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Abstract

Viscous fingering is the occurrence of narrow fingers of an invading less viscous fluid such as water in a porous medium
filled with a more viscous fluid such as oil, and its occurrence dramatically affects enhanced oil recovery by water flooding.
We conduct 2D simulations using the lattice Boltzmann method for two-phase flow through a porous medium initially
saturated with a fluid of a given viscosity in which a fluid of another viscosity is injected from the left side of the model. We
conduct suites of simulations over viscosity ratios (~ 1/(mobility ratio)) from M = 0.01 through M = 100 and for wetting
angles from non-wetting to fully wetting. We plot the phase space of saturation (= Recovery Factor) versus wetting angle
and viscosity ratio. We remove the dominant viscosity ratio effect to study the effect of wetting angle and find that while
there is some tendency for the saturation to be higher with increasing wettability, the saturation landscape is complex with
hills and valleys in which optimal wetting angles exist that maximize saturation. Furthermore, the phase space landscape
is found to depend on the porous matrix geometry. We also plot saturation post-breakthrough and find that the saturation
continues to increase albeit at an ever decreasing rate. This research demonstrates the potential of the lattice Boltzmann
method for two-phase flow to reveal unexpected behavior and phenomena with both scientific and practical significance

such as optimization of recovery factors in enhanced oil recovery (EOR).

Keywords Multiphase flow - Viscous fingering - Phase space study - Wettability - Porous media -

Lattice Boltzman simulation

Introduction

When a low viscosity fluid invades a higher viscosity
fluid above a critical capillary number, patterns of viscous
fingering occur. Namely, narrow tendrils of the low viscosity
fluid pushing into the higher viscosity fluid (Homsy 1997,
Malgy et al. 1985; Chen and Wilkinson 1985; Lenormand
et al. 1988). These narrow channels of the low viscosity fluid
have immense significance to enhanced oil recovery (EOR)
using water flooding where water is injected at an injection
well with the goal of pushing out oil which is produced
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at an adjacent well. This is because the narrow fingers
decrease the final saturation and hence the recovery factor
(RF) at breakthrough when the less viscous fluid (water)
reaches the production well which is when production is
typically stopped. The morphology of the fingers is affected
by many parameters of the fluid including the wettability
and the viscosity ratio, and potentially the geometry of the
porous medium. As such, the final saturation, and hence
RF, at breakthrough when the invading fluid reaches the
production well is a complex function of fluid properties
and the geometry of the porous medium.

Numerous studies in petroleum engineering (Deng et al.
2020) have lead to a consensus that the RF increases with
wettability of the invading fluid. Specifically, many core-
scale experiments indicate that saturation at breakthrough
(sweep) increases when the invading fluid’s wettability is
increased, such as by addition of surfactants or by the
use of low-salinity water flooding (Kennedy et al. 1955;
Jadhunandan and Morrow 1995; Seethepalli et al. 2004;
Morrow and Buckley 2011; Sharma and Mohanty 2013).
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This paper makes use of the lattice Boltzmann method
(LBM) for two-phase flow (Rothman and Keller 1988;
Gunstensen et al. 1991; Latva-Kokko and Rothman 2005;
Reis and Phillips 2007; Mora et al. 2021) to study the
effect of wetability, viscosity ratio, and porous medium
geometry on the sweep as a function of viscosity ratio
and wetting angle. Specifically, we extend previous work
(Mora et al. 2021) where we found that the effect
wettability on saturation at breakthrough was complex,
and demonstrated that the saturation did not necessarily
increase with wettability, and that optimal wetting angles
0y > 0 that maximized saturation (sweep) could occur
at specific viscosity ratios. Here, we aim to study the
effect of flow morphology and pore matrix geometry on
sweep as a function of wetting angle and viscosity ratio (~
1/(mobility ratio)) to improve understanding the complex
sweep phase space. In addition, we study the evolution of
saturation post-breakthrough.

Although the LBM simulations are performed in 2D due
to computational limitations, we believe that the general
conclusions will be applicable to the 3D case, although
we caution that details will change. Ultimately, large-scale
3D simulations coupled with laboratory studies would be
required to validate this expectation and ensure that the
conclusions can be reliably applied in 3D.

Numerical simulation methodology

We utilize the Rothman-Keller (RK) color gradient lattice
Boltzmann model to simulate two-phase flow in a simplified
2D model of a porous rock. This method was originally
derived for a lattice gas (Rothman and Keller 1988;
Gunstensen et al. 1991), and subsequently extended to
the lattice Boltzmann method (LBM) by Latva-Kokko and
Rothman (2005). This approach involves three steps which
model particle distributions denoted f¥ of two fluids (red
and blue for £k = 1 and k = 2) moving in the a-direction
on a discrete lattice. Namely, (1) streaming (movement), (2)
collision, and (3) recoloring.
The macroscopic density of the two fluids is given by

=Y fu (1)
o

the total density of the fluid is given by

p= p - 2
k

the momentum of the fluid is given by

pu =" fica, 3)
k o
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and the pressure in the fluid is obtained from the equation
of state and can be calculated as

p=clp . )

The above equations enable the macroscopic density and
velocity of the fluid p and u to be calculated from the
number densities of the two fluids fo]f.

Streaming step

The streaming step is the same as for any lattice Boltzmann
method and is given by

A0 = fRx—cqat, 1 — Ar) (5)

where ¢, is the lattice velocity vector in direction « on the
lattice given by

Cy = [(07 O)v (1’ 0)7 (_17 0)7 (0’ 1)7 (O, _1)7
1, D, (—1,-1), [, -1, (-1, DH]Ax/ At

where Ar is the time step and Ax is the lattice spacing
of a square lattice, namely a D2 Q9 lattice where D = 2 is the
number of dimensions and Q = 9 is the number of veloc-
ities. Using this definition, ¢q is the null velocity, ¢, (@ =
1,2, 3,4) are the velocities along the coordinate axes, and
¢y (@ = 5,6,7,8) are the velocities along diagonals of
the lattice. In the following, we model a unitary lattice with
Ax = At = 1.

Collision step

The collision step is given by Latva-Kokko and Rothman
(2005)

A = o+ (aff) 4 (ad) . ©

where the superscript * denotes the post collision distribu-
tions.

The first collision term is nearly the same as the standard
collision term of the BGK LBM (Qian et al. 1992; Chen and
Doolen 1998) and is given by

(ar) = < (omn - fhon) )

where 7 is the relaxation time and fX“/(x,7) is the
equilibrium distribution and is given by Grunau et al. (1993)

cp-u  (cy-u)? u?
= ck - —
pk( « wa|: a7 2¢t 2¢2

s

k.
foa

~ (C(’;—i—wa [3@& W e guz]) (8)

where ¢, = Ax/(v/3Ar) = 1/+/3 is the speed of sound
in the lattice, and w, are the standard LBM weights for
a D2Q9 square lattice. Namely, wo = 4/9, wy = 1/9
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for« = 1,2,3,4 and w, = 1/36 for ¢ = 5,6,7,8.
The above equilibrium distribution is identical to the
standard equilibrium distribution except for the rest factor
Cy (Grunau et al. 1993) instead of w, which allows for
different density fluids. The relaxation time of each fluid is
related to the kinematic viscosity of each fluid through

v = Xt —05)Ar )

where vy is the kinematic viscosity of fluid k and 7 is the
relaxation time of fluid k. The relaxation time t in Eq. (8) is
interpolated at the interface between the fluids (Grunau et al.
1993) such that it changes smoothly which avoids numerical
instability.

The second collision term (A fD’f)2 adds an attractive
force between like fluids thus enabling immiscible fluids to
be simulated and is given by Reis and Phillips (2007)

(ar)” = AR (ateosialieal” ~B2) . (10)

where F(x, t) is the color gradient, A, is the angle between
F(x, 1) and ¢y, A is a parameter that controls the interfacial
tension, and B, are coefficients given by Reis and Phillips
(2007). Surface tension in the model is also affected by the
two viscosities v; and v,, and hence 7; and 12. As such,
one must conduct a numerical experiment for a given set
of viscosities v; and vy to calculate the pressure within
and without a static droplet and apply the Young-Laplace
formula to obtain the exact relationship between A and
surface tension for the specified viscosities. The color
gradient F(x, ¢) is calculated according to Mora et al. (2021)
which optimizes isotropy of the color gradient as

F(x, 1) = ) baCy (p1(X+ €Al 1) — pr(X+ Ca AL, 1)),
o

11

where the ¢, are the velocities and b, are scalar coefficients
of the finite difference approximation of the color gradient
that is accurate to second order, namely

bl

1
- o = 1,234
=¥ Slsers 12

S
R

where w is the weight of the diagonal nearest neighbors
relative to orthogonal nearest neighbors in the finite
difference calculation of the color gradient and W is given
by

W =2+4w . (13)

The choice of w that optimizes the isotropy of
the numerical color gradient depends on the interfacial
thickness parameter 8 which will be described in the next
section.

Recoloring step

The final step of the RK LBM is a “recoloring” step which
achieves color segregation of the two fluids and is given by
Latva-Kokko and Rothman (2005)

£l = %f; + ﬂ%f;q(p,u=0)cosaa) a4
and

2 P1P2
fc? = %fa - '8 '102 faq(p,u:O)COS()\,a) ’ (15)

where [y =, f& B € (0, 1]is an adjustable parameter
that affects the interfacial thickness, and f; (o, u = 0) is the
standard equilibrium distribution at zero velocity given by

fel(p,u=0) = wep . (16)

In this paper, we use the commonly used value of 8 = 0.5
for the interfacial thickness parameter. As such, we use a
weighting factor w = 0.298 (Mora et al. 2021) in Egs. 12
and 13 which optimizes the isotropy of the color gradient
at a small radius of curvature interfaces such as those that
occur in flow through a porous medium.

Solid boundary conditions and wetting angle

No-slip boundary conditions are achieved in the lattice
Boltzmann method by standard “bounce-back” boundary
conditions at the solid interface in which number densities
reflect back in the direction they came from at fluid-solid
interfaces. The RK LBM model for two-phase flow allows
any wetting contact angle 6,, to be specified by setting
the densities of the two fluids in the solid region through
(Latva-Kokko and Rothman 2005)

0, = cos™! (@) , an
1

where p, is the density of fluid 1 in the solid regions, oy
is the density of fluid 2 in the solid regions, and p; is the
initial density of the majority component = p,. This is
achieved by setting densities of the red and blue fluid in the
solid regions using

1 + cos(0
Pwl = pi¢ , (18)
2
and
1 — cos(6
Puz = pi% (19)

The RK LBM model described above that is used in this
study has been shown both theoretically and numerically
to correctly model two-phase flow. Specifically, the model
has been shown to yield the Navier-Stokes equations for
two-phase flow (Gunstensen et al. 1991) allowing for
variable density fluids (Grunau et al. 1993), variable surface
tension (Reis and Phillips 2007), and any wettability (Latva-
Kokko and Rothman 2005). In addition, the model has

@ Springer
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had numerous numerical verification tests for various cases
which have been summarized in Huang et al. (2015). In
particular, the method has been shown to be capable of
modelling the M — Ca phase diagram mapping out the
three domains of viscous fingering, capillary fingering,
and stable displacement in a porous matrix (Huang et al.
2014) which is consistent with experimental studies such
as Lenormand et al. (1988). In addition, the LBM model
results and other pore-scale models for multiphase flow
have been compared which demonstrates overall good
performance of the LBM models to capture pore-scale
multiphase flow phenomenology (Zhao et al. 2019). The
above theoretical, comparative, and numerical/experimental
verifications suggest that the RK LBM will at least do
a reasonable job of correctly capturing two-phase flow
characteristics in the current work.

Results

In the following, we aim to study the effect of wetting angle
and viscosity ratio on saturation at and beyond breakthrough
using 2D RK LBM simulations. We will conduct suites
of runs through 2D models and measure the saturation =
recovery factor at breakthrough as a function of viscosity
ratio M and 6,, where M € [0.01, 100] and 6,, € [0°, 180°].
Each suite will consist of 81 simulations where we sample
M in increments of Alog;y M = 0.5 and 6, in increments
of A6, = 22.5°. In addition, we will conduct runs beyond
breakthrough for the case of M = 0.01 to study whether
the saturation and flow pattern continues to evolve beyond
breakthrough for the non-wetting and wetting cases.

Numerical experimental setup

We initialized a square model shown in Fig. 5 consisting
of 300 x 300 pixels by dropping random-sized circular
grains with radii between 5Ax and 15Ax and accepting
only those grains that are separated from other grains by
at least 4Ax. This leads to an unrealistically high porosity
compared to 3D media but ensures the 2D granular medium
has significant permeability; and hence, we will be able
to model viscous fingering. The model rock matrix is
initially saturated by a “blue” fluid and a “red” fluid is
injected from the left boundary at a constant rate, while the
pressure at the right boundary is fixed. We use Zou and
He’s boundary conditions (Zou and He 1997) to set the
injection velocity at the left and pressure at the right of the
model. Periodic boundary conditions are used at the upper
and lower boundaries.

The densities of the two fluids were set to be identical and
unitary so p; = p2 = 1 since the density of water and oil is
similar and as such does not play a significant role in viscous

@ Springer

fingering. The surface tension parameter A in Eq. 10 was set
such that the capillary number was high with Ca ~ 5 which
is well above the capillary to viscous fingering transition.
Namely, the capillary number is defined as

Ca — MUrUin — PrVrlin 7 (20)
o o
and relates to the relative effect of viscous drag forces versus
surface tension or capillary forces where u, is the dynamic
viscosity of the invading fluid, v, is the kinematic viscosity
of the invading fluid, p, is the density of the invading fluid,
u;, is the injection rate, and o is the surface tension. The
value of A in the RK LBM given by Eq. 10 has been found

to relate to the surface tension as

o =aA , 21

where a € [0.5, 2] over a wide range of viscosities of the
two fluids v, and vp,. The value of o above for a given
set of viscosities v, and v, can be calculated via numerical
simulation of a droplet through the Young-Laplace formula

Gzﬁzw’ (22)
ro ro

where AP is the difference in pressure inside versus outside
a droplet of radius ry.

In our experiments, we also wish to ensure slow enough
flow rates such that inertial effects and turbulence are
negligible. This can be achieved by specifying a low enough
Reynolds number which is a dimensionless quantity which
is defined as

L
Re = & (23)

Original model

Fig.1 The original model porous rock matrix (model 1)
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where L is the scale length, v is the kinematic viscosity,
and u is the flow speed. In the following experiments, we
set the injection flow rate u;, such that Re = 0.2 for
an assumed scale length of L = 4 which is the smallest
width between grains in the solid matrix. Hence, we have
Re = 0.2 < Returbuience ~ 2300 which ensures inertial
effects and turbulence are negligible. Using Re = 0.2 in
Eq. 23, we have

Re min(v,, vp) 0.2 min(v,, vp)
tin = D - D
= 0.05min(v,, vp) . 24)

fluid(89333)
0

50 100 150 200 250 300
T

fluid(96233)
0

ew = 900

100 150 200 250
T

fluid(117308)

50

100

@ 150
200

250

300

100 150 200 250
xr

M =0.01

The viscosities for the simulations v, and v, must be
specified to cover a wide range of viscosity ratios M €
[0.01, 100] such that the RK color gradient simulations are
stable and accurate. To achieve this, we choose the product
of the viscosities to be v, v, = (0.2)2 and hence we have

VpVp = Mvg =022 = v, = /0.22/M and v, = M.
(25)

From Eqgs. 24 and 25, we can see that for the case of
M = 0.01 and M = 100 which has min(v,, vp) = 0.02,
we will have an injection velocity u;, = 0.001, and for the

fluid(214039)

fluid(15607)

« 150
200

250

. 300 ; ‘
100 150 200 250 ¢ 0 5 150 200 300

T T

)
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W e 300
100 150 200 250 300 100 150 200 250 300

T T

[fluid(18385) fluid(241481)

100

@ 150

200

250

- 300
100 150 200 250 300 £ 100 150 250 300

xT T
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Fig.2 Snapshots of flow patterns at the moment of breakthrough for several viscosity ratios M and wetting angles 6,,. The black region indicates

the red invading fluid and the white area is the defending blue fluid
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Original model: ASorig(M,6.)
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Fig. 3 Phase space showing the saturation at the moment of break- to the saturation at a wetting angle of 6,, = 180° (right). Calculations
through as a function of viscosity ratio and wetting angle (left), and were made at a capillary number of Ca ~ 5 which is in the viscous

phase space showing the difference in the saturation at the moment of fingering regime
breakthrough as a function of viscosity ratio and wetting angle relative

case of M = 1 = v, = v, = 0.2, we will have an injection ~ suggesting increased saturation with wettability. This is

velocity of u;, = 0.01. consistent with theoretical and experimental studies (Stokes
et al. 1986; Trojer et al. 2015; Zhao et al. 2016; Primkulov
Flow patterns etal. 2019).

We performed 81 simulations using the model shown in ~ Phase space study

Fig. 1 spanning the space of (M e [0.01,100],6, €

[0°,180°]) where we sample M in increments of  Figure 3 shows the phase space of saturation as a function of

Alog;o M = 0.5 and 6,, in increments of A8, = 22.5°. M and 6,, at breakthrough denoted S(M, 6,,) and the phase
Figure 2 shows snapshots of the fluid flow at the time of  space of saturation difference AS(M, 0,,) = S(M, 0,,) —

breakthrough when the red fluid reaches the right boundary ~ S(M, 180°) which highlights the effect of wetting angle

of the model for various M and 6,,. These plots indicate that ~ on saturation at a given M. These phase spaces compile

as expected, low viscosity ratios lead to patterns of narrow  the saturation at breakthrough and saturation difference at

tendrils of the red fluid (shown as black) invading the blue =~ breakthrough results of the 81 simulations spanning M €

fluid (shown as white)—i.e., viscous fingering—Ileading to [0.01, 100] and 6,, € [0°, 180°].

low saturation, whereas for high viscosity ratios we see We observe that on the plot of the saturation phase space
a distorted almost linear front of the invading fluid—i.e.,  that—as expected—the dominant effect is the viscosity
stable displacement—Ileading to higher saturation. ratio with higher saturation as the viscosity ratio increases.

Figure 2 shows a different morphology of fingers of the =~ The saturation difference phase space which highlights the
wetting and non-wetting cases at a viscosity ratio M = 0.01 effect of wettability shows a more complicated pattern.
where viscous fingering is strongest. Namely, the fingers  Although there is some tendency for saturation to increase
for the wetting case (6, = 0°) are broader and more  as wettability increases, the phase space landscape has a
rounded than the fingers for non-wetting case (6,, = 180°)  complex shape with a hill at (M = 0.01,6,, = 22.5°), a

. 5(6), M =001 5(6), M =1 5(6), M =100
’ 78
18 4 02
461 7 01
ST = S
= s 72 & 90
12
70 )
10 891
68
38 - 88

0 25 50 7 100 135 150 175 0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175

w w w

Fig.4 Plots of the saturation versus wetting angle at breakthrough for viscosity ratios of M = 0.01 (left), M = 1 (center), and M = 100 (right)

@ Springer



Arab J Geosci

(2021) 14:2645

Page 7 of 11 2645

50

100

@ 150

200

250

Model # 2

50

100

@ 150

200

250

300

Model # 3

50

100

@ 150

200

250

Model # 4

50

100

© 150

0 50 100 150 200 250 300 0 50 100 150 200 250 300
T T

0 50 100 150 200 250 300
T T

Fig. 5 Four additional random model realizations that were created using the same algorithm and input parameters were used to generate the

original model (model 1)

valley with no significant effect on saturation at log;g M €
[—1, —0.5], aridge at M = 1 where saturation tends to be
higher for more wetting fluids, and a ridge and plateau at
logig M > 1.

Figure 4 shows profiles of saturation versus wetting angle
for M = 0.01, M = 1 and M = 100 and details the shape

Model # 2: ASy(M,0.)

10

—2[] -1.5-1.0 -05 0.0 ).5
log,o(M)

0.0

w

3]

< 900

Model # 4: ASy(M.0,,)

i,

180.0
-20-1.5-1.0 -05 00 05

logo(M)

157.:

15

Fig. 6 Plots of the phase space of the difference in saturation
AS(M, 0,,) for the suites with the 10 different random model realiza-
tions. The plots are ordered such that similar phase space topographies

of the hill at M = 0.01 and the ridge at M = 1. The increase
in saturation with wettability up until an optimal angle of
0, = 22.5° for the case of M = 0.01 is consistent with
microfluidic experiments of Zhao et al. (2016) involving
flow through vertical posts representing a porous medium.
In their work, they found that as wettability is increased,

Model # 3: AS3(M,6,,)
0.0

1.0 05 00 05 10 15 20
logyo(M)

-2.0 -1.5

Model # 5: ASs(M.6,,)
0.0 .

157.5

180.0
-2.0 -15

—~1.0 —05 00 05 1.0 15 20
logyo(A1)

are adjacent to one another. Calculations were made at a capillary
number of Ca ~ 5 which is in the viscous fingering regime
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there is more efficient displacement and higher saturation
up until a critical angle is reached, after which, the system
undergoes a wetting transition and the trend is reversed.

Sensitivity to porous model structure

To study the effect of the porous model on the phase
space difference which captures the wetting angle effect, we
ran suites for ten more random models, bringing the total
number of suites run to 11. As the model size is small, these
can be considered as different models rather than different
random realizations of the same model. Figure 5 shows
four of these additional random models and Fig. 6 shows
the corresponding phase space difference plots. These four
suites were chosen as their phase space difference plots
together with the plot shown in Fig. 3 capture typical
features of the phase space landscapes of the eleven runs.
Namely, we observe that while there is some tendency for
saturation to be higher for more wetting fluids, these plots
are all different and have a complex landscape with feature
such as hills, valleys, ridges, and plateaus. This suggests (1)

fluid(100000)

50

100

« 150

200

250

300

50 100

50

100

@ 150
200 |

250

100

200 25 . 0 50

50 100 150
xr

Fig. 7 Snapshots showing the evolution of fluid displacement with
time after breakthrough for a viscosity ratio of M = 0.01 (top row:
non-wetting invading fluid at times of 100,000, 200,000, and 800,000

@ Springer

fluid(400000)

the possibility that there may be specific wetting angles not
necessarily 6,, = 0° which maximize saturation at a given
viscosity ratio for a given porous rock matrix, and (2) that at
some viscosity ratios there may be only a negligible effect
of wetting angle on saturation.

For example, for the original model as shown in
Fig. 3, there was an optimal wetting angle that maximized
saturation at 6,, = 22.5° for M = 0.01, which is also
apparent for models 2 and 4 as shown in Fig. 6, whereas for
models 3 and 5, there is a minor or even negative correlation
with saturation on wettability at M = 0.01. Also, for models
2 and 3, one observes that the saturation is maximized at
around 6,, ~ 34° and 6,, ~ 45° for M = 0.1 and M = 0.03,
respectively, which is not the case for the other two models
which have no wetting effect or a negative correlation of
saturation with wettability at this viscosity ratio.

Post-breakthrough flow and saturation evolution

For the case of the original model, we also did runs well
beyond breakthrough for the wetting and non-wetting cases

200

150 200 250 300 0 50 100 150
xr T

250 300

fluid(800000)
- e

50

100

@ 150 4
200
250

300

250 300 0 50 250 300

100 150
&r &r

150 200 200

units of time; bottom row: wetting invading fluid at times of 200,000,
400,000, and 800,000 units of time)
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at the lowest viscosity ratio of M = 0.01. Figure 7
shows snapshots of the flow evolution at several times after
breakthrough and Fig. 8 shows the fluid flow velocity field
at the same times. From these plots, it is clear that the flow
field is not static after breakthrough, but the fingers continue
to evolve and expand. After 1,000,000 time steps which is of
order ten times the breakthrough time, the model is almost
100% saturated.

Figure 9 shows saturation as a function of time up to and
beyond breakthrough and indicates that for a constant rate
of injection, the saturation increases with time for both non-
wetting and wetting cases are similar. The fully wetting case
reaches a higher saturation at breakthrough but at a later
time than the non-wetting case. What is most interesting
is that beyond breakthrough, the saturation continues to
increase albeit at a slower rate for both the wetting and
non-wetting cases. Immediately after breakthrough, the rate
of saturation increase drops by about a factor of 2 and
successively slows as time proceeds. At about 10 times
the breakthrough time, the saturations for both wetting and
non-wetting cases are around 90%.

|u|(100000)

50

100

@ 150

200

250

300

0 50 100 150 200 300 0 50 100

T

250

u|(200000)

50 50

100 100

« 150 @ 150

200 200

250 250

300 300
0 50 100 150 200 250 300 0 50 100

T

[u](200000)

u](400000)

Discussion

The results suggest that the saturation at breakthrough or
recovery factor is a complicated function of viscosity ratio,
wetting angle, and the porous rock structure. Specifically,
oil recovery by water flooding of a specific oil field—and
hence viscosity ratio—may be optimal at a specific wetting
angle rather than for a fully wetting fluid. Furthermore, the
results show that the saturation does not stop increasing at
breakthrough. Instead, the fingers continue to evolve and
grow, and eventually, the saturation for both wetting and
non-wetting cases is around 90% at about ten times the
breakthrough time. This suggests that with a long enough
time, very high production rates of order 90% production
of a specific oil field may be possible. Even if this result is
verified, economic factors related to the cost of continued
water flooding for a long time will play the key role in
regard to the extent an oil field may be produced.

Finally, the rate of saturation increase is similar for both
wetting and non-wetting fluids at a given injection rate
suggesting that similar productivity of a given well may be
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Fig. 8 Snapshots showing the evolution of fluid velocity with time after breakthrough for a viscosity ratio of M = 0.01 (top row: non-wetting
invading fluid at times of 100,000, 200,000, and 800,000 units of time; bottom row: wetting invading fluid at times of 200,000, 400,000, and

800,000 units of time)
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Fig. 9 Plot showing the evolution of the saturation through time for
the original model before and after the moment of breakthrough for
the case of viscosity ratio M = 0.01 and the non-wetting and perfectly
wetting cases (i.e., wetting angles 8,, = 180° and 6,, = 0°).

achieved independently of wettability. Namely, although the
recovery factor may be higher for a more wetting invading
fluid at breakthrough, this takes longer to achieve than for
a non-wetting fluid. So if water flooding is done using a
non-wetting injection fluid for a given time ~ the time of
breakthrough had a wetting fluid been used, the saturation
and hence recovery factor should be similar.

Conclusions

We conducted suites of numerical experiments of two-phase
flow through a simplified 2D porous rock matrix using the
Rothman-Keller color gradient lattice Boltzmann method
(LBM). These involved injecting red fluid from the left
of five 2D porous medium models saturated with a blue
fluid over a range of viscosity ratios M € [0.01, 100]
and wetting angles 6,, € [0° 180°]. The simulations
show that the viscous fingering effect on saturation or
recovery factor is complex. Specifically, we observe that
while saturation at breakthrough has some broad tendency
to increase with wettability, this is not always the case and
the saturation landscape as a function of wettability and
viscosity ratio can have hills and valleys which depend on
the porous medium model. This suggests the possibility
that optimal wetting angles exist for each viscosity ratio
for a given model, such that saturation, and hence recovery
factor, is maximized. Furthermore, the results show that the
saturation does not stop increasing at breakthrough when
the fingers have traversed the model. Instead, these fingers
continue to evolve and grow, and eventually, the saturation
for both wetting and non-wetting cases is around 90% at
about ten times the breakthrough time. And finally, for a
specified injection rate, the rate of saturation increase is

@ Springer

similar for both wetting and non-wetting invading fluids
up to and beyond breakthrough suggesting that the time
of water flooding rather than wettability may be the main
factor controlling ultimate production of a field using water
flooding. Further research using large-scale 3D models
and experimental studies are required to verify how our
conclusions translate to the real world. Nonetheless, the
results demonstrate the potential of the LBM to be used to
study multiphase flow and viscous fingering phenomena,
and to uncover unexpected behavior relevant to enhanced
oil recovery (EOR). Ultimately, the LBM may prove to be
a powerful tool to optimize EOR, when used in conjunction
with experimental validation studies.
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