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Abstract4

To study viral evolutionary processes within patients, mathematical models have been instru-5

mental. Yet, the need for stochastic simulations of minority mutant dynamics can pose com-6

putational challenges, especially in heterogeneous systems where very large and very small sub-7

populations coexist. Here, we describe a hybrid stochastic-deterministic algorithm to simulate8

mutant evolution in large viral populations, such as acute HIV-1 infection, and further include9

the multiple infection of cells. We demonstrate that the hybrid method can approximate the10

fully stochastic dynamics with sufficient accuracy at a fraction of the computational time, and11

quantify evolutionary end points that cannot be expressed by deterministic models, such as the12

mutant distribution or the probability of mutant existence at a given infected cell population13

size. We apply this method to study the role of multiple infection and intracellular interactions14

among different virus strains (such as complementation and interference) for mutant evolu-15

tion. Multiple infection is predicted to increase the number of mutants at a given infected cell16

population size, due to a larger number of infection events. We further find that viral comple-17

mentation can significantly enhance the spread of disadvantageous mutants, but only in select18

circumstances: it requires the occurrence of direct cell-to-cell transmission through virological19

synapses, as well as a substantial fitness disadvantage of the mutant, most likely corresponding20

to defective virus particles. This, however, likely has strong biological consequences because de-21

fective viruses can carry genetic diversity that can be incorporated into functional virus genomes22

via recombination. Through this mechanism, synaptic transmission in HIV might promote virus23

evolvability.24

25

1 Introduction26

The evolution of HIV-1 within patients is an important determinant of the disease process and27

of treatment outcomes [28, 22, 37]. Evolutionary changes in the virus population over time are28

thought to contribute to the progression of the infection from the asymptomatic phase towards29

AIDS [28], involving the evolution of immune escape as well as evolution towards faster replication,30

increased cytopathicity, and broader cell tropism [28]. The emergence of mutants that are resistant31

against anti-viral drugs can result in challenges to the long-term control of the infection. While vi-32

ral evolution is important throughout the course of the disease, extensive virus replication towards33

relatively high viral loads during the acute phase of the infection presents ample opportunity for34

the generation of viral mutants that might influence post-acute setpoint virus load, the subsequent35

disease course, and the response to treatment [35].36

37

An interesting aspect that can influence the viral evolutionary dynamics, especially at large38

population sizes [34], is the multiple infection of cells [26, 24, 25, 49]. Multiple infection has been39

documented to occur in HIV infection both in vitro [11, 45] and in vivo from human tissue samples40

[33], and is especially promoted by direct cell-to-cell transmission of the virus through virological41

synapses [23, 8, 1, 48]. In contrast to free virus transmission, synaptic transmission typically in-42

volves the simultaneous transfer of multiple viruses from the source cell to the target cell. As the43

virus grows to high levels, minority populations of multiply infected cells, which can be governed44
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by stochastic effects, coexist with a much larger population of singly infected cells, which is again45

a computationally challenging situation. Interesting evolutionary dynamics can occur as a result46

of multiply infected cells, especially if different virus strains are present in the same cell. A dis-47

advantageous mutant can gain fitness through complementation [18], and an advantageous mutant48

might experience fitness reduction due to interference by the wild-type virus [53]. Recombination49

can be another evolutionary consequence of multiple infection [34, 26, 38, 32].50

51

Mathematical models have played a key role in defining the principles of within-host dynamics52

and evolution of HIV [39, 42, 31, 29, 30, 3, 14, 13, 12]. During the acute phase of the infection,53

however, the number of virus-infected cells can reach very large numbers [15, 36], while some sub-54

populations of importance may be very small, which presents computational problems. Mutant55

evolution can be driven by stochastic effects, because mutant viruses initially exist at low popula-56

tion sizes, even though the wild-type population can be very large. Stochastic simulations of the57

viral evolutionary dynamics thus become computationally costly if the overall viral population size58

is large. To get around this, models can assume unrealistically low population sizes of infected59

cells, together with unrealistically large mutation rates, in the hope that the effects observed in60

such models scale up to more realistic population sizes and lower mutation rates. The accuracy of61

such explorations, however, is unclear. Alternatively, deterministic models in the form of ordinary62

differential equations (ODEs) can be used to approximate the average number of mutants over63

time as the virus population grows. The disadvantage of this approach is that other important64

evolutionary measures, such as the number of mutants at a given infected cell population size or65

the time of mutant generation, are not clearly defined in ODEs. Furthermore, the distribution of66

mutants at a given time or at a given infected cell population size cannot be determined with ODEs.67

68

In this paper, we present a computational study of the evolutionary dynamics of a viral dynamics69

model that contains both small and large populations simultaneously, where stochastic fluctuations70

of minority mutant populations can determine the end result of the system and the evolutionary71

potential of an infection. In classical fully stochastic algorithms like Gillespie’s method, the average72

time step decreases as the population size increases [19], and therefore in order to calculate different73

important evolutionary measures, we turn to a hybrid stochastic-deterministic algorithm that is74

based on our previous work, applied to a different system in the field of mathematical oncology75

[44]. This algorithm was specifically developed to handle large population dynamic models where76

very small (e.g. rare mutants) and very large populations co-exist and interact. This algorithm has77

the advantage of intuitive transparency and computational efficiency.78

79

We take advantage of the power of this algorithm to explore questions about evolutionary dy-80

namics of HIV, especially in the context of multiple viral infection, and the different infection81

pathways (free-virus vs synaptic transmission). This includes an analysis of how intracellular in-82

teractions among viruses, such as complementation and interference, can influence evolutionary83

trajectories. In this context, special emphasis is placed on the direct cell-to-cell transmission of84

HIV through virological synapses [23, 8, 1, 48], because it has been shown that synaptic trans-85

mission not only promotes multiple infection, but can promote the repeated co-transmission of86

genetically distinct virus strains from one cell to the next. This in turn can enhance the potential87

of complementation and interference to impact mutant spread. In this paper, we do not focus on88

recombination processes, which were analyzed in a previous paper [32].89

90

This paper makes two contributions: (i) We describe a stochastic-deterministic hybrid method,91

which allows us to simulate the evolutionary dynamics of viruses at large population sizes (but in92

the presence of small subpopulations of evolutionary importance), including the possibility of mul-93

tiple infection of cells. (ii) We apply this methodology to investigate the effect of multiple infection94

on mutant evolution during acute HIV infection. The paper starts by describing the basic mathe-95
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matical model under consideration. This is followed by a description of the stochastic-deterministic96

hybrid methodology and a comparison of simulation results to both fully stochastic simulations97

and ODEs. Finally, we apply the hybrid methodology to study viral evolutionary dynamics dur-98

ing acute HIV infection, in the presence and absence of multiple infection, focusing on the role of99

viral complementation and interference. This work has relevance beyond HIV, because multiple100

infection and intracellular interactions (such as complementation and interference) can occur in101

other viruses, such as bacteriophages [53, 54]. Therefore, beyond parameter combinations that are102

relevant to HIV, we also explore wider parameter sets for broader relevance.103

104

2 Methods105

2.1 Mathematical model description: one viral strain106

We begin with a deterministic model for HIV-1 infection, which includes both free virus transmission107

and synaptic cell-to-cell transmission [31]. We assume that cells are sufficiently well-mixed, such108

that relative spatial locations of cells do not play a significant role in the dynamics. To include the109

possibility of multiple infection, we let xi(t) represent the number of cells infected with i copies of110

the virus at time t, where i ranges from 0 (uninfected cells) to N (cells infected with N viruses).111

Descriptions of the model parameters can be found in Table 1. With only one viral strain, the112

ODE model (in its simplest formulation) is113

ẋ0 = λ− βZx0 − γZx0 − dx0, (1)

ẋi = βZ(xi−1 − xi)− γZxi − axi, if 0 < i < S, (2)

ẋi = βZ(xi−1 − xi) + γZ(xi−S − xi)− axi, if S ≤ i ≤ N − S, (3)

ẋi = βZ(xi−1 − xi) + γZxi−S − axi, if N − S < i < N, (4)

ẋN = βZxN−1 + γZxN−S − axN , (5)

where the number of infected cells is defined as114

Z(t) =

N∑
i=1

xi(t). (6)

We assume that N , the maximum multiplicity of infection, is large enough to not result in a signif-115

icant amount of cells near the end of the infection cascade. In the above equations, cell free virus116

transmission happens at rate β, and synaptic transmission (whereby S viruses are transmitted from117

a donor cell to a target cell) at rate γ. Terms containing β represents the rate at which a cell of118

type xi (with 0 ≤ i < N) can become (super)-infected by means of free-virus transmission, at a119

rate proportional to Z, which comprises all subpopulations infected with 1, 2, . . . copies of virus.120

It is assumed that in quasi-steady state the number of free viruses is proportional to the total121

population size of infected cells, Z (see Section 1.2 of the Supplement for details). As a result, a122

cell of type xi becomes a cell of type xi+1. Mathematically, the process of synaptic transmission123

is similar, except that free virus transmission involves the entry of one virus into the target cells,124

while multiple viruses (e.g. S viruses) can enter the target cell simultaneously during synaptic125

transmission. Therefore, synaptic infection (terms multiplying γ) result in a cell of type xi becom-126

ing a cell of type xi+S ; see the next section for for a more general model.127

128

This model has a virus free steady state,129

x0 =
λ

d
, Z = 0, (7)
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and an infection steady state,130

x0 =
a

β + γ
, Z =

λ

a
− d

β + γ
. (8)

The stability of these steady states depends on the basic reproductive ratio, R0 = λ(β+γ)
ad . If131

R0 < 1, the virus free steady state is stable and if R0 > 1 then the infection steady state is stable.132

Therefore, when considering the total virus population, the properties of this model are identical133

to those in standard virus dynamics models [39, 31].134

135

Notation Description Units (if applicable)

λ production rate of uninfected cells days−1

β rate of free virus transmission days−1

γ rate of synaptic cell-to-cell transmission days−1

d death rate of uninfected cells days−1

a death rate of infected cells days−1

x0(t)
∗ number of uninfected cells at time t NA

xi(t)
∗ number of cells infected with i copies of the virus at time t NA

Z(t)∗ sum of all infected populations at time t, Z(t) =
∑N

i=1 xi(t) NA

Zi(t)
∗ sum of fraction of subpopulations infected with ith strain NA

N maximum infection multiplicity NA

S number of viruses transferred per synapse NA

µ mutation rate NA

M hybrid algorithm size threshold NA

Fi fitness of the ith strain NA

Table 1: Description of model parameters and units (if applicable). ∗: these quantities have the
meaning of cell populations and are measured in terms of cell numbers.

2.2 Mathematical model with multiple viral strains136

This model can be adapted to describe competition among different virus strains, and mutational137

processes that give rise to mutant viral strains, thus allowing us to study the evolutionary dynamics138

of the virus.139

For neutral mutants, the rate of virus transmission from a multiply infected cells is proportional140

to the fraction of the virus strain in the infected cell. For advantageous or disadvantageous mu-141

tants, this also applies. Fitness differences are modeled by modifying the probability of the virus142

strain that has been chosen for infection to successfully enter the new target cell (note that the143

basic formulation (1-5) assumes that viruses are 100% successful in infecting the target cell). For144

example, a disadvantageous mutant is assumed to have an increased probability that successful145

infection fails. Hence, fitness differences are expressed at the level of entry into the new target146

cells. Mutations are assumed to occur during the infection process, corresponding to mutations147

that occur during reverse transcription in HIV infection. We refer to “mutants” as virus strains148

with a specific characteristic, such as a drug-resistant virus strain, an immune escape strain, or149

another specific phenotype. We refer to the virus population that does not share this characteristic150

as the non-mutant or wild-type population, even though RNA virus populations tend to exist as151

a quasi-species, due to reduced replication fidelity [50]. Next we derive the ODEs describing virus152

dynamics in the presence of multiple strains.153

154

Assume that we have two strains (k = 1), the wild-type and mutant. In order to model synaptic
transmission with multiple strains and fitness considerations, we start by considering an infecting
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cell that contains n wild-type viruses and m mutant viruses, where 0 < n + m ≤ N . We denote
the fitness of the wild-type as F1 and fitness of mutant as F2, where these parameters have the
meaning of the probability of successful infection, i.e. 0 ≤ F1, F2 ≤ 1. Here F2 could be smaller
(disadvantageous mutant), equal (neutral mutant), or larger (advantageous mutant) than F1. Let
us denote the fraction of wild-type and mutant viruses as

ν =
n

n+m
, ψ =

m

n+m
,

respectively. Synaptic transmission is modeled as follows. We fix the number of viruses that are155

picked up for a synaptic transmission event, S = 3 (free virus transmission is similar, only with156

S = 1). Then, the following procedure is repeated S times: a virus is selected from the infecting157

cell with the probability equal to its abundance in the cell (that is, wild-type viruses are picked158

with probability ν and mutants with probability ψ). Each virus that is picked will proceed to infect159

the target cell successfully with the probability given by its fitness (that is, F1 for the wild-type160

and F2 for the mutant). Each “pick” can result in three possibilities:161

1. A wild-type virus will go on to be successful in infecting the target cell; this happens with162

probability p1 = νF1. We denote that by ∗ below.163

2. A mutant virus will go on to be successful in infecting the target cell; this happens with164

probability p2 = ψF2. We denote that by X below.165

3. An unsuccessful infection event, which happens with probability p3 = ν(1− F1) + ψ(1− F2).166

We denote that by 0 below.167

Therefore, under S = 3, a single synaptic transmission event can result in ten different infection168

events. Four of them {∗ ∗ ∗, ∗ ∗ X, ∗XX,XXX} result in an infection of the target cell with169

all S = 3 viruses (and these are the only events if F1 = F2 = 1). The other six events {∗ ∗170

0, ∗X0, XX0, ∗00, X00, 000} result in an infection event with fewer than S viruses. The probabilities171

of these events can be calculated by using multinomial distributions. In particular, given that the172

infecting cell is characterized by (n,m), the probability of an event where ŝ1 wild-type viruses and173

ŝ2 mutant viruses go on to successfully infect the target cell is given by174

Pn,m(ŝ1, ŝ2) =
S!

ŝ1!ŝ2!(S − ŝ1 − ŝ2)!
pŝ11 p

ŝ2
2 p

S−ŝ1−ŝ2
3 . (9)

Note the following special cases. If the target cell has n = 0 (that is, it is only infected by the175

mutant), then ν = 1 and p2 = F2. The only event with S successful infections is XXX and it176

happens with probability FS2 . On the other hand, if m = 0, we have event ∗ ∗ ∗ with probability177

FS1 . In other words, fitness properties of viruses are not erased if they are in cells that are not178

coinfected with both virus strains.179

180

Next, we include the process of mutations. We assume that a virus can mutate upon entering181

the target cell, such that the process of mutation does not affect the success of infection. As there182

are only two strains, denote the probability that a wild-type virus mutates by µ and the probability183

that a mutant back-mutates to revert to a wild-type also by µ. Let us suppose that a synaptic184

transmission event involves ŝ1 wild-type and ŝ2 mutant viruses, and consider the probability that185

upon entering the cell, we have î wild-type and ĵ mutant viruses, where the change is due to186

mutations. We denote this probability as Qŝ1 ;̂i,ĵ (note that ŝ1 + ŝ2 = î + ĵ). Suppose â out of187

ŝ1 wild-type viruses mutate and b̂ out of ŝ2 viruses back-mutate. Then the number of (wild-type,188

mutant) viruses is (ŝ1 − â+ b̂, ŝ2 − b̂+ â) = (̂i, ĵ). Setting â = ŝ1 − î+ b̂, we obtain189

Qŝ1 ;̂i,ĵ =

ŝ2∑
b̂=0

ŝ1!

â!(ŝ1 − â)!
µâ(1− µ)ŝ1−â

ŝ2!

b̂!(ŝ2 − b̂)!
µb̂(1− µ)ŝ2−b̂. (10)
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190

For the general case when any number of viruses up to general S can be transmitted successfully191

by synaptic transmission, we have that the full model with two virus strains is192

ẋ0,0 = λ− βx0,0(Z1 + Z2)− γx0,0
[ ∑
î+ĵ≤S

∑
0<n+m≤N

î+ĵ∑
ŝ1=0

Pn,m(ŝ1, î+ ĵ − ŝ1)xn,m
]
− dx0,0,(11)

ẋi,j = β
[(

(1− µ)Z1 + µZ2

)
xi−1,j +

(
µZ1 + (1− µ)Z2

)
xi,j−1 − (Z1 + Z2)xi,j

]
+ γ

[ ∑
î+ĵ≤S

∑
0<n+m≤N

î+ĵ∑
ŝ1=0

Pn,m(ŝ1, î+ ĵ − ŝ1)Qŝ1 ;̂i,ĵxn,m(xi−î,j−ĵ − xi,j)
]
− axi,j , (12)

where Z1 = F1
∑

0<i+j≤N
i
i+j and Z2 = F2

∑
0<i+j≤N

j
i+j , and with the appropriate adjustments193

that any population with a negative index is 0 and cells cannot be infected with more than N total194

copies of virus. Note that in the case of only free virus transmission (γ = 0), the fitness parameters195

can be interpreted as factors that modulate the rate of infection β. A system with more virus196

strains can easily be created as a generalization of this.197

198

The number of equations per model where mutation can happen at k independent locations199

is 2−k(N + 1)
(
N+2k

2k−1
)
. To see this, we note that there are 2k virus strains. The number of ways200

to distribute j viral copies into the 2k strains is
(j+2k−1

2k−1
)
. Since we allow j ∈ 0, . . . , N , we have201 ∑N

j=0

(j+2k−1
2k−1

)
= 2−k(N + 1)

(
N+2k

2k−1
)

=
(
N+2k

2k

)
.202

203

If we let x0 denote the number of uninfected cells and Z denote the sum of all infected cell204

subpopulations, we have that this generalized model again has a virus free steady state, equation205

(7), and an infection steady state, which instead of equation (8) is now given by206

x0 =
a

βF + γ(1− (1− F )S)
, (13)

Z =
λ

a
− d

βF + γ(1− (1− F )S)
. (14)

The stability of these steady states depends on the basic reproductive ratio, R0 =
λ
(
βF+γ(1−(1−F )S)

)
ad .207

Again we have that if R0 < 1 the virus free steady state is stable and if R0 > 1 then the infection208

steady state is stable.209

210

In computer simulations, we will concentrate on parameters that are relevant for acute HIV211

infection, characterized by a basic reproductive ratio R0 = 8. The assumed model parameters are212

based on the literature and explained in the Supplementary Information Section 1.1. Since the213

model is applicable to viruses other than HIV, we also vary parameters more broadly to investigate214

dynamics for lower values of R0, where we expect to see larger effects of stochasticity.215

216

2.3 Hybrid algorithm217

Here, we describe a stochastic-deterministic hybrid algorithm that simulates the dynamics of small218

mutant populations and small populations of multiply infected cells stochastically, while describing219

the majority populations deterministically. This allows us to run computationally efficient simu-220

lations of viral evolutionary processes at large population sizes, without losing the effects arising221
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from the stochastic dynamics of minority subpopulations.222

223

This methodology is based on our previous work in the context of tumor cell evolution [44],224

which in turn is related to work in the field of chemical kinetics [46, 6, 56]. Recently, and es-225

pecially in the field of physical chemistry, many innovative computational algorithms have been226

developed to simulate stochastic systems, which can result in significant speed improvements and227

other advantages compared to the basic Gillespie algorithm [19]. Such methods include the next228

reaction method and tau-leaping methods (or adaptive tau-leaping methods, which features an229

adaptive step size) [20], which can potentially provide a large computational advantage over the230

Gillespie method by taking much larger steps in time while still capturing important stochastic231

effects by assessing how many times each stochastic reaction “fires” in the relevant time interval.232

However, the existence of both small and large populations of importance (and/or when the reac-233

tion propensities are highly dynamic and change quickly) generally implies that methods such as234

tau-leaping will be inefficient [7]. Furthermore, when different populations and reaction propen-235

sities differ over several orders of magnitude, measuring how many times a reaction “fires” in a236

given interval is somewhat counterintuitive. To this end, there has also been a focus on the devel-237

opment of novel hybrid stochastic-deterministic approaches, including many different multi-scale238

methods that are designed to simulate systems that contain different time, size, and spatial scales239

[41, 7, 4, 9, 21, 47, 55, 10, 52, 17]. Much work has also been done on the mathematical properties240

and analysis of such multi-scale models, including in [4, 9, 27, 5]. While these approaches are often241

used in the field of physical chemistry, they are less common in the fields of population dynamics242

and evolution, as they can rely on theoretical physical concepts such as Langevin’s equation. In243

this paper, we choose the hybrid methodology described in [44], as our evolutionary system under244

consideration contains a large overall population size and number of reactions, random and rare245

mutation events, and the simultaneous existence of both large and small populations of importance.246

247

Our hybrid algorithm is based on the idea that if a cell population is sufficiently large, an ODE248

representation can provide a good approximation of most stochastic trajectories of the population.249

We can write the ODE system as a single vector equation dV/dt = F(V), where V is a vector250

that contains all the cell subpopulations. Let M be a given population size threshold, that applies251

to all subpopulations. We classify each cell population xi as small at time t if xi(t) < M, or252

large otherwise. We simulate the small populations stochastically using the Gillespie algorithm253

and use the ODEs for the large populations. Further details of the hybrid method are given in the254

Supplementary Information Section 2.255

2.3.1 Implementation256

The size threshold M is a very important parameter in the hybrid algorithm. If M = 0, then257

at each time point every non-zero population is classified as large and the hybrid algorithm is258

identical to the deterministic solution of the ODEs. If M is very large, that is larger than all259

populations for the duration of the time-span of interest, then the hybrid algorithm is the same260

as the completely stochastic Gillespie simulation of the model and can be extremely computation-261

ally inefficient. For intermediate M > 0, the hybrid algorithm is computationally efficient and262

the averages over many hybrid simulations go from approximating the deterministic predictions to263

converging to the stochastic averages asM increases. Therefore, in order to efficiently approximate264

the completely stochastic implementation of the model, we need to choose an intermediate M such265

that the results are close to the fully stochastic implementation.266

267

We can achieve this by comparing the hybrid averages over many simulations to completely268

stochastic averages over many simulations for simplified models, such as assuming a constant large269

number of uninfected cells or using parameter values that result in smaller and more computa-270

tionally manageable population sizes. For these models, completely stochastic simulations can be271
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carried out and allow us to determine what size threshold M is reasonable for the related models.272

Specifically, since the averages over many hybrid simulations start from the deterministic predic-273

tion (M = 0) and converge to the completely stochastic average, similarly to [44] we i) set some274

difference threshold ε > 0, ii) test multiple size thresholds M, and iii) choose the smallest M such275

that the hybrid average is within ε of the completely stochastic average for the relevant mutant276

strains and/or subpopulations.277

278

Table 2 contains approximate computer simulation run times for the completely deterministic279

ODE system, the hybrid method, and the completely stochastic Gillespie algorithm (for comparison280

with the tau-leaping method, see Section 2.4 of the Supplementary Information). Each system is281

run for the single mutation, double mutation, and triple mutation models. All simulations include282

only free virus transmission with limited multiple infection (N = 3), represent established infec-283

tions only (we ignore stochastic simulations in which the infection dies out), and are stopped once284

the infected cell population reaches 108 cells. The times for the ODE and hybrid simulations also285

depend on the ODE solution method and the step size, h (here h = 10−5 with Euler method).286

In general, with k possible mutations, the number of strains per model is 2k and the number of287

equations (subpopulations) per model is
(
N+2k

2k

)
.288

289

Because the parameters chosen for the simulations in Table 2 correspond to R0 = 8, a relatively290

small size thresholdM gives a good approximation of the fully stochastic simulations. Simulations291

with lower R0 require higher values of M and hence take longer to run.292

293

Model single mutation double mutation triple mutation
k = 1 k = 2 k = 3

2 strains, 10 equations 4 strains, 35 equations 8 strains, 165 equations

Full ODEs < 1 second 4 seconds 12 minutes

Hybrid, M = 10 < 1 second 4 seconds 13 minutes

Hybrid, M = 103 < 1 second 4 seconds 13 minutes

Hybrid, M = 105 < 1 second 6 seconds 15 minutes

Hybrid, M = 107 1 minute 7 minutes 30 hours

Full Gillespie 12 minutes 100 minutes 1 week

Table 2: Approximate average run times for a single simulation for the completely deterministic
ODE system (Euler method with step-size h = 10−5), the hybrid method with different threshold
values (M), and the completely stochastic Gillespie algorithm (rows). Each system is run for the
single mutation, double mutation, and triple mutation models (columns). In each system we assume
all strains are neutral (Fi = 1 for all i). The other parameters are N = 3, µ = 3 × 10−5, λ =
1.59× 107, β = 3.60× 10−9, γ = 0, d = 0.016, and a = 0.45.

2.3.2 Choosing a size threshold M294

We have developed an analytical method for finding a lower bound on size threshold M, which is295

based on the notion of R0. This method does not depend on the number of mutations, infection296

multiplicity, fitness landscape, etc. The basic reproductive ratio, R0, is the average number of297

newly infected cells generated per single infected cell at the beginning of the infection. There-298

fore, infections with larger R0 will lead to quicker and more successful growth of the overall virus299

population. While in a deterministic system, infections with R0 > 1 will never go extinct, in the300

stochastic setting, even if R0 > 1, a single infected cell can die out before successfully infecting301

other cells. The rate at which infections stochastically go extinct is given by 1
R0

[57, 2]; in other302

words, infection will successfully spread with probability Φ∞ = 1− 1/R0. Moreover, one can show303
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that an infection will increase until size K (before possibly going extinct) with probability304

ΦK =
1− 1

R0

1−
(

1
R0

)K . (15)

Setting the size-threshold to a given value M essentially means that we assume that a population
that has reached that size will no longer go extinct, because its subsequent dynamics are described
by ODEs. Let δ > 0 be some small difference threshold. We define the lower bound size threshold,
M̂, as the smallest natural number M such that

|ΦM − Φ∞| < δ,

which gives the estimate305

M̂ = dln
(

1 +
R0 − 1

δR0

)
/ lnR0e, (16)

where d.e denotes the ceiling function. Note that M̂ is a lower bound, and the calculation above is306

based only on the dynamics of the wild type strain, without taking into account any information307

on the mutant parameters. Therefore, depending on the details of the model (such as the number308

and type of mutant strains), it is possible that a larger M is needed to get accurate descriptions309

of mutant dynamics. In general, we can always confirm that a chosen M is large enough using the310

ε test described in the preceding section and in [44].311

3 Results312

3.1 Comparing and contrasting ODE versus stochastic / hybrid simulations313

ODE (deterministic) and stochastic modeling approaches have their advantages and disadvantages.314

ODE modeling is very intuitive and provides excellent insights into viral dynamics, including the315

expected mean trajectories of wild type and mutant population sizes. Stochastic models are much316

harder to implement, slow to run (thus we developed our hybrid method), but they contain more317

information about evolutionary dynamics. In particular, stochastic modeling allows studies of dis-318

tributions (such as mutant number distributions and the distribution of generation times). Also,319

stochastic models can describe the number of mutants at a given population size, or the time of320

mutant generation, which are not clearly defined in the continuous ODEs. In particular, if we321

determine the number of mutants in ODE simulations once the infected cell population size in322

the ODE has reached a threshold N (say, at time tN ), we are effectively determining the average323

number of mutants over different stochastic trajectories, which all correspond to different infected324

cell population sizes. This is because at time tN , while the average number of infected cells reaches325

size N , for some stochastic realizations, this number at that time will be lower and for others,326

higher than N .327

328

To underline these points, in this section we compare ODE predictions to outputs from the329

stochastic simulations, in the context of the evolution of neutral, advantageous, and disadvanta-330

geous mutants. Here we focus on relatively simple scenarios, considering the exponential growth331

phase of the virus population and only including free virus transmission; synaptic transmission and332

infection peak dynamics are studied in the next section. While parameter sets explored here are333

relevant to HIV, we also include broader parameter sets for comparison, especially those where the334

basic reproductive ratio is lower. In these regimes, the dynamics are governed by stochasticity to335

a larger extent.336

337
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Figure 1: Comparison of the deterministic prediction and stochastic average of the number of
cells infected with the mutant with free virus transmission only. The deterministic predictions
are in blue and the stochastic hybrid simulations with M = 104 (infected populations always
treated completely stochastically) are in yellow. Standard error bars are included in the main panel
(sometimes too small to see) and the inserts show standard deviation bars. (a) Neutral mutant,
Fmutant = 0.9. Each yellow dot represents the average taken over at least 2 × 106 simulations. (b)
Advantageous mutant with 10% advantage, Fmutant = 0.99. Each yellow dot represents the average
taken over at least 1.1 × 103 simulations. (c) Disadvantageous mutant with 10% disadvantage,
Fmutant = 0.81. Each yellow dot represents the average taken over at least 3.5×106 simulations. We

have R0 =
λ
(
βF+γ(1−(1−F )S)

)
ad , and the parameters are Fwild-type = 0.9, N = 3, µ = 3× 10−5, λ =

1.59×107, β = 4×10−9, γ = 0, and d = 0.016. The infected cell death rate a is adjusted to achieve
the required R0.

3.1.1 The average number of mutants at a given infected cell population size338

We start by determining the average number of neutral mutants once the number of infected cells339

has reached a threshold size in the purely stochastic process (we discard simulations in which the340

infection goes extinct stochastically before reaching the threshold size). We then compare this to341

the number of mutants predicted by the ODE at the time when the average infected cell population342

size is the same threshold. To be able to run fully stochastic simulations, we determine the number343

of mutants at a relatively low infected cell population size of 104.344

345

Figure 1(a) shows the results for a neutral mutant, assuming different values for the basic re-346

productive ratio of the virus, R0. The lower the value of R0, the higher the discrepancy between347

the average of the stochastic simulations and the ODE results. For R0 = 8, which is characteristic348

of HIV infection [43, 40], the discrepancy is minimal. The reason is that for relatively large values349

of R0, the variation of the infected cell population size at a given time is reduced. Figures 1(b) and350

1(c) show equivalent plots for advantageous and disadvantageous mutants, respectively. Again, the351

extent of the discrepancies increases with lower values of R0. Discrepancies tend to be larger than352

for neutral mutants, and are apparent even for higher values of R0 (e.g. R0 = 8).353

354

While ODEs cannot accurately describe the average behavior of the stochastic model, the hy-355

brid method (with a sufficient size threshold) is able to do so, as is demonstrated in Figure S6(a).356

357
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3.1.2 The timing of mutant emergence358

Another important measure is the time at which the first copy of a given mutant is generated, and359

the infected cell population size at which this mutant is generated. The closest measure in the ODE360

is the the time and infected cell population size at which the average number of mutants crosses361

unity. As shown in Figure S5, however, significant discrepancies exist between this ODE measure362

and the accurate prediction of stochastic simulations, and this discrepancy increases with a larger363

number of mutation events required to generate this mutant (i.e. 1-hit, 2-hit. 3-hit mutants etc).364

The hybrid method, however, provides an accurate approximation (Figure S6(b)).365

3.1.3 Probability distributions of mutant numbers366

The probability distribution of the number of mutants at a given infected cell population size, or at367

a given time, is a measure that has no equivalent in ODEs, yet these measures have strong biologi-368

cal relevance. For example, it is important to understand the likelihood that certain mutants exist369

at various stages during virus growth, such as virus strains resistant against one or more drugs or370

against one or more immune cell clones. The hybrid method provides a good approximation of the371

results from stochastic simulations, as shown in Figure S3. This also applies to simulations that372

assume relatively low values of R0 (Figure S4), although larger size thresholds M are required for373

smaller values of R0.374

375

3.2 Impact of multiple infection on mutant evolution376

In this section, we apply the above-described hybrid method to explore how multiple infection377

can affect virus evolution during an exponential growth phase and near the peak infection, with378

particular relevance to the acute phase of HIV infection, during which the infected cell population379

grows to large sizes. Multiple infection can influence viral evolution in a variety of ways. On a380

basic level, the ability of viruses to enter cells that are already infected increases the target cell381

population and allows the virus to undergo more reverse transcription events, thus increasing the382

effective rate at which mutations are generated. In addition, viral fitness can be altered in multiply383

infected cells through viral complementation or inhibition [18], which again has the potential to384

influence the evolutionary dynamics. In the context of HIV infection, direct cell-to-cell transmission385

through virological synapses (synaptic transmission) increases the complexity of these processes.386

Synaptic transmission typically results in the transfer of multiple viruses from the source cell to387

the target cell, thus increasing the level of multiple infection [23, 8, 1, 48]. In addition, synaptic388

transmission can lead to the repeated co-transmission of different virus strains [11, 33] which can389

amplify the effect of viral complementation or inhibition. To explore these dynamics, the hybrid390

method is important because multiple infection becomes increasingly prevalent at large population391

sizes, where both mutant viruses and multiply infected cells exist as relatively small populations392

compared to the larger populations of wild-type viruses and singly infected cells. We will focus on393

basic evolutionary processes that do not involve recombination.394

3.2.1 The effect of multiple infection on the spread of neutral mutants395

We start with the most basic scenario: the effect of multiple infection on the presence of neu-396

tral mutants during the growth phase of the virus. For simplicity, we concentrate on free virus397

transmission only. Because this analysis is done with HIV in mind, we set R0 = 8. Figures S9398

and 2 show histograms of cells infected with neutral single and double mutants in the presence399

and absence of multiple infection. Figure S9 shows that at relatively low virus loads, the average400

number of mutants is the same, whether multiple infection is assumed to occur or not. At larger401

population sizes that are close to peak virus load, however, we observe a pronounced difference,402
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Figure 2: Neutral mutant evolution in the absence of synaptic transmission, comparing simulations
with single infection only (N = 1, blue) and in the presence of multiple infection (N = 11, red).
The mean values are shown by the vertical lines (blue for single infection only and red for multiple
infection). For both panels, the Kolmogorov-Smirnov test between the two cases gives a p-value less
than 10−6. (a) Number of cells infected with one of the single mutant strains. The average for single
infection is approximately 3.7×105 and for multiple infection is approximately 7.6×105. (b) Number
of cells infected with the double mutant strain. The average for single infection is approximately 271
and for multiple infection is approximately 551. Histograms represent 4 × 103 hybrid simulations
with size threshold M = 50. Simulations in which infections are not established (or in the rare
case a simulation does not reach the infected size threshold) are discarded. Simulations are stopped
when the infected cell population is close to peak infection (6×108 cells). The other parameters are
similar to Figure 1 (Fwild-type = 1, Fmutant = 1, µ = 3×10−5, λ = 1.59×107, β = 3.60×10−9, γ =
0, a = 0.45, d = 0.016, and R0 = 8.)
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Figure 2. In these simulations, we recorded the number of mutants at 6 × 108 infected cells, as it403

is close to the peak and almost all stochastic simulations reached this threshold. We can see that404

multiple infection results in a 2-fold or larger increase in the average number of mutants, both for405

single-hit (Figure 2(a)) and double-hit mutants (Figure 2(b)). The reason is that larger number406

of infection events occur in the presence of multiple infection, thus raising the number of mutants407

that are generated. We further note that multiple infection not only increases the average number408

of mutants at high viral loads, but that it also leads to a larger variation in mutant numbers, shown409

by a larger standard deviation of mutant numbers in the presence of multiple infection (Figure 2).410

411

These trends are not particular to neutral mutants because we focus on exponential, or nearly-412

exponential, virus growth. Similar trends are observed for advantageous or disadvantageous mu-413

tants (see Supplementary Information Section 4 and Figure S10).414

415

While computationally more costly, we also examined the prevalence of neutral triple-hit mu-416

tants, because such mutants can be important for simultaneously escaping three immune response417

specificities or three drugs. We found that even near peak virus load, the probability that a triple418

mutant exists is relatively low (Figure S11). In other words, such mutants are unlikely to exist419

even at the peak of primary HIV infection. Nevertheless, multiple infection results in an almost420

2-fold increase in the probability that neutral triple mutants exist around peak infection. Such421

an increase in mutant generation could be important for virus persistence in the face of mounting422

immune responses during the acute phase of the infection.423

3.2.2 Evolutionary dynamics in more complex settings: complementation, interfer-424

ence, and the role of synaptic transmission425

Multiple infection becomes especially important for viral evolutionary dynamics if different virus426

strains interact with each other inside the same cell. One type of such interactions is complemen-427

tation, where a disadvantageous mutant gains in fitness in a coinfected cell [18]. Another example428

is interference, where an advantageous mutant can lose the fitness advantage when together with429

a wild-type virus in the same cell [53]. We will use our hybrid methodology to investigate the430

evolution of disadvantageous and advantageous mutants, and the effect of complementation and431

interference, respectively. We start by examining the dynamics assuming free virus transmission,432

and then compare results to simulations that assume virus spread through synaptic transmission.433

Synaptic transmission can be especially relevant here because it can promote the repeated co-434

transmission of genetically distinct virus strains. For example, if a disadvantageous mutant is435

repeatedly co-transmitted with a wild-type virus, and if the disadvantageous mutants benefits from436

complementation, then synaptic transmission can significantly enhance the spread potential of the437

mutant.438

439

As before, the fitness difference is modeled at the level of the infection process. For example,440

for a disadvantageous mutant, there is a chance that infection of a new cell is unsuccessful. In this441

case, complementation means that the wild-type virus can provide a product that enhances the442

infectivity of the mutant. Similarly, for interference, it is assumed that the chance of infection by443

an advantageous mutant is reduced if the offspring mutant was generated in a coinfected cell.444

Effect of viral co-transmission on mutant spread (in the absence of mutations). To445

assess to what extent the co-transmission of different virus strains influences viral evolution, we446

consider computer simulations in the absence of mutant production. Instead, we start with one447

infected cell that contains both one wild-type and one mutant virus, and simulate the spread of the448

virus population until a threshold number of infected cells is reached. The purpose of excluding449

mutant production is to fully quantify to what extent synaptic transmission enhances the spread450
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Figure 3: Zero fitness mutants, comparing the effect of complementation for free virus and synaptic
transmission. All simulations start with a single infected cell coinfected with a single copy of both
the wild-type and mutant, and mutation is turned off (µ = 0). (a) Only free virus transmission
(β = 3.60×10−9, γ = 0, N = 11) with complementation. The average number (standard deviation)
of cells infected with the mutant is 0.71 (1.73). (b) Only synaptic transmission (β = 0, γ =
3.60×10−9, N = 25, see section 1.3 of the SI for justification) with complementation. The average
number (standard deviation) of cells infected with the mutant is 3.1× 105 (2.2× 105). Histograms
represent 5 × 103 hybrid simulations with size threshold M = 50. Simulations in which infections
are not established (or in the rare case a simulation does not reach the infected size threshold)
are discarded; simulations are stopped when the infected cell population is close to peak infection
(5× 108 cells). The fitness of the wild-type is fixed at Fwild-type = 0.9 and Fmutant = 0. The other
parameters are as in Figure 1 (λ = 1.59× 107, a = 0.45, and d = 0.016).

potential of a mutant.451

452

Complementation: First, consider viral complementation. We study an extreme case where a453

mutant has zero fitness by itself, but has an infectivity identical to the wild-type virus if the mutant454

offspring virus is produced in a cell coinfected with a wild-type virus. In this parameter regime,455

the mutant virus cannot spread at all in the absence of complementation, whether spread occurs456

by free virus or synaptic transmission. The occurrence of complementation, however, allows virus457

spread due to the elevated viral fitness in coinfected cells. For free virus transmission, this effect is458

modest (Figure 3(a)). A limited amount of mutant spread can occur, but the average number of459

mutants at peak infection levels is still less than one, indicating that mutants largely fail to spread460

in this setting. In simulations with synaptic transmission, however, we observe extensive mutant461

spread in the presence of complementation (Figure 3(b)). Around peak infection, the number of462

cells infected with the mutant is of the order of 105. This shows that synaptic transmission can463

play a crucial role at promoting the spread of disadvantageous mutants through complementation.464

465

Interference: Next, consider viral interference. Assume an advantageous mutant, which has a466

significant fitness advantage by itself (10%), but has an infectivity identical to the wild-type virus467

if the mutant offspring is produced in a cell coinfected with the wild-type. Under free virus trans-468

mission (Figure S13(a-b))), coinfection does not play a significant role, and therefore interference469

only decreases the expected number of mutants by a small percentage. Interestingly, for synaptic470
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transmission (Figure S13(c-d)), interference only plays a marginally larger role compared to the471

dynamics under free-virus transmission. The reason for this relatively mild effect of interference472

under purely synaptic transmission is rooted in an inherent reduction of fitness differences due to473

repeated infection events in synaptic transmission. We elaborate on this later on in the context of474

dynamics with mutations.475

476

Evolutionary dynamics in the presence of mutant production. Here, we repeat this anal-477

ysis assuming that mutant production occurs. The mutant dynamics are now influenced by two478

factors: (i) as before, mutant viral replication and mutant fitness influence spread; (ii) mutation479

processes generate mutant viruses from wild-type, which also contributes to the increase of mutant480

numbers. We consider both viral complementation and inhibition.481

482

Complementation: We first focus on a mutant that has zero fitness if it is by itself in a cell. If483

mutant numbers are measured at relatively low virus loads (Figure 4(a,b)), complementation makes484

no difference for simulations that assume free virus transmission only (panel (a)). For simulations485

assuming synaptic transmission only, however, a larger difference between mutant numbers with486

and without complementation is observed (approximately 2-fold, panel (b)), resulting from the fre-487

quent co-transmission of different virus strains, which occurs even at lower virus loads. Even more488

striking is the difference in the distribution of mutant numbers with and without complementation,489

under synaptic transmission (panel (b)). The long distribution tail in the presence of complemen-490

tation is a result of early mutation events, which are extremely rare, but give rise to unusually491

high numbers of mutants at the threshold size. These events are similar to the so-called “jack-pot”492

event that have recently attracted attention in the context of mutant evolution in expanding cell493

populations [16, 58].494

495

If the number of mutants is measured at higher virus loads, near peak, we find that comple-496

mentation makes a modest difference if only free virus transmission is assumed (Figure 4(c)). This497

occurs because mutants that are generated at high virus loads will have a substantial chance to498

enter a cell that also contains a wild-type virus, leading to enhanced mutant spread at high virus499

loads. If we assume that the virus spreads only through synaptic transmission (panel (d)), comple-500

mentation makes a larger difference, but the effect of complementation is only slightly larger than501

that at low virus loads (panel (b)). The reason is that the probability for wild-type and mutant502

viruses to be co-transmitted does not depend strongly on virus load.503

504

We note that in the models with mutant generation, the effect of complementation on mu-505

tant numbers is much less pronounced than in simulations without mutation processes, even if the506

virus is assumed to only spread through virological synapses. The reason is that in the absence of507

mutational processes, the initially present mutant virus cannot spread without complementation,508

whereas it can do so in the presence of complementation. In the presence of mutational processes,509

however, even zero-fitness mutant numbers can rise over time without complementation, due to510

mutant production by wild-type viruses. Because the population size at peak virus load is large511

relative to the inverse of the mutation rate, mutant generation is a significant force that drives512

mutant numbers over time, limiting the difference that mutant replication in coinfected cells can513

make on the mutant population size.514

515

Next, we assume that the mutant is no longer a zero-fitness type, but can be transmitted inde-516

pendently of the wild-type virus, although with a 10% fitness cost. In other words, if an infection517

event is attempted, it succeeds with a probability that is 10% smaller than that for the wild-type518

virus: Fmutant = 0.9Fwild-type. If the mutant virus is in the same cell as the wild-type, however,519

this fitness cost is assumed to disappear and the mutant is neutral with respect to the wild-type520
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virus. We focus on mutant numbers at high virus loads. We find that the number of mutants521

is only increased by a small amount, both if we assume that the virus spreads only by free virus522

transmission (panel (e)) or only by synaptic transmission (panel (f)); the difference is slightly larger523

for simulations that assume synaptic virus transmission, approximately 1.4 fold in Figure 4(f)).524

525

The relatively small increase in mutant numbers brought about by complementation is surpris-526

ing in the context of synaptic transmission. Intuitively, even though the disadvantageous mutant527

virus in Figure 4(f) can spread alone, the assumed 10% fitness cost, which is overcome by com-528

plementation, is still substantial. The reason for the limited impact of complementation is that529

in the presence of synaptic transmission, the actual fitness disadvantage of the mutant is reduced.530

The fitness cost is implemented by assuming that upon transfer to the new target cell, each virus531

has an increased probability to fail successful completion of infection. With synaptic transmission,532

it is assumed that there are S infection attempts (in our simulation S = 3). This increases the533

likelihood that the cell will become infected (i.e. that at least one of the attempts is successful).534

Through this process, the effective fitness disadvantage of the mutant ends up being less than535

the 10% cost assumed per virus, which explains the modest effect of complementation on mutant536

numbers. The notion that the simultaneous transfer of multiple viruses per synapse reduces the537

effective relative fitness cost of a mutant has important implications that go beyond the scope of538

the current paper, and is explored in detail in a separate study. This analysis indicates that viral539

complementation might only make a substantial impact on the number of disadvantageous mutants540

if the disadvantage is very large. Therefore, biologically, complementation might be most relevant541

to defective virus particles, and this effect is more pronounced under synaptic compared to free542

virus transmission.543

544

Interference: Here we consider an advantageous mutant that loses fitness advantages in cells that545

contain both the mutant and the wild-type virus. This is implemented similarly to the simulations546

with disadvantageous mutants. To model the advantage, we assume that a mutant virus, upon547

transfer, succeeds in infecting the target cell with the probability that is 10% larger than that of548

the wild-type virus: Fmutant = 1.1Fwild-type. As with complementation, Figure 4(g,h) shows that549

interference has a modest impact on the number of advantageous mutants at the size threshold550

(close to peak infection levels). Interference lowers the number of advantageous mutants to a slightly551

stronger degree if we assume synaptic (panel (h)) rather than free virus transmission (panel (g)),552

although the difference is relatively small in both cases, which is reminiscent of a similarly small553

effect of interference under synaptic transmission, observed in the absence of mutations, Figure554

S13(c-d)). The small effect for free virus transmission is explained by the absence of significant555

co-transmission of mutant and wild-type viruses, which limits the occurrence of the intracellular556

interactions among the two viral strains. For the simulations with synaptic transmission, the557

small effect is again explained by a reduction in the effective fitness difference between mutant and558

wild-type strains as a result of multiple, simultaneous infection events during synaptic transmission.559

Therefore, these results suggest that interference is unlikely to have a major impact on the dynamics560

of advantageous mutants, unless the advantage is very large, which would be biologically unrealistic561

(the simulations shown in Figure 4(g,h) already assume a 10% fitness advantage of the mutant).562

4 Discussion563

In this paper, we described a hybrid stochastic-deterministic algorithm to simulate viral evolution-564

ary dynamics at large population sizes, including the occurrence of multiple infection of cells. The565

coevolution of relatively small populations (mutants and multiply infected cells) with larger popula-566

tions (wild-type and singly infected cells) renders stochastic computer simulations computationally567

costly and not feasible when the virus population rises to higher levels. Ordinary differential equa-568
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Figure 4: Mutant evolution under different scenarios with 100% free virus transmission (left panels:
β = 3.6 × 10−9, γ = 0, N = 11) or 100% synaptic transmission (right panels: β = 0, γ =
3.6 × 10−9, S = 3, N = 25). Panels (a) and (b) record the number of cells infected with the
mutant at 104 infected cells, for all other panels it is 5 × 108 infected cells. For all panels, the
blue bars represents simulations without complementation/interference and the red bars represents
simulations with complementation/interference. The mean values are presented in each panel. For
panels (b)-(h), p < 10−6 by the Kolmogorov-Smirnov test. (a-d) Zero fitness mutant (Fmutant = 0).
(e,f) Disadvantageous mutant (Fmutant = 0.81). (g,h) Advantageous mutant (Fmutant = 0.99). For
all simulations, we fix M = 50, Fwild-type = 0.9 and the other parameters are as in Figure 1
(µ = 3× 10−5, λ = 1.59× 107, a = 0.45, and d = 0.016).
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tions can only predict the average number of mutants over time, but fail to accurately describe the569

number of mutants at a given infected cell population size, the mutant number distributions, or570

the timing of mutant generation. The hybrid method described here, however, provides an accu-571

rate approximation of the true stochastic dynamics, at a fraction of the computational cost. This572

method therefore can serve as a practical tool to simulate complex viral evolutionary processes at573

large population sizes.574

575

At the same time, however, the hybrid method can also run into computational limitations,576

depending the assumptions underlying the exact model formulation. While the hybrid method is577

capable of handling a large number of subpopulations, the number of “reactions” included in the578

stochastic part of the algorithm increases with (i) the number of different virus strains, (ii) the579

maximum multiplicity N , and (iii) the number of virus transferred per synapse S. If these param-580

eters are too large, the number of reactions for the Gillespie algorithm can become too high to be581

computationally feasible (even if only small populations are handled stochastically). In general,582

the number of strains per model is 2k and the number of differential equations (subpopulations)583

per model is
(
N+2k

2k

)
. If we model only free virus transmission, the number of infection events is584

the number of strains multiplied by the number of subpopulations eligible to be infected, but when585

synaptic transmission is included, there are many more infection events, which is correlated with586

the number of ways to partition S into 2k non-negative integers that sum to 1, 2, . . . , S. When the587

number of reactions is on the order of 104, each simulation becomes very computationally expensive,588

which happens, for example, if we consider triple mutants in the presence of synaptic transmission.589

590

We used the hybrid stochastic-deterministic method to study how multiple infection and in-591

tracellular interactions among virus strains influence the evolutionary dynamics of mutants in the592

acute phase of HIV infection, during which the number of infected cells can rise to high levels, of593

the order of 108 infected cells across the lymphoid tissues [15]. We showed that these processes594

can shape mutant evolution, but also found that this effect is restricted to select circumstances.595

On a basic level, the models confirmed the intuitive idea that multiple infection accelerates mutant596

evolution due to the larger number of mutation events during reverse transcription, when already597

infected cells become super-infected.598

599

The model predictions about the ability of viral complementation to enhance the spread of600

disadvantageous mutants was more complex. According to the model, synaptic transmission is601

required to enhance disadvantageous mutant spread through complementation because it allows602

the repeated co-transmission of different virus strains; at the same time, however, this effect of603

complementation is only sizable if the selective disadvantage of the mutant is substantial, which604

most likely corresponds to a defective virus. The reason is that in the model studied here, synaptic605

transmission reduces the effective fitness difference between mutant and wild-type virus. This is606

because during a synaptic transmission event, multiple viruses are assumed to attempt infection of607

the target cells, thus increasing the chance that the cell will become infected with at least one of608

them. Even though we assumed a 10% lower probability of successful infection per mutant virus, in609

the context of our assumption that three viruses attempt infection per synapse, the overall chance610

that the cell becomes infected with a mutant is only 0.01% lower than the chance that it will611

become infected with a wild-type virus (the effective fitness difference). With a reduced effective612

fitness difference, complementation can only accelerate mutant growth by a modest amount.613

614

Even if the effect of complementation is only pronounced for defective viruses, this still has615

strong biological significance. The maintenance of virus variants with zero or very low fitness616

during viral spread could be important for the evolvability of HIV in patients. The low fitness617

virus variants can potentially carry other mutations in their genomes, such as drug resistance or618

immune escape mutations. If these low fitness variants are repeatedly present in the same cell as619

18



wild-type viruses, recombination can transfer the mutation in question onto the wild-type genome,620

thus accelerating the rate of virus evolution. If the low fitness variants are not maintained, due to621

lack of complementation, however, this effect would not occur and could lead to a slower rate of622

virus evolution. Hence, maintenance of defective virus variants through complementation, and the623

consequent enhanced evolvability of the virus, could be one mechanism underlying the evolution624

of synaptic transmission in HIV infection. Recombination can be built into the models presented625

here to explore these dynamics in the future.626

627

Another intracellular interaction that we considered was viral interference, where we track an628

advantageous mutant that loses fitness when together with a wild-type virus in an infected cell.629

As with complementation, for the fitness loss to be a driving event, the repeated co-transmission630

of wild-type and mutant virus is required through virological synapses. For the same reason as ex-631

plained above, however, the multiple virus transfer events that occur during synaptic transmission632

reduce the fitness difference between the two virus strains, thus reducing the impact of interfer-633

ence on mutant numbers. To see a more significant effect would require a very substantial fitness634

advantage of the mutant, which is biologically unrealistic. According to our results, we therefore635

expect that viral interference is unlikely to significantly reduce the number of advantageous mutants.636

637

According to the model studied here, viral complementation is not expected to play a significant638

role for mutant evolution in the absence of a transmission mechanism that involves the simultaneous639

transfer of multiple viruses from the infected cell to the target cell. It is important to remember,640

however, that the model presented here assumes well mixed virus and cell populations. If, in641

contrast, viruses spread in spatially structured cell populations with limited mixing, the spatial re-642

striction could force the repeated co-transmission of different virus strains from one cell to another,643

even in the context of free virus transmission (simply because only a limited number of target cells644

are located in the immediate neighborhood of an infected cell). Therefore, spatial restriction during645

free virus transmission could have a similar effect as synaptic transmission during HIV infection.646

Indeed, computational modeling work has shown that similar to synaptic transmission, spatially647

restricted virus growth can lead to higher infection multiplicities, even at lower virus loads [51].648

The correspondence between the properties of synaptic transmission in HIV infection and spatially649

restricted free virus spread remains to be established in more detail, and has relevance for a range650

of viral infections, importantly bacteriophage infections.651

652
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