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Abstract—Aerial images provide important situational aware-
ness for responding to natural disasters such as hurricanes. They
are well-suited for providing information for damage estimation
and localization (DEL); i.e., characterizing the type and spatial
extent of damage following a disaster. Despite recent advances
in sensing and unmanned aerial systems technology, much of
post-disaster aerial imagery is still taken by handheld DSLR
cameras from small, manned, fixed-wing aircraft. However, these
handheld cameras lack IMU information, and images are taken
opportunistically post-event by operators. As such, DEL from
such imagery is still a highly manual and time-consuming process.
We propose an approach to both detect damage in aerial images
and localize it in world coordinates, with specific focus on
detecting and localizing flooding. The approach is based on
using structure from motion to relate image coordinates to
world coordinates via a projective transformation, using class
activation mapping to detect the extent of damage in an image,
and applying the projective transformation to localize damage in
world coordinates. We evaluate the performance of our approach
on post-event data from the 2016 Louisiana floods, and find
that our approach achieves a precision of 88%. Given this high
precision using limited data, we argue that this approach is
currently viable for fast and effective DEL from handheld aerial
imagery for disaster response.

Index Terms—Weakly-supervised learning, Class activation
mapping, Structure from motion, GIS, Disaster response.

I. INTRODUCTION

Natural disasters, such as hurricanes and floods, can cause
major loss of life and property; the intensity, scope, and the fre-
quency of such disasters may be further exacerbated by global
climate change [1]. Timely information about the distribution
and nature of damage following a disaster can help provide
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important context and information for emergency managers’
decision-making [2]. Increasingly, satellite and aerial imagery
are being incorporated into post-disaster needs assessment [3].
However, while techniques exist for extracting information
from orthorectified satellite and aerial imagery [4]-[8], meth-
ods for more general aerial imagery (such as oblique imagery
from handheld cameras) have received far less attention. This
is a critical limitation because post-disaster aerial imagery
taken from handheld DSLR cameras from small, manned,
fixed-wing aircraft remains popular due to the relatively low
cost, high availability, conformity with existing regulations,
and existing training programs associated with the practice
[9]1, [10]. These handheld cameras lack IMU information, and
images are taken opportunistically post-event by human op-
erators, resulting in sparsely-sampled images taken at oblique
angles. In this paper, we pose the question: how can we use
aerial imagery from an arbitrary camera setup in order
to rapidly and effectively aid in post-disaster situational
awareness?

We focus on a specific component of post-disaster needs
assessment, which we refer to as Damage Estimation and Lo-
calization (DEL). We broadly define damage as an identifiable
destruction of an infrastructure component or utility resulting
from a specific event (in our case, a natural disaster). We then
define estimation as the detection of an instance of damage in
an image. Finally, localization is the act of assigning world
coordinates to the estimated instance of damage. Our main
contribution is a practically implementable approach that uses
sparse, oblique aerial disaster imagery from handheld cameras
to carry out DEL, with a specific focus on DEL for images of
flooding. To our knowledge, our approach is the only one that
does estimation without relying on training data that includes
bounding boxes or segmented images; and localization without
inertial measurement unit (IMU) information or a known
geotransform. We show that this method achieves a precision
of 88% when compared against official estimates from the
2016 Louisiana floods. Furthermore, our approach can readily
incorporate the types of data that other approaches rely on
should these datasets become available in the future. We be-
lieve this approach is an important contribution to the disaster
relief sector for two reasons. First, it provides disaster relief
responders the means to do fast and effective DEL without
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the need of sophisticated equipment. Second, it augments the
utility of existing datasets (such as the one we use, described in
Section III-A) by providing georeferenced damage annotations
to a significant portion of the imagery.

Figure 1 provides a visual depiction of our approach. It
consists of two stages: a pre-disaster and a post-disaster
stage. In the pre-disaster stage, a neural network is trained
to recognize the image-level damage labels within an aerial
disaster imagery dataset. The post-disaster stage is comprised
of two parallel ’pipelines’, whose outputs are combined at
the end. The first pipeline takes a collection of images from
an area of interest and reconstructs the scene using structure
from motion. The reconstructed point cloud then relates image
coordinates to world coordinates via a projective transforma-
tion. The second pipeline takes individual images from the
area of interest and produces polygons that cover the extent
of the damage that is detected using class activation mapping.
The projective transformation is then applied to the damage
polygons to produce the final output. While our approach
uses image-level binary damage indicators and class activation
maps due to the limited availability of training data, the
same estimated projective transformation could be applied to
bounding boxes or segmentation masks generated from object
detection or semantic segmentation algorithms, respectively.

II. NOVELTY OF OUR APPROACH

We propose the approach detailed in Figure 1 for performing
both components of DEL using the tools and datasets that
currently exist for this context. Specifically for georeferencing,
other common approaches for image registration turned out
to be intractable for this application. While some authors
have used visual feature-based methods such as SIFT to
register satellite or top-down drone imagery to other known
georeferenced images [11]-[14], methods such as SIFT have
been shown to perform poorly under extreme changes in
perspective and sensor specifications [13], [15]. This was the
case when we attempted to use SIFT to georeference post-
disaster aerial images and satellite images. Another approach
georeferences images using Siamese neural networks in one of
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two ways: either training the network to match certain features
(e.g. buildings) of a query image and a ground truth image [16]
or by matching the entirety of a query image and a ground
truth image [15], [17], [18]. While these approaches would be
suitable for estimating the GPS tag of aerial images, estimating
the full geotransform would require additional orientation
information. Indeed, most available literature on registering
oblique imagery relies on some variant of structure from
motion or multiview stereo [19], which is the approach we
take.

On the other hand, there is an abundance of literature and
datasets on detecting damage after natural disasters. In partic-
ular, various deep learning approaches have detected damage
with high accuracy in challenges such as xView2 [4]-[6].
However, such training data that estimates damage (either with
bounding boxes or segmentation) consists of orthorectified
satellite or aerial imagery instead of oblique aerial imagery.
Previous work has also attempted to overcome lack of training
data in either satellite or aerial images via transfer learning
from satellite to aerial or vice versa [20]-[22]. Once again, all
attempts at transfer learning that we are aware of were only
applied to orthorectified imagery, and only only considered
changes in resolution, not perspective. Moreover, while the
remote sensing community has developed indexes to classify
features such as water and vegetation [23] from multispectral
sensors, this is not applicable to the imagery produced from the
handheld cameras used in our context, which are only sensitive
in the visible spectrum. Given the lack of tools and datasets
developed for this space, we pursue a class activation mapping
approach using image-level labels as a weakly supervised
approach to detecting damage.

III. METHODS

This section details the methods that support the key compo-
nents of our approach. Section III-A first provides an overview
of the dataset used in this analysis. Then, Sections III-B
and II-C describe our estimation and localization pipelines,
respectively.

A. Low Altitude Disaster Imagery dataset

We perform all our analyses using the Low Altitude Disaster
Imagery (LADI) dataset [24]. LADI is a publicly available
dataset consisting of images taken by the United States Civil
Air Patrol (CAP) in the aftermath of natural disasters, and
annotated by crowdsourced workers with hierarchical image-
level labels representing five broad categories: Damage, En-
vironment, Infrastructure, Vehicles, and Water. Within each
category, there are a number of more specific annotation labels.
We focus on the flooding/water damage label within in the
“Damage” category.

While the current LADI dataset provides image-level anno-
tations, it does not provide any bounding box or segmentation
information. This limits our ability to train an object detection
or image segmentation classifier to localize classes within
the images. At the time of writing, we were unable to find
any other publicly available datasets of post-disaster aerial



imagery from low altitude, oblique perspectives which provide
bounding box or segmentation annotations. While we are
aware that the Volan2018 dataset does provide bounding box
information for disaster imagery for various related classes
[25], to our current knowledge, it is not publicly available.

B. Damage estimation within an image

This section describes our damage estimation pipeline. We
initially pose this as a classification problem of detecting a
given type of damage within an image; from this classifier,
we extract the class activation map to estimate the location of
damage within the image.

1) Classification with ResNet: Our first step is to detect
whether an image contains flooding anywhere in the image.
We pose this problem as a classification problem, where for
an image X; there is a label Y;!"“¢ € {0, 1} that corresponds
to whether an image contains flooding or not. Our goal is
to predict Yi”“e. In the construction of the LADI dataset,
images were shown to a variable number of workers (generally
between 3-5); each worker was asked to identify which, if any,
labels for a given category (e.g. “Damage”) applied to that
image [24]. Responses from all workers were recorded. For
the sake of simplicity, we propose three different empirical
labelling schemes for determining their ground truth labels to
account for differing annotations between workers:

A) Bi,j > 1,
B) Bi’j > 2,
O) Bi,j > 1 and Bi7j/wi > me%ian{Bi7j/wi},

where B; ; is the number of workers that labelled image ¢
as class j and w; is the number of workers that labelled image
i at all. We trained and tested using different combinations of
these labelling scheme to determine a balance between filtering
out noise and preserving a sufficiently representative dataset.

To perform the image labeling task, we use a ResNet-50
backbone architecture for this paper, due to its consistent
performance in a variety of image classification tasks [26].
We split the dataset 80%/10%/10% for the training, validation
and testing sets, respectively. Images were scaled such that the
shorter dimension was 224 pixels long, and then cropped into
a 224 x 224 tile. Random rotations and horizontal flips were
applied during training for data augmentation. We initialized
the ResNet with pre-trained ImageNet weights [27], and
changed the output layer dimension from 1000 to 1. We then
train the ResNet with a batch size of 8, a learning rate of
0.001, a momentum of 0.9, using stochastic gradient descent
as the optimization algorithm with the Binary Cross-Entropy
(BCE) loss:

L= V! logo (Y} + (1 - V™) log o(1 - Y7"),
=1
)]

where Yip red € R is the output of the neural network, m
is the number of images in the batch and o(-) represents the
Sigmoid function.
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(b) CAM mask

(a) Original image

(c) Polygon tracing
Fig. 2: Stages of our polygon tracing approach.

2) Class activation mapping and polygon tracing: Af-
ter training, we utilize the class activation mapping (CAM)
approach from Zhou et al [28] to localize the extent of
the detected class within the image. CAM is a technique
for weakly-supervised object detection (i.e., where bounding
boxes are not explicitly trained on). It leverages the average
pooling layer at the end of the ResNet architecture to detect
areas within an image that are important for classifying a
particular class. While newer variations of CAM exist, such as
Grad-cam and Score-CAM [29], [30], we decided to proceed
with the original implementation from Zhou et al. Using the
terminology in [28], the output on the final fully connected
layer is given by:

Se=Y wiy frlz,y) =
k T,y

where wj, is the weight corresponding to class ¢ for the k-
th unit within conv5 (the final block within ResNet-50) and
fr(z,y) is the activation of the same k-th unit at location (z,
y) (such that } . fi(z,y) is the output of the global pooling
layer). Let M.(x,y) = >, wi fe(x,y), so that:

S. = Z M(z,y).
zy

2

DD wifulzy),

Ty k

3)

Here, M (x,y) can be viewed as a measure of impor-
tance of a spatial coordinate (x, y) for the class ¢
flooding/water damage, and hence referred to the class activa-
tion map. In order to determine the boundaries of the flooding
instances, we threshold on M.,:

1 if M.(z,y) >0
0 otherwise

Mz, y) = { @)

The last step in the estimation pipeline is to convert the
masked image into a set of polygons using [31]. This enables
us to easily transform the boundaries of flooding across coor-
dinate systems. Fig. 2 shows different stages of this procedure.

C. Damage localization

Next, we transform these polygons, which are in image
coordinates, into world coordinates; this forms our localization
pipeline. In this section, we describe the process of using
structure from motion to estimate the projective transforma-
tion relating image and world coordinates, and applying the
transformation to the flooding polygons.



1) Reconstruction using structure from motion: Structure
from motion is a technique that, using images from a camera
moving through an environment, can produce a point cloud of
the environment [32]. By taking advantage of the GPS tags
from the image metadata or from outside sensors, structure
from motion has been used to create inexpensive, georefer-
enced elevation models from drone and aircraft imagery [33].
We use this technique as an intermediate step to obtaining
the projective transformation that relates image coordinates to
world coordinates. We base our implementation off the well-
known OpenSfM library, an open source library for structure
from motion, following its default configuration. For more
information, please refer to the OpenSfM documentation [34].
In our implementation, we chose a specific area of interest
and select all images within the LADI dataset whose GPS
tags were within a Skm buffer around the area of interest.

Since fixed wing aircrafts have a relatively large turning
radius compared to rotary-wing aircraft, sequential images
collected from fixed-wing platforms tend to be approximately
collinear. This means that some reconstructions potentially
have an additional degree of freedom from rotating about
the line that goes through the GPS coordinates. Therefore,
it is necessary to estimate the direction of the up-vector (i.e.,
the vector opposite to the direction of gravity) and enforce
it in the reconstruction. Previous implementations of structure
from motion in urban environments have suggested estimating
vanishing points to estimate the up-vector [35]. This can be
difficult if there are few straight features (such as roads) or
high amounts of vegetation, which is common in rural areas.

To address the issue of estimating the up-vector, we propose
an approach which assumes the ground is approximately flat.
We first fit a plane through the reconstructed features using
RANSAC [36]. There is a pair of possible antiparallel unit
normal vectors to this plane, one of which is the up-vector.
Because of the aerial nature of the data, the location of the
images must be above the ground plane. Therefore, we choose
the vector that has a positive projection onto the image location
in East, North Up (ENU) coordinates and denote it v,.
Finally, we rotate the reconstruction so that v,,, indeed points
upwards. Specifically, we rotate it by 12, such that R,v,, = £
when it is initialized, and the up-vector is enforced during
bundle adjustment.

We initially incorporated a digital elevation model (DEM)
of the local topology to realign the reconstruction. However,
in the case discussed in this paper, the inclusion of the DEM
did not yield any performance gains, since the region that
we considered was relatively flat. Therefore, we do not report
these results.

2) Image-to-world projective transformation: The final step
in our georeferencing pipeline is estimating the transformation
from image coordinates to world coordinates, and applying
this transformation to the detected damage polygons. As
discussed previously, the images are of mostly flat surfaces,
meaning both sets of coordinates can be related by a projec-
tive transformation that can be estimated with at least four
correspondences [32], and outliers can be filtered through
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Fig. 3: Map of East Baton Rouge parish and image GPS tags.

RANSAC [36]. Of all of the images that were reconstructed
using OpenSfM, we retained those where at least 20% of
matches between image coordinates and world coordinates
were inliers.

Of the retained images, we found that some images pro-
duced extremely large image footprints (i.e., the projection of
the image edges onto the ground). Upon inspection, we saw
that these were images that were so oblique that the horizon
was visible. Because these images require more complex
transformations, we decided to disregard these images for our
implementation. We considered two criteria for eliminating
such images. First, we only eliminated images whose total area
were greater than some value ~;. Second, we did not consider
images where the ratio of the longest side to the shortest side
of the minimum area rectangle that covered the entire footprint
were greater than ,. The projective transformation is applied
to all polygons generated by the procedure in Section III-B
to obtain our flooding estimate. We report the results for a
variety of combinations of v; and vy, parameters to illustrate
the effectiveness of our approach.

IV. EVALUATION AND RESULTS

In this section, we evaluate the performance of our approach
at DEL using images from the 2016 Louisiana floods. Figure 3
shows the administrative boundary of the East Baton Rouge
parish in Louisiana, the parish’s estimated flood inundation
area [37], and the coordinates of all CAP image with GPS
locations within 5 km of the administrative boundary. In total,
the flooding event covered 536 km? (44% of the total area of
the parish). Our analysis includes 1615 CAP images that were
taken in August 2016 immediately after the flooding event.

A. Classification results

Table I shows the testing accuracy, precision and recall
values for the three ResNet50 classifiers that were trained
(one for each ground truth training labelling scheme defined in
Section III-B1). In order to properly compare the three models,
each of the three classifiers was also evaluated against the
remaining two labelling schemes. Regardless of the labelling,
the actual images that comprised the testing set (as well as
the training and validation sets) were the same for all three



Train | Test | Accuracy | Precision | Recall
label | label (%) (%) (%)
A 77 65 79
A B 71 38 91
C 70 42 83
A 77 75 53
B B 83 54 68
C 80 55 64
A 79 73 65
C B 80 48 80
C 83 53 69

TABLE I: Accuracy, precision and recall values for the three
ResNet models. Train label refers to the set of labels used
in training, while Test label refers to the set of labels against
which each model was evaluated.

®

Fig. 4: Sample of CAP images identified as flooding by ResNet
model A and their associated damage polygons.

schemes. For the purposes of this paper, we will refer to each
of the models according to their training labelling scheme.

Unsurprisingly, each of three models had the highest accu-
racy when compared against the labelling scheme they were
trained on. With the other two metrics, though, there are
noticeable trends. In terms of precision, model B had the
highest precision when evaluated against any labelling scheme,
followed by C and finally A. With recall, the opposite holds:
A has the highest recall across the board, followed by C
and then B. These trends are not difficult to justify, since B
necessarily has a higher standard for classification as flooding
than A. For flooding, C is a compromise between the most
lenient labelling scheme (A) and the strictest one (C). In this
particular application, we consider false positives to be less
serious than false negatives; that is, we would rather think
that someone was in danger from flooding when they are not
(false positive) than think that they are not in danger when
they are (false negative). As such, we proceed using model A
for the remainder of the section.

B. Class activation mapping results

To get a better sense of how class activation mapping per-
forms at identifying regions of flooding/water damage within
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an image, we show a few sample images with an overlay of the
detected flooding outline. Figure 4 shows a sample of LADI
images that were classified as having flooding/water damage,
along with the estimated extent of flooding. We can see that for
the most part, this the CAM provides a decent coarse estimate
of the extent of water in the image. Flooding is slightly
more complicated. While Figures 4a and 4b very clearly show
flooding events, the top portion of Figure 4c seems to simply
be picking up the shoreline. As an important note, we noticed
that many images that show large bodies of water also tend to
include the horizon in the flooding polygon (e.g. Figure 4b).
This might be because flooding typically covers a large portion
of area, and therefore images that include the horizon might
be more likely to also include flooding. This underscores
the importance of filtering images with large footprints after
georeferencing. Figures 4d, 4e and 4f are images that were
identified as flooding from the Louisiana 2016 floods. Even in
this case where many images have large portions of flooding,
our approach is still able to trace the extent of the water.
While we would ideally want to provide a full performance
evaluation, the lack of segmented images for this context
makes this infeasible without significant effort put into manual
labelling.

C. DEL results

Of the 1615 CAP images that were considered, 809 were
successfully reconstructed by OpenSfM. At the same time,
of the 1615 images 996 were identified as having flooding.
Finally, 559 images completed the georeferencing pipeline and
were identified as flooding. Additional images were the filtered
based on the criteria described in Section III-C2.

We used these images to estimate flooding in three different
methods. Firstly, we use the GPS tag of these images as a
baseline, where we calculate the precision as the proportion
of the flood images that lie in the FEMA estimates. Secondly,
we estimate the flooding using the entire footprints of images
classified as containing “flooding/water” (SfM + binary clas-
sification). Finally, we consider our approach of both (SfM +
CAM) as the flood estimate. We only consider the flooding
within the East Baton Rouge administrative boundary, since
we do not have data on flood extent outside of the boundary.

Figure 5 shows the different flooding estimates overlaid
against the official estimates, as well as the precision values
of each method. Note that the precision we report is compared
against the flooding extent estimates, and not with ground truth
mask of the images (which are not available in the dataset). In
Figure 6, precision is the total area colored dark blue divided
by the sum of the dark blue and red areas. The reported
precision includes both the contributions of class activation
mapping and structure from motion. These estimates were
made with v; = 4 and v = 5 km?, so that ultimately 243
images were used. These results show a clear improvement
going from using the GPS locations of the images to using
the georeferenced footprint. This suggests that using the GPS
tags of the images on their own is insufficient, since a large
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Fig. 6: Close-up of flooding estimates for image footprint and
our approach, showing true and false positive regions.

number of images containing flooding were taken over areas
that were not flooded, and vice versa.

SfM + binary classification

va (km?)
1 ]|25]| 5 10
2 |8 [ 8 [ 85 | 87
T 38 [ 8 [8 | 86
(unitless) | 4 | 85 | 84 | 80 | 72
58 [ 8 [ 77 | 68

SfM + CAM

v2 (km?)
1|25 5 10
2 (90 [ 89 [ 89 [ 89
71 3 90 [ 8 [ 87 | 87
(unitless) | 4 [ 90 | 88 88 | 87
590 [ 8 [ 87 | 87

TABLE II: Precision for both approaches in percent for various
values of v; and ~s.

Furthermore, we see that our approach provides an addi-
tional improvement in precision compared to using the full
image footprint from SfM and binary classification alone. Es-
pecially in areas at the edges of the flooding extent, our method
provides a more precise outline of the official estimates than
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using the full image footprints. This can be seen most clearly
in Figure 6. To characterize the improvement that our approach
provides over using the image footprints, we compute in
Table II the precision values for various combinations of ~y;
and 2. We see that for all chosen combinations of thresholds,
our approach has higher precision than the approach using
only the image footprints. While the precision of the footprint
approach degrades from 86% to 68% as the values of v;
and 75 increase, the performance of our approach (SfM +
CAM) only decreases from 90% to 87%. Thus, our approach
is not only more robust to the choices of these parameters,
but also manages to perform consistently specifically on data
that causes performance degradation in the footprint approach.
In this way, our approach allows us filter less data without
losing precision, and incorporate more of the highly-oblique
source images that would otherwise affect performance in the
footprint (SfM + binary) approach.

V. DISCUSSION AND CONCLUSION

In this paper, we focused on the problem of Damage
Estimation and Localization (DEL) in the context of the
geospatial mapping of damage from aerial images taken
with handheld cameras in small, manned, fixed-wing aircraft.
While this mode of collecting imagery is cost-efficient and
compliant with existing regulations, the raw image data has
several attributes which make them difficult to work with. In
particular, such images are often highly oblique, sparsely and
irregularly sampled, and do not contain IMU information. We
proposed an approach to performing DEL from such images
by combining structure from motion and class activation
mapping to georeference images and detect damage within
them. When compared against official flooding estimates from
the 2016 Louisiana floods, our approach achieved a precision
of 88%, which outperforms the naive approaches of using
the image GPS locations or image footprint. While our paper
focuses on DEL for flooding images due to the availability
of such images, we believe that this approach is generalizable
towards other types of imagery. Future work should focus on



implementing this approach on other types of damage, such
as debris.

Our approach is not without limitations. First, there are
some images, such as very oblique images which include
the horizon that cannot be georeferenced using a projective
transform. Second, there are a significant number of images
that do not have any overlap with other images in terms
of pointing at the same scene. We expect that these images
could be incorporated into the DEL by georeferencing them
against other imagery with a known geotransform, like satellite
data. Developing methods to accomplish this capability is an
important next step. Nevertheless, our approach performs quite
well for images which have a significant overlap with other
images, and do not include the horizon. Practically, simple
changes in operational procedures—such as requiring images
to be taken in bursts, and avoiding the horizon—can limit
the number of images which have to be discarded. Most
importantly, our approach can quickly generate an estimate of
damage distribution from aerial imagery that is already being
collected, without the need for any new sensors.
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