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Abstract—Although neural networks have been applied to
several systems in recent years, they still cannot be used in
safety-critical systems due to the lack of efficient techniques to
certify their robustness. A number of techniques based on convex
optimization have been proposed in the literature to study the
robustness of neural networks, and the semidefinite programming
(SDP) approach has emerged as a leading contender for the
robust certification of neural networks. The major challenge to
the SDP approach is that it is prone to a large relaxation gap.
In this work, we address this issue by developing a sequential
framework to shrink this gap to zero by adding non-convex cuts
to the optimization problem via disjunctive programming. We
analyze the performance of this sequential SDP method both
theoretically and empirically, and show that it bridges the gap
as the number of cuts increases.

Index Terms—neural networks, robustness, safety, convex op-
timization, semidefinite programming, disjunctive programming

I. INTRODUCTION

The nonlinearity of activation functions in neural net-
works is the key enabler of making neural networks act
as universal function approximators, offering great expres-
sive power [Sonoda and Murata, 2017]. However, this also
poses major challenges for the verification against adversar-
ial attacks, due to the non-convexity that activation func-
tions induce. To circumvent the problem, several tech-
niques based on convex relaxations of ReLU constraints
have been proposed. In particular, Linear Programming (LP)
relaxation [Wong and Kolter, 2017], Semidefinite Program-
ming (SDP) relaxation [Raghunathan et al., 2018], and mixed-
integer linear programming relaxation [Tjeng et al., 2017]
[Anderson et al., 2020], [Anderson et al., 2021] have been
proposed. LP-based techniques relax each ReLU function
individually, thus introducing a relatively large relaxation gap.
Although some recent works, such as [Singh et al., 2019],
have developed k-ReLU relaxations to consider multiple ReLU
relaxations jointly, the relaxation gap is still large. On the
contrary, SDP-based relaxations naturally couple ReLU relax-
ations together without any additional effort via a semidefinite
constraint. Therefore, as the number of hidden layers of the
network under verification grows, the relative reduction in
the relaxation gap also grows when compared to LP-based
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methods. However, even with the power of SDP relaxation,
the relaxation gap is still significant under most settings. In
this work, we address the issue with the SDP relaxation and
shrink the relaxation gap.

The contribution of this paper is four-fold:
• A technique to introduce non-convex cuts into the SDP

relaxation via secant approximation of non-convex con-
straints;

• An iterative algorithm that certifies a given network with
nonnegative reduction in relaxation gap every step until
a certificate can be produced;

• Theoretical and empirical analyses of the efficacy of sev-
eral other cut-based techniques for comparison purposes;

• Geometrical analysis of the proposed technique using
non-convex cuts, to provide insights into the current
approach and future improvements.

A. Notations

We denote the set of real-valued m×m symmetric matrices
as Sm, and the notation X � 0 means that X is a symmetric
positive semidefinite matrix. ”·” denotes the usual vector dot
product. The Hadamard (element-wise) product between X
and Y is denoted as X � Y . Operator diag(·) coverts its
vector argument to a diagonal matrix. idx(A, a) denotes the
position/index of element a in vector or matrix A (e.g.,
idx([1, 2, 3], 3) = 3). † denotes the Penrose-Moore generalized
inverse, and 〈A,B〉 denotes tr(A>B) for square matrices
A,B.

II. PROBLEM STATEMENT

Consider a K-layer ReLU neural network defined by

x[0] = x, x[k] = ReLU(W [k−1]x[k−1]) (1)

for all k ∈ {1, 2, . . . ,K}, where x ∈ Rnx is the input to the
neural network, z , x[K] ∈ Rnz is the output, and x̂[k] =
W [k−1]x[k−1] + b[k−1] ∈ Rnk is the preactivation of the kth

layer. The parameters W [k] ∈ Rnk+1×nk and b[k] ∈ Rnk+1 are
the weight matrix and bias vector applied to the kth layer’s
activation x[k] ∈ Rnk , respectively. Without loss of generality,
assume that the bias terms are accounted for in the activations
x[k], thereby setting b[k] = 0 for all layers k. Let the function
f : Rnx → Rnz denote the mapping x 7→ z defined by (1).
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Following the spirits of [Wong and Kolter, 2017],
[Raghunathan et al., 2018], define the input uncertainty set
X ⊆ Rnx using l∞ norms: X = {x ∈ Rnx : ‖x− x̄‖∞ ≤ ε}.
Similarly, define S ⊆ Rnz as the safe set. For classification
networks, safe sets are (possibly unbounded) usually
polyhedral sets defined as the intersection of a finite number
of half-spaces:

S = {z ∈ Rnz : Cz ≤ 0},

where C ∈ RnS×nz is given. Any output z ∈ S is said to be
safe. The safe set is assumed to be polyhedral in the rest of
this paper.

The goal of certification is to ensure that f(x) ∈ S for all
x ∈ X , which is equivalent to checking the satisfaction of the
following inequality:

max
i∈{1,...,nS}

{f∗i (X )} ≤ 0 (2)

where f∗i (X ) = sup{c>i z : z = f(x), x ∈ X}. This is a
non-convex optimization problem, since the constraint z =
f(x) is nonlinear (activation functions are designed to make
f nonlinear).

A. SDP Relaxation

In this section, we present the SDP relaxation used
for robustness certification. The details can be found in
[Raghunathan et al., 2018]. The main idea is to convert the
ReLU constraints to quadratic constraints and then reformulate
the non-convex certification problem (2) as a quadratically-
constrained quadratic program (QCQP). Then, the standard
SDP relaxation of the resulting QCQP leads to checking
whether the following inequality is satisfied:

max
i∈{1,...,nS}

{f̂∗i (X )} ≤ 0 (3)

where f̂∗i (X ) = sup{c>i z : (x, z) ∈ NSDP, x ∈ X}.
The notation (x, z) ∈ NSDP means that there exist x̃ ∈
Rnx̃ and X̃ ∈ Snx̃ with z , x̃[x[K]] such that

x̃[x[0]] = x, X̃ � x̃x̃>, (X̃, x̃) ∈ N [k]
SDP ∀k = {1 . . .K} (4)

where the membership condition (X̃, x̃) ∈ N [k]
SDP is defined by

the following conditions:

x̃[x[k]] ≥ 0,

x̃[x[k]] ≥W [k−1]x̃[x[k−1]],

diag(X̃[x[k](x[k])T ]) = diag(WX̃[x[k−1](x[k])T ]),

diag(X̃[x[k−1](x[k−1])T ]) ≤ (l[k−1] + u[k−1])�
X̃[x[k−1]]− l[k−1] � u[k−1],

(5)

where nx̃ = ΣKj=0nj . l
[k] and u[k] are the lower and upper

bounds on x[k], respectively. Given X , only l[0] and u[0] are
known. The indexing notation in this paper is inherited from
[Raghunathan et al., 2018] to promote consistency; namely,
a[x[k]] = a[Σk−1j=0nj + 1 : Σkj=0nj ] for any vector a ∈ Rnx̃

and A[x[k](x[l])T ] = A[Σk−1j=0nj + 1 : Σkj=0nj ,Σ
l−1
j=0nj + 1 :

Σlj=0nj ] for any matrix A ∈ Snx̃ .

For the sake of brevity, henceforth we use the shorthand
notations x̃[k] , x̃[x[k]], X̃[Ak] , X̃[x[k−1](x[k−1])T ],
X̃[Bk] , X̃[x[k−1](x[k])T ], X̃[Ck] , X̃[x[k](x[k])T ], and:

X̃[k] ,

[
X̃[Ak] X̃[Bk]

X̃[B>k ] X̃[Ck]

]
(6)

Furthermore, define:

Ξ ,

[
1 x̃>

x̃ X̃

]
(7)

Note that X̃ � x̃x̃> if and only if Ξ � 0.
The above relaxation implies that if f̂∗i (X ) ≤ 0, then it is

guaranteed that f∗i (X ) ≤ 0. However, if f̂∗i (X ) ≥ 0, it is
impossible to conclude whether f∗i (X ) ≥ 0 or the relaxation
is loose.

B. Tightness of SDP Relaxation

Compared to previous convex relaxation schemes (such
as LP), SDP indeed yields a tighter lower bound
[Raghunathan et al., 2018]. However, according to the above
paper and the recent results in [Zhang, 2020], SDP relaxations
of Multi-Layer Perceptron (MLP) ReLU networks are not tight
even for single-layer instances. This issue will be elaborated
below.

Since Ξ is positive-semidefinite, it can be decomposed as:

Ξ = V V >, where V =


~e
~x>1
~x>2

...
~x>nx̃

 ∈ R(nx̃+1)×r (8)

Each vector ~xi has dimension r, which is the rank of Ξ. Since
~e · ~e = 1, ~e is a unit vector in Rr. Furthermore, we have
x̃i = ~e · ~xi for i ∈ {1, . . . , ñx}. The constraints in N [k]

SDP can
be broken down into 2 parts: Input constraints, and ReLU
constraints.

Input constraints can be regarded as restricting each vector
in the set {~xi|i ∈ idx(x̃, x̃[k − 1])} to lie in a circle centered
at 1

2 (li + ui)~e with radius 1
2 (ui − li). ReLU constraints, as a

generalization to the analysis performed in the aforementioned
papers, can be interpreted as ~χj lying on the circle with ~xj
as its diameter for all {j|j ∈ idx(x̃, x̃[k])}. Here, ~χj =∑|x[k−1]|
i=1 wij~xi, where {wij}|x

[k−1]|
i=1 is the jth row of W [k].

ReLU constraints also constrain ~xj to have a nonnegative dot
product with ~e, and a longer projection on ~e than ~χj does.

As pointed out in Lemma 6.1 of [Zhang, 2020], the SDP
relaxation is tight if and only if ~e and all the vectors ~xi’s are
collinear. Since there is no constraint on the angle between ~xi
and ~e, the resulting spherical cap (as termed in Section 4 of
the paper) always exists, and the height of this cap will be an
upper bound on the relaxation gap of the corresponding entry
in x̃.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 05,2022 at 01:16:33 UTC from IEEE Xplore.  Restrictions apply. 



III. CONVEX CUTS

As a well-known technique in nonlinear and mixed-integer
optimization, adding valid convex constraints (convex cuts)
could potentially reduce the relaxation gap of the problem.
The most effective cut for SDP relaxation is based on the
reformulation-linearization technique (RLT), which is obtained
by multiplying linear constraints and relaxing the product into
linear matrix constraints [Sherali and Adams, 2013].

In the formulation of N [k]
SDP, there are only 2 linear con-

straints: x̃[k] ≥ 0 and x̃[k] ≥ W [k−1]x̃[k − 1]. The RLT cuts
associated with these linear constraints exist in the original
constraint set N [k]

SDP, except for the one obtained by the
following multiplication:

(x̃[k]−W [k−1]x̃[k − 1])(x̃[k]−W [k−1]x̃[k])> ≥ 0 (9)

which leads to the relaxed cut:

diag(X̃[Ck]−W [k−1]X[Bk]−X[B>k ]W [k−1]>

+W [k−1]X[Ak]W [k−1]>) ≥ 0
(10)

Note that only the diagonal entries are of interest because
the other terms do not appear in the original QCQP formula-
tion of the problem.

A. Deficiency of RLT

Although the above RLT reformulation seems to add new
information to the SDP relaxation, a closer examination reveals
otherwise.

Proposition 1. Constraint set (5) implies the RLT inequality
(10) for all k ∈ {1, . . . ,K}.

Proof. Since X̃ � 0, all principle submatrices X̃[k] are
positive semidefinite for k ∈ {1, . . . ,K}. Then, X̃[k] � 0
can be restated in terms of the general Schur’s complement:

X̃[k] � 0⇐⇒ {X̃[Ck] � 0,

X̃[Ak]− X̃[Bk](X̃[Ck])†X̃[B>k ] � 0,

(I − X̃[Ck](X̃[Ck])†)X̃[B>k ] = 0}
(11)

Now, one can write:

diag(W [k−1]X̃[Ak]W [k−1]>−

W [k−1]X̃[Bk](X̃[Ck])†X̃[B>k ]W [k−1]>) ≥ 0
(12)

After noticing that diag(X̃[Ck]) = diag(W [k−1]X̃[Bk]) and
(I − X̃[Ck](X̃[Ck])†)X̃[B>k ] = 0, we obtain:

diag(W [k−1]X̃[Ak]W [k−1]> − X̃[B>k ]W [k−1]>) ≥ 0 (13)

By adding diag(X̃[Ck]−W [k−1]X̃[Bk]) = 0 to both sides of
equation, the above inequality yields (10).

Therefore, adding convex cuts to (3) using RLT will only
increase computation time without reducing the relaxation gap.

IV. NON-CONVEX CUTS

A. Source of Relaxation Gap

The SDP relaxation is obtained by replacing the equality
constraint X̃−x̃x̃> = 0 with the convex inequality X̃−x̃x̃> �
0. Hence, the non-convex constraint X̃ − x̃x̃> � 0 excluded
in this formulation is the source of the relaxation gap.

One necessary condition for X̃ − x̃x̃> � 0 is:

φ>i (X̃ − x̃x̃>)φi ≤ 0 ∀i such that
{φ1, . . . , φnx̃}forms a basis in Rnx̃

(14)

However, since −‖φ>i x̃‖2 is concave in x̃, it is impossible to
add this constraint under a convex optimization framework.

A non-convex cut is defined to be a valid constraint that is
non-convex. In this case, any constraint in the form of (14) is
a non-convex cut.

B. A Penalization Approach

Since directly incorporating any non-convex cut makes the
resulting problem non-convex, one may resort to penalization
techniques. Explicitly, the objective of (3) can be modified as:

c>i z +

nx̃∑
i=1

φ>i (x̃x̃> − X̃)φi

Nevertheless, the constraint X̃ − x̃x̃> � 0 implies that
c>i z+

∑nx̃

i=1 φ
>
i (x̃x̃>−X̃)φi ≤ c>i z, therefore making the new

problem not necessarily a relaxation of the original problem,
i.e. the case f̂∗i (X ) ≤ f∗i (X ) is possible. Moreover, this
penalization approach adds a convex term (‖φ>i x̃‖2) to the
maximizing objective, which destroys the convexity of the
problem.

To avoid this issue, one may use the technique proposed in
[Luo et al., 2019]. That work penalizes a given QCQP with a
linear objective such that the problem remains a relaxation of
the original problem after penalization. The authors proposed
a sequential SDP procedure to approximate f∗i (X ) for any i
in (2) using the modified objective p∗i (X ), defined as:

p∗i = sup
(x,z)∈NSDP, x∈X

c>i z +

√
c>i (x̃x̃> − X̃)ci (15)

it can be shown that p∗i (X ) remains a relaxation of the original
problem (2), i.e. p∗i (X ) ≥ f∗i (X ).

1) Deficiency of Penalty Methods: The problem with the
approach proposed in (15) is that the vector ci inside the
square root must match that of the original linear objective,
making it practically limited. Arguing under the framework
of adding constraints in the form of (14), the method in
[Luo et al., 2019] only enforces one of them, namely c>i (X̃−
x̃x̃>)ci ≤ 0. Objective (15) ensures that c>i (X̃− x̃x̃>)ci is as
small as possible.

Although interior point methods are known to converge to
maximum rank solutions, the relaxed matrix is low rank in
general. Therefore, it is likely that the constraint c>i (X̃ −
x̃x̃>)ci ≤ 0 is already satisfied for the unmodified solution.
Simulations found in Section 6 corroborate this fact.
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C. Secant Approximation

To address the above-mentioned issues, we lever-
age the method of secant approximation, inspired by
[Saxena et al., 2010]. Note that the constraint (14) can be
written as:

−(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉

φ>i x̃

−〈X̃, φiφ>i 〉

l uξ2ξ1

Fig. 1: l and u are lower and upper bounds of {φ>i x̃| (x̃, X̃) ∈
NSDP}, respectively. Red areas indicate false feasible space
induced by the secant approximation.

Graphically, the grey area in Figure 1 indicates the orig-
inal feasible space of (x̃, X̃) constrained by −(φ>i x̃)2 ≤
−〈X̃, φiφ>i 〉. Since the set is non-convex, we use secant lines
to approximate it. The approximated feasible space contains
every point above the 3 secant lines, namely the grey area plus
the red area. ξ1, ξ2 are the points by which the feasible space
is divided. For each part of the space, we use a separate line
to lower-bound it. In other words, for each divided space, a
necessary condition for (x̃, X̃) to lie in the original feasible
space is given. As observed in Figure 1, since secants are
used for approximation, it is important that l and u be known
in advance. For this certification problem, those bounds can
be calculated with auxiliary SDPs. More importantly, for any
{(x̃, X̃) ∈ NSDP|X̃ = x̃x̃>}, (x̃, X̃) lies above exactly one
secant line.

In mathematical language, this means that∨
q∈{0,...,Q+1}

(x̃, X̃) ∈ Γq(φi) (16)

where Γq(φi) is defined as∨
q∈{0,...,Q+1}

[
ξq ≤ φ>i x̃ ≤ ξq+1, and

ξqξq+1 − (φ>i x̃)(ξq + ξq+1) ≤ −〈X̃, φiφ>i 〉

]
(17)

and
∨

is a logical OR symbol commonly used in boolean
algebra and ξ0 , l, ξq+1 , u, with Q being the number
of dividing points. This means that every pair (x̃, X̃) in
{(x̃, X̃) ∈ NSDP|X̃ = x̃x̃>} belongs to only one Γq(·) for
some q, except when φ>i x̃ = ξq for q = {0, . . . , Q+ 1}.

Lemma 1. The secant approximations (16) exactly recovers
the constraint −(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉 when Q→∞.

Proof. As Q→∞, ξq = φ>i x̃ = ξq+1 for q = {0, . . . , Q+1}.
Therefore, ξqξq+1−(φ>i x̃)(ξq+ξq+1) = (φ>i x̃)2−2(φ>i x̃)2 =
−(φ>i x̃)2, resulting in −(φ>i x̃)2 ≤ −〈X̃, φiφ>i 〉

Of course, an infinite number of divisions is impractical
from both a complexity standpoint and a numerical standpoint.
Thus, selecting ξq’s intelligently to minimize the red area in
Figure 1 is critical.

Proposition 2. Given l and u for {φ>i x̃| (x̃, X̃) ∈ NSDP}, a
secant approximation with Q division points {ξq}Qq=1 achieves
the best approximation when [l, u] is equally partitioned.

Proof. We optimize for the red area in Figure 1:

min
{ξq}Qq=1

Q+1∑
q=1

∫ ξq

ξq−1

−x2 − (ξq−1ξq − x(ξq−1 + ξq))dx

Since the objective f(·) is convex in {ξq}Qq=1, ∇f({ξq}Qq=1) =
0 implies that ξq = 1

2 (ξq−1 + ξq+1) for q = {0, . . . , Q + 1}.
This further implies an equal partitioning of [l, u].

V. SEQUENTIAL CONSTRUCTION OF VALID CUTS

Based on the discussion of the pros and cons of various
strengthening techniques in the previous section, the method
of secant approximation offers a significant benefit over the
existing techniques. However, we have only discussed how to
approximate a single constraint φ>i (X̃−x̃x̃>)φi > 0 for a par-
ticular φi vector, but the deployment of secant approximation
requires an in-depth analysis and careful design.

There are 2 main questions arising from this approach:
1) Which φi vector should be chosen? How do we know if

the constraint of φ>i (X̃−x̃x̃>)φi > 0 is already satisfied?
2) How many such constraints shall be added?

The first question can be addressed via a technique called
Cut Generating Linear Programming (CGLP) and the second
one can be solved via a sequential procedure. The two above-
mentioned solutions will be elaborated in the following two
subsections.

A. Constructing Valid Cuts

To study whether φ>i (X̃ − x̃x̃>)φi > 0 is already sat-
isfied, a candidate solution (x̃∗, X̃∗) is needed, which can
be easily obtained by running the original SDP problem.
By direct substitution, one can verify if the given constraint
φ>i (X̃∗ − x̃∗(̃x∗)>)φi > 0 is redundant. More importantly,
with the candidate solution, one can find the eigenvectors cor-
responding to the largest positive eigenvalues of x̃∗(x̃∗)>−X̃∗
in order to find φis that violate the negative semidefinite
constraint the most.

However, this is not enough, because secant approximation
induces a false feasible space (colored in red in Figure 1). As
a result, it could happen that while a given constraint is not
redundant, its secant approximation is. This phenomenon is
well illustrated by Example 1 in [Saxena et al., 2010].

Therefore, it is necessary to actively search for a non-
redundant secant approximation, termed a valid cut, given
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a candidate φi vector, which is usually an eigenvector
of x̃∗(x̃∗)> − X̃∗ corresponding to a strictly positive
eigenvalue. Mathematically, this can be accomplished via
the Cut Generating Linear Programming (CGLP) problem
[Saxena et al., 2010]:

min
α,β,{µq},{νq}

α>χ∗ − β

s.t. A>µq +D>q ν
q ≤ α q ∈ {1, . . . , Q}

b>µq + d>q ν
q ≥ β q ∈ {1, . . . , Q}

µq, νq ≥ 0 q ∈ {1, . . . , Q}
Q∑
q=1

(κ>µq + η>q ν
q) = 1

(CGLP)
where χ is a vectorized version of the variables (x̃, X̃)

with χ∗ = [x̃∗
>
, vec(X̃∗)>]>, {µq}, {νq} being vectors of

nonnegative entries, and κ, {ηq} being normalizing constants.
κ, {ηq} are some constants to help with numerical stabilities,
and are not of theoretical interest.

Most importantly, Aχ ≥ b (Aχ is just matrix multiplication)
is a reformulation of the constraint (x̃, X̃) ∈ NSDP, and
D>q χ ≥ dq is a reformulation of the constraint (x̃, X̃) ∈
Γq(φi) for any φi. This is possible because every constraint
is affine after lifting (i.e. introducing X̃ in the place of x̃x̃>).
That is, different CGLPs exist for different φis. Moreover,
note that given Q ∈ Z, {ξq}Qq=1 are calculated according to
Proposition 2.

To illustrate how CGLP can help, we introduce the fol-
lowing theorem, which is a modification of Theorem 1 in
[Saxena et al., 2010]:

Theorem 1. If the optimal value of (CGLP) is negative, then a
valid cut αχ ≥ β is found that cuts off the candidate solution
(x̃∗, X̃∗). Conversely, if the optimal value is nonnegative, then
no such cut exists for {Γq(φi)}Q+1

q=0 .

Proof. According to Theorem 3.1 of [Balas, 1998], αχ ≥ β
is a valid constraint for (3) with the secant approximations
(16) if and only if the first three lines of the CGLP constraints
hold true. All alphas and betas for which αχ ≥ β is a valid
constraint is in the polyhedral search space of CGLP. If there
exist α∗ and β∗ such that α∗χ∗ < β∗, the optimal value of
CGLP must be negative. On the other hand, if the optimal
value of CGLP is negative, such α∗ and β∗ must exist. In
this case, α∗ and β∗ must also meet the condition α∗χ ≥ β∗
due to the convexity of polyhedra. Then, χ∗ contradicts the
requirements of χ, making the constraint αχ ≥ β a valid cut.

Conversely, if no such α∗ and β∗ exist, then χ∗ already
satisfies all valid constraints with respect to {Γq(φi)}Q+1

q=0

since the polyhedral search space is convex, and convexity
guarantees an exhaustive search. Thus, no valid cut can be
found.

Theorem 1 states that if the CGLP problem for a particular
φi vector returns a negative optimum, then αχ ≥ β is a valid

cut, and can be added to the SDP problem to further strengthen
the problem.

Theorem 1 and Lemma 1 lead to the following result:

Corollary 1. If D>k χ ≥ dk corresponds to a set of constraints∨
q∈{0,...,Q+1}(x̃, X̃) ∈ Γq(φi) with φi being an eigenvector

of x̃∗x̃∗> − X̃∗ associated with a positive eigenvalue, then a
valid cut αχ ≥ β always exists if Q→∞.

B. A Sequential Algorithm

To systematically generate constraints of the form φ>i (X̃ −
x̃x̃>)φi > 0, we propose Algorithm 1 and study its perfor-
mance in this part.

Algorithm 1: Sequential SDP verification of NN Ro-
bustness by adding secant-approximated non-convex
cuts

1 verification (X ,S, {W 0 . . .WK−1}, Q,maxiter, γ);
Input : Input uncertainty set X , safe set S , trained

network weights {W 0 . . .WK−1}, number of
partitions for the secant approximation,
maximum number of iterations maxiter, and
the eigenvalue threshold γ.

Output: τr = maxC>r z for r ∈ {1, . . . , R}, where Cr
is the rth row of C, and R is the number of
rows of C, as specified by the safe set S

2 for c = C1, . . . , CR do
3 (x̃∗, X̃∗)← arg max{c>z : (x, z) ∈ NSDP, x ∈ X}

;
4 α̃ = [], β̃ = [] ;
5 for i = 1, . . . ,maxiter do
6 (λ ∈ Rm, V ∈ Rnx̃×m)← eigenvalues of

x̃∗x̃∗
> − X̃∗ bigger than γ, and with

eigenvector corresponding to the ith

eigenvalue being ith column of V ;
7 for φ = V1, . . . , Vm do
8 (l, u)← {min,max}{φ>z : (x, z) ∈

NSDP, x ∈ X} ;
9 (α, β)← CGLP(Q,φ, u, l);

10 if α>χ∗ < β then
11 α̃ = [α̃;α>], β̃ = [β̃;β]
12 end
13 end
14 (x̃∗, X̃∗)← arg max{c>z : (x, z) ∈

NSDP, α̃χ ≥ β̃, x ∈ X} ;
15 end
16 τr = c>x̃∗[K];
17 end

The main result of this paper is stated below.

Theorem 2. For every iteration i ∈ {2, . . . ,maxiter} in
Algorithm 1, it holds that

f∗(X ) ≤ c>x̃∗i [K] ≤ c>x̃∗i−1[K] ≤ f̂∗(X ) (18)
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with x̃∗i , X̃
∗
i , and by extention Ξ∗i being the optimizers of the

ith iteration. The middle inequality becomes strict if at least
one of the optimal values of CGLPs in iteration i is negative
and either of the following holds:
• ĉ lies in the null space of Ξi−1, where ĉ ,

[01×(nx̃−nK) c
>]>

• Q→∞

Proof. The inequalities c>x̃∗i [K] ≤ c>x̃∗i−1[K] ≤ f̂∗(X ) are
due to the fact that a strict reduction in the search space will
not yield a higher optimal value. f∗(X ) serves as a lower
bound since the constraints are valid, according to Theorem
1.

Now, since the objective is linear, ĉ>x̃ = γ must be
a supporting hyperplane for the spectrahedral (convex body
arising from linear matrix inequalities) feasible set at x̃∗i−1,
where γ denotes as the constant c>x̃∗i−1[K]. By Proposition
2 in [Roshchina, 2017], the intersection of a closed convex
set (e.g., this feasible set) and the supporting hyperplane is an
exposed face. Furthermore, by [Ramana and Goldman, 1995],
it is known that any exposed face of a spectraheron is a proper
face, and the null space of Ξ will stay constant over the relative
interior of this face. Thus, the intersection will consist of points
(x̃, X̃) such that ĉ>x̃ = γ and N (Ξ) = N (Ξi−1).

Let a basis of N (Ξi−1) be denoted as {ψj}, where each
vector is partitioned as ψj , [ωj ψ̂>j ]>. Therefore, ψ̂>j x̃ =
−ωj for j ∈ {1, . . . , nx̃ + 1}. If ĉ ∈ N (Ξi−1), the supporting
hyperplane will intersect the spectrahedron at exactly one point
(the face is of affine dimension 0) because x̃ is already fixed
in {ψ̂j} coordinates, and γ can only take on one value. If
the intersection only consists of one point, then a valid cut
will invalidate this point, and the objective value will strictly
decrease.

On the other hand, if Q → ∞, the original negative
semidefinite constraint is recovered, as per Lemma 1. Then,
after using the valid cut, Ξi will have a strictly lower rank
than Ξi−1. Since the intersection consists of points such that
N (Ξ) = N (Ξi−1), all those points will not be in the feasible
space anymore under the presence of this valid cut. This leads
to a strict decrease in objective value.

Since nx̃ is usually very large for multilayer networks, the
first condition is often satisfied. However, it is important to
note that those 2 conditions are only sufficient conditions,
and that in practice there is normally a non-zero reduction in
relaxation gap whenever a valid cut is calculated. Moreover,
if a valid cut is given, the algorithm will always reach new
optimal points, thus avoiding the situation of repeating the
same search again and again.

This algorithm is asymptotically exact if an infinite number
of iterations is taken, as explained below.

Lemma 2. The relation c>x̃∗i [K] = f∗(X ) holds as i→∞,
provided that γ = 0 and Q→∞

Proof. The proof follows directly from Theorems 1, 2, and
Corollary 1.

VI. EXPERIMENTS

We certify the robustness of the IRIS dataset1 with pre-
trained MLP classification network with 99% accuracy on test
data using the original SDP approach, our Algorithm 1, and
the penalization approach in Section IV-B. For all experiments,
maxiter is set to 10. Moreover, the l∞ radius of X is set to
0.15 for networks with 5 and 10 hidden layers, and set to 0.075
for the other 2 networks. This is because larger networks are
naturally more sensitive to perturbation.

A. Certification Percentage

TABLE I: Certification Percentage (First Row) and Average
Trace Gap (Second Row).

H-Layers/Q SDP Algorithm 1 Penalized
5, Q=20 100% 100% 100%

(Trace Gap) 4.73× 10−7 4.73× 10−7 0.48
10, Q=5 0% 80% 0%

(Trace Gap) 31.15 27.09 20.42
15, Q=5 0% 60% 0%

(Trace Gap) 491.71 61.1 228.68
15, Q=20 0% 100% 0%

(Trace Gap) 513.71 70.05 198.79

In Table I, certification percentage and average trace gaps
(tr(X̃)− x̃>x̃) for the original SDP procedure, our Algorithm
1, and the penalized approach are all calculated for classifica-
tion networks with different numbers of hidden layers. Trace
gap is an alternative measure for the rank of X̃ , since many
non-zero eigenvalues can be really small, and it is not obvious
whether we should count them when calculating rank.

It can be observed that when the network is small, the
original SDP procedure is already sufficient. However, as the
number of hidden layers grows, Algorithm 1 shows its strength
by certifying more data points. The penalization approach
remains ineffective although sometimes it decreases the trace
gap.

It should be noted that when a small Q cannot generate
enough valid cuts (in this case Q=5), increasing that partition
number (Q=20) will generally improve the performance, as
can be noticed in the 2 cases with 15 hidden layers. This is
also an empirical verification of Lemma 2.

The objective f̂∗i (X ) of (3) for the aforementioned ap-
proaches is shown in Figure 2 for 5 data points each.

B. Running time

The running time of Algorithm 1 is problem-specific, be-
cause the number of constraints that needs to be added is
dependent on how loose the candidate solution is, and it is
apparent from Figure 2 that even for similar points in a small-
scale dataset, the differences are large.

Most importantly, the most time consuming part of this
algorithm is CGLP, because after linearization into vectors,
the dimension of the LP is large. However, since the LP is
sparse, one may use specialized methods to handle the LP in
a more time-efficient fashion.

1https://archive.ics.uci.edu/ml/datasets/iris
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(a) 5 H-Layers, Q=20 (b) 10 H-Layers, Q=5

(c) 15 H-Layers, Q=5 (d) 15 H-Layers, Q=20

Fig. 2: f̂∗i (X ) for different certification methods and different
networks

Below is an illustration of the runtime of Algorithm 1 for
the 5 datapoints shown in Figure 2b. It is apparent that the
CGLP procedure takes well over half of the time in the entire
algorithm.

However, since LP naturally scales much better than SDP
and the complexity can be as low as linear in the size of
the problem in presence of favorable sparsity, this algorithm
can be easily scaled to larger datasets if specialized solvers of
CGLP can be developed to handle the special structures.

Although Algorithm 1 is an exponential time algorithm in
the worst case, as most of the proofs only work when Q→∞,
the previous section has demonstrated that we can achieve
satisfactory results even with small values of Q, making it
also empirically appealing.

TABLE II: Running time of Algorithm 1 with 10 H-Layers.

Datapoint Algorithm 1 runtime (s) CGLP runtime (s)
1 166 100
2 149 88
3 143 85
4 149 90
5 165 99

VII. GEOMETRIC ANALYSIS OF NON-CONVEX CUTS

In this section, we offer a geometric intuition into the
success of non-convex cuts. We revisit (16) and write it as:

ξqξq+1 − (φ>x̃)(ξq + ξq+1) ≤ −〈X̃, φφ>〉
⇔ 〈X̃, φφ>〉 ≤ (φ>x̃− ξq)(ξq+1 − φ>x̃) + (φ>x̃)2

(19)

Since there always exists a partition number Q large enough
such that (φ>x̃−ξq)(ξq+1−φ>x̃) ≤ ε, it is possible to rewrite

equation (19): ∑
i,j∈{nx̃}×{nx̃},i6=j

(φiφj)‖~xi‖‖~xj‖cos(θij) ≤∑
i,j∈{nx̃}×{nx̃},i6=j

(φiφj)‖~xi‖‖~xj‖cos(θi)cos(θj) + ε
(20)

after substituting equation (8). Here, φi is the ith entry of φ
(to be distinguished from φi, which is a vector in the set of
basis), and θij is the angle between the vectors ~xi, ~xj , and θi
denotes the angle between ~e and ~xi for i ∈ {1, . . . , nx̃}.

Therefore, there must exist a pair (i, j) such that

cos(θij) ≤ cos(θi)cos(θj) +
ε

nx̃
(21)

Since nx̃ is usually large in multi-layer networks and ε is
chosen to be very small, ε

nx̃
can be neglected for practical

purposes.
Recall from Section II-B that θi = 0 ∀i ∈ {1, . . . , nx̃} is

both sufficient and necessary for the tightness of the relaxation.
Furthermore, in the following lemma we will show that any
decrease in θi for any i can contribute to a tighter relaxation.

Lemma 3. For any row vector ~x in V , as part of the
factorization of X̃ , any increase in the lower bound for ~x·~e

‖~x‖
will decrease the upper bound on the relaxation gap for at
least one entry in x̃.

Proof. Extending the results from Section II-B, it can be
verified that for a fixed θ, the angle between ~e and ~χ, a
decrease in ‖~χ‖ will lead to a smaller spherical cap. Now,
consider a fixed ‖~χ‖. It can be shown that the height of the
spherical cap is ‖~χ‖2 (1 − cos(θ)). Therefore, any increase in
cos(θ) will lead to a smaller cap. Since ~χ is just a linear
combination of different ~x, increasing the lower bound for
~x·~e
‖~x‖ will also increase the lower bound for ~χ·~e

‖~χ‖ .

Given any such pair (i, j), if cos(θij) is large, namely possi-
bly close to one, the term cos(θi)cos(θj) will have to be larger
under the constraint cos(θij) ≤ cos(θi)cos(θj) + ε

nx̃
. This

means that cos(θi) ≈ 1 and cos(θj) ≈ 1, making both angles
very small. Without this constraint, it is possible for ~xj , ~xi
to be collinear, but not collinear with ~e, thus making them
have large angles θi and θj . Figure 3 graphically showcases
this difference. In particular, since ReLU only outputs positive
values, we have θi ∈ [0, π2 ] for all i ∈ {1, . . . , nx̃}. However,
the vectors ~xi that correspond to the input layer are exceptions.
Without loss of generality, it is possible to also assume these
to be nonnegative by changing the weight matrix of the first
layer. Therefore, cos(θi) ≥ 0 ∀i ∈ {1, . . . , nx̃}. Thus, when
cos(θi)cos(θj) ≈ 1, we have θi ≈ 0 and θj ≈ 0. Without
this constraint, it is possible that θj ≈ π and θi ≈ π. In other
words, with the ReLU constraints in place, the non-convex
cuts will push the vectors towards ~e instead of −~e.

If cos(θij) is small, then inequality (21) will not be binding,
and the original semidefinite constraints will work satisfac-
torily. Ideally, inequality (21) will hold for all pairs (i, j),
but this is not guaranteed. However, under the assumption
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~e
~xi

~xj

θiθj

θij

(a) cos(θij) ≤ cos(θi)cos(θj)

~e

~xj

~xi

θj

θi

θij

(b) cos(θij) ≥ cos(θi)cos(θj)

Fig. 3: Illustration of possible configurations of ~xi, ~xj given
a fixed θij

that the weight matrices in the neural network are relatively
well conditioned (no large condition number) and that ε is
negligible, a large number of the pairs (i, j) are expected to
satisfy or approximately satisfy inequality (21).

As explained, only those pairs (i, j) with a relatively large
cos(θij) are of interest. Denote the threshold as ρ ∈ [0.5, 1)
such that cos(θij) ≥ ρ. We call a pair (i, j) to be valid if it
satisfies inequality cos(θij) ≤ cos(θi)cos(θj)+ ε

nx̃
and invalid

otherwise. In the worst case, cos(θi)cos(θj)−cos(θij) = 1−ρ
for all valid pairs and cos(θi)cos(θj)−cos(θij) = −% < 0 for
all invalid pairs. This leads to the case where the number of
valid pairs is the smallest (denoted as ϑ1) and the number
of invalid pairs is the largest (denoted as ϑ2). The other
threshold % exists because a number cos(θij) too close to
cos(θi)cos(θj) approximately satisfies the inequality. Under
the assumption that weight matrices are well conditioned, it
implies that ‖~xi‖‖~xj‖s are approximately the same amongst
all (i, j) pairs. Thus, if ε is negligible:∑

i,j

(φiφj)‖~xi‖‖~xj‖(cos(θi)cos(θj)− cos(θij)) ≥ 0

=⇒ ϑ1(1− ρ)− ϑ2(%) ≈ 0 =⇒ ϑ1
ϑ2
≈ %

1− ρ

(22)

If ρ = 0.8 and % = 0.2, then at least half of all pairs such
that cos(θij) ≥ ρ will be valid. As ρ increases, so does ϑ1

ϑ2
.

This means that almost all of the most important pairs (i, j)
are valid.

Furthermore, the nature of a multi-layer setup means that
if ~xi and ~xj are from different layers of the network, they
depend on each other. Figure 3 shows that the non-convex cut
tends to make ~xi and ~xj lie on different sides of ~e in the
event of a large cos(θij). This means that as vectors build on
each other (see Figure 1 in [Raghunathan et al., 2018]), they

will revolve around ~e, instead of branching out into a certain
direction. This further implies a small angle with ~e for all ~x.

VIII. CONCLUSION

This paper studies the problem of neural network verifica-
tion, for which the existing cut based techniques to reduce
relaxation gap fail to provide meaningful improvement in
accuracy. We leverage the fact that loose candidate optimum
points in an SDP relaxation of a QCQP reformulation of
the problem can be invalidated by simple linear constraints.
Using this property, a SDP-based method is developed, which
reduces the relaxation gap to zero as the number of iterations
increases. This algorithm is proven to be theoretically and
empirically effective.

By actively constructing constraints using CGLP, we obtain
provably valid cuts. More importantly, a negative optimal value
in CGLP also guarantees a nonzero reduction in the relaxation
gap. It is verified that the relaxation gap for the existing
methods is large when tested on large-scale networks, while
the proposed algorithm offers a satisfactory performance.
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