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The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency
of intensity and irregularities. The change tendency may be related to the occurrence of earthquake dis-
asters. Forecasting of the underlying intensity trend plays an important role in the analysis of data and
disaster monitoring. Combining chaos theory and the radial basis function neural network, this paper
proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying
intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal. The main strategy
of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neu-
ral network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data. In verifi-
cation experiments, we employ the 3 and 6 days’ data of two channels as training samples to forecast
the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively. According to the forecast-
ing results and absolute error results, the chaotic radial basis function forecasting model can fit the fluc-
tuation trend of the actual signal strength, effectively reduce the forecasting error compared with the
traditional radial basis function model. Hence, this network may be useful for studying the characteristics
of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can
contribute to the electromagnetic anomaly monitoring before the earthquake.

� 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

The Earth’s natural pulse electromagnetic field (ENPEMF) refers
to the primary and secondary electromagnetic fields that are gen-
erated by natural field sources that can be received at the surface
(Hao et al., 2018). Malyshkov and Malyshkov (2011) proposed that
the ENPEMF was not only generated by the atmosphere but also
closely related to earthquakes. In a time period that ranges from
a few hours to a few days before an earthquake, the number of
pulses will suddenly increase and subsequently decrease
(Malyshkov and Malyshkov, 2009). The number of pulses is corre-
lated with the season, the time, the earthquake intensity, and the
occurrence distance. The ENPEMF signal can be regarded as the
transient disturbance of the Earth’s natural changing magnetic
field. The seismogenic information generation mechanism of the
ENPEMF signal is shown in Fig. 1. Based on the theory of ‘‘tectonic
magnetism”, the ENPEMF signal carries a substantial amount of
useful information about the geological structure and its dynamics
(Vorobyov, 1979). During a geological disaster, the ENPEMF will
exhibit severe anomalies, which may be helpful for electromag-
netic anomaly monitoring before earthquakes (Malyshkov and
Dzhumabaev, 1987).

Earthquake forecasting research has great significance on scien-
tific and social sectors, especially in areas with frequent earth-
quake disasters, such as Japan and the Philippines. In recent
years, some Japanese scientists have carried out effective monitor-
ing of earthquake electromagnetics in Low-Frequency (LF) electric
fields and directional observations of High-Frequency (HF) multi-
ple intersections. At the beginning of 2000, two dense geomagnetic
arrays established on the Izu Peninsula and Boso Peninsula in Japan
provided important source data for studying the evolution of elec-
tromagnetic signals during the Izu earthquake and volcanic activ-
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Fig. 1. The seismogenic information source mechanism.
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ity. Preliminary results indicated that synchronous anomalous
changes in some electromagnetic signals, including geoelectric
and geomagnetic fields, were detected before the Izu earthquake
and volcanic activity in 2000. The internationally renowned geo-
physicist Ueda et al. (2014) discussed the development history
and current status of earthquake forecasting insights from the elec-
tromagnetic phenomenon in Japan. Yuan et al. (2014) studied the
progress of seismic electromagnetic observations and the electro-
magnetic precursor information focus on the United States region.
The conclusion shows that observing in-depth the phenomenon of
electromagnetic anomalies before the earthquake may be a possi-
ble means for exploring earthquake forecasting. Hattori et al.
(2013) and Han et al. (2014, 2017) found that the pulse wave gen-
erated by the earthquake was extremely abnormal before the
earthquake, which could be used to forecast the earthquake.

Forecasting the intensity trend of the ENPEMF signal is of sub-
stantial importance, and the related research is still in the early
stages of scientific investigation. The most primitive ENPEMF sig-
nal intensity forecasting method uses mainly statistical methods
for calculation and evaluation. The signal intensity before a strong
earthquake is influenced by various complex factors, and the calcu-
lation processes of statistical methods are complex (Leung et al.,
2001). With the development of information technology and big
data, the forecasting model of the ENPEMF signal intensity before
an earthquake is evolving into a highly interesting question, which
may touch upon automation technology, artificial intelligence, and
machine learning, among other areas.

In recent years, a variety of methods have been used for earth-
quake forecasting, such as the adaptive nonlinear filtering forecast-
ing method (Zhang and Xiao, 2000), the support vector machine
(SVM) method (Cui et al., 2004), and the neural network method
(Chen et al., 2012). The radial basis function (RBF) neural network
can simulate an artificial neural network and realize strong nonlin-
ear approximation performance (Li and Lv, 2014). The RBF has been
widely used in applications for radar, sea clutter, geology, dams,
image processing, and other fields. Liu et al. (2020) utilized the
backpropagation (BP) neural network algorithm and RBF neural
network algorithm to analyze and control the collision response
of the urban bridge adjacent beam and pier beam under a strong
earthquake. Bagheri et al. (2019) developed three models including
2

logistic regression (LR), a multilayer perceptron artificial neural
network (MLP), and an RBF artificial neural network to predict
the possibility of seismic rockfalls on a regional scale. A compara-
tive evaluation of Multilayer Feedforward Perceptron (MFP) and
RBF neural networks’ ability for instant estimation of r/c buildings’
seismic damage level was done in a prevous study. Wu et al. (2018)
proposed the investigation of the Tikhonov regularization method
in regional gravity field modeling by Poisson wavelets radial basis
functions. Hong et al. (2018) presented a comprehensive area
expansion prediction index method to apply the Global Navigation
Satellite System (GNSS) for short-impending prediction of earth-
quakes. Xu et al. (2017) employed the chaotic characteristics of
IPIX radar sea clutter data and studied the method of using an
RBF-based self-adaptive fuzzy neural network for weak target
detection against a chaotic background. Hou (2016) presented a
method that is based on the space–time chaos of image sequences
for the detection of small targets in sea clutter. The RBF neural net-
work is used to reconstruct a dynamic model of sea clutter, and it is
applied to forecast and cancel sea clutter. Dai and Chen (2016)
developed a forecasting model for dam monitoring that utilizes a
sequence wavelet RBF neural network that is based on chaos.

Forecasting of the ENPEMF signal variation tendency is chal-
lenging due to the chaotic and non-stationary characteristics. We
propose a forecasting model that is based on chaos theory and
the RBF neural network algorithm, which is named the chaotic
RBF neural network. We obtain the effective embedded dimension
and delay time for the reconstruction of the phase space of the
ENPEMF data collected from the Lushan Ms7.0 earthquake. The
obtained parameters are used as a basis for optimizing the RBF
neural network. We employ the chaotic RBF neural network to
forecast the ENPEMF intensity trend and compare the result with
that of the traditional RBF neural network.

The Lushan Ms7.0 earthquake occurred on April 20, 2013. Its
rupture zone is located in 29�280N–30�560N, 102�160E–103�110 E,
and the total area is 42,786.05 km2. The location of the earthquake
and the seismic station is indicated by the red point and the green
point in Fig. 2. During this period, the GR-01 type equipment at the
Wuhan Jiufeng Mountain Seismic Station had received the ENPEMF
signal. We have placed three GR-01 receiving devices in the East-
West direction (W–E) and North-South direction (N–S) of the



Fig. 2. Location of the Lushan earthquake and seismic station on April 20th, 2013.

G. Hao, J. Guo, W. Zhang et al. Geoscience Frontiers 13 (2022) 101315
Wuhan Jiufeng seismic station, which could collect the ENPEMF
signals on the Earth surface. We set the appropriate amplification
threshold according to the envelope size and curve shape from
the data obtained, which is designed to avoid the saturation distor-
tion of the waveform and reduce the difficulty of identification. In
this section, the number of pulses (NH) data from the CN2 and CN3
from April 1 to April 28 is chosen as the analysis target. The sample
rate of the signal is 1 s, there are 86,400 data in the whole day we
adopted the squared average method to compress the data prop-
erly, which could help to keep the envelope and reduce the loss.

2. Chaos theory

2.1. Chaos parameter selection and calculation

With the development of chaos theory (Lorenz, 1969), in the
early 1980s, Packard et al. (1980) proposed phase space recon-
struction theory (PSRT). Since then, researchers have analyzed
and studied chaotic temporal sequences. They proved that the
phase space of the system can be reconstructed from a single time
series. If the dimension of the delay coordinate is appropriate, we
can find a suitable embedded dimension m for the phase space
reconstruction of the signal. In the embedded dimension space,
we can recover the regular trajectory attractor and preserve the
differential homeomorphism with the motive power system
(Kugiumtzis, 1996). PSRT is a prerequisite for the study of nonlin-
ear dynamics of time series. The main processes of the chaotic sys-
tem properties must be conducted in the phase space, such as the
calculation of the parameters, the discrimination, and the estab-
lishment of the forecasting model. The performance of PSRT
directly affects the subsequent analysis.

Recent studies have shown that the main factors affecting the
quality of phase space reconstruction are the selection of delay
time and embedding dimension. Kim et al. (1999) proposed the
correlation integral calculation (C–C) method, which could simul-
taneously estimate the delay time s and the width of the embed-
ded window sx by using the correlation integral and then obtain
the embedded dimension m according to sx ¼ m� 1ð Þs.

We assume the time series of ENPEMF is q tið Þf g:
q tið Þ ¼ q t0 þ iDtð Þ; i ¼ 1;2; � � � ;N ð1Þ
where t0 is the initial time and Dt is the sampling interval, N is the
number of time-series data points. With suitable delay timesand
embedded dimension m, the intersequence q tið Þf g is extended to
a phase distribution of m-dimensional phase space Q tið Þf g:

Q tið Þ ¼ q ti þ m�1ð Þs
� �

; i ¼ 1;2; � � � ;M ð2Þ
3

Q tið Þf g ¼ q tið Þ; q ti þ sð Þ; � � � ; q ti þ m�1ð Þs
� �� �

; i ¼ 1;2; � � � ;M ð3Þ
where s is the delay time, m is the embedded dimension. Each col-
umn constitutes a phase point in the m-dimensional phase space.
Each phase point has m components. The number of phase points
is M ¼ N � m� 1ð Þs, where N is the number of time-series data
points. The line connecting theM phase points can describe the evo-
lutionary trajectory of m-dimensional phase space, and the recon-
structed phase space is equivalent to the original system in terms
of topology.

The correlation integral of the embedded time series is defined
as the following function:

C m;N; r; tð Þ ¼ 2
M M � 1ð Þ

X
1�i�j�M

h r � dij
� �

; r > 0 ð4Þ

where, dij ¼ k Q tið Þ � Q tj
� � k. If r � dij < 0, then h r � dij

� � ¼ 0. If
r � dij > 0, then h r � dij

� � ¼ 1.
In this method, we use the correlation integral of the series to

construct the statistics, which represent the correlation of the non-
linear time series. The relationship between the statistics and the
delay time is used to determine the optimal delay time s and the
width of the embedded window sx, to determine the embedded
dimension m. The statistic is defined as:

S m;N; r; tð Þ ¼ C m;N; r; tð Þ � Cm m;N; r; tð Þ ð5Þ
The time series q tið Þf g; i ¼ 1;2; � � � ;N is divided into t disjoint

time series. When t ¼ 1, it is a single time series itself; when
t ¼ 2, it is q t1ð Þ; q t3ð Þ; � � � ; q tN�1ð Þf g and q t2ð Þ; q t4ð Þ; � � � ; q tNð Þf g, and
the length is N=2. For the general natural number t, we can get:

q t1ð Þ; q ttþ1ð Þ; q t2tþ1ð Þ; � � �f g
q t2ð Þ; q ttþ2ð Þ; q t2tþ2ð Þ; � � �f g

� � �
q ttð Þ; q t2tð Þ; q t3tð Þ; � � �f g

ð6Þ

where the length is l ¼ N
t . After dividing it into t disjoint subse-

quences, the statistic of each subsequence is defined as:

S m;N; r; tð Þ ¼ 1
t

Xt
s¼1

Cs m;N=t; r; tð Þ � Cm
s 1;N=t; r; tð Þ� � ð7Þ

When N ! 1, the statistic of each subsequence is:

S m; r; tð Þ ¼ 1
t

Xt
s¼1

Cs m; r; tð Þ � Cm
s 1; r; tð Þ� �

;m ¼ 2;3; � � � ð8Þ

And then we define the maximum deviation with respect to r:

DS m; tð Þ ¼ max S m; rj; t
� �� ��min S m; rj; t

� �� � ð9Þ



Fig. 3. RBF neural network structure of traditional study.
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In general, there is a certain range of choices for N, m, and r.
When 2 � m � 7; r=2 � r � 2r; N � 500 (r refers to the mean
square deviation or standard deviation of the time series), the
asymptotic distribution can be well approximated by the finite
series and S m;N; r;1ð Þ can represent the correlation of the series.
In specific calculation, we often take m ¼ 2;3;4;5;6;7,
ri ¼ ir=2; i ¼ 1;2;3;4, N ¼ 3000. We calculate the following three
statistics:

S
�

tð Þ ¼ 1
16

X7
m¼2

X4
j¼1

S m; rj; t
� � ð10Þ

D S
�

tð Þ ¼ 1
4

X7
m¼2

DS m; tð Þ ð11Þ

Scor tð Þ ¼ D S
�

tð Þ þ S
�

tð Þ
��� ��� ð12Þ

We utilize the C–C method to automatically search for the first

zero of S
�

tð Þ in Eq. (10) or the first minimum value of D S
�

tð Þ in Eq.
(11), to find the first local maximum of the ENPEMF time series,
which corresponds to the delay times. At the same time, we calcu-
late the minimum value of Scor tð Þ in Eq. (12) to obtain the first over-
all maximum time window t of the time series, which is the
optimal embedded window width sx. Then, the value of the opti-
mal embedded dimension m is determined by sx ¼ m� 1ð Þs.

A dynamical system with the same topological properties as the
original system can be reconstructed in the phase space by select-
ing suitable delay time s and embedded dimension m. Therefore,
the internal nonlinear chaotic system of the ENPEMF can be
restored via PSRT. Then, we use the chaotic RBF neural network
to forecast the ENPEMF time series.

2.2. Chaotic recognition of ENPEMF time series

A chaotic time series is a univariate or multivariate time series
that is generated by a chaotic dynamical system, which typically
exhibits chaotic disorder features that are similar to random noise
due to its inherent chaotic characteristics (Kim et al., 1999). How-
ever, a chaotic time series and the corresponding chaotic system
follow an inherent correlation law, which is not as random as it
seems to behave. The ENPEMF signal is a typical non-stationary
signal due to its complex field source and internal information.
To apply a chaotic time series analysis method to ENPEMF forecast-
ing, it is extremely important to determine whether the ENPEMF
sequence has chaotic characteristics. Rosenstein et al. (1993)
improved the Wolf method based on the strategy of orbital track-
ing and proposed a small-data-volume method for calculating the
maximum Lyapunov exponent, which is an important basis for
judging whether the ENPEMF signal has chaotic characteristics.

The maximum Lyapunov exponent calculation steps by the
small-data-volume method are as follows:

(1) For the ENPEMF time series, we employ the correlation inte-
gral calculation (C–C) method to calculate the delay time s and the
embedded dimension m, and we utilize the fast Fourier transform
(FFT) method to analyze the signal spectrum and calculate the
average period. The C–C method is to simultaneously determine
the characteristic quantities s and m, which can meet the require-
ments of phase space reconstruction of the system.

(2) We reconstruct the chaotic dynamical system
qj; j ¼ 1;2; � � � ;N� �

based on the delay time and the embedded
dimension.

(3) We find the nearest adjacent point qĵ that is common to each
point qj in the phase space, and we restrict the separation distance
as follows:
4

Dj 0ð Þ ¼ mink qj � qĵ k; j� ĵ
��� ��� > sp ð13Þ

where sp is the average period of the time series.
(4) For each point qj in the reconstructed phase space, we calcu-

late the distance Dj ið Þ of the neighboring point qĵ after i discrete
time steps, as expressed in Eq. (14):

Dj ið Þ ¼ qjþi � qĵþi

��� ���; i ¼ 1;2; � � � ;min N � j;N � ĵ
	 


ð14Þ

(5) We assume that the nearest neighbor of the i-th point in the
phase space is approximately divergent at the maximum Lyapunov
exponential rate:

Dj ið Þ ¼ Cieki jDtð Þ ð15Þ
(6) We take the logarithm of both sides of Eq. (15) to obtain

lnDj ið Þ ¼ lnCi þ k1 jDtð Þ; i ¼ 1;2; � � � ;min M � j;M � ĵ
	 


. The equa-

tion represents a cluster of approximately parallel lines with a
slope of k1.

(7) Finally, we use the least-squares method to obtain a regres-
sion line, and the slope of the line is the maximum Lyapunov expo-
nent k1.
3. Forecasting model of chaotic RBF neural network

3.1. Chaotic RBF neural network

The radial basis function (RBF) neural network is a type of static
forward network (Billings and Zheng, 1995), which has a structure
that is similar to that of a multi-layer forward network. It includes
an input layer, a hidden layer, and an output layer. There is a non-
linear relationship between the input layer and the hidden layer,
and a linear relationship between the hidden layer and the output
layer, as illustrated in Fig. 3.

For the RBF neural network, the expression is as follows:

x pþ 1ð Þ ¼ f x pð Þð Þ ¼
Xk
i¼1

wi/i k x pð Þ � ci kð Þ ¼ WT/ ð16Þ

/i k x pð Þ � ci kð Þ ¼ exp �k x pð Þ � ci k2
2r2i

 !
; i ¼ 1;2; � � � ; k ð17Þ

where x pð Þ 2 Rk is the network input vector; f 2 R1 is the network
output vector; / �ð Þ is the Gauss function; / ¼ /1;/2; � � � ;/k½ �T is
the hidden-layer output vector; k is the number of hidden-layer
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units; ci and ri are the center and width, respectively, of the Gauss
function; and W ¼ w1;w2; � � � ;wk½ �T is the weight vector of the out-
put layer of the network. Within the framework of the RBF neural
network, the input-layer node transmits the signal to the hidden
layer. Hidden-layer nodes are composed of radial action functions
such as the Gaussian kernel functions, which apply a nonlinear
transformation through the basis function to map the input space
to a new space (Gan et al., 2009). The output-layer node realizes
the linear weighting combination in the new space.

In this paper, we propose a new chaotic RBF neural network
model by combining the chaotic optimization method with the
RBF neural network, and we apply it to ENPEMF forecasting
research. We use the PSRT principle to reconstruct the normalized
ENPEMF data after normalization. Then, we utilize a subset of the
reconstructed data to train the chaotic RBF neural network model
and conduct forecasting simulation on the remaining recon-
structed data.

Using the chaotic RBF neural network to forecast the ENPEMF
time series, the number of neurons in each layer of the neural net-
work depends on the scenario of the ENPEMF time series. The
method for determining the structure of the chaotic RBF neural
network is as follows:

(1) Determination of the input layer
Based on the chaotic characteristics of ENPEMF, the regularity

of internal changes in the system can be fully demonstrated in
high-dimensional space. Therefore, the embedded dimension m
of the system is selected as the number of input layers of the
model, and the point vector data in the phase space of the recon-
structed system are used as the input data of the system. The input
data contain the complete change law information of the system,
which can satisfy the input requirements of the system. If the num-
ber of neurons in the input layer is equal to m, the forecasting
effect is better (Lv et al., 2005; Zhang et al., 2007).

(2) Determination of the hidden layer
We select the Gaussian function KMatrix = getKRBF(X, Y, c) as

the activation function of the hidden layer, where X and Y are hor-
izontal and vertical coordinates of the data, c = 1/(2 � r2) is a
parameter. Then we invoke the neural network forecasting func-
tion net = Newrb (P, T, GOAL, SPREAD, MN, DF), where P selects a
phase-space reconstruction point vector matrix as an input sample,
and the number of corresponding input layers is m; T is the fore-
casting test sample; GOAL is the mean-square error requirement
of the forecasting model for ensuring convergence; SPREAD is the
extension speed; MN is the maximum number of hidden layers;
DF is the number of hidden layers that are added during the estab-
lishment of two adjacent networks.

Based on the training samples, forecasting samples, and error
target values, the number of hidden layers is continuously
increased via a search method until that the error between the
forecasted output value and the actual value falls below the error
value set. Finally, we obtain the expected optimal number of hid-
den layers. Based on the Gaussian function, the output of the i-th
hidden-layer node is expressed in Eq. (11):

Ri pð Þ ¼ exp �k p� ci k2=2b2
i

h i
; i ¼ 1;2; . . . ; k ð18Þ

In real programming, the selection of the performance mean–
variance (the minimum expected error) impacts the accuracy of
the output. To realize suitable precision and avoid the ‘‘overfitting”
phenomenon, we set the minimum expected error to 0.01
(Casdagli, 1989).

(3) Determination of the output layer
The forecasting model that is established in this paper is a

single-step forecasting model, the received value is the next sam-
ple of the ENPEMF signal, and the number of corresponding output
layers is 1.
5

3.2. Forecasting procedure of chaotic RBF neural network

In conclusion, the forecasting procedure of chaotic RBF neural
network is as follows:

(1) First, we conduct the previous smoothing and normalization
processes on the ENPEMF time-series data to reduce the
interference of the data factors with the forecasting results.

(2) We judge the chaotic characteristics of the collected
ENPEMF signal by calculating the Lyapunov exponent. The
calculation steps by the small-data-volume method are in
Section 2.2.

(3) The C–C method is used to calculate the optimal embedded
dimension m and the delay time s of the ENPEMF time
series.

(4) In addition to using the optimal embedded dimension and
delay time, we reconstruct the ENPEMF time series in the
m-dimensional phase space to obtain the system-space
point vector matrix.

(5) According to the selection of the parameters of each layer,
we determine the overall framework structure and construct
the chaotic RBF neural network forecasting model.

(6) We employ the training samples to train the constructed
model, finally, we use the trained model to forecast the test
samples to obtain the system’s forecasting values. The work-
flow of the chaotic RBF neural network forecasting model of
this study is shown in Fig. 4.

4. ENPEMF forecasting based on chaotic RBF

4.1. Experimental ENPEMF data

The GR-01 device produced by the Tomsk Branch of the Russian
Academy of Sciences was adopted as the ground instrument to
receive ENPEMF signals during the Lushan earthquake. We have
installed three sets of equipment (Fig. 5) on the Jiufeng seismic sta-
tion in Hubei province. The directions are W–E and N–S, and there
are three channels: CN1, CN2, and CN3. The instrument records the
number (NH) and amplitude (AH) of the ENPEMF signal pulses that
exceed the set threshold. The data can be uploaded every 4 h to the
Internet via GPRS with 6 documents per day. If the instrument
receives abnormally large-scale pulses that differ from the envel-
ope trajectory of the normal background pulses, they may contain
information about abnormal changes in the earthquake. Finally, we
convert the data into a .txt file. The operating frequency of the
equipment is in the very-low-frequency (VLF) band, namely, 5–
25 kHz, and the receiving frequency set in Wuhan is 14.5 kHz.

The ENPEMF is a non-periodic and non-stationary signal, and
the output is the signal after digital quantization. The data storage
format is the time–amplitude-pulse number (t-AH-NH) (Hao et al.,
2018), and the time unit is seconds (S). AH is the quantized pulse
amplitude that exceeds the set threshold. The amplitude unit cor-
responds to that of the data after amplification by the original mil-
livolt (mv) signal, and the amplification factor is the same among
the frequency bands. This serves as a reference for the size change
of the envelope (Hao et al., 2016). NH is the number of quantized
pulses that exceed a set threshold. Both AH and NH characterize
the strength of the surface magnetic field. Table 1 shows part of
the original NH data of the CN2 and CN3.
4.2. Forecasting results

We use the above C–C method to calculate the Lyapunov expo-
nent, which is used to determine whether the ENPEMF time series
has chaotic characteristics. Then we employ the above C–C



Fig. 4. The workflow of the chaotic RBF neural network forecasting model of this study.

Fig. 5. The ground instrument placed in seismic station.

Table 1
The original NH data of the CN2 and CN3.

18th April 19th April 20th April 21st April

Time CN2 CN3 Time CN2 CN3 Time CN2 CN3 Time CN2 CN3

00:02:43 0 0 00:02:44 0 16 03:57:46 0 0 00:02:41 5 0
00:02:44 9 1 00:02:45 10 53 03:57:47 16 0 00:02:42 0 1
00:02:45 1 5 00:02:46 15 38 03:57:48 0 9 00:02:43 1 0
00:02:46 0 0 00:02:47 53 65 03:57:49 0 0 00:02:44 9 2
00:02:47 1 0 00:02:48 222 107 03:57:50 0 0 00:02:45 0 0
00:02:48 8 5 00:02:49 12 18 03:57:51 3 0 00:02:46 3 0
. . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . . . . .. . . . . . . . .

23:59:58 0 50 23:59:58 4 5 23:59:58 4 0 23:59:58 0 19
23:59:59 40 62 23:59:59 1 0 23:59:59 2 8 23:59:59 0 0
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algorithm to automatically search for delay time s and the optimal
embedded dimension m.

The first local minimum point of S
�

tð Þ is 20, which corresponds
to the optimal delay time of s ¼ 20. The global minimum of Scor tð Þ
is the optimal embedded window, namely, sx ¼ 117. Since
sx ¼ m� 1ð Þs, we can obtain the embedded dimension m ¼ 7
6

according to sx ¼ m� 1ð Þs. Therefore, from s ¼ 20 and m ¼ 7,
the maximum Lyapunov exponent is calculated as 0.0213, which
slightly exceeds 0; thus, the ENPEMF time series has chaotic char-
acteristics and can be used for short-term forecasting.

To evaluate the forecasting performance of the established
model, we program the chaotic RBF model forecasting process in



Fig. 6. Observation NH data from April 1st to 28th (a) CN2NH; (b) CN3NH.
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the MATLAB 2018a environment. The data that are used were col-
lected during the Ms7.0 Lushan earthquake (April 20th, 2013,
Sichuan province, China). The NH data of the CN2 and CN3 from
April 1st to 28th are selected, as shown in Fig. 6.

Fig. 6 depicts the variation tendency of the ENPEMF signal of
CN2 and CN3 from April 1st to 28th. Before the earthquake,
ENPEMF data fluctuated violently. We select the smoothed and
normalized 28-day data as the experimental data. The average
daily data volume of the ENPEMF consists of 84,467 time-domain
data points. To assess the applicability of the chaotic RBF method,
we establish two sets of experiments, using the 14-day ENPEMF
data (simulation verification 1) and 21-day data (simulation verifi-
cation 2) as test samples for forecasting, respectively. Meanwhile,
in the experiments, the data of 3 days and 6 days were respectively
utilized as training samples to train the RBF neural network and
then forecast the test set, to verify the reliability and robustness
of the method.

In simulation verification 1, we select the 14-day data (April
10th to 23rd) as the test sample. The training samples are 3-day
Fig. 7. Results of the proposed chaotic RBF model and the traditional RBF through differe
(b) 3-day training samples of CN3NH; (c) 6-day training samples of CN2NH; (d) 6-day t

7

data (April 7th to 9th) and 6-day data (April 4th to 9th), respec-
tively. We construct the chaotic RBF neural network structure
based on PSRT. The input layer has 7 nodes, the output layer has
1 node, and the hidden layer has 10 nodes. The hidden-layer neu-
ron transfer function is selected as the radial basis Gauss function,
and the output is a linear function. Then, we utilize the established
chaotic RBF neural network forecasting model and the traditional
RBF neural network forecasting model to realize the single-step
forecasting of the ENPEMF data. Fig. 7 summarizes the results of
the proposed chaotic RBF neural network and the traditional RBF
forecasting model for CN2NH and CN3NH data.

Fig. 7a and c is the forecasting results of the proposed chaotic
RBF model and the traditional RBF through different training sam-
ples (3-day and 6-day) and 14-day test samples of CN2NH data.
Meanwhile, Fig. 7b and d shows the result of applying the same
settings to the CN3NH data. Both the chaotic RBF and traditional
RBF models can track and fit the fluctuation trend of actual
ENPEMF signal strength. However, the traditional RBF model fails
to fit the actual value changes well at the moment of drastic data
fluctuation, resulting in a large forecasting error. The proposed
chaotic RBF algorithm has good tracking performance and a better
fitting effect for the overall ENPEMF signal fluctuation trend in
comparison with the traditional RBF model.

To evaluate the forecasting effect of the proposed chaotic RBF
model, we select the absolute error as the evaluation index of fore-
cast accuracy for ENPEMF data, as shown in Fig. 8. The overall fore-
casting error of the proposed chaotic RBF algorithm is smaller than
that of the traditional RBF model.

In simulation verification 2, we select the 21-day data (April 8th
to 28th) as the test sample with the 3-day data (April 5th to 7th)
and 6-day data (April 2nd to 7th) as the training sample, respec-
tively. Then, we compare the established chaotic RBF model and
the traditional RBF forecasting model, which are presented in
Fig. 9.

Fig. 9a and c shows the forecasting results by the proposed
chaotic RBF model and the traditional RBF through different train-
ing samples (3-day and 6-day) and 21-day test samples of CN2NH
nt training samples and 14-day test samples (a) 3-day training samples of CN2NH;
raining samples of CN3NH.



Fig. 8. Absolute error of the proposed chaotic RBF model and the traditional RBF through different training samples and 14-day test samples (a) 3-day training samples of
CN2NH; (b) 3-day training samples of CN3NH; (c) 6-day training samples of CN2NH; (d) 6-day training samples of CN3NH.
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data. Meanwhile, Fig. 9b and d shows the forecasting result of
CN3NH data. From the forecasting results, the forecasted value
based on the chaotic RBF neural network forecasting model is con-
sistent with the actual value trend. However, the traditional RBF
model cannot track the change of the actual value well in many
places, especially in the signal’s sharp fluctuation.

Furthermore, we select the absolute error as the evaluation
index of the ENPEMF forecasting accuracy, and we utilize it to eval-
uate the performance of the proposed forecasting model more
accurately. The results are presented in Fig. 10. The proposed chao-
tic RBF model realizes better overall forecasting performance for
the ENPEMF data than the traditional RBF model.

To verify the robustness and reliability of the translocation of
the forecasted results of the chaotic RBF algorithm, the transloca-
tion was measured quantitatively between the forecasted values
Fig. 9. Results of the proposed chaotic RBF model and the traditional RBF through differe
(b) 3-day training samples of CN3NH; (c) 6-day training samples of CN2NH; (d) 6-day t

8

of the two algorithms and the actual values using the morpholog-
ical correlation coefficient as shown in Eq. (19):

r ¼
PN

i¼1 xi � x
�	 


yi � y
�	 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 xi � x

�	 
2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

yi � y
�	 
2s ð19Þ

The value of the morphological correlation coefficient obtained
is shown in Table 2. As can be seen from Table 2, the correlation
values obtained by the chaotic RBF algorithm in this paper are all
higher than those obtained by the traditional RBF algorithm, that
is, the improved algorithm proposed in this paper has a better fore-
casting effect.

According to the forecasting results and absolute error results
mentioned above, the chaotic RBF forecasting model can fit the
nt training samples and 21-day test samples (a) 3-day training samples of CN2NH;
raining samples of CN3NH.



Fig. 10. Absolute error of the proposed chaotic RBF model and the traditional RBF through different training samples and 21-day test samples (a) 3-day training samples of
CN2NH; (b) 3-day training samples of CN3NH; (c) 6-day training samples of CN2NH; (d) 6-day training samples of CN3NH.

Table 2
The value of morphological correlation coefficient.

Value of r CN2NH CN3NH

3&14 6&14 3&21 6&21 3&14 6&14 3&21 6&21

chaotic RBF 0.994 0.995 0.963 0.999 0.993 0.977 0.993 0.979
traditional RBF 0.879 0.877 0.875 0.876 0.856 0.855 0.874 0.867
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fluctuation trend of actual ENPEMF signal strength, effectively
reduce the forecasting error compared with the traditional RBF
model. Therefore, in terms of the overall forecasting effect and
accuracy, the algorithm that is proposed in this paper performs
better, which is expected to provide support for monitoring geo-
logical hazards and magnetic signal anomalies before earthquakes.
5. Discussion

The RBF algorithm has a strong input and output mapping func-
tion, and the learning process converges quickly. To solve the prob-
lem of low prediction accuracy, we propose the chaotic RBF
algorithm based on chaos parameter optimization in this paper.
After a lot of experiments and repeated verification, the improved
algorithm in this paper can forecast the strength trend of ENPEMF
data, and the prediction accuracy is high. Finally, it is proved that
the chaotic RBF algorithm in this paper is superior in forecasting
the strength trend of the ENPEMF signal compared with the tradi-
tional RBF algorithm. At present, there is no exact method and con-
clusion for earthquake forecasting. We can only focus on the
processing and analysis of relevant signals and the research on reli-
ability forecasting methods, to provide support for the monitoring
of geological disasters and abnormal magnetic signals before
earthquakes. At the same time, as the research on the ENPEMF
method and data and the exploration of earthquakes in China are
still in the initial stage, the research on other earthquakes needs
to be further explored, studied, and verified in the future.
6. Conclusion

We propose a chaotic RBF neural network forecasting model in
this paper, which is applied to forecast the ENPEMF time series.
First, we utilize the C–C method to calculate the optimal embedded
dimension m and delay time, which is used to reconstruct the
9

phase space of the collected ENPEMF data and to determine the
chaotic characteristics of the ENPEMF. In addition, the obtained
parameters are used as a basis for determining the number of input
nodes of the RBF neural network and to optimize the RBF. Finally,
we employ the chaotic RBF neural network model trained by dif-
ferent time lengths training samples to forecast the 14-day and
21-day ENPEMF data of CN2NH and CN3NH, and we compare it
with the traditional RBF forecasting model. The results demon-
strate that the chaotic RBF neural network significantly outper-
forms the traditional RBF neural network forecasting model in
terms of forecasting performance and accuracy. In some existing
methods for monitoring anomaly information before some strong
earthquakes, the chaotic RBF forecasting model in this paper can
assist to a certain extent and improve the monitoring accuracy of
anomaly information.
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