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Abstract: This work presents an efficient online system identification approach by integrating a reduced sigma points–based filter with a
high-fidelity mechanics-based state-space hysteretic finite-element modeling framework. The efficacy and computational efficiency of any
sampling/sigma points–based nonlinear filtering process are conditional on the number of sigma/sample points required by the filter at each
time step to quantify statistical properties of the involved quantities, as well as on the accuracy and computational cost of the underlying
system model. A scaled spherical simplex filter (S3F) with a significantly decreased nþ 2 sigma points set size is thus presented that is able to
achieve similar robustness and accuracy as the state-of-the-art 2nþ 1 sigma points unscented Kalman filter (UKF) for an n-dimensional state-
space, yet with approximately 50% less computational requirements. The filtering framework is integrated with a recently developed fully
parametrized damage plasticity–consistent hysteretic finite-element modeling approach that is able to account for distributed plasticity, axial-
moment–shear interactions, and degradations in one unified formulation by employing the concepts of continuum damage mechanics and
classical multiaxial plasticity. In the presented hysteretic model, the system matrices are constant and do not require updating throughout the
analysis, whereas the degradations and inelasticity are updated through element-level hysteretic evolution equations in the form of resultant
stress–strain laws. Overall, the system can be presented in a state-space form and can be solved with any first-order ordinary differential
equation solver, without any linearization or gradient requirements, rendering the high-fidelity formulation robust and computationally
efficient and enabling ideal compatibility in terms of computational implementation with the filtering methodology for online joint
state-parameter identification. DOI: 10.1061/(ASCE)EM.1943-7889.0001945. © 2021 American Society of Civil Engineers.

Author keywords: Scaled spherical simplex filter; Online nonlinear filtering; Efficient uncertainty quantification and propagation;
State-parameter identification; Hysteretic finite element; High-fidelity model; Damage-plasticity; State-space form; Bouc-Wen extension
to FEM.

Introduction

This work focused on an online system identification framework,
through the integration of a scaled spherical simplex filter (S3F),
that is a sigma points–based nonlinear Kalman filtering approach,
proposed by Papakonstantinou et al. (2022), with a fully parame-
trized damage plasticity–consistent hysteretic finite-element model
presented in state-space form (Amir et al. 2020a, b, forthcoming).

Sigma points–based nonlinear Kalman filtering techniques re-
quire a predefined set of deterministic sigma points for uncertainty
quantification and propagation, contrary to probabilistic sampling
methods, e.g., particle filter (Gordon et al. 1993), or linearization
approaches with gradient evaluation requirements, e.g., extended
Kalman filter (Yun and Shinozuka 1980). The unscented Kalman
filter (UKF), proposed by Julier et al. (1995) and Julier and Uhlmann

(1996, 1997), and subsequently studied and analyzed by Wan and
van der Merwe (2000) and van der Merwe (2004), among others, is
a state-of-the-art and widely employed sigma points–based Kalman
filtering technique for identification of nonlinear structural systems,
as shown by Chatzi et al. (2010), Song and Dyke (2014), Astroza
et al. (2015), Erazo and Hernandez (2016), Chatzis and Chatzi
(2017), Astroza et al. (2017), and Song et al. (2020), among many
other works, owing its widespread use to its ease of implementation,
accuracy, computational stability, and efficiency (van der Merwe
2004).

The UKF requires 2nþ 1 sigma points for uncertainty quanti-
fication and propagation for a n-dimensional state space, and offers
second-moment accuracy for any input distribution. Higher-order
accuracy can be achieved by increasing the number of sigma points,
but with an increased computational demand of the filtering pro-
cess, e.g., skewed/third-moment approaches, conjugate unscented
transform, or higher order filters (Julier 1998; Adurthi et al. 2018;
Tenne and Singh 2003), because the computational cost of the filter-
ing process is directly proportional to the number of sigma points.
Recognizing this, Julier and Uhlmann (2002) and Julier (2003) sug-
gested reduced asymmetric nþ 2 sigma point sets to quantify stat-
istical properties of n-dimensional random variables. These methods
could significantly reduce the computational burden, particularly
for large-dimensional systems; however, the spread of the points and
the skewness effects pose instability issues, particularly with in-
creasing dimensions (Julier 2002; Julier and Uhlmann 2004).

Based on our recently proposed S3F approach (Papakonstantinou
et al. 2022), the identification framework in the present work
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overcomes the aforementioned limitations by appropriately allocat-
ing nþ 2 sigma points and determining suitable scaling and weight
parameters, and therefore achieves similar accuracy and robustness
as the UKF while reducing the computational requirement by nearly
50%. The S3F was introduced by Papakonstantinou et al. (2022),
and combines all the best attributes of the previous approaches,
i.e., the computational efficiency of the nþ 2 sigma points, along
with the accuracy and robustness of the UKF.

Computational efficiency of the identification scheme was fur-
ther improved in this work by integrating the filtering framework
with our recently developed fully parametrized damage plasticity-
consistent hysteretic finite-element model (Amir et al. 2020a, b,
forthcoming). The suggested finite-element framework was derived
based on the generalized multiaxial hysteretic stress-strain laws by
following the fundamentals of the uniaxial Bouc–Wen type smooth
hysteretic models, but with multiaxial interactions and consistent
degradations, while satisfying all the classical plasticity postulates
(as shown in the Appendix). Smooth hysteretic uniaxial Bouc–Wen
models, proposed by Bouc (1967) and Wen (1976), and later em-
ployed and modified by many researchers (e.g., Baber and Wen
1981; Baber and Noori 1985; Foliente 1995; Sivaselvan and
Reinhorn 2000; Wang et al. 2001; Papakonstantinou et al. 2008)
to expand their features, including degrading/nondegrading and
asymmetric properties, have been employed extensively in a range
of applications for simulating nonlinear structural components,
devices, and materials response, as summarized by Ismail et al.
(2009). Due to the important property of these models in expressing
the nonlinearity/hysteresis through a single parametrized first-order
nonlinear ordinary differential equation (ODE), they have been
aptly and commonly adopted in nonlinear filtering applications
(e.g., Wu and Smyth 2008; Chatzi et al. 2010; Xie and Feng 2012;
Song and Dyke 2014; Chatzis et al. 2015; Kontoroupi and Smyth
2016; Erazo and Hernandez 2016; Chatzis and Chatzi 2017; Olivier
and Smyth 2017; Song 2018; Calabrese et al. 2018; Lei et al. 2019).
All the aforementioned works employed simplified mass spring–
type single or multiple degrees-of-freedom (DOF) structural system
models, in which the nonlinearity is governed by Bouc–Wen mod-
els due to their implementational compatibility in state-space form.
However, such simplified models are not able to reflect or simulate
detailed local response of the structure that needs to be obtained
through higher-fidelity nonlinear modeling techniques, such as solid
finite-elements and fiber-based approaches, among others (Spacone
et al. 1996; Filippou and Fenves 2004; Scott et al. 2008; Deierlein
et al. 2010; Lignos and Krawinkler 2011), thereby limiting their
application for structural identification. Recent contributions for
finite-element model updating using Bayesian techniques, including
UKF, were provided by Al-Hussein and Haldar (2015), Astroza et al.
(2015, 2017), and Song et al. (2020), in which mechanics–based
high-fidelity finite-element models were employed for frame-type
nonlinear structures, to simulate detailed global and local structural
responses. However, these finite-element identification methods did
not incorporate complex structural component–level degradation
phenomena in the identification process, and often were based on
system parameter estimation in an offline manner.

This work combined the accuracy of high-fidelity mechanics-
based finite-element models, incorporating multiaxial degradation-
plasticity phenomena, with the computational advantages and
nonlinear filtering capabilities offered by Bouc–Wen approaches,
to achieve efficient joint state-parameter identification in an online
framework. Amir et al. (2020a) developed a consistent and effi-
cient hysteretic finite-element model in which new displacement/
rotation/hysteretic interpolation fields are derived to satisfy the
exact equilibrium and kinematic conditions of a nonlinear Timo-
shenko beam element. Degradation effects were introduced in

Amir et al. (2020b) by treating strength degradation as a scalar dam-
age function and employing continuum damage theory principles
(Kachanov 1958, 1980; Lemaitre 1996) to satisfy the plasticity pos-
tulates for a degrading system. Amir et al. (forthcoming) presented a
computationally efficient solution scheme in state-space form for dy-
namic analysis, inspired by the formulations of Triantafyllou and
Koumousis (2011, 2012), in which the system matrices are not re-
quired to be updated and the entire framework is presented elegantly
by a system of ODEs that can be solved without the need for lin-
earizations or gradient requirements. In addition to the accuracy and
efficiency of this high-fidelity finite-element framework, the state-
space formulation, similar to any Bouc–Wen type nonlinear system,
is directly compatible with the filtering process for online state-
parameter identification.

Overall, the presented system identification approach achieves
computational efficiency (1) through the filtering process, by re-
ducing the number of model calls from 2nþ 1 per step as with the
traditional UKF to nþ 2 with the S3F, and (2) by integrating the
filter with an efficient and accurate high-fidelity degrading hyster-
etic finite-element model enabling online identification, which of-
fers computational benefits due to the direct use of stress resultants
at the section level, constant matrices avoiding system-level matrix
update and inversion, and the use of first-order ODE solvers with-
out gradient evaluation requirements during the solution process.
This paper presents a detailed description of the S3F and the
finite-element model, and illustrates through numerical examples
the capabilities of the identification approach, related to complex
nonlinear degrading systems, time-variant parameters, dual state
estimation and parameter identification, online estimations, and
sparse measurement data.

Scaled Spherical Simplex Filter

In the context of the presented formulation, the problem of estimat-
ing the hidden states of a nonlinear dynamic system, given noisy
observation data, can be expressed in the following state-space
form:

xk ¼ fðxk−1;qk; vk; θÞ
uk ¼ hðxk; rk; vk; θÞ ð1Þ

where Eq. (1) presents a first-order hidden Markov model with
f and h = deterministic state update and measurement equations;
u = observed state; x = hidden state vector; v = exogenous input;
θ = parameter vector that parametrizes functions f and h; q and r =
process and observation noises, respectively; and subscript k = dis-
crete time step. In a probabilistic framework, the objective is to
recursively update the posterior density pðxkju1∶ kÞ of the system
state, given the observation set, u1∶ k ¼ fu1;u2; : : : ;ukg, through
the following classical Bayes’ rule and Chapman–Kolmogorov
equation, respectively:

pðxkju1∶ kÞ ¼
pðukjxkÞpðxkju1∶ k−1ÞR
pðukjxkÞpðxkju1∶ k−1Þdxk

pðxkju1∶ k−1Þ ¼
Z

pðxkjxk−1Þpðxk−1ju1∶ k−1Þdxk−1 ð2Þ

where pðxk−1ju1∶ k−1Þ = known posterior density at time index
(k − 1); and pðxkjxk−1Þ and pðukjxkÞ = state transition probability
density and measurement likelihood functions, respectively, that
can be determined through the state update and measurement
equations in Eq. (1). For a general nonlinear system, the multidi-
mensional integrals in Eq. (2) do not have closed forms, and
approximate methods are required for uncertainty propagation
and recursive posterior updates, e.g., linearization, Monte Carlo

© ASCE 04021138-2 J. Eng. Mech.

J. Eng. Mech., 2022, 148(2): 04021138



sampling, or unscented transformations, among other approaches
(Wan and van der Merwe 2000). The unscented transformation,
which is the primary focus of the present work, tracks only the pos-
terior mean x̂k ¼ E½xkju1∶k� and covariance Pk at each time step k,
by capturing pðxkjxk−1Þ and pðukjxkÞ in the form of the first two
statistical moments, through a predefined set of sigma points, and is
a core component of the overall filter implementation.

Selection of Sigma Points and Scaling Effects

The unscented transformation for the UKF requires 2nþ 1 symmet-
rically placed sigma points, for an n-dimensional state space, such
that the 2n points are placed on a hypersphere of radius α

ffiffiffi
n

p
and the

remaining sigma point is located at the origin/center, in a standard
normal space (c-space), with zero mean and identity covariance ma-
trix. The sigma points then can be obtained in the original space
through an affine transformation, x ¼ x̄þ ffiffiffiffiffiffiffiffi

Pxx
p

c, to capture the
first two statistical moments, i.e., mean and covariance (x̄, Pxx),
of a multivariate random variable x, where c represents a sigma
point in standard normal space. The resulting set of the sigma points
propagates through the nonlinear function, y ¼ fðxÞ, to evaluate the
updated mean and covariance (ȳ, Pyy) of the transformed random
variable y. Overall, the unscented transformation for the UKF
can be expressed as (Wan and van der Merwe 2000)

WðmÞ
0 ¼1− 1

α2
; WðcÞ

0 ¼1− 1

α2
þð1−α2þβÞ;

WðmÞ
i ¼WðcÞ

i ¼ 1

2α2n
i¼1; : : : ;2n;

X0¼ x̄; Xi¼ x̄�ðα ffiffiffi
n

p Þð
ffiffiffiffiffiffiffiffi
Pxx

p
Þi i¼1; : : : ;2n;

Yi¼ fðXiÞ; ȳ¼
X2n
i¼0

WðmÞ
i Yi; Pyy ¼

X2n
i¼0

WðcÞ
i ½Yi− ȳ�½Yi− ȳ�T

ð3Þ
where (m) = mean; (c) = covariance;Xi and Yi = sigma points cor-
responding to random variables x and y, respectively; Wi = asso-
ciated weights; and α and β = scaling factors. A sought objective, as
previously mentioned, was to reduce the computational effort of the
filtering process through the reduction in the number of sigma points
while achieving similar accuracy as the UKF.

Papakonstantinou et al. (2022) proposed a scaled spherical
simplex filter (S3F) that requires only nþ 2 sigma points for

the unscented transformation and achieves similar accuracy and
robustness as the UKF. The minimum set of sigma points that
can be used to provide a nonsingular covariance is nþ 1 (Julier and
Uhlmann 2002). However, the nþ 1 sigma points cannot achieve
the same order of accuracy and robustness as the UKF. To take
advantage of the scaling parameter α, and to preserve important
features of the classical UKF, one more sigma point can be added
to this minimum set at the origin/center, just as in the case of the
scaled UKF, and the remaining nþ 1 points then can be placed on a
hypersphere of radius α

ffiffiffi
n

p
in the standard normal space. The scal-

ing factor α determines the spread of the sigma points and can sup-
press the errors associated with third and higher moments. The
sigma points in the standard normal space are shown in Fig. 1 for
both the UKF and S3F. Based on Fig. 1, the resulting sigma points
matrix for a n-dimensional system in the c-space is formulated as
(Papakonstantinou et al. 2022)

C ¼ ½C0 : : :Cnþ1� ¼

2
666666664

0 − q1
1

q1 0 · · · 0 0

0 − q2
2

− q2
2

q2 · · · 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

0 − qn
n

− qn
n

− qn
n

· · · − qn
n

qn

3
777777775

where qt ¼ α

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tðnþ 1Þ
tþ 1

r
for t ∈ ½1; 2; : : : ; n� ð4Þ

where C = matrix of size ðn; nþ 2Þ, consisting of nþ 2 sigma
point vectors, Ci, each of size n, with i ∈ ½0; 1; : : : ; nþ 1�. The
unscented transformation, using the nþ 2 sigma points matrix C,
for the S3F is summarized as (Papakonstantinou et al. 2022)

WðmÞ
0 ¼ 1− 1

α2
; WðcÞ

0 ¼ 1− 1

α2
þð1−α2þβÞ;

WðmÞ
i ¼WðcÞ

i ¼ 1

α2ðnþ1Þ i¼ 1; : : : ;nþ1;

Xi¼ x̄þð
ffiffiffiffiffiffiffiffi
Pxx

p
CÞi i¼0; : : : ;nþ1;

Yi¼ fðXiÞ; ȳ¼
Xnþ1

i¼0

WðmÞ
i Yi; Pyy ¼

Xnþ1

i¼0

WðcÞ
i ½Yi− ȳ�½Yi− ȳ�T

ð5Þ

Fig. 1. Sigma points locations on a sphere of radius α
ffiffiffi
n

p ðn ¼ 3Þ, in three-dimensional c-space, for (a) UKF; and (b) S3F.
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where scaling parameter β incorporates potential output distribu-
tion information relating to its fourth moments, similar to the UKF.
The equivalent accuracy between the UKF and the S3F is attributed
mainly to the scaling factor α. For the UKF, a small value of the
parameter suppresses the errors associated with fourth and higher
moments, with odd moments being inherently zero due to symmet-
ric sigma points distribution. Therefore, the UKF provides second-
moment accuracy for any prior distribution and third-moment
accuracy for symmetric priors. Due to the asymmetric distribution
of sigma points in the S3F, not all odd moments are zero in this case,
however, a small value of α, in the range 0.01–0.0001, can result in
negligible contributions of third and higher moments, thereby nearly
achieving second-moment accuracy for any distribution and third-
moment accuracy for symmetric priors, exactly similar to the UKF,
even with this reduced asymmetric sigma points selection. Moreover,
the role of parameter β is also equivalent in the two approaches, that
is, to incorporate partial fourth moments, and therefore a typical
value of 2 is selected without any prior information about the dis-
tribution (Wan and van der Merwe 2000; Papakonstantinou et al.
2022).

Filter Implementation

Based on the posterior mean and covariance ðx̂k−1;Pk−1Þ estimates
at the ðk − 1Þth time step, nþ 2 sigma points Xk−1 are selected, as
shown previously, and are transformed through the state update
equation in Eq. (1), resulting in a new set of sigma points Xkjk−1,
which then are employed to obtain the prior mean and covariance
ðx̂−

k ;P
−
k Þ at the kth time step as follows:

Xkjk−1 ¼ f½Xk−1; vk; θ� x̂−
k ¼

Xnþ1

i¼0

WðmÞ
i Xi;kjk−1

P−
k ¼

Xnþ1

i¼0

WðcÞ
i ½Xi;kjk−1 − x̂−

k �½Xi;kjk−1 − x̂−
k �T þQk ð6Þ

where Qk is the process noise covariance matrix. From the apriori
estimates ðx̂−

k ;P
−
k Þ, the Xkjk−1 sigma points are redrawn and trans-

formed through the measurement equation in Eq. (1), again result-
ing in another new set of sigma points Ukjk−1, which then are used
to estimate the measurement mean and covariance ðû−

k ;PukukÞ and
the state-measurement cross-covariance matrix Pxkuk . Finally, with
the available observation set, uk, at the kth time step, the posterior
mean and covariance ðx̂k;PkÞ are updated through the Kalman
gain, Kk ¼ PxkukP

−1
ukuk . The overall process is expressed as

Ukjk−1 ¼ hðXkjk−1; vk; θÞ

û−
k ¼

Xnþ1

i¼0

WðmÞ
i Ui;kjk−1

Pukuk ¼
Xnþ1

i¼0

WðcÞ
i ½Ui;kjk−1 − û−

k �½Ui;kjk−1 − û−
k �T þRk

Pxkuk ¼
Xnþ1

i¼0

WðcÞ
i ½Xi;kjk−1 − x̂−

k �½Ui;kjk−1 − û−
k �T

x̂k ¼ x̂−
k þKkðuk − û−

k Þ; Pk ¼ P−
k −KkPukukK

T
k ð7Þ

where Rk = observation noise covariance matrix.

Damage-Plasticity State-Space Finite-Element Model

Amir et al. (2020b) developed a fully parametrized damage-
plasticity finite-element model that is able to simulate highly
nonlinear structural behavior. Although the presented hysteretic
finite-element was derived based on the concepts of damage me-
chanics and can incorporate degradations and interactions while
satisfying all the multiaxial classical plasticity postulates, as shown
in the Appendix, the model’s implementation is straightforward and
analogous to a typical Bouc–Wen model (Table 1). In Table 1, the
second column lists the uniaxial hysteretic Bouc–Wen equations
with scalar variables, and the third column lists the corresponding
multiaxial finite-element expressions for the Timoshenko beam
element with coupled degradation-plasticity, where the vectors
and matrices are indicated with bold characters for the multiaxial
representation.

In the force–displacement expression of the uniaxial case
(Table 1, second column), F is the force, ᾱ is the kinematic hard-
ening, d is the displacement, and z is the hysteretic deformation.
Similarly, in the equilibrium expression of the finite-element model
(Table 1, third column), F represents the element nodal forces in the
local coordinate system, consisting of axial force, shear force, and
moment at the start and end nodes of the beam element; K and
H are the constant element stiffness and hysteretic matrices, respec-
tively (defined in the Appendix), analogous to ᾱk and ð1 − ᾱÞk of
the uniaxial case; and d and z correspond to displacement and hys-
teretic DOF vectors respectively, where d¼fu1 w1 θ1 u2 w2 θ2gT
consists of axial deformation u, transverse deformation w, and rota-
tion θ, at the start and end nodes of the element, indicated by sub-
scripts 1 and 2, respectively, and z ¼ fzTðx¼0Þz

T
ðx¼LÞgT consists of

hysteretic deformations, at the start and end nodes, obtained by sub-
stituting x ¼ 0 and x ¼ L respectively in the subscript (x) of the

Table 1. Bouc–Wen to hysteretic beam finite-element model

Equation categories Uniaxial Bouc–Wen Hysteretic beam finite-element

Force-displacement and evolution equations F ¼ ᾱkdþ ð1 − ᾱÞkz F ¼ KdþHz

ż ¼ 1

η
ð1 − νH1H2Þḋ żðxÞ ¼ η−1½ðI − H̄1H̄2R̄Þε̇ − ν̇z�ðxÞ

Components of evolution equations H1 ¼ jzjm H̄1 ¼ jΦðP̄hÞ þ 1jm
H2 ¼ aþ bsgnðzḋÞ H̄2 ¼ aþ bsgn½ðP̄hÞT ε̇�

R̄ ¼
�� ∂Φ

∂P̄h

�
T
D

� ∂Φ
∂P̄h

��−1�� ∂Φ
∂P̄h

�� ∂Φ
∂P̄h

�
T
D

�

⇒H̄1; H̄2; R̄ ¼ gðd; zÞ
Strength and stiffness degradations ν ¼ 1þ δν ½expðδνneÞ − 1� ν ¼ Iþ δν ½expðδνneÞ − I�

η ¼ 1þ δηe η ¼ Iþ δηe
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hysteretic evolution equation, for an element of lengthL. Furthermore,
the evolution equations for the hysteretic deformations in both
uniaxial and multiaxial cases are presented in the form of first-
order ODEs, where in the finite-element framework, εðxÞ ¼
fεu εγ εϕgTðxÞ and zðxÞ ¼ fzu zγ zϕgTðxÞ are the section-level strain

and hysteretic deformation vectors at a distance (x) from the start
node of the beam element. In the uniaxial evolution equations, ν
and η are the strength and stiffness degradation functions respec-
tively, whereas for the multiaxial case, ν ¼ diagðνu; νγ; νϕÞ and
η ¼ diagðηu; ηγ; ηϕÞ are the diagonal matrices consisting of
strength and stiffness degradation functions for axial, shear,
and bending components.

In the second row of Table 1, describing the components of the
evolution equations, the functionsH1 andH2 of the uniaxial Bouc–
Wen model are smooth in the range [0,1] and Heaviside functions,
respectively, similar to the functions H̄1 and H̄2. However, these
latter are defined differently because the finite-element model ex-
pressions were derived to incorporate consistent degradations and
interactions, as shown in the Appendix. Related to this, interaction
matrix, R̄, is also included in the finite-element framework, con-
trary to the uniaxial case. Overall, H̄1, H̄2, and R̄ are functions of
the effective hysteretic force, P̄h ¼ νðxÞPh

ðxÞ ¼ ðI − ᾱÞDνðxÞzðxÞ,
and the yield/interaction surface, Φ ¼ ΦðP̄hÞ. In the aforemen-
tioned effective force expression, ᾱ ¼ diagðαu;αγ;αϕÞ and D¼
diagðEA;GAs;EIÞ are the strain hardening and rigidity matrices,
respectively; E and G are the elastic and shear modulus; A and
As are the total area and effective shear area, respectively; and I
is the section moment of inertia. Based on the expressions of
the yield criterion, effective hysteretic force, and the strain vector,
the functions H̄1 and H̄2 and matrix R̄ eventually can be expressed
in terms of displacement and hysteretic deformation vectors, sim-
ilar to the uniaxial case. This is also indicated in the third column of
Table 1, in which gð·Þ represents the resulting function after apply-
ing necessary transformations. For both formulations, a, b, and m
are the hysteretic model parameters, and sgnð·Þ is a signum func-
tion. Parameterm controls the smoothness of the transition from the
elastic to the inelastic regime, whereas a and b control the shape of
the hysteretic loops.

The last row of Table 1 lists degradation functions for both
cases, in which e is the hysteretic energy dissipation, given as
ė ¼ ð1 − ᾱÞkzḋ, and e ¼ diagðeu; eγ; eϕÞ is a diagonal matrix con-
sisting of hysteretic energy components corresponding of axial,
shear, and flexural deformations, respectively; δν and δη are accord-
ingly the constant strength and stiffness degradation parameters;
and the parameter δνn is used to normalize the energy dissipation,
and controls the nonlinear evolution of the strength degradation.
The presented formulation uses the nonlinear strength degradation
function derived by Amir et al. (2020b) to simulate the structural
behavior; however, a linear function or other variants can be also
used as needed. In addition, softening behavior, degradation asym-
metry, and pinching phenomena can be included straightforwardly
for both uniaxial and finite-element cases, as shown by Amir et al.
(2020b), depending on the model requirements.

Overall, based on Table 1, it is evident that the hysteretic finite-
element can be presented concisely in the form of first-order ODE
evolution equations, similar to typical Bouc–Wen type systems,
and thus is well suited for filtering applications and online dual
state-parameter identification. Therefore, unlike the traditional non-
linear finite-element formulation, in this case any ODE solver
scheme can be used straightforwardly, e.g., the family of Runge–
Kutta methods, without the requirement of gradient evaluation
or linearization for the system level matrix updates, as presented

by Amir et al. (2020b, forthcoming). In addition, due to the para-
metrized behavior of the finite-element, the same model can be
applied for different element types, ranging from flexure dominant
to shear dominant to bracing members, and can simulate diverse
phenomena, including linear, nonlinear, degradation, softening,
and pinching, through a single unified formulation, thereby repre-
senting a general framework.

For the finite-element model in Table 1, global element matrices
are obtained asKg ¼ ΛTKΛ, andHg ¼ ΛTH, based on the typical
coordinate transformation (Bathe 2014), where Λ is the standard
coordinate transformation matrix. The overall system force–
displacement expression, after global matrix assembly and apply-
ing appropriate boundary conditions, is obtained as

FS ¼ KSdS þHSzS ð8Þ

where KS and HS = constant system level matrices, which do not
require updating throughout the analysis; FS = system nodal force;
and dS and zS = system-level displacement and hysteretic DOF
vectors, respectively, such that zS is obtained by appending all
the element-level hysteretic DOFs.

Numerical Examples

Two numerical example cases are presented based on the expressions
in Table 1 for online state-parameter identification of nonlinear de-
grading systems. The first example case is a mass–spring–dashpot
system which treats nonlinearity and degradations through the uni-
axial hysteretic model expressions in the second column of Table 1,
whereas the second example case is a hysteretic finite-element
model identification following the element-level formulation pre-
sented in the third column of Table 1 and the resulting system-level
framework in Eq. (8). Detailed derivation of the hysteretic finite-
element model development and system-level formulation can be
seen in Amir et al. (2020a, b, forthcoming). For both example
cases, the equation of motion of the system subjected to dynamic
excitation is expressed as

MSd̈S þCSḋS þKSdS þHSzS|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
FS

¼ FðtÞ ð9Þ

where MS, CS, KS, and HS = system mass, damping, stiffness,
and hysteretic matrices, respectively; and FðtÞ = excitation vector
related to the input ground acceleration in these examples. To be
consistent with the filtering framework, and for the purpose of dual
state-parameter estimations, the overall system in Eq. (9) can be
presented in the following state-space form, in which all the un-
known parameters are augmented in the state vector, in order to be
identified by the filtering process:

�
ḋS

d̈S

	
¼
� 0 I 0

−M−1
S KS −M−1

S CS −M−1
S HS

�8><
>:

dS

ḋS

zS

9>=
>;

þ
� 0

M−1
S FðtÞ

	
; żS ¼ fðdS;zS;θÞ; θ̇¼ 0 ð10Þ

where function f is obtained based on the evolution equation in
Table 1 for either the mass–spring–dashpot model or the finite-
element system; and θ = unknown parameter vector to be identified.
The overall state-parameter vector for the online dual identification
scheme can thus be expressed as x ¼ fdT

S ḋT
S zTS θT gT .
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Online Identification of Hysteretic Degrading
Mass–Spring–Dashpot System

The efficacy of the S3F was examined by comparing its response
with that of the UKF for the identification of a 20-DOF nonlinear
and degrading mass–spring–dashpot system, subjected to the
scaled Chi-Chi seismic excitation in Fig. 2. The system matrices
and DOF vectors in the state-space expressions of Eq. (10) are
given as

MS ¼

2
666664

m̄1 0 · · · 0

0 m̄2 · · · 0

..

. ..
. . .

.
0

0 0 0 m̄20

3
777775

CS ¼

2
666664

c̄1 þ c̄2 −c̄2 · · · 0

−c̄2 c̄2 þ c̄3 · · · 0

..

. ..
. . .

. −c̄20
0 0 −c̄20 c̄20

3
777775 ð11Þ

KS ¼

2
666664

ke1 þ ke2 −ke2 · · · 0

−ke2 ke2 þ ke3 · · · 0

..

. ..
. . .

. −ke20
0 0 −ke20 ke20

3
777775

HS ¼

2
666666664

kh1 −kh2 0 · · · 0 0

0 kh2 −kh3 · · · 0 0

..

. ..
. ..

. . .
.

0 0

0 0 0 0 kh19 −kh20
0 0 0 0 0 kh20

3
777777775

kei ¼ ᾱik̄i; khi ¼ ð1 − ᾱiÞk̄i for i ¼ ½1; 2; : : : ; 20�;
dS ¼ fd1d2 : : : d20gT ; zS ¼ fz1z2 : : : z20gT ð12Þ

where m̄i, k̄i, c̄i, and ᾱi = mass, stiffness, damping, and kinematic
hardening coefficients, respectively; and di and zi = displace-
ment and hysteretic deformations corresponding to the ith DOF.
In this example, all the coefficients, parameters, and associated input/
output responses, including mass, damping, hardening, hysteretic/
degradation parameters, seismic excitation, and displacements, are
unitless to represent any general framework, and the mass is an iden-
tity matrix. Nonlinearity is considered in the first two DOFs of the

system by specifying ᾱi ¼ 0 for i ∈ ½1; 2� and ᾱi ¼ 1 otherwise, and
is associated with the uniaxial hysteretic model in Table 1. The
parameters to be identified are the stiffness (k̄ ¼ fk̄1k̄2 : : : k̄20g)
and damping coefficients (c̄ ¼ fc̄1c̄2 : : : c̄20g) for all DOFs, and
hysteretic ða; b;mÞ and degradation parameters (δη, δν) correspond-
ing to the nonlinear DOFs, assuming δνn ¼ 0.01. The true values of
the damping parameters are c̄1 ¼ · · ·¼ c̄5 ¼ 0.3, c̄6 ¼ · · ·¼ c̄10 ¼
0.4, c̄11 ¼ · · ·¼ c̄15 ¼ 0.5, and c̄16 ¼ · · ·¼ c̄20 ¼ 0.6; the stiffness
parameters are k̄1 ¼ · · ·¼ k̄5 ¼ 18, k̄6 ¼ · · ·¼ k̄10 ¼ 16, k̄11 ¼ · · ·¼
k̄15 ¼ 15, k̄16 ¼ · · ·¼ k̄18 ¼ 14, and k̄19 ¼ k̄20 ¼ 13; the hysteretic
Bouc–Wen parameters are a ¼ 1, b ¼ 2, and m ¼ 2 for both non-
linear DOFs; and the degradation parameters are δη ¼ 1 and δν ¼ 2.

The unknown parameter vector to be identified in Eq. (10) is
thus expressed as θ ¼ f c̄ k̄ a b m δη δν gT , resulting in
the augmented state vector, x¼ fdT

S ḋT
S zTS θT gT with n ¼ 105.

Therefore, based on the number of sigma points, the UKF evaluates
the underlying model [Eq. (10)] 211 times=step, whereas the S3F
requires only 107 model evaluations at each time step. For the iden-
tification process, the values of the filter scaling parameters α and β
are equal to 0.001 and 2, respectively, for both the S3F and the UKF.
Arbitrary values are assigned for the process noise and observation
noise matrices and are given asQk ¼ diagð0.0001v2kÞ, with nonzero
diagonal elements only corresponding to the ḋS state, and Rk ¼
0.003I, where vk is the acceleration input and I is the identity
matrix, whereas the initial covariance, which is dependent on the
uncertainty of the initial states/parameters, is assigned as P0 ¼
diagðð0.2x̂0Þ2 þ 0.001Þ, where x̂0 is the initial state vector. For the
observation data, acceleration measurements are considered for all
DOFs, and the input and observation data are all contaminated with
zero-mean white Gaussian noise with a 3% signal-to-noise ratio
(SNR) to simulate highly noisy but realistic scenarios.

The estimation results for both filters are given in Figs. 3–6.
Fig. 3 shows the dynamic states of the system corresponding to
nonlinear DOFs; Fig. 4 shows the stiffness and damping coeffi-
cients for all DOFs; Fig. 5 corresponds to the smooth Bouc–Wen
parameters a, b, andm; and Fig. 6 shows the identified degradation
parameters. In Figs. 3(c and d), the effect of nonlinearity, strength
and stiffness degradations are evident, particularly in the first DOF.
Figs. 4(c and d) include error plots to show clearly that all the story
stiffness and damping parameters are converging to their respective
true values. Both filters performed notably well and largely con-
verged to the true values within the first 30 s of the input excitation.
Importantly, the S3F exhibited the same performance as the UKF
for both state and parameter identification, but with a reduced com-
putational cost of nearly 50%.

To further test the robustness of the filters, the complexity of the
identification scheme was increased for the same mass–spring–
dashpot system by also considering time-variant parameters, assum-
ing a limited number of available measurements, and identifying all
the hysteretic and degradation parameters for both nonlinear DOFs
distinctly, indicated now by subscripts 1 and 2, such that the total
hysteretic/degradation parameters to be identified become 10. The
stiffness parameters for the third and fourth DOFs were abruptly re-
duced at the 20th second of the seismic excitation during the data
generation process, something which was not modeled during iden-
tification. The practical concept is based on the assumption that the
system might undergo damage and stiffness loss in DOFs where it is
not expected and modeled a priori with appropriate nonlinear formu-
lations, for example, as used for DOFs 1 and 2. Measurement spar-
sity is accordingly considered by assuming acceleration data to be
available now at alternating DOFs, from 1 to 19, resulting in 10 mea-
surements. Some of the hysteretic/degradation parameters for the
second DOF were varied now, compared with the previous example,
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Fig. 2. Seismic excitation without added noise for the mass–spring–
dashpot system.
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for illustration purposes and to enhance nonlinearity and degrada-
tions in this DOF (Figs. 7–10), whereas all other relevant param-
eters remain the same. Results again showed that both filters
performed well and in the same manner, particularly with respect

to the dynamic states (Fig. 7), noting also that the second DOF was
completely unobserved. The filtering performance with respect to
parameter identification slightly deteriorated compared with the
previous case, due to the significant complexity increase of the
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Fig. 3. Dynamic state estimation using S3F and UKF for a 20-DOF degrading nonlinear system with 3% SNR and acceleration measurements.
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Fig. 4. (a) Parameter identification corresponding to damping; (b) parameter identification corresponding to stiffness coefficients; and (c and d)
corresponding error plots.
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problem (Figs. 8–10). Furthermore, the stiffness coefficients for all
DOFs [Fig. 8(b)], both before and after the decrease, were cor-
rectly identified by the filters, as also indicated in Figs. 8(c and d)
for the first four DOFs exhibiting nonlinearity and stiffness drop.

Online Identification of Degrading Hysteretic
Finite-Element Frame System

This indicative example case of a three-story four-bay steel braced
frame structure (Fig. 11), comprising different element types,
e.g., shear-dominant, flexure-dominant, and brace elements, dem-
onstrated a range of complex nonlinear and degrading phenomena
with interaction and distributed plasticity, and illustrated the effi-
cacy of the S3F for online joint state-parameter identification of
a high-fidelity finite-element model with sparse and noisy acceler-
ation measurement data. The structure was subjected to the seismic
base excitation obtained using the stochastic ground motion simu-
lation approach of Vlachos et al. (2018) (Fig. 12). All the beam el-
ements were W24× 76, brace elements were HSS4X4X1/4, whereas
the interior and exterior column elements were W30 × 173 and
W14 × 190, respectively. All elements had a yield strength of
290 MPa, elastic modulus of 210 GPa, and shear modulus of

77 GPa. To obtain the nodal mass matrix, the floor mass was as-
sumed to be 30 t=unit length. Axial moment–shear interaction was
considered using the Gendy and Saleeb criterion (Gendy and
Saleeb 1993). A considerable 3% zero-mean white Gaussian noise
level was added in this example for both the input excitation in
Fig. 12 and all utilized acceleration measurement responses, with
the assumption that horizontal accelerations were available only at
the locations indicated in Fig. 11.

Based on the mechanical and geometrical properties of the el-
ements, the system matrices and most of the hysteretic parameters
can be obtained, including the elastic modulus, shear modulus,
cross-section area, shear area, moment of inertia, and plastic section
capacities. In addition, the postelastic to elastic stiffness ratio or
else the kinematic hardening component was assumed to be αu ¼
αγ ¼ αϕ ¼ 0.002. To ensure that the elastic unloading and loading
branches had the same slope, a and b were both assigned equal to
0.5, whereas the δνn parameter was assumed to be 5 × 10−6 for
beams and columns, and 5 × 10−5 for the brace elements. Conse-
quently, the unknown parameters in this example were the strength
degradation, stiffness degradation, and inelastic transition for each
structural member, and can describe the entire hysteresis of the
element, with the strength degradation controlling the plastic region
and/or the yield capacity, the stiffness degradation controlling the
elastic loading–reloading–unloading slope, and the inelastic transi-
tion controlling the transition smoothness from elastic to inelastic
regime for both loading and unloading branches. These parameters
are to be identified for all elements of the system, resulting in 3Nel

total unknown parameters for the identification process, with
θ ¼ fm; δν ; δηgi∈½1;2; : : : ;Nel�, such that fm; δν ; δηgi are the parame-

ters corresponding to the ith element, and Nel is the number of
elements in the system. In this example, three parameters corre-
sponding to each element were identified, to illustrate the identi-
fication potential of the combined modeling-filtering approach.
However, in real applications, assumptions can be made to group
these parameters for multiple elements to further simplify the prob-
lem and reduce the number of identified parameters. The parame-
ters and the hysteretic states in this example had consistent scales
for dual state-parameter identification. For the present example, the
dimension of the resulting augmented state vector x was n ¼ 351,
where DOFs corresponding to ðdS; ḋSÞ and zS were 90 and 174
ð¼ 6NelÞ, respectively, and the parameters to be identified were
87 (¼ 3Nel). Therefore, the UKF required 703 ð¼ 2nþ 1Þ sigma
points/step, whereas the S3F required only 353 ð¼ nþ 2Þ points,
thereby again improving the computational efficiency by nearly
50%. The scaling factors values of α ¼ 0.01 and β ¼ 2 were used
herein for both the UKF and S3F, and the relevant matrices used
were P0 ¼ diagðð0.1x̂0Þ2 þ 0.00001Þ, where x̂0 is the initial state
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Fig. 5. Hysteretic parameters identification.
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Fig. 6. Stiffness and strength degradation parameters identification.
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vector; Qk ¼ diagð0.00001v2kÞ, with nonzero diagonal elements
only for the ḋS state and vk the acceleration input; and Rk ¼
0.10I, where I is a (9, 9) identity matrix.

Identification results for both the S3F and UKF are shown in
Figs. 13–21. Fig. 13 shows the top-story displacement response

at Node 20, and Figs. 14–21 present the element section-level
responses and the identified values of normalized strength degra-
dation, stiffness degradation, and inelastic transition parameters.
All these figures indicate highly effective performance and sim-
ilar accuracy for both filters. The results varied slightly due to the
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Fig. 7. Dynamic state estimation using S3F and UKF for a 20-DOF degrading nonlinear system with 3% SNR, time-variant parameters, and sparse
acceleration measurements.
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Fig. 8. (a) Damping coefficients for all DOFs; (b) stiffness coefficients for all DOFs; (c) stiffness coefficients for DOFs 1 and 2; and (d) stiffness
coefficients for DOFs 3 and 4.
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complexity and nonlinearity of the online identification of the high-
fidelity system presented herein; however, similar identification
trends and converged values were found for both filtering estimates.
Figs. 14 and 15 show the cross-sectional axial force–axial strain,
moment–curvature, shear force–shear strain responses at the start
node of the respective elements, as well as the strength degradation
ðδνÞ, stiffness degradation ðδηÞ, and inelastic transition (m) param-
eters for the flexural beam elements, indicated El 16 and El 27,
respectively. These elements are referred to as flexural elements
because of their long beam length of 6.0 m, resulting in hysteretic
energy dissipation primarily due to flexural deformations, with
small shear force and shear deformation contributions, as is also
evident from the local responses in the figures. Figs. 14 and 15
clearly show the filters’ capability for online identification of the
complex, interacting, and degrading local nonlinear behaviors.
The same local responses and parameters are shown for the shear-
dominant beam elements, El 17 and El 26, in Figs. 16 and 17,
respectively, in which the shear deformation, shear forces, and
the corresponding energy dissipation contributions significantly in-
creased due to their reduced beam length of 1.0 m. Therefore, in the
shear-dominant beams in Figs. 16 and 17, the peak shear force and
shear strains were much larger than those in the flexure-dominant
beams, thereby suggesting a significantly different behavior from
the long beam elements, with the responses again well predicted by
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Fig. 9. Hysteretic parameters identification for DOFs 1 and 2.
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Fig. 10. Stiffness and strength degradation parameters identification
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both filters. Furthermore, the local axial force–axial strain response
and the associated parameters for the brace elements El 28 and El 29
are shown in Figs. 18 and 19, respectively. Based on the a priori
engineering knowledge about buckling effects in braces, pinching

and asymmetry is introduced in the axial deformation of the ele-
ment, based on Amir et al. (2020b). The online performance for the
identified dynamic response and the time-invariant parameters was
highly accurate (Figs. 18 and 19). Lastly, the local response of the
column elements El 12 and El 15 are shown in Figs. 20 and 21,
noting that no measurements were taken at either end of El 12. Both
of these elements mostly remained in the linear range, and therefore
the degradation and inelastic transition parameters were not activated;
however, the performance of both elements was again predicted ac-
curately by both filters. Importantly, although the presented frame-
work can simulate and identify a range of behaviors for different
element types, the same hysteretic element and finite-element model
was applied here for all the elements, including shear-dominant,
flexure-dominant, linear, nonlinear, and brace members.

Overall, without prior knowledge of the element behavior, on-
line local responses appropriately identify shear and flexure dom-
inant phenomena, degrading-nondegrading characteristics, and can
determine elements that remain linear or not. Because the present
modeling enables online state-parameter identification, all the figures
presented here refer to the online predicted states and parameters,
rather than to simulated results that can be obtained through the con-
verged parameter values.

Summary and Conclusions

An online nonlinear system identification approach, referred to as a
scaled spherical simplex filter (S3F), was presented that requires
almost 50% less computational effort than the state-of-the-art UKF,
yet achieves nearly equivalent accuracy and robustness. The appli-
cability of the presented S3F for any general nonlinear system iden-
tification, or any other application for which the UKF can be used,
was illustrated through a 20-DOF nonlinear mass–spring–dashpot
model numerical example case. The efficiency of the S3F identi-
fication scheme was further supported by integrating the filter with
a high-fidelity, computationally efficient, and damage plasticity–
consistent finite-element framework. The developed finite-element
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Fig. 14. Local response and parameter predictions for flexure-dominant El 16.
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model incorporates distributed plasticity effects, degradations, and
multiaxial interactions, without requiring any linearization and
stiffness updating. The hysteretic finite-element model is particu-
larly well-suited for online identification using filtering approaches
due to its implementation similarity to Bouc–Wen-type ODE mod-
els, such that the overall system can be presented in a state-space
form for joint hidden states and parameters estimation. The efficacy
of the finite-element model integration with S3F was presented

through a numerical example case of a realistic steel-frame structure
with sparse acceleration measurements, and again the responses
were compared with those of the UKF.

Some noteworthy discussion points for the presented finite-
element model identification are summarized as follows:
1. Due to the complexity of the finite-element modeling frame-

works and the large computational cost associated with their
solution schemes, these frameworks are rarely employed for
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Fig. 15. Local response and parameter predictions for flexure-dominant El 27.
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Fig. 16. Local response and parameter predictions for shear-dominant El 17.
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system identification applications requiring multiple model calls.
The present modeling approach aims toward overcoming this
limitation and therefore can be applied for filtering.

2. The presented approach showcases the model–filter compatibility
and potential to simulate and identify complex structural response
phenomena owing to the high-fidelity framework considering
distributed plasticity, multiaxial interactions, and degradations,

while satisfying all the classical plasticity postulates. Together,
these attributes have been particularly difficult to integrate in one
unified framework, or to identify by conventional methods. Addi-
tionally, a single element formulation was implemented here for
all structural members and was able to identify a broad range of
behaviors, including for shear-dominant, flexural-dominant, linear,
nonlinear, and brace elements, among others. The model–filter
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Fig. 17. Local response and parameter predictions for shear-dominant El 26.
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Fig. 18. Local response and parameter predictions for brace El 28.
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integration can thus effectively simulate and identify all these
complex element behaviors with a high degree of accuracy.

3. The finite-element model identification framework in this work
is based on online estimations of hidden states and parameters,

as shown in the numerical example, thereby enabling real-time
identification and damage assessment.
Overall, this work offers a computationally efficient high-fidelity

finite-element model identification framework wherein the S3F
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Fig. 19. Local response and parameter predictions for brace El 29.
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Fig. 21. Local response for column El 15.
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performance was observed to be remarkably good and, as expected,
largely similar to that of the UKF, but with only half the computa-
tional requirements.

Appendix. Multiaxial Hysteretic Model and
Element Matrices

The multiaxial hysteretic model is used as the constitutive law for
the hysteretic finite-element formulation and is briefly further pre-
sented in this section.

For the coupled degradation-plasticity framework presented
herein, the hysteretic laws are derived in the effective stress do-
main of the classical multiaxial plasticity theory by incorporating
strength degradations as scalar damage functions to satisfy the
consistency criterion of the yield/capacity surface. The resulting
stress–strain relation in the inelastic regime based on the classical
multiaxial plasticity (Simo and Hughes 1998) in the effective
strain domain (Amir et al. 2020b) is expressed as

˙̄σ ¼ Dðε̇ − ε̇pÞ
˙̄σ ¼ D

�
ε̇ −

��∂Φ̄
∂σ̄

�T

D

�∂Φ̄
∂σ̄

��−1�∂Φ̄
∂σ̄

��∂Φ̄
∂σ̄

�T

Dε̇
�

˙̄σ ¼ DðI − R̄Þε̇

where R̄ ¼

∂Φ̄
∂σ̄
�
∂Φ̄

∂σ̄
�TD
∂Φ̄

∂σ̄
�TD
∂Φ̄∂σ̄� ð13Þ

where σ̄ ¼ νσ = effective stress vector; ε, εe, and εp = total, elastic,
and plastic strains, respectively; D = diagonal rigidity matrix;
Φ̄ = yield/capacity function, such that Φ̄ ¼ Φðσ̄Þ is a function of
both true stress, σ, and strength degradation, ν, for a system with
no hardening; and I and R̄ = identity and interaction matrices,
respectively.

Because ε̇p is 0 in the elastic regime, the stress–strain law is
expressed as ˙̄σ ¼ Dε̇ in the corresponding domain. Therefore, in-
stead of employing different expressions depending on the elastic/
inelastic and loading/unloading phenomena, the following single
vectorized stress–strain law is obtained to satisfy all the aforemen-
tioned conditions for both elastic and inelastic regions (Amir et al.
2020b, forthcoming):

˙̄σ ¼ DðI − H̄1H̄2R̄Þε̇ ð14Þ

where H̄1 ¼ jΦ̄þ 1jm and H̄2 ¼ aþ bsgnðσ̄T ε̇Þ are the appropri-
ate functions, such that either one of them tends to zero in the elas-
tic domain, and both reach a maximum value of 1 in the inelastic
domain, thereby satisfying all the conditions of classical plasticity
theory through a single expression. Furthermore, by transforming
Eq. (14) in terms of true stress, and adding the stiffness degrada-
tions and kinematic hardening, the following simplified and con-
cise form is obtained [see Amir et al. (2020b, forthcoming) for
details]:

σ ¼ ᾱDεþ ðI − ᾱÞDz ð15Þ

ż ¼ ν−1½ðI − H̄1H̄2R̄Þε̇ − ν̇z� ð16Þ

where Eq. (15) is the hysteretic stress–strain law, in which z is re-
ferred to as a hysteretic deformation vector, and Eq. (16) presents
the evolution equation as a set of first-order ODEs. Functions H̄1

and H̄2 and matrix R̄ are functions of the effective hysteretic stress,
σ̄h, where σ̄h ¼ νσh ¼ νðI − ᾱÞDz, and true strain, ε, given by

H̄1 ¼ jΦðσ̄hÞ þ 1jm; H̄2 ¼ aþ bsgn½ðσ̄hÞT ε̇�

R̄ ¼
��∂Φðσ̄hÞ

∂σ̄h
�

T

D

�∂Φðσ̄hÞ
∂σ̄h

��−1��∂Φðσ̄hÞ
∂σ̄h

��∂Φðσ̄hÞ
∂σ̄h

�
T

D

�

ð17Þ

Eqs. (15) and (16) are the only equations required for all
branches of the hysteretic loops, they have the significant attribute
that they were derived following the physics of classical multiaxial
plasticity, and they can also very compactly incorporate degradation
effects and kinematic hardening through a single vectorized ODE
expression. In particular, Eq. (16) presents the evolution equation
considering coupled degradation-plasticity and full axial-moment–
shear interaction. For other, simplified cases, e.g., no interaction
or no degradation, evolution equations suggested by Amir et al.
(2020b) can also be used readily.

Amir et al. (2020b) also developed a multiaxial degrading
hysteretic model for a Timoshenko beam element, in which the
stress–strain law of Eq. (15) is expressed in terms of stress resul-
tants at the section level and the corresponding generalized strains,
i.e., axial force–centerline axial strain, shear force–shear strain, and
moment–curvature. Based on these hysteretic laws, a hysteretic
finite-element framework was derived in which the stiffness and
hysteretic matrices are constant and evaluated only once at the
beginning of the analysis. The derived element stiffness, K, and
hysteretic, H, matrices are as follows:

K ¼

2
66666666666666666664

αuAE
L

0 0 −αuAE
L

0 0

0
12ψ1

L3

6ψ1

L2
0 − 12ψ1

L3

6ψ1

L2

0
6ψ1

L2

4ψ2

L
0 − 6ψ1

L2

2ψ3

L

−αuAE
L

0 0
αuAE
L

0 0

0 − 12ψ1

L3
− 6ψ1

L2
0

12ψ1

L3
− 6ψ1

L2

0
6ψ1

L2

2ψ3

L
0 − 6ψ1

L2

4ψ2

L

3
77777777777777777775

where ψ1 ¼ αϕαγμ 0EI; ψ2 ¼ αϕðαγ þ 3αϕλÞμ 0EI;

ψ3 ¼ αϕðαγ − 6αϕλÞμ 0EI; μ 0 ¼ 1

αγ þ 12αϕλ
; λ ¼ EI

GAsL2
ð18Þ

H¼

2
6666666666666664

−hu 0 0 −hu 0 0

0 −6hγ
L2

−hϕαγ

L
0 −6hγ

L2

hϕαγ

L

0 −3hγ
L

−hϕðαγ þ6αϕλÞ 0 −3hγ
L

−6hϕαϕλ

hu 0 0 hu 0 0

0
6hγ
L2

hϕαγ

L
0

6hγ
L2

−hϕαγ

L

0 −3hγ
L

6hϕαϕλ 0 −3hγ
L

hϕðαγþ6αϕλÞ

3
7777777777777775

where hu ¼
ð1−αuÞAE

2
; hϕ ¼ð1−αϕÞμ 0EI;

hγ ¼ð1−αγÞμ 0EIαϕ ð19Þ

Hence, based on the constant element matrices in Eqs. (18)
and (19), and the evolution equation in Eq. (16), a high-fidelity
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hysteretic finite-element model was developed by Amir et al.
(2020a, b, forthcoming) that is able to incorporate damage plasticity,
multiaxial interactions, and distributed plasticity, and can be pre-
sented concisely in a state-space form, similar to hysteretic Bouc–
Wen type models, as shown in Table 1 and Eq. (10).
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