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Abstract—Aerial images provide important situational aware-
ness for responding to natural disasters such as hurricanes. They
are well-suited for providing information for damage estimation
and localization (DEL); i.e., characterizing the type and spatial
extent of damage following a disaster. Despite recent advances
in sensing and unmanned aerial systems technology, much of
post-disaster aerial imagery is still taken by handheld DSLR
cameras from small, manned, fixed-wing aircraft. However, these
handheld cameras lack IMU information, and images are taken
opportunistically post-event by operators. As such, DEL from
such imagery is still a highly manual and time-consuming process.
We propose an approach to both detect damage in aerial images
and localize it in world coordinates, with specific focus on
detecting and localizing flooding. The approach is based on
using structure from motion to relate image coordinates to
world coordinates via a projective transformation, using class
activation mapping to detect the extent of damage in an image,
and applying the projective transformation to localize damage in
world coordinates. We evaluate the performance of our approach
on post-event data from the 2016 Louisiana floods, and find
that our approach achieves a precision of 88%. Given this high
precision using limited data, we argue that this approach is
currently viable for fast and effective DEL from handheld aerial
imagery for disaster response.

Index Terms—Weakly-supervised learning, Class activation
mapping, Structure from motion, GIS, Disaster response.

I. INTRODUCTION

Natural disasters, such as hurricanes and floods, can cause

major loss of life and property; the intensity, scope, and the fre-

quency of such disasters may be further exacerbated by global

climate change [1]. Timely information about the distribution

and nature of damage following a disaster can help provide
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important context and information for emergency managers’

decision-making [2]. Increasingly, satellite and aerial imagery

are being incorporated into post-disaster needs assessment [3].

However, while techniques exist for extracting information

from orthorectified satellite and aerial imagery [4]–[8], meth-

ods for more general aerial imagery (such as oblique imagery

from handheld cameras) have received far less attention. This

is a critical limitation because post-disaster aerial imagery

taken from handheld DSLR cameras from small, manned,

fixed-wing aircraft remains popular due to the relatively low

cost, high availability, conformity with existing regulations,

and existing training programs associated with the practice

[9], [10]. These handheld cameras lack IMU information, and

images are taken opportunistically post-event by human op-

erators, resulting in sparsely-sampled images taken at oblique

angles. In this paper, we pose the question: how can we use
aerial imagery from an arbitrary camera setup in order
to rapidly and effectively aid in post-disaster situational
awareness?

We focus on a specific component of post-disaster needs

assessment, which we refer to as Damage Estimation and Lo-

calization (DEL). We broadly define damage as an identifiable

destruction of an infrastructure component or utility resulting

from a specific event (in our case, a natural disaster). We then

define estimation as the detection of an instance of damage in

an image. Finally, localization is the act of assigning world

coordinates to the estimated instance of damage. Our main

contribution is a practically implementable approach that uses

sparse, oblique aerial disaster imagery from handheld cameras

to carry out DEL, with a specific focus on DEL for images of

flooding. To our knowledge, our approach is the only one that

does estimation without relying on training data that includes

bounding boxes or segmented images; and localization without

inertial measurement unit (IMU) information or a known

geotransform. We show that this method achieves a precision

of 88% when compared against official estimates from the

2016 Louisiana floods. Furthermore, our approach can readily

incorporate the types of data that other approaches rely on

should these datasets become available in the future. We be-

lieve this approach is an important contribution to the disaster

relief sector for two reasons. First, it provides disaster relief

responders the means to do fast and effective DEL without
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Fig. 1: Flowchart depicting our approach.

the need of sophisticated equipment. Second, it augments the

utility of existing datasets (such as the one we use, described in

Section III-A) by providing georeferenced damage annotations

to a significant portion of the imagery.

Figure 1 provides a visual depiction of our approach. It

consists of two stages: a pre-disaster and a post-disaster

stage. In the pre-disaster stage, a neural network is trained

to recognize the image-level damage labels within an aerial

disaster imagery dataset. The post-disaster stage is comprised

of two parallel ’pipelines’, whose outputs are combined at

the end. The first pipeline takes a collection of images from

an area of interest and reconstructs the scene using structure

from motion. The reconstructed point cloud then relates image

coordinates to world coordinates via a projective transforma-

tion. The second pipeline takes individual images from the

area of interest and produces polygons that cover the extent

of the damage that is detected using class activation mapping.

The projective transformation is then applied to the damage

polygons to produce the final output. While our approach

uses image-level binary damage indicators and class activation

maps due to the limited availability of training data, the

same estimated projective transformation could be applied to

bounding boxes or segmentation masks generated from object

detection or semantic segmentation algorithms, respectively.

II. NOVELTY OF OUR APPROACH

We propose the approach detailed in Figure 1 for performing

both components of DEL using the tools and datasets that

currently exist for this context. Specifically for georeferencing,

other common approaches for image registration turned out

to be intractable for this application. While some authors

have used visual feature-based methods such as SIFT to

register satellite or top-down drone imagery to other known

georeferenced images [11]–[14], methods such as SIFT have

been shown to perform poorly under extreme changes in

perspective and sensor specifications [13], [15]. This was the

case when we attempted to use SIFT to georeference post-

disaster aerial images and satellite images. Another approach

georeferences images using Siamese neural networks in one of

two ways: either training the network to match certain features

(e.g. buildings) of a query image and a ground truth image [16]

or by matching the entirety of a query image and a ground

truth image [15], [17], [18]. While these approaches would be

suitable for estimating the GPS tag of aerial images, estimating

the full geotransform would require additional orientation

information. Indeed, most available literature on registering

oblique imagery relies on some variant of structure from

motion or multiview stereo [19], which is the approach we

take.

On the other hand, there is an abundance of literature and

datasets on detecting damage after natural disasters. In partic-

ular, various deep learning approaches have detected damage

with high accuracy in challenges such as xView2 [4]–[6].

However, such training data that estimates damage (either with

bounding boxes or segmentation) consists of orthorectified

satellite or aerial imagery instead of oblique aerial imagery.

Previous work has also attempted to overcome lack of training

data in either satellite or aerial images via transfer learning

from satellite to aerial or vice versa [20]–[22]. Once again, all

attempts at transfer learning that we are aware of were only

applied to orthorectified imagery, and only only considered

changes in resolution, not perspective. Moreover, while the

remote sensing community has developed indexes to classify

features such as water and vegetation [23] from multispectral

sensors, this is not applicable to the imagery produced from the

handheld cameras used in our context, which are only sensitive

in the visible spectrum. Given the lack of tools and datasets

developed for this space, we pursue a class activation mapping

approach using image-level labels as a weakly supervised

approach to detecting damage.

III. METHODS

This section details the methods that support the key compo-

nents of our approach. Section III-A first provides an overview

of the dataset used in this analysis. Then, Sections III-B

and III-C describe our estimation and localization pipelines,

respectively.

A. Low Altitude Disaster Imagery dataset

We perform all our analyses using the Low Altitude Disaster

Imagery (LADI) dataset [24]. LADI is a publicly available

dataset consisting of images taken by the United States Civil

Air Patrol (CAP) in the aftermath of natural disasters, and

annotated by crowdsourced workers with hierarchical image-

level labels representing five broad categories: Damage, En-

vironment, Infrastructure, Vehicles, and Water. Within each

category, there are a number of more specific annotation labels.

We focus on the flooding/water damage label within in the

“Damage” category.

While the current LADI dataset provides image-level anno-

tations, it does not provide any bounding box or segmentation

information. This limits our ability to train an object detection

or image segmentation classifier to localize classes within

the images. At the time of writing, we were unable to find

any other publicly available datasets of post-disaster aerial
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imagery from low altitude, oblique perspectives which provide

bounding box or segmentation annotations. While we are

aware that the Volan2018 dataset does provide bounding box

information for disaster imagery for various related classes

[25], to our current knowledge, it is not publicly available.

B. Damage estimation within an image

This section describes our damage estimation pipeline. We

initially pose this as a classification problem of detecting a

given type of damage within an image; from this classifier,

we extract the class activation map to estimate the location of

damage within the image.

1) Classification with ResNet: Our first step is to detect

whether an image contains flooding anywhere in the image.

We pose this problem as a classification problem, where for

an image Xi there is a label Y true
i ∈ {0, 1} that corresponds

to whether an image contains flooding or not. Our goal is

to predict Y true
i . In the construction of the LADI dataset,

images were shown to a variable number of workers (generally

between 3-5); each worker was asked to identify which, if any,

labels for a given category (e.g. “Damage”) applied to that

image [24]. Responses from all workers were recorded. For

the sake of simplicity, we propose three different empirical

labelling schemes for determining their ground truth labels to

account for differing annotations between workers:

A) Bi,j > 1,

B) Bi,j > 2,

C) Bi,j > 1 and Bi,j/wi > median
∀i

{Bi,j/wi},

where Bi,j is the number of workers that labelled image i
as class j and wi is the number of workers that labelled image

i at all. We trained and tested using different combinations of

these labelling scheme to determine a balance between filtering

out noise and preserving a sufficiently representative dataset.

To perform the image labeling task, we use a ResNet-50

backbone architecture for this paper, due to its consistent

performance in a variety of image classification tasks [26].

We split the dataset 80%/10%/10% for the training, validation

and testing sets, respectively. Images were scaled such that the

shorter dimension was 224 pixels long, and then cropped into

a 224 × 224 tile. Random rotations and horizontal flips were

applied during training for data augmentation. We initialized

the ResNet with pre-trained ImageNet weights [27], and

changed the output layer dimension from 1000 to 1. We then

train the ResNet with a batch size of 8, a learning rate of

0.001, a momentum of 0.9, using stochastic gradient descent

as the optimization algorithm with the Binary Cross-Entropy

(BCE) loss:

L =

m∑
i=1

Y true
i log σ(Y pred

i ) + (1− Y true
i ) log σ(1− Y pred

i ),

(1)

where Y pred
i ∈ R is the output of the neural network, m

is the number of images in the batch and σ(·) represents the

Sigmoid function.

(a) Original image (b) CAM mask (c) Polygon tracing

Fig. 2: Stages of our polygon tracing approach.

2) Class activation mapping and polygon tracing: Af-

ter training, we utilize the class activation mapping (CAM)

approach from Zhou et al [28] to localize the extent of

the detected class within the image. CAM is a technique

for weakly-supervised object detection (i.e., where bounding

boxes are not explicitly trained on). It leverages the average

pooling layer at the end of the ResNet architecture to detect

areas within an image that are important for classifying a

particular class. While newer variations of CAM exist, such as

Grad-cam and Score-CAM [29], [30], we decided to proceed

with the original implementation from Zhou et al. Using the

terminology in [28], the output on the final fully connected

layer is given by:

Sc =
∑
k

wc
k

∑
x,y

fk(x, y) =
∑
x,y

∑
k

wc
kfk(x, y), (2)

where wc
k is the weight corresponding to class c for the k-

th unit within conv5 (the final block within ResNet-50) and

fk(x, y) is the activation of the same k-th unit at location (x,

y) (such that
∑

x,y fk(x, y) is the output of the global pooling

layer). Let Mc(x, y) =
∑

k w
c
kfk(x, y), so that:

Sc =
∑
x,y

Mc(x, y). (3)

Here, Mc(x, y) can be viewed as a measure of impor-

tance of a spatial coordinate (x, y) for the class c =
flooding/water damage, and hence referred to the class activa-

tion map. In order to determine the boundaries of the flooding

instances, we threshold on Mc:

Mmask
c (x, y) =

{
1 if Mc(x, y) ≥ 0

0 otherwise
(4)

The last step in the estimation pipeline is to convert the

masked image into a set of polygons using [31]. This enables

us to easily transform the boundaries of flooding across coor-

dinate systems. Fig. 2 shows different stages of this procedure.

C. Damage localization

Next, we transform these polygons, which are in image

coordinates, into world coordinates; this forms our localization

pipeline. In this section, we describe the process of using

structure from motion to estimate the projective transforma-

tion relating image and world coordinates, and applying the

transformation to the flooding polygons.
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1) Reconstruction using structure from motion: Structure

from motion is a technique that, using images from a camera

moving through an environment, can produce a point cloud of

the environment [32]. By taking advantage of the GPS tags

from the image metadata or from outside sensors, structure

from motion has been used to create inexpensive, georefer-

enced elevation models from drone and aircraft imagery [33].

We use this technique as an intermediate step to obtaining

the projective transformation that relates image coordinates to

world coordinates. We base our implementation off the well-

known OpenSfM library, an open source library for structure

from motion, following its default configuration. For more

information, please refer to the OpenSfM documentation [34].

In our implementation, we chose a specific area of interest

and select all images within the LADI dataset whose GPS

tags were within a 5km buffer around the area of interest.

Since fixed wing aircrafts have a relatively large turning

radius compared to rotary-wing aircraft, sequential images

collected from fixed-wing platforms tend to be approximately

collinear. This means that some reconstructions potentially

have an additional degree of freedom from rotating about

the line that goes through the GPS coordinates. Therefore,

it is necessary to estimate the direction of the up-vector (i.e.,

the vector opposite to the direction of gravity) and enforce

it in the reconstruction. Previous implementations of structure

from motion in urban environments have suggested estimating

vanishing points to estimate the up-vector [35]. This can be

difficult if there are few straight features (such as roads) or

high amounts of vegetation, which is common in rural areas.

To address the issue of estimating the up-vector, we propose

an approach which assumes the ground is approximately flat.

We first fit a plane through the reconstructed features using

RANSAC [36]. There is a pair of possible antiparallel unit

normal vectors to this plane, one of which is the up-vector.

Because of the aerial nature of the data, the location of the

images must be above the ground plane. Therefore, we choose

the vector that has a positive projection onto the image location

in East, North Up (ENU) coordinates and denote it vup.

Finally, we rotate the reconstruction so that vup indeed points

upwards. Specifically, we rotate it by Rz such that Rzvup = ẑ
when it is initialized, and the up-vector is enforced during

bundle adjustment.

We initially incorporated a digital elevation model (DEM)

of the local topology to realign the reconstruction. However,

in the case discussed in this paper, the inclusion of the DEM

did not yield any performance gains, since the region that

we considered was relatively flat. Therefore, we do not report

these results.

2) Image-to-world projective transformation: The final step

in our georeferencing pipeline is estimating the transformation

from image coordinates to world coordinates, and applying

this transformation to the detected damage polygons. As

discussed previously, the images are of mostly flat surfaces,

meaning both sets of coordinates can be related by a projec-

tive transformation that can be estimated with at least four

correspondences [32], and outliers can be filtered through

Fig. 3: Map of East Baton Rouge parish and image GPS tags.

RANSAC [36]. Of all of the images that were reconstructed

using OpenSfM, we retained those where at least 20% of

matches between image coordinates and world coordinates

were inliers.

Of the retained images, we found that some images pro-

duced extremely large image footprints (i.e., the projection of

the image edges onto the ground). Upon inspection, we saw

that these were images that were so oblique that the horizon

was visible. Because these images require more complex

transformations, we decided to disregard these images for our

implementation. We considered two criteria for eliminating

such images. First, we only eliminated images whose total area

were greater than some value γ1. Second, we did not consider

images where the ratio of the longest side to the shortest side

of the minimum area rectangle that covered the entire footprint

were greater than γ2. The projective transformation is applied

to all polygons generated by the procedure in Section III-B

to obtain our flooding estimate. We report the results for a

variety of combinations of γ1 and γ2 parameters to illustrate

the effectiveness of our approach.

IV. EVALUATION AND RESULTS

In this section, we evaluate the performance of our approach

at DEL using images from the 2016 Louisiana floods. Figure 3

shows the administrative boundary of the East Baton Rouge

parish in Louisiana, the parish’s estimated flood inundation

area [37], and the coordinates of all CAP image with GPS

locations within 5 km of the administrative boundary. In total,

the flooding event covered 536 km2 (44% of the total area of

the parish). Our analysis includes 1615 CAP images that were

taken in August 2016 immediately after the flooding event.

A. Classification results

Table I shows the testing accuracy, precision and recall

values for the three ResNet50 classifiers that were trained

(one for each ground truth training labelling scheme defined in

Section III-B1). In order to properly compare the three models,

each of the three classifiers was also evaluated against the

remaining two labelling schemes. Regardless of the labelling,

the actual images that comprised the testing set (as well as

the training and validation sets) were the same for all three
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Train
label

Test
label

Accuracy
(%)

Precision
(%)

Recall
(%)

A
A 77 65 79
B 71 38 91
C 70 42 83

B
A 77 75 53
B 83 54 68
C 80 55 64

C
A 79 73 65
B 80 48 80
C 83 53 69

TABLE I: Accuracy, precision and recall values for the three

ResNet models. Train label refers to the set of labels used

in training, while Test label refers to the set of labels against

which each model was evaluated.

(a) (b) (c)

(d) (e) (f)

Fig. 4: Sample of CAP images identified as flooding by ResNet

model A and their associated damage polygons.

schemes. For the purposes of this paper, we will refer to each

of the models according to their training labelling scheme.

Unsurprisingly, each of three models had the highest accu-

racy when compared against the labelling scheme they were

trained on. With the other two metrics, though, there are

noticeable trends. In terms of precision, model B had the

highest precision when evaluated against any labelling scheme,

followed by C and finally A. With recall, the opposite holds:

A has the highest recall across the board, followed by C

and then B. These trends are not difficult to justify, since B

necessarily has a higher standard for classification as flooding

than A. For flooding, C is a compromise between the most

lenient labelling scheme (A) and the strictest one (C). In this

particular application, we consider false positives to be less

serious than false negatives; that is, we would rather think

that someone was in danger from flooding when they are not

(false positive) than think that they are not in danger when

they are (false negative). As such, we proceed using model A

for the remainder of the section.

B. Class activation mapping results

To get a better sense of how class activation mapping per-

forms at identifying regions of flooding/water damage within

an image, we show a few sample images with an overlay of the

detected flooding outline. Figure 4 shows a sample of LADI

images that were classified as having flooding/water damage,

along with the estimated extent of flooding. We can see that for

the most part, this the CAM provides a decent coarse estimate

of the extent of water in the image. Flooding is slightly

more complicated. While Figures 4a and 4b very clearly show

flooding events, the top portion of Figure 4c seems to simply

be picking up the shoreline. As an important note, we noticed

that many images that show large bodies of water also tend to

include the horizon in the flooding polygon (e.g. Figure 4b).

This might be because flooding typically covers a large portion

of area, and therefore images that include the horizon might

be more likely to also include flooding. This underscores

the importance of filtering images with large footprints after

georeferencing. Figures 4d, 4e and 4f are images that were

identified as flooding from the Louisiana 2016 floods. Even in

this case where many images have large portions of flooding,

our approach is still able to trace the extent of the water.

While we would ideally want to provide a full performance

evaluation, the lack of segmented images for this context

makes this infeasible without significant effort put into manual

labelling.

C. DEL results

Of the 1615 CAP images that were considered, 809 were

successfully reconstructed by OpenSfM. At the same time,

of the 1615 images 996 were identified as having flooding.

Finally, 559 images completed the georeferencing pipeline and
were identified as flooding. Additional images were the filtered

based on the criteria described in Section III-C2.

We used these images to estimate flooding in three different

methods. Firstly, we use the GPS tag of these images as a

baseline, where we calculate the precision as the proportion

of the flood images that lie in the FEMA estimates. Secondly,

we estimate the flooding using the entire footprints of images

classified as containing “flooding/water” (SfM + binary clas-

sification). Finally, we consider our approach of both (SfM +

CAM) as the flood estimate. We only consider the flooding

within the East Baton Rouge administrative boundary, since

we do not have data on flood extent outside of the boundary.

Figure 5 shows the different flooding estimates overlaid

against the official estimates, as well as the precision values

of each method. Note that the precision we report is compared

against the flooding extent estimates, and not with ground truth

mask of the images (which are not available in the dataset). In

Figure 6, precision is the total area colored dark blue divided

by the sum of the dark blue and red areas. The reported

precision includes both the contributions of class activation

mapping and structure from motion. These estimates were

made with γ1 = 4 and γ2 = 5 km2, so that ultimately 243

images were used. These results show a clear improvement

going from using the GPS locations of the images to using

the georeferenced footprint. This suggests that using the GPS

tags of the images on their own is insufficient, since a large
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(a) GPS tags (Precision: 52%) (b) Image footprints (Precision: 80%) (c) Our approach (Precision: 88%)

Fig. 5: Flooding estimates and precision values using: (a) GPS tags, (b) image footprints (SfM + binary classification), and

(c) our approach (SfM + CAM).

(a) Image footprint (b) Our approach

Fig. 6: Close-up of flooding estimates for image footprint and

our approach, showing true and false positive regions.

number of images containing flooding were taken over areas

that were not flooded, and vice versa.

SfM + binary classification

γ2 (km2)
1 2.5 5 10

2 86 85 85 87
3 85 84 85 86
4 85 84 80 72

γ1
(unitless)

5 85 84 77 68

SfM + CAM

γ2 (km2)
1 2.5 5 10

2 90 89 89 89
3 90 88 87 87
4 90 88 88 87

γ1
(unitless)

5 90 88 87 87

TABLE II: Precision for both approaches in percent for various

values of γ1 and γ2.

Furthermore, we see that our approach provides an addi-

tional improvement in precision compared to using the full

image footprint from SfM and binary classification alone. Es-

pecially in areas at the edges of the flooding extent, our method

provides a more precise outline of the official estimates than

using the full image footprints. This can be seen most clearly

in Figure 6. To characterize the improvement that our approach

provides over using the image footprints, we compute in

Table II the precision values for various combinations of γ1
and γ2. We see that for all chosen combinations of thresholds,

our approach has higher precision than the approach using

only the image footprints. While the precision of the footprint

approach degrades from 86% to 68% as the values of γ1
and γ2 increase, the performance of our approach (SfM +

CAM) only decreases from 90% to 87%. Thus, our approach

is not only more robust to the choices of these parameters,

but also manages to perform consistently specifically on data

that causes performance degradation in the footprint approach.

In this way, our approach allows us filter less data without

losing precision, and incorporate more of the highly-oblique

source images that would otherwise affect performance in the

footprint (SfM + binary) approach.

V. DISCUSSION AND CONCLUSION

In this paper, we focused on the problem of Damage

Estimation and Localization (DEL) in the context of the

geospatial mapping of damage from aerial images taken

with handheld cameras in small, manned, fixed-wing aircraft.

While this mode of collecting imagery is cost-efficient and

compliant with existing regulations, the raw image data has

several attributes which make them difficult to work with. In

particular, such images are often highly oblique, sparsely and

irregularly sampled, and do not contain IMU information. We

proposed an approach to performing DEL from such images

by combining structure from motion and class activation

mapping to georeference images and detect damage within

them. When compared against official flooding estimates from

the 2016 Louisiana floods, our approach achieved a precision

of 88%, which outperforms the naive approaches of using

the image GPS locations or image footprint. While our paper

focuses on DEL for flooding images due to the availability

of such images, we believe that this approach is generalizable

towards other types of imagery. Future work should focus on
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implementing this approach on other types of damage, such

as debris.

Our approach is not without limitations. First, there are

some images, such as very oblique images which include

the horizon that cannot be georeferenced using a projective

transform. Second, there are a significant number of images

that do not have any overlap with other images in terms

of pointing at the same scene. We expect that these images

could be incorporated into the DEL by georeferencing them

against other imagery with a known geotransform, like satellite

data. Developing methods to accomplish this capability is an

important next step. Nevertheless, our approach performs quite

well for images which have a significant overlap with other

images, and do not include the horizon. Practically, simple

changes in operational procedures—such as requiring images

to be taken in bursts, and avoiding the horizon—can limit

the number of images which have to be discarded. Most

importantly, our approach can quickly generate an estimate of

damage distribution from aerial imagery that is already being

collected, without the need for any new sensors.
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