the scaling laws, we should find the highest spherical harmonic degree L”, above which the hyperdiffusive
effect will be dominant. Only use the part of the solutions with spherical harmonic coefficients of degrees
I < "inour analysis. With this approach, we would hope to find asymptotic behaviors of the “large-scale”
dynamo solutions. Then we can see the effective Ekman number £ to account for the hyperdiffusivity used
in the simulation, and derive the scaling laws with respect to E”.

The relative importance of the hyperdiffusivity for large-scale solutions (I < L") can be described by the
ratios of the following viscous dissipation terms,

"2 ] 2 m 2
E} = -Eldr [Z il jl) Ia;' + ](Zjl) virob, (24)
0<m<l r r ‘ r
, HOPe1) Joop|  11+1)) e
=gl 3 = o 25)
0<ms<i T or r
» AP e (i) e
Ep =—Eldr > a(l) 2 I e + 5 b (26)
0<m<l r ¥ ‘ r
H 2 l 2 J i 2
Ef = —Eldr [Z a(l)l ( Il) }6;)’ Z(ljl) o ’ , 27)
0<m<l r 1 r ‘ r

where v/" and " are the poloidal and toroidal spherical harmonic coefficients of degrees ! and orders m,
respectively.
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The maximum degree L” can then be determined if the ratios

Table 4
The Values of the L and Effective Ekman Number E™ p= ‘(E}JH + E'TH) / (E}; + E‘T) < 0.1, to make sure the hyperdiffusion is
R - E' L of secondary importance. The effective Ekman number E can also be
Rq = 12,000 (Ul LD g calculated based on Equations 24-27:
8.00E—07 1.99E-5 6
1.00E—06 2.06E—5 6 g E;H + E;—"! + E; + E} . 28)
1.25E—-06 2.22E-5 6 E}) +E}
2.00E—06 2.79E-5 5
2.50E—06 4.12E—5 6 The I and E” are calculated and listed in Table 4. As can be seen, in
4.00E—06 5 79F—5 ; the weak field regime, the effective Ekman numbers are overall 10 — 30
times the Ekman numbers used in the analyses as mentioned earlier.
5-00E~06 8.46E=5 7 Though this will affect the quantitative results for each E, it would not
6.00E—06 L13E—4 6 change the whole regularity (e.g., the exponential in the scaling law).
8.00E—06 1.41E—4 6 The effects of hyperdiffusion are equivalent to multiply each E in our
1.00E—05 2.81E—4 6 scaling laws by a factor of ~20. The maximum degree for hyperdiffusion
1.25E—05 4.75E—4 5 L' is about 5-7, and scales smaller than these (I > LH) will be affected
2.00E—05 8.08F—4 6 substantially. These effects should be kept in mind for references to this
2.50E—05 1.00E—3 ¢  Study
5.00E—05 2.14E-3 7
R, = 30,000 5.00E—06 2.14E—4 5 5. Conclusions
6.00E—06 2.58E—4 6
To systematically study the effects of viscosity on the geomagnetic field
8.00E—-06 3.44E—-4 6 . .
dynamo both in a weak and strong field, we adopt the newly developed
LRl R 6 MoSST model to perform numerical experiments on the dynamo process.
R, = 50,000 2.50E-05 L.08E-3 6 The advantage of the MoSST model is that, since the magnetic diffusion
5.00E—05 2.15E-3 6 time is used as the typical time scale, v is only included in E, making the
1.25E—04 5.38E—3 6 variation of E equivalent to that of v. Major conclusions reached through
our numerical investigations are as follows
1. The role of core viscosity on dynamo is non-negligible and different for weak field and quasi-MAC re-

gime. In a weak field regime, variations of v may affect the fluid velocity and its typical length scale
(Figure 2), the force balance (Figure 3), energy ratio (Figure 5), configurations of flow (Figure 6), and
magnetic field (Figure 7). The magnitude of B is not so sensitive to v. While in the quasi-MAC regime,
the effect of v on u and /, is much smaller, but B decreases fast with v (Figure 8). The force balance varies
solely with the relative importance of £, (Figure 9).

As v decreases toward the real value, the dynamo system involves into CIA balance for the weak field re-
gime and MAC balance for the quasi-MAC regime. Our scaling relations are different from existing scal-
ing laws not only in the scaling form but also in the exponent. For example, in a CIA state, former studies

(King & Buffett, 2013) gave u ~ E®2 while we gotu = 0.11 x (1 +1.43¢7 x E* ) for the weak field regime.

By contrast, in a MAC state, former studies gave u ~ E*° while we got u = 0.32 x (l +3.25¢3 x E‘“O) in
the quasi-MAC regime.

. The drop of fitted exponent from 0.52 for the weak field to 0.10 for the quasi-MAC state is not attributed

to the relative importance of Fy, becomes weaker (comparing Figures 3 and 9), but because that F; in-
stead of F; plays a more important role in the latter regime.

There are limitations in this study. When changing the value of E and R,. The other two-dimensionless
parameters (R, and 4x) are kept constant. Changes in them may quantitatively affect the conclusions drawn
here. Solutions of the quasi-MAC state maybe not sufficient, and the resolutions need to be improved.
Hyperdiffusion still has effects on core dynamics especially for smaller length scales (I > 7). We will aim to
solve these in future research.
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