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Abstract—Workflow management systems (WMSs) are com-
monly used to organize/automate sequences of tasks as workflows
to accelerate scientific discoveries. During complex workflow
modeling, a local interactive workflow environment is desirable,
as users usually rely on their rich, local environments for fast
prototyping and refinements before they consider using more
powerful computing resources. However, existing WMSs do not
simultaneously support local interactive workflow environments
and HPC resources. In this paper, we present an on-demand
access mechanism to remote HPC resources from desktop/laptop-
based workflow management software to compose, monitor and
analyze scientific workflows in the CyberWater project. Cyber-
Water is an open-data and open-modeling software framework
for environmental and water communities. In this work, we
extend the open-model, open-data design of CyberWater with
on-demand HPC accessing capacity. In particular, we design and
implement the LaunchAgent library, which can be integrated
into the local desktop environment to allow on-demand usage
of remote resources for hydrology-related workflows. LaunchA-
gent manages authentication to remote resources, prepares the
computationally-intensive or data-intensive tasks as batch jobs,
submits jobs to remote resources, and monitors the quality of
services for the users. LaunchAgent interacts seamlessly with
other existing components in CyberWater, which is now able
to provide advantages of both feature-rich desktop software
experience and increased computation power through on-demand
HPC/Cloud usage. In our evaluations, we demonstrate how
a hydrology workflow that consists of both local and remote
tasks can be constructed and show that the added on-demand
HPC/Cloud usage helps speeding up hydrology workflows while
allowing intuitive workflow configurations and execution using a
desktop graphical user interface.

Index Terms—scientific workflow, hydrologic modeling, on-
demand HPC

I. INTRODUCTION

Scientific discovery often requires the execution of various

coupled computational tasks using diverse data from local and

remote resources. These tasks can be organized into stages,

based on their data dependencies. A workflow management

system (WMS) is a type of software system where an end

user can describe the data dependencies of tasks, compose

workflows, and launch such workflows for execution in desig-

nated computing environments. Nowadays, different types of

computing environments are supported by popular WMSs. In

a typical WMS, workflows are described as directed acyclic

graphs (DAG) where each vertex is a computation task and the

edges describe the data dependency between tasks. Such DAGs

are then submitted to an execution environment, which can be

a Cloud system, an HPC system, or a local computer. For

example, in Pegasus WMS [1], one can provide the abstract

workflow as a “DAX” file, and Pegasus translates it to an

“execution workflow”, which is then submitted to one of the

supported execution environments. For a simple, small-sized

workflow, a local computer can be used as the execution

environment. For larger workloads, an HTCondor [2] pool of

worker nodes can be used instead, in which case the tasks are

mapped to a collection of worker nodes.

Although popular WMSs such as Pegasus allow users to

utilize various types of execution environments to launch com-

putation tasks, we find there are two limitations in practice.

Firstly, the choice between local and remote execution sites

is not flexible: workflows are typically only allowed to run in

their entirety in local or remote environments. For workflows

running in a local environment, computation power is limited;

for workflows running remotely, it can take much longer to

prototype, develop and debug. Secondly, from a workflow

user’s perspective, correctly preparing an abstract workflow

can require a lot of effort for large workflows. For example,

Pegasus WMS users must either manually create the DAX

file, or use one of the supported programming interfaces to

generate the DAX file. In contrast, desktop-based WMSs such

as VisTrails [3], provide a feature-rich GUI-based frontend,

which allows users to drag and drop widget boxes to form a

complex workflow, and also gives comprehensive and timely

information such as execution provenance.

To address these two practical issues, we present LaunchA-

gent, which provides desktop-based workflows with a mech-

anism of on-demand access to remote computing resources,

so that rich configurations and trivial computation tasks can

be done in the local environment, and only computation-

ally expensive tasks are offloaded to powerful HPC/Cloud

resources as needed. LaunchAgent began as a part of the

CyberWater project [4], which aims to create an open-model

and open-data framework to accelerate collaborative water

research. VisTrails, a Python-based desktop workflow manage-

ment software program, is currently adopted in the CyberWater
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project to support tasks such as provenance management and

reproducible computing for exploratory computation tasks.

Salas et al. [5] show that, using the VisTrails WMS, one

can compose workflows consisting of different hydrological

data sources and computational models and enable model

coupling through its desktop graphical user interface (GUI).

However, the previous integration of VisTrails and the Cyber-

Water software framework only supports model execution on

desktop computers, which usually have limited computation

power and storage space. The proposed LaunchAgent library

extends the CyberWater software framework so that users

can select out specific computationally expensive tasks from

the entire workflow during the GUI workflow configuration,

and the chosen tasks are offloaded to HPC/Cloud resources

automatically.

LaunchAgent supports both direct Slurm-based [6] access

and Airavata gateway [7] access to remote computing re-

sources. Such a design allows us to use both mid-size campus-

based clusters and large-size grid computing resources (e.g.,

from XSEDE [8]). To illustrate the integration of LaunchA-

gent along with the CyberWater software framework and its

VisTrails desktop interface, we run a real-world hydrological

modeling workflow that has an HPC-enabled Variable Inflitra-

tion Capacity (VIC) model [9]. Our experiments show that by

utilizing various types of HPC/Cloud resources, LaunchAgent

is able to accelerate the VIC model significantly, with the

convenience of intuitive user interactions.

In the rest of the paper, we begin by introducing background

information on the CyberWater project and the Airavata gate-

way framework in Section II. Then, in Section III, we describe

the design of the extended CyberWater software framework

with the new on-demand HPC/Cloud mechanism. We present

our experimentation results in Section IV. Related work is

reviewed in Section V. Finally, we conclude the paper in

Section VI.

II. BACKGROUND

A. Cyberwater project

CyberWater is a collaborative project for creating a new

infrastructure with an open-data and open-modeling software

framework [4]. The CyberWater project aims at reducing user

time and effort needed for hydrologic modeling studies by

enabling flexible integration of diverse data sources and user

models needed for executing complex workflows with on-

demand remote HPC resources. It utilizes the Meta-Scientific-

Modeling (MSM) framework [5] to address challenges of

accessing heterogeneous data sources and integrating individ-

ual models. The MSM framework consists of four parts: a

core (the MSM core), an interface with the Workflow engine,

Data Agents, and Model Agents, as shown in the dashed

box in Figure 1. The Data Agents are dynamically loaded

components that describe how to connect to and retrieve

data from different external data providers through the inter-

net. The Model Agents are dynamically loaded components

that describe the input/output and execution specifications of

different hydrological models. The Core interacts with the

Workflow Engine through the Workflow Interface to prepare

and trigger individual tasks (e.g., data retrieving tasks and

model execution tasks) specified in workflows.
VisTrails [3], a Python-based graphical science workflow

system running in desktop environments, is currently adopted

in the CyberWater project as the workflow management

system, and provides the workflow engine that MSM core

interacts with. Users can compose complex hydrology work-

flows using VisTrails graphic user interfaces. Then, the tasks

defined in the workflow are captured by the MSM Core, which

triggers actions such as data fetching, model execution, data

processing/transformation, by means of Model Agents and

Data Agents.

Fig. 1: Broad Scheme of CyberWater.

An in-depth comparison between the CyberWater MSM

framework and other model/integration systems has been

demonstrated in [5]. Previously, the CyberWater MSM frame-

work allowed models to be executed in users’ local computing

environment (e.g., desktops) only. In this paper, we focus

on the infrastructure design and support that enable the on-

demand access to HPC/Cloud resources for better execution

efficiency and for saving end-to-end workflow time. In order

to integrate HPC/Cloud systems with the current CyberWa-

ter MSM framework, the Apache Airavata science gateway

framework described below is adopted.

B. Airavata gateway framework
Apache Airavata [7] is a science gateway software frame-

work to compose, execute, and monitor distributed applica-

tions from local clusters to computational grids and clouds.

The Airavata framework is a collection of distributed micro

service components of identity management, application and

experiment management, job and workflow management, and

digital object sharing management. Science Gateway Platform

(SciGaP) [10] provides Apache Airavata software as a hosted

middleware service on Indiana University (IU) Intelligent

Infrastructure systems1.
SciGaP exposes public APIs that science gateways can use

to outsource those general capabilities, as shown in Figure 2.

1https://uits.iu.edu/services/intelligent-infrastructure
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Through the API services, researchers can register an applica-

tion by specifying information such as executable script path,

environment variables, input/output arguments and data files.

The API services also allow the gateway administrator to add

computing resources (clusters) so that when a SciGaP gateway

user requests an experiment execution, the corresponding jobs

will be created, launched at a designated HPC cluster, and

monitored by the job management services.

Fig. 2: SciGaP Integration Overview. SciGaP can expose API

services to both browser-based and non-browser applications.

As illustrated in Figure 2, Science Gateways may have

web portals, non-browser desktop/device based apps, or a

combination thereof for their end-user researchers. To this

end, the Airavata framework provides software development

kits (SDKs) to connect with SciGaP and Apache Airavata

services. The API services provided by SciGaP have been

successfully used in different domains2. Web browser-based

interfaces using Django web framework have been developed

and provided as a reference to enable users to configure,

launch, and monitor jobs/workflows. However, the browser-

style integration is not always suitable for certain scientific

workflow applications such as CyberWater that require feature-

rich desktop based VisTrails workflow management tool. On

one hand, CyberWater uses the Django web interfaces for tasks

such as user registration, computing resource management, but

on the other hand, it utilizes the Python SDK to configure,

launch, and monitor applications. Integration of the SciGaP

API services into the CyberWater system is described in

Section III-B.

III. METHODOLOGY

In the CyberWater MSM framework, users’ models can be

plugged in easily, and without coding, using Generic Model

Agent Tools, in which the model’s execution environment is

local, as shown in the center part of Figure 3. The VisTrails

workflow system is currently adopted in the CyberWater

framework, with which users can simply drag and drop compo-

nent modules in their rich desktop environments to compose

2SciGaP collaborators and clients: https://scigap.org/pages/collaborations.

complex workflows. When the workflow is launched, MSM

Core captures the computation tasks defined in the workflow,

and then executes the tasks locally, which only utilizes a local

desktop’s computation power to carry out all the tasks.

The new on-demand HPC/Cloud mechanism extends the

CyberWater software framework, which now includes a new

remote HPC/Cloud execution environment provided by the

LaunchAgent library to offload models specified in the Model

Agents to HPC/Cloud resources on demand. The newly im-

plemented LaunchAgent library, described in the following

section, advances the Generic Model Agent Tool even fur-

ther: it allows a model user to deploy the same models

easily to different remote computing environments for faster

task execution. Although we chose VisTrails as our current

workflow engine, the MSM framework described in Figure 3

has a generic design that can be adapted to other workflow

management systems.

Locally Installed WMS

MSM Core

Local Execution
Environment

LaunchAgent

XSEDE
HPCs

Public
Clouds

Campus
Clusters

Data Agents
NLDAS
USGS

Other data
agents

Model Agents

VIC
DHSVM

Other models

Workflow Engines

Rich GUI-based
WMS frontend

Workflow Interface

MSM Framework

Remote HPC/Cloud
Execution Environment

Generic Model Agent Tools

Fig. 3: The new HPC/Cloud-enabled CyberWater software

framework with LaunchAgent integration. LaunchAgent ex-

tends the open-model and open-data design of the CyberWater

MSM framework, and allows selection of computationally

expensive tasks to be launched as remote jobs in different

remote computing resources.

A. Design of LaunchAgent

LaunchAgent is a core component in providing on-demand

HPC/Cloud access in the CyberWater software framework.

LaunchAgent is designed to help workflow engines offload

computationally intensive tasks to remote HPC/Cloud re-

sources on demand through Python programming APIs. As

shown in Figure 3, a locally installed workflow engine (e.g.,

VisTrails) on a desktop can manage a workflow as a graph of

computational tasks. For the default local-computation setup,

tasks are scheduled by the local computer’s operating system

scheduler, and communication between tasks happens in the

form of memory objects/local files. However, the computa-

tional power on local computers is usually limited.
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With the help of LaunchAgent, specific tasks along with

their input files can be offloaded to remote computing re-

sources to accelerate the workflow. LaunchAgent manages

user authorization so that users have proper access to remote

resources. It also composes, submits, and monitors the com-

putation tasks for the users. Through the design of a universal

Python API, a local workflow engine can periodically check

the tasks’ status in remote sites, and download output files

when the tasks are finished.
Listing 1 below shows how a VIC5 (VIC version 5.0)

application [11] can be deployed in the IU BigRed3 cluster

using the LaunchAgent interface. Firstly, a user can register

as a Cyberwater gateway user through the gateway web

portal3. Then, LaunchAgent can authorize the user based on

gateway credentials and grant permission for the requested

HPC resources (in the example of Listing 1, the IU BigRed3

system is requested from the user). The running environment

of VIC5 (including input files and configuration files) is stored

in the “vic” folder. The run_monitor_job function is a

blocking call and the control returns until the job is finished

on the HPC/Cloud side. The corresponding job’s exit status is

also returned and kept locally for provenance purposes.

# 1. Gateway authentication.
agent = GatewayAgent(gateway_username, gateway_passwd,

exp_name = "test-gateway-cyberwater",
site_name= "bigred3")

# 2. Upload local folder.
agent.upload_folder("vic")

# 3. Configure experiment, the run.sh file in the
# uploaded folder shall define how the job will be run.
agent.configure_exp(nodes = 1, ntasks_per_node = 2,

email='somemail', walltime_in_mins= 5)

# 4. Run the job remotely and wait until job finishes.
agent.run_monitor_job()

# 5. Download all results to local directory.
agent.download_folder("./results_vic_gateway")

Listing 1: Example LaunchAgent usage with VIC hydrological

model.
Typically, researchers have access to two types of cluster

resources: on-campus clusters and remote clusters accessible

through services such as XSEDE. At IU, there are high-

performance/high-throughput clusters such as BigRed 3, Karst,

et al [12]. Those resources typically require University IDs to

operate and usually have limited computing power. On the

other hand, extreme-scale computing infrastructure provided

by XSEDE, such as TACC Stampede2 [13] and PSC Bridges-

2 [14] usually provide significantly higher computing power.

To this end, LaunchAgent has been designed to suit both

settings through two channels: a direct Slurm-based channel,

and an Airavata gateway based channel, both of which will be

discussed in detail next.

B. Gateway-based channel
The gateway-based channel in LaunchAgent utilizes both

Web-browser-based and non-browser-based interfaces pro-

3https://cyberwater.scigap.org/

vided by the SciGaP framework. First, the gateway admin-

istrator needs to configure the desired CyberWater application

for the gateway created on SciGaP. This step is done through

a web browser only once for all CyberWater gateway users,

and is used to initialize the gateway environment and to

prepare common metadata for all tasks submitted through

the non-browser Python SDK interfaces. Figure 4 illustrates

the main components of a gateway application and their

dependencies. The gateway administrator needs to define the

application inputs, outputs, and deployments. The application

input describes the required inputs to run experiments and the

output defines the experiment output results. The application

deployment refers to the metadata related to connecting to the

HPC clusters such as SSH Keys, job submission protocols, job

queue information, and login account details. This information

is configured in the Group Resource Profile (GRP) of the

SciGaP gateway. Moreover, GRP is a collection of comput-

ing resources metadata and common SSH Keys to access

computing resources (hosts). The gateway administrator can

share GRPs with specific users or user groups to give access

to computing hosts for their experiments. Data handling and

transfer information are bundled in the Gateway Resource
Profile (GwRP), which contains storage access information

for end users to upload and download experiment inputs and

outputs. Furthermore, users can share GRP with other users or

user groups to provide access for the data. Hence, GRP and

GwRP create another layer of abstraction to manage access

and data sharing easily with users and groups.

Fig. 4: Core components in an Airavata gateway application

and their dependencies.

After the successful configuration of the gateway applica-

tion, gateway end-users can submit experiments to the gateway

under the created application. Figure 5 illustrates the sequence

of operations supported by the Airavata Python SDK to

execute an experiment through SciGaP services. Firstly, when

a user initializes the LaunchAgent instance with a Gateway

channel, LaunchAgent uses the Airavata Python SDK to au-

thenticate the user based on the user-provided credentials with

the SciGaP security service. Then an OAuth token is returned

by the security service, and this token is used to access each

subsequent API of SciGaP services via Python SDK. Secondly,

during the run monitor job call, an Airavata “experiment”
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Fig. 5: LaunchAgent Operation Sequence with SciGaP services.

will be created and the required files will be uploaded and

launched into the job scheduler at the remote resource. The

agent.run monitor job function finishes when an exit status

is returned while querying SciGaP API/Data service.

Currently, we use several computing resources from

XSEDE, and the CyberWater gateway is registered in the

XSEDE science gateways listing4. An XSEDE community

account is set up and used to access the allocations on

systems like IU Jetstream [15] and Pittsburgh Supercomputing

Center (PSC) Bridges-2. We pre-configured those computing

sites in the Airavata web portal as a group resource profile.

Specifically, we allocate an SSH key-pair for this community

account and copy the public key to the selected remote sites

so that the gateway service can authenticate itself in order to

access the registered HPC/Cloud resources.

Once a user joins the CyberWater gateway and is approved

by the administrator, he/she gains access to the group of

pre-configured HPC systems defined by the group resource

profile. By using the CyberWater gateway username/password

during the agent initialization function (see Listing 1), the

LaunchAgent can use the selected site in the group resource

profile to launch computation tasks.

C. Direct Slurm-based channel

We initially developed the direct Slurm-based channel for

LaunchAgent using Paramiko SSH2 Python library5. The

direct Slurm-based LaunchAgent has an operation sequence

similar to the gateway-based method, as shown in Figure 5.

In the gateway environment, the gateway usually utilizes a

community account for all users, and works as middleware

that submits jobs to remote sites for each registered user.

Also, currently the gateway approach requires that comput-

ing resources be validated and registered in SciGap, before

4https://www.xsede.org/web/site/ecosystem/science-gateways/
gateways-listing

5https://www.paramiko.org/

gateway users can deploy applications on them. In contrast,

with the direct Slurm-based method, each user has his/her

own login credentials to remote resources, which gives direct

access to the HPC/Cloud systems without going through the

gateway. A typical use case of the Slurm-based LaunchAgent

is campus-based clusters, to which university students/faculties

have direct access.
Similar to the gateway programming interface example

shown at Listing 1, the user needs to configure the folder to

be uploaded, which includes input data and running configu-

rations. LaunchAgent automatically archives the user’s folder,

submits it to remote computing resources, and retrieves output

data once the job finishes. For authentication, Slurm-based

LaunchAgent allows users to authenticate themselves using

their HPC logins, with either passwords or SSH key pairs.

Here, each user provides his/her personal login credentials,

and such credentials are not saved in the Slurm-based Laun-

chAgent.
Initially we developed our prototype using IU BigRed3

supercomputer. Using the generic Slurm-based agent, we were

able to launch parallel programs from personal computers. To

accommodate larger computation, we also added support for

XSEDE supercomputers, such as PSC Bridges-2 and TACC

Stampede2. We realize that different systems have specific

requirements for user authorization and authentication, and

have dealt with them in the direct Slurm-based LaunchAgent

implementation. For example, PSC Bridges-2 requires a user

to upload his/her ssh login public key through a specific key

management web page (operated by PSC), and Stampede2 re-

quires multi-factor-authentication (MFA) for each ssh session.
Apart from the XSEDE HPC resources, the direct Slurm-

based LaunchAgent also supports cloud computing sources

such as Google Cloud Platform and JetStream Cloud. To

initialize the Slurm clusters from those Cloud providers, we

utilize the Slurm-GCP tool6 for Google Cloud Platform, and

6https://cloud.google.com/solutions/deploying-slurm-cluster-compute-engine

200

Authorized licensed use limited to: IUPUI. Downloaded on January 04,2022 at 21:53:47 UTC from IEEE Xplore.  Restrictions apply. 



JetStream Elastic Slurm Cluster tool7 for JetStream Cloud.

Both Slurm-GCP and JetStream Elastic Cluster allow dynamic

resizing of clusters by allocating more cloud virtual machines

on demand.

D. Integration with Cyberwater frontend

To incorporate the LaunchAgent component into the Cy-

berWater system, we have created an “HPC” module, which

can be dragged and dropped in the VisTrails WMS desktop

frontend. The HPC module extends the functionality of the

Generic Model Agent Tools (GT) to provide on-demand HPC

usage in the CyberWater system. Figure 6 shows the HPC

module and its configuration window in the CyberWater-

VisTrails GUI interface.

Fig. 6: The HPC Module and its configuration window.

In Figure 6, only part of the supported input configurations

(ports) are showed for demonstration purposes. We also pro-

vide a more complete list of the configurable ports in Table

I. A real-world example using the HPC module is described

in Section IV-A, where we configure the VIC5 executable for

remote execution at the PSC Bridges-2 supercomputer.

IV. USECASES AND PERFORMANCE EVALUATION

In this section, we demonstrate through a real-world hy-

drology workflow example how LaunchAgent can be used

in the CyberWater project to provide convenient, on-demand

access to HPC/Cloud systems. We then focus on the the most

computationally expensive VIC5 module in the workflow,

analyzing and comparing its performance when launching it

using LaunchAgent in different execution environments.

A. HPC-enabled workflow with LaunchAgent

To demonstrate that LaunchAgent integrates seamlessly

with the current CyberWater framework, we use the

CyberWater-VisTrails graphical user interface (GUI) to com-

pose a hydrology workflow. This workflow uses the VIC5

model to study the West Branch Susquehanna8 river basin for

7https://github.com/XSEDE/CRI Jetstream Cluster
8USGS information used: https://waterdata.usgs.gov/pa/nwis/uv?site no=

01553500

Input Port Specification
Port name Explanation
DataSet Class To get DataSet Class brought in from Main-

Generator.
Email The email address for job notifications.
Execution File The path of the executable program file.
Execution Folder The path of the source code folder, which needs

to be compiled in HPC.
File Name Prefix The prefix of the output result files.
File Pos 01-05 To set the output dataset in the corresponding

column of output files.
GT Path To get GT Path brought in from MainGenerator

(the working directory where simulation files
are saved).

Gateway Platform To choose which HPC/Cloud platform to use
for the gateway-based channel, including IU
Karst and PSC Bridges-2.

Output Name 01-05 To output the dataset needed from these ports.
Project Name The name of project running in HPC.
Password The password used for logging on the specifed

platform.
Ready List To connect the output of ForcingDataFileGener-

ator, AreaWiseParamGenerator and InitialState-
FileGenerator if it exists.

Runtime Estimated duration of the task needed from
the platform to which user wants to apply, in
“hh:mm:ss” format.

SSH Platform To choose the HPC/Cloud platform to use
with the direct Slurm-based channel, including
BigRed3 supercomputer at IU, PSC Bridges-
2 (both extreme-memory and regular-memory
queues), TACC Stampede2, XSEDE JetStream
cloud and GCP (Google Cloud Platform) cloud.

Username The username used for logging on the specified
platform.

Output Port Specification
Port Name Explanation
Output01-05 To output the Dataset needed from these ports.

TABLE I: The input/ouput port specifications of the HPC

module configurable through the CyberWater GUI frontend.

the period 1995-1996. This study area covers more than 17,700

square kilometers.

As shown in Figure 7, we define the time/space range

of the studied problem by configuring the TimeRange and

WBSusquehanna (SpaceRange) module. Then, from the NL-

DAS (North American Assessment-Land Data Assimililation

System [16], [17]), we use the Hourly NLDAS Forcing for
VIC5 group module, which internally contains 7 instances of

NLDASAgent data agents (temperature, longwave radiation,

shortwave radiation, precipitation, pressure, water vapor pres-

sure and wind speed) and the corresponding unit conversions.

This way, CyberWater will pull the seven chosen types of

datasets of the specified time/space range from the NLDAS

site to the local cache directories. After that, we use several

“Generator” modules to prepare the forcing data and parameter

files for the VIC5 execution. Then, the Bridges-2 (HPC)
module is used to launch the VIC5 hydrological model to

the PSC Bridges-2 system. During the remote launch, all

prepared data are sent to the remote HPC/Cloud system;

the VIC5 model is then executed in the remote HPC/Cloud

environment; and, finally, all output results are downloaded to

the specified local output directory. This entire launch process

is conducted automatically by the execution of HPC module
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Fig. 7: An example of remote computing with HPC module.

in the workflow.

CyberWater also provides post-analysis and visualiza-

tion modules, such as the msmShowChart module. The

msmShowChart module is used to display useful information

such as surface runoff and baseflow for view. For example,

Figure 8 shows the the total runoff, which is the sum of

baseflow and surface runoff time series of the studied example

workflow. The “baseflow” means the portion of the streamflow

that is sustained between precipitation events, and it is con-

tributed by slowly moving water within the porous media due

to soil moisture or groundwater. “Surface runoff” describes the

excess amount of water from rain, snowmelt or other resources

that moves over the land surface. The msmDatasetOperation
module in Figure 7 sums the baseflow and surface runoff

computed from VIC5 to obtain the total runoff.

Note that all user interactions in this subsection happen in

graphical user interfaces in the local desktop/laptop workflow

environment, where the users have no need to login to remote

HPCs. By utilizing the “HPC” module in the CyberWater GUI,

we are able to launch the selected tasks remotely using more

powerful computing systems. Importantly, CyberWater allows

researchers to integrate the input/output of such remote exe-

cution seamlessly with local workflow management systems.

Also, it is convenient to substitute the HPC module with

the local execution module for VIC5 if the user’s workflow

does not require much computation power during the model

prototyping and debugging stages.

B. Performance evaluation

We evaluated the performance gain of applying the HPC

resources over the default local execution by comparing the

Fig. 8: VIC5 simulated total runoff from the workflow of Fig-

ure 7 for the West-Branch Susquehanna river basin, displayed

by the msmShowChart module in CyberWater-VisTrails GUI

interface.

elapsed time of the VIC5 computation module when we

use local desktop environment versus when we use different

remote execution sites. In this part of the experiments, we use

the same study area and time period as in Subsection IV-A, to

showcase the performance gains that CyberWater on-demand

HPC access can provide.

For both local and remote execution configurations, the

VIC5 workflow is launched from the same Windows 10

laptop system, which is equipped with 2 CPU cores and

16GB RAM. This laptop is connected to the IU campus

network through a wired Gigabit Ethernet switch installed in

a Computer Science research lab at the Indiana University-

Purdue University Indianapolis (IUPUI) campus.

In the local run, we use the VIC5 windows binary currently

shipped in the CyberWater installation9. For this local setup,

all software and data are self-contained: the VIC5 executable

reads data cached locally, and computation happens solely on

the local computer.

In a different setup with the proposed LaunchAgent tools

for on-demand access to HPC and Cloud, we use the same

laptop system, and change the default local execution mod-

ule for the LaunchAgent module. For the HPC computing

environments, we use the SKX partition in the Stampede2

system and the Regular Memory (RM) partition for the

Bridges-2 system, which has 48 and 128 CPU cores on each

compute node, respectively. For the (IU) Jetstream Cloud,

we use a dynamically-sizing Slurm cluster created using

Jetstream Elastic Cluster toolkit. We include a copy of the

VIC5 source code and the corresponding build script during

the agent.upload folder step, so that the VIC5 executable is

built on the remote system at the beginning of each remote

execution. Note that LaunchAgent also allows the use of pre-

9This executable uses the “classic” VIC driver, and was originally built
with the Cygwin POSIX-compatible environment. For more details, please
refer to https://vic.readthedocs.io/en/vic.5.0.1/Documentation/Drivers/Classic/
ClassicDriver/.
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built packages, in which case the application executable and

its dependencies are pre-configured in the HPC system by the

administrators before the initialization of LaunchAgent.

Fig. 9: Time breakdown of running VIC5 module with Laun-

chAgent in different environments.

Figure 9 shows the comparison of the elapsed time of the

VIC5 module. While the VIC5 module takes over 12 minutes

in a local execution environment, we observe 1.8, 2.2 and

1.3 times speedup when we use LaunchAgent to launch the

same model to Stampede2, Bridges-2 HPC, and the Jetstream

cloud system, respectively. For each remote launch, the elapsed

time shown in the figure includes the time for uploading input,

waiting for remote execution and downloading output10. The

figure also shows the remote “prepare” time, which includes

the job queue waiting time and other work such as file-system

operations before and after the VIC5 execution. We have used

optimization techniques for different HPC systems, such as

AVX512 vectorization in Stampede2 and vendor-optimized

libraries for AMD CPUs in Bridges-2. From the figure, it’s

clear that HPC systems such as Bridges-2 and Stampede2

can greatly reduce the VIC5 model execution time, however,

they require longer preparation time due to shared job queues.

The Jetstream Cloud provides limited computation power for

model execution, but has advantages in data transfer since the

cloud instances are physically located closer to the end-user

(also hosted in the IU network). Jetstream also requires less

preparation time because resources (Cloud virtual machines)

can be allocated on demand. Overall, the results suggest

that for tasks with different characteristics (e.g., computation-

bound or communication-bound), LaunchAgent provides the

flexibility to utilize different types of resources for achieving

the best possible performance.

Note that in experimental results from Figure 9, each

individual remote execution only utilizes one process. To

examine the performance behavior of LaunchAgent with dif-

ferent resource allocation sizes, we ran a similar workflow

with various numbers of processes on the Bridges-2 system. In

10In all remote-launching experiments, a total of 70MB of compressed input
data are uploaded and 600MB of result data are downloaded.

this experiment, we use the same West-Branch Susquehanna

river basin study area, but with a longer 5-year simulation

period, which takes around 3440 seconds for local execution.

The uploaded/downloaded file archives for remote executions

are 352.8 MB and 1.17 GB, respectively. The time breakdown

results are shown in Figure 10, where we show the average

time breakdown for 3 runs. Figure 10 shows that we can

achieve at most 10.6 times speed up when 64 processes are

used, compared with the local execution. However, using a

process number larger than 32 does not bring much perfor-

mance benefit: although the VIC5 simulation scales well, the

overhead of upload, preparation, and download time becomes

more significant. We are currently working on adding heuris-

tics so that CyberWater users can get a suggested or preferred

number of processes for their applications. The suggested

number of processes can be estimated using information such

as the current occupation of job queues in the remote systems,

the I/O and scaling patterns of the applications.

Fig. 10: Time breakdown of running VIC5 module with

LaunchAgent on PSC Bridges-2 system with different numbers

of remote processes.

V. DISCUSSION AND RELATED WORK

Apart from the VIC5 model, the CyberWater software

framework currently also supports other hydrological mod-

els such as DHSVM (Distributed Hydrology Soil Vegetation

Model), VIC4 (an older version of the VIC model), and a

routing model. Researchers are encouraged to bring in their

own hydrological models and datasets. To serve such needs

more efficiently, we have prepared detailed manual documen-

tation so that collaborating researchers can follow the step-by-

step examples to integrate their own models and data. Also,

the CyberWater project team regularly holds study groups and

user workshop sessions, and recordings of such sessions are

also archived and openly available at the CyberWater project

page at CUAHSI website11.

11https://www.cuahsi.org/projects/cyberwater/
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Several water-science related collaborative information sys-

tems have been developed in recent years. Futurewater [18]

is an ongoing effort at Indiana University to answer crucial

questions such as the climate change effects on Indiana’s water

resources. WaterHub [19] uses a GIS-enabled model sharing

platform to allow users not only to run simulations online but

also to publish and share model results. Those methods typ-

ically utilize browser-based Web access, which is convenient

but can be less feature-rich than a local desktop solution such

as VisTrails. In comparison, the proposed HPC/Cloud enabled

CyberWater software framework combines the benefits of

the rich local environment and powerful remote executions

environments, so that trivial tasks such as format transfor-

mation, GUI operation can be efficiently done locally, with

the computationally expensive components offloaded to remote

sites.

Task-based workflow systems such as PyCOMPSs [20]

and Pegasus [1] provide Python-based interfaces for users

to define workflows containing multi-task dependencies. Parsl

[21] (Pervasive Parallel Programming in Python) is a Python-

based parallel scripting library; it allows developers to ex-

press parallelism in Python code. The advantages of those

workflow systems are perpendicular to the current CyberWater

system design. Although VisTrails is currently adopted in

CyberWater as the workflow management system, the on-

demand HPC/Cloud computing capacity can be adapted to

other workflow systems too, under the generic CyberWater

MSM workflow interface design.

The on-demand usage of remote computing resources has

been previously explored in works such as KNIME [22] and

Taverna [23], [24]. KNIME is a workflow management tool

largely used in the cheminformatics domain and it allows

users to compose data analytical pipelines through its GUI

frontend. KNIME allows selective components submitted to

remote clusters for more efficient executions. However, such

support is only available through its commercial KNIME

Cluster Executor extension12. In comparison, the on-demand

HPC/Cloud support in the CyberWater software framework

is freely available to all CyberWater users. Taverna allows

users to compose workflows from a mixture of distributed web

services, local scripts, and other service types [24]. Computa-

tionally intensive operations, such as genome-scale analyses,

can be performed remotely regardless of local infrastructure.

This approach brings challenges in reliability: the externally-

hosted services may not function correctly due to factors

such as service maintenance, outage, or interface upgrades.

By contrast, CyberWater with HPC/Cloud support does not

rely on designated remote service providers or computing

environments, and as a result, computationally intensive tasks

can be offloaded to various resources more flexibly and

interchangeably.

The CyberGIS-Jupyter framework [25] integrates cloud-

based Jupyter notebooks with HPC resources to form a hybrid

12https://www.knime.com/sites/default/files/inline-images/KNIME
cluster-executor productsheet web.pdf

computing environment. CyberGIS-Jupyter uses the central-

ized JupyterHUB service to handle authentication and schedul-

ing Jupyter servers as containers in different virtual machines.

It requires users to write their workflows as Jupyter notebooks

(in Python language). In comparison, CyberWater allows users

to configure complex workflows all from the intuitive, feature-

rich VisTrails front-end. NASA’s NEX project [26] allows

researchers to design workflows in VisTrails and then launch

them to remote HPC resources. In NEX, workflows generated

from VisTrails are submitted as jobs to HPC. In comparison,

the CyberWater system lets researchers identify computation-

ally expensive tasks, and utilizes the power of HPC/Cloud

systems only for those selected tasks.

VI. CONCLUSION AND FUTURE WORK

This work introduces the efforts to extend the CyberWater

software framework with on-demand HPC/Cloud access. To

this end, we design and implement LaunchAgent in Cyber-

Water, which utilizes either a SciGaP channel or a direct

Slurm-based channel to offload computational/data-intensive

tasks to different computing environments such as campus-

based clusters and XSEDE/Grid computing systems. The Cy-

berWater system extended with LaunchAgent not only allows

the open-data and open-modeling framework to continue using

graphical-based workflows with rich GUI-based interactions,

but also enables on-demand access to HPC resources. By se-

lectively offloading computationally and data expensive tasks

rather than entire workflows, CyberWater provides a more

scalable and effective way to use HPC/Cloud resources. We

have demonstrated the expressiveness of our design through

a VIC5 based workflow constructed from CyberWater. Our

experiments show that the new HPC/Cloud enabled Cyber-

Water allows users to launch expensive computing tasks to

remote resources conveniently, gaining significant speed. We

are currently experimenting with more complex large-scale

tasks and adding support to various computationally expensive

models. We also plan to research the scheduling perspectives

of on-demand HPC/Cloud usage, intelligently scheduling tasks

and utilization across multiple types of resources.
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