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Abstract. This article poses the following problem: Does there exist a probability distribu-
tion over subsets of a finite partially ordered set (poset), such that a set of constraints in-
volving marginal probabilities of the poset’s elements and maximal chains is satisfied? We
present a combinatorial algorithm to positively resolve this question. The algorithm can be
implemented in polynomial time in the special case where maximal chain probabilities are
affine functions of their elements. This existence problem is relevant for the equilibrium
characterization of a generic strategic interdiction game on a capacitated flow network.
The game involves a routing entity that sends its flow through the network while facing
path transportation costs and an interdictor who simultaneously interdicts one or more
edges while facing edge interdiction costs. Using our existence result on posets and strict
complementary slackness in linear programming, we show that the Nash equilibria of this
game can be fully described using primal and dual solutions of a minimum-cost circulation
problem. Our analysis provides a new characterization of the critical components in the in-
terdiction game. It also leads to a polynomial-time approach for equilibrium computation.
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1239166, and the CAREER award 1453126].
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1. Introduction
In this article, we study the problem of showing the existence of a probability distribution over a partially ordered
set (or poset) that satisfies a set of constraints involving marginal probabilities of the poset’s elements and maxi-
mal chains. This problem is essential for the equilibrium analysis and computation of a generic network interdic-
tion game, in which a strategic interdictor seeks to disrupt the flow of a routing entity. In particular, our existence
result on posets enables us to show that the equilibrium structure of the game can be described using primal and
dual solutions of a minimum-cost circulation problem.

1.1. Probability Distributions over Posets
For a given finite nonempty poset, we consider a problem in which each element is associated with a value be-
tween zero and one; additionally, each maximal chain has a value at most one. We want to determine if there ex-
ists a probability distribution over the subsets of the poset such that (i) the probability that each element of the
poset is in a subset is equal to its corresponding value and (ii) the probability that each maximal chain of the poset
intersects with a subset is as large as its corresponding value. This problem, denoted (D), is equivalent to resolving
the feasibility of a polyhedral set. However, geometric ideas—such as the ones involving the use of Farkas’ lemma
or Carathéodory’s theorem—cannot be applied to solve this problem, because they do not capture the structure of
posets. We positively resolve problem (D) under two conditions that are naturally satisfied for typical situations:

1. The value of each maximal chain is no more than the sum of the values of its elements.
2. The values of the maximal chains satisfy a conservation law: For any decomposition of two intersecting maxi-

mal chains, the sum of the corresponding maximal chain values is constant.
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Under these two conditions, we prove the feasibility of Problem (D) (Theorem 1). First, we show that solving
(D) is equivalent to proving that the optimal value of an exponential-size linear optimization problem, denoted
(Q), is no more than one (Proposition 1). Then, to optimally solve (Q), we design a combinatorial algorithm
(Algorithm 1) that exploits the relation between the values associated with the poset’s elements and maximal
chains. Each iteration of the algorithm involves constructing a subposet, selecting its set of minimal elements,
and assigning a specific weight to it. Importantly, in the design of the algorithm, we ensure that the conservation
law satisfied by the values associated with the maximal chains of the poset is preserved after each iteration. This
design feature enables us to obtain a relation between maximal chains after each iteration, which leads to opti-
mality guarantees of the algorithm (Propositions 2–4). We show that the optimal value of (Q) is equal to the larg-
est value associated with an element or maximal chain of the poset and is no more than one (Theorem 2).

In the special case where the value of each maximal chain is an affine function of the constituting elements, we re-
fine our combinatorial algorithm to efficiently solve (Q) (Proposition 5). Our polynomial algorithm (Algorithm 2) re-
lies on subroutines based on the shortest path algorithm in directed acyclic graphs, and does not require the enu-
meration of maximal chains.

Next, we show that the feasibility of problem (D) on posets is crucial for the equilibrium analysis of a class of
two-player interdiction games on flow networks.

1.2. Network Interdiction Games
We model a network interdiction game between Player 1 (routing entity) that sends its flow through the network
while facing heterogeneous path transportation costs and Player 2 (interdictor) who simultaneously chooses an
interdiction plan comprised of one or more edges. Player 1 (respectively, Player 2) seeks to maximize the value
of effective (respectively, interdicted) flow net the transportation (respectively, interdiction) cost. We adopt
mixed strategy Nash equilibria as the solution concept of this game.

Our interdiction game is general in that it models heterogeneous costs of transportation and interdiction. It
models the strategic situation in which Player 1 is an operator who wants to route flow (e.g., water, oil, or gas)
through pipelines, whereas Player 2 is an attacker who targets multiple pipes in order to steal or disrupt the
flow. Another relevant setting is the one where Player 1 is a malicious entity composed of routers who carry ille-
gal (or dangerous) goods through a transportation network (i.e., roads, rivers, etc.) and Player 2 is a security
agency that dispatches interdictors to intercept malicious routers and prevent the illegal goods from crossing the
network. In both these settings, mixed strategies can be viewed as the players introducing randomization in im-
plementing their respective actions. For instance, Player 1’s mixed strategy models a randomized choice of paths
for routing its flow of goods through the network, whereas Player 2’s mixed strategy indicates a randomized dis-
patch of interdictors to disrupt or intercept the flow.

The existing literature in network interdiction and robust flow problems has dealt with this type of problems in a
sequential (Stackelberg) setting (see Avenhaus and Canty [6], Ball et al. [8], Ratliff et al. [28], Wollmer [32]). Typical-
ly, these problems are solved using integer programming techniques and are staple for designing system interdic-
tion and defense (see Aneja et al. [3], Bertsimas et al. [11], Cormican et al. [12], Neumayer et al. [26], Sullivan and
Cole Smith [29], Wood [33]). However, these models do not capture the situations in which the interdictor is capa-
ble of simultaneously interdicting multiple edges, possibly in a randomized manner. Our model is closely tied to
the randomized network interdiction problem considered by Bertsimas et al. [10], in which the interdictor first ran-
domly interdicts a fixed number of edges and then the operator routes a feasible flow in the network. The interdic-
tor’s goal is to minimize the largest amount of flow that reaches the destination node. Although this model is equiv-
alent to a simultaneous game, our model differs in that we do not impose any restriction on the number of edges
that can be simultaneously interdicted. Additionally, we account for transportation and interdiction costs faced by
the players.

Our work is also motivated by previous problems studied in network security games (e.g., Baykal-Gürsoy et al.
[9], Gueye et al. [18], Szeto [30]). However, the available results in this line of work are for simpler cases and do
not apply to our model. Related to our work are the network security games proposed by Washburn and Wood
[31] and Gueye and Marbukh [17]. Washburn and Wood [31] consider a simultaneous game where an evader
chooses one source-destination path and the interdictor inspects one edge. The interdictor’s (respectively,
evader’s) objective is to maximize (respectively, minimize) the probability that the evader is detected by the in-
terdictor. Gueye and Marbukh [17] model an operator who routes a feasible flow in the network and an attacker
who disrupts one edge. The attacker’s (respectively, operator’s) goal is to maximize (minimize) the amount of
lost flow. The attacker also faces a cost of attack. In contrast, our model allows the interdictor to inspect multiple
edges simultaneously, and also accounts for the transportation cost faced by the routing entity.
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The generality of our model renders known methods for analyzing security games inapplicable to our game.
Indeed, prior work has considered solution approaches based on max-flows and min-cuts, and used these objects
as metrics of criticality for network components (see Assadi et al. [4], Dwivedi and Yu [14], Gueye et al. [18]).
However, these objects cannot be applied to describe the critical network components in our game because of the
heterogeneity of path interdiction probabilities resulting from the transportation costs. A related issue is that
computing a Nash equilibrium (NE) of our game is challenging because of the large size of the players’ action
sets. Indeed, Player 1 (respectively, Player 2) chooses a probability distribution over an infinite number of feasi-
ble flows (respectively, exponential number of subsets of edges). Therefore, well-known algorithms for comput-
ing (approximate) Nash equilibria are practically inapplicable for this setting (see Gilpin et al. [15], Lipton et al.
[23], McMahan et al. [24]). Guo et al. [19] developed a column and constraint generation algorithm to approxi-
mately solve their network security game. However, it cannot be applied to our model because of the transporta-
tion and interdiction costs that we consider.

Instead, we propose an approach for solving our game based on a minimum-cost circulation problem, which
we denote (M), and our existence problem on posets (D). The main findings are the following:

1. Every Nash equilibrium of the game can be described using primal and dual optimal solutions of (M) (Theo-
rem 2). Specifically, the expected flow of an equilibrium routing strategy for Player 1 is an optimal flow of (M). Fur-
thermore, equilibrium interdiction strategies for Player 2 are such that the marginal interdiction probabilities of the
network edges and source-destination paths can be expressed using the optimal dual solutions and the properties
of the network. In fact, these equilibrium conditions rely on our results on posets (Theorems 1 and 2) for the exis-
tence problem (D). The players’ payoffs in equilibrium can be expressed in terms of the optimal solutions of (M)
and are independent of the chosen path decomposition of Player 1’s strategy. Bertsimas et al. [11] showed that such
property does not necessarily hold in path-based formulations of the Robust Maximum Flow Problem (RMFP)
with multiple interdictions.

2. Our solution approach shows that Nash equilibria of the game can be computed in polynomial time: The first
step consists of solving the minimum-cost circulation problem (M) using known algorithms (see Karmarkar [22] and
Orlin et al. [27]). The optimal flow is shown to be an equilibrium routing strategy for Player 1. Using the optimal
dual solution, the second step of our approach consists of running our polynomial algorithm on posets (Algorithm 2)
to construct an equilibrium interdiction strategy for Player 2 that satisfies marginal interdiction probabilities. This re-
sult contrasts with theNP-hardness of the RMFP (Disser andMatuschke [13]).

3. The critical components in the network can be computed from a primal-dual pair of solutions of (M) that
satisfy strict complementary slackness. Specifically, the primal (respectively, dual) solution provides the paths
(respectively, edges) that are chosen (respectively, interdicted) in at least one Nash equilibrium of the game
(Proposition 6). This result generalizes the classical min-cut-based metrics of network criticality previously
studied in the network interdiction literature (see Assimakopoulos [5], McMasters and Mustin [25], Washburn
and Wood [31], Wood [33]). Indeed, we show that in our more general setting, multiple edges in a source-
destination path may be interdicted in equilibrium and cannot be represented with a single cut of the network.

The rest of the paper is organized as follows: In Section 2, we pose our existence problem on posets and intro-
duce our main feasibility result. Section 3 presents and analyzes a combinatorial algorithm for solving the exis-
tence problem. A polynomial implementation of the algorithm is described in Section 4 when the maximal chain
values are affine. Applications of our results on posets are then demonstrated in Section 5, where we study our
strategic network interdiction game. Lastly, we provide some concluding remarks in Section 6.

2. Probability Distributions on Posets
In this section, we first recall some standard definitions in order theory. We then pose our problem of proving the
existence of probability distributions over partially ordered sets and introduce our main result about its feasibility.

2.1. Preliminaries
A finite partially ordered set or poset P is a pair (X,� ), where X is a finite set and � is a partial order on X, that is,
� is a binary relation on X satisfying the following:

– Reflexivity: For all x ∈ X, x� x in P.
–Antisymmetry: For all (x,y) ∈ X2, if x� y in P and y � x in P, then x � y.
– Transitivity: For all (x,y,z) ∈ X3, if x� y in P and y� z in P, then x� z in P.
Given (x,y) ∈ X2, we denote x � y in P if x� y in P and x≠ y. We say that x and y are comparable in P if either

x � y in P or y � x in P. On the other hand, x and y are incomparable in P if neither x � y in P nor y � x in P. We say
that x is covered in P by y, denoted x �: y in P, if x � y in P and there does not exist z ∈ X such that x � z in P and
z � y in P. When there is no confusion regarding the poset, we abbreviate x� y in P by writing x� y, etc.
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Let Y be a nonempty subset of X, and let �|Y denote the restriction of � to Y. Then, �|Y is a partial order on Y
and (Y,�|Y) is a subposet of P. A poset P � (X,�) is called a chain (respectively, antichain) if every distinct pair of
elements in X is comparable (respectively, incomparable) in P. Given a poset P � (X,�), a nonempty subset Y ⊆
X is a chain (respectively, an antichain) in P if the subposet (Y,�|Y) is a chain (respectively, an antichain). A single
element of X is both a chain and an antichain.

Given a poset P � (X,�), an element x ∈ X is a minimal element (respectively, maximal element) if there are no
elements y ∈ X such that y � x (respectively, x � y). Note that any chain has a unique minimal and maximal ele-
ment. A chain C ⊆ X (respectively, antichain A ⊆ X) is maximal in P if there are no other chains C′ (respectively,
antichains A′) in P that contain C (respectively, A). Let C and A respectively denote the set of maximal chains
and antichains in P. A maximal chain C ∈ C of size n can be represented as C � {x1, : : : ,xn} where for all
k ∈ [[1,n− 1]], xk �: xk+1. We state the following property:

Lemma 1. Given a finite nonempty poset P, the set of minimal elements of P is an antichain of P and intersects with every
maximal chain of P.

The proof is in Appendix A.
Given a poset P � (X,�), we consider its directed cover graph, denoted HP � (X,EP). HP is a directed acyclic

graph whose set of nodes is X and whose set of edges is given by EP :� {(x,y) ∈ X2 | x �: y}. When HP is repre-
sented such that for all (x,y) ∈ X2 with x �: y, the vertical coordinate of the node corresponding to y is higher than
the vertical coordinate of the node corresponding to x, the resulting diagram is called a Hasse diagram of P.

We now introduce the notion of subposet generated by a subset of maximal chains. Given a poset P � (X,�),
let X′ ⊆ X be a subset of elements, let C′ ⊆ C be a subset of maximal chains of P, and consider the binary relation
� C′ defined as follows: for all (x,y) ∈ X′2, x � C′ y if and only if (x � y) or (there exists C ∈ C′ such that
x,y ∈ C and x � y). Furthermore, we assume that if C1 � {x−k, : : : ,x−1,x∗,x1, : : : ,xn} and C2 � {y−l, : : : ,y−1,x∗,
y1, : : : ,ym} are in C′ and intersect in x∗ ∈ X′, then C′ also contains C2

1 � {x−k, : : : ,x−1,x∗,y1, : : : ,ym} and
C1
2 � {y−l, : : : ,y−1,x∗,x1, : : : ,xn}. In other words, C′ preserves the decomposition of maximal chains intersecting in

X′. Then, the following lemma holds:

Lemma 2. Consider the poset P � (X,� ), a subset X′ ⊆ X, and a subset C′ ⊆ C that preserves the decomposition of maximal
chains intersecting in X′. Then, P′ � (X′,� C′ ) is also a poset. Furthermore, for any maximal chain C of P′ of size at least
two, there exists a maximal chain C′ in C′ such that C � C′ ∩ X′.

The proof is in Appendix A.
The subposet P′ � (X′,� C′ ) of P in Lemma 2 satisfies the property that if two elements in X′ are comparable in P

and belong to a same maximal chain C ∈ C′, then they are also comparable in P′. Graphically, this is equivalent to re-
moving the edges from the Hasse diagramHP if their two end nodes do not belong to a same maximal chain C ∈ C′.

Example 1. Consider the poset P represented by the Hasse diagram HP in Figure 1.

We observe that 1 � 4, 2 �: 3; 1 and 3 are comparable but 4 and 6 are incomparable; {2, 4} is a chain in P but is
not maximal because it is contained in the maximal chain {2, 3, 4}. Similarly, {4} is an antichain in P but is not
maximal because it is contained in the maximal antichain {4, 5}. The sets of maximal chains and antichains of P
are given by C � {{1, 3, 4}, {2, 3, 5, 6}, {1, 3, 5, 6}, {2, 3, 4}} and A � {{1, 2}, {3}, {4, 5}, {4, 6}}, respectively. The set of
minimal elements of P is given by {1, 2} and intersects with every maximal chain in C. Finally, P′ � (X′,� C′ ),
where X′ � {1, 2, 3, 4, 6} and C′ � {{1, 3, 5, 6}, {2, 3, 5, 6}} is a poset as illustrated in Figure 1. ~

Figure 1. On the left is a Hasse diagram of a poset P. On the right is a Hasse diagram of the subposet P′ � (X′,�C′ ) of P, where
X′ � {1, 2, 3, 4, 6} and C′ � {{1, 3, 5, 6}, {2, 3, 5, 6}}.

Dahan, Amin, and Jaillet: Probability Distributions on Posets and Network Interdiction Games
4 Mathematics of Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS



2.2. Problem Formulation and Main Result
Consider a finite nonempty poset P � (X,� ). Let P :� 2X denote the power set of X, and let Δ(P) :� {σ ∈
R

P
≥0 |

∑
S∈P σS � 1} denote the set of probability distributions over P. We are concerned with the setting where

each element x ∈ X is associated with a value ρx ∈ [0, 1], and each maximal chain C ∈ C has a value πC ≤ 1. Our
problem is to determine if there exists a probability distribution σ ∈ Δ(P) such that for every element x ∈ X, the
probability that x is in a subset S ∈ P is equal to ρx; and for every maximal chain C ∈ C, the probability that C in-
tersects with a subset S ∈ P is at least πC. That is,

(D) : ∃ σ ∈ R
P
≥0 such that

∑
{S∈P | x∈S}

σS � ρx, ∀x ∈ X, (1a)∑
{S∈P | S ∩C≠∅}

σS ≥ πC, ∀C ∈ C, (1b)∑
S∈P

σS � 1: (1c)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
For the case in which πC ≤ 0 for all maximal chains C ∈ C, Constraints (1b) can be removed and the feasibility of
(D) follows from Carathéodory’s theorem. However, no known results can be applied to the general case. Note
that although (1a)–(1c) form a polyhedral set, Farkas’ lemma cannot be directly used to evaluate its feasibility. In-
stead, in this article, we study the feasibility of (D) using order-theoretic properties of the problem. We assume
two natural conditions on ρ � (ρx)x∈X and π � (πC)C∈C, which we introduce next.

Firstly, for feasibility of (D), ρ and π must necessarily satisfy the following inequality:

∀C ∈ C,
∑
x∈C

ρx ≥ πC: (2)

Indeed, if (D) is feasible, then for σ ∈ R
P
≥0 satisfying (1a)–(1c), the following holds:

∀C ∈ C,
∑
x∈C

ρx �(1a)∑
x∈C

∑
{S∈P | x∈S}

σS �
∑
S∈P

σS
∑
x∈C

1{x∈S} �
∑
S∈P

σS|S ∩ C| ≥ ∑
{S∈P | S∩C≠∅}

σS ≥(1b)πC:

That is, the necessity of (2) follows from the fact that for any probability distribution over P, and any subset of el-
ements C ⊆ X, the probability that C intersects with a subset S ∈ P is upper bounded by the sum of the probabili-
ties with which each element in C is in a subset S ∈ P.

Secondly, we assume that π satisfies a specific condition for each pair of maximal chains that intersect each
other. Consider any pair of maximal chains C1 and C2 of P, with C1 ∩ C2 ≠ ∅. Let x∗ ∈ C1 ∩ C2, and let us rewrite
C1 � {x−k, : : : ,x−1,x∗,x1, : : : ,xn} and C2 � {y−l, : : : ,y−1,x∗,y1, : : : ,ym}. Then, P also contains two maximal chains C2

1 �{x−k, : : : ,x−1,x∗,y1, : : : ,ym} and C1
2 � {y−l, : : : ,y−1,x∗,x1, : : : ,xn} that satisfy C1⋃C2 � C2

1
⋃
C1
2; see Figure 2 for an il-

lustration. We require π to satisfy the following condition:

πC1 +πC2 � πC2
1
+πC1

2
: (3)

Essentially, (3) can be viewed as a conservation law on the maximal chains in C.
We now present our main result regarding the feasibility of (D), under Conditions (2) and (3).

Theorem 1. The problem (D) is feasible for any finite nonempty poset (X,� ), with parameters ρ � (ρx) ∈ [0,1]X and π �
(πC) ∈ (−∞,1]C that satisfy (2) and (3).

This result plays a crucial role in solving a two-player interdiction game on a flow network (Section 5). The
game involves a “router” who sends a flow of goods to maximize his or her value of flow crossing the network
while facing transportation costs and an “interdictor” who inspects one or more network edges to maximize the

Figure 2. Four maximal chains of the poset shown in Figure 1.
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value of interdicted flow while facing interdiction costs. Our equilibrium analysis in Section 5 shows that inter-
diction strategies in Nash equilibria interdict each edge x with a probability ρx, and interdict each path C with a
probability at least πC. Essentially, for this game, (ρx) and (πC) are governed by network properties, such as edge
transportation and interdiction costs, and naturally satisfy (2) and (3). When the network is a directed acyclic
graph, a partial order can be defined on the set of edges, such that the set of maximal chains is exactly the set of
source-destination paths of the network. Thus, showing the existence of interdiction strategies satisfying the
abovementioned equilibrium conditions is an instantiation of the problem (D). In fact, Theorem 1 is useful for de-
riving several properties satisfied by the equilibrium strategies of this network interdiction game.

It is important to note that (D) may not be feasible if the conservation law (3) is not satisfied, as illustrated in
the following counterexample:

Example 2. Let P be the poset represented by the Hasse diagram in Figure 3.

In this poset, the maximal chains are C1 � {1, 3, 5}, C2 � {1, 4, 5}, C3 � {1, 4, 6}, C4 � {2, 4, 5}, C5 � {2, 4, 6}. Con-
sider the following values: ρx � 0:4 for x ∈ {1, 4, 5} and ρx � 0 for x ∈ {2, 3, 6}; πC5 � 0:4 and πC � 0:8 for
C ∈ C \{C5}. We note that (2) is satisfied. However, πC2 +πC5 � 1:2≠ 1:6 � πC3 +πC4 , which violates (3). If σ ∈ R

P
≥0

satisfies (1a) and (1b), then, necessarily, σ{x} � 0:4 for all x ∈ {1, 4, 5}, which violates (1c). Thus, problem (D) is in-
feasible for this example. �

Next, we show that (D) is feasible if and only if the optimal value of a linear program is no more than one.

2.3. Equivalent Optimization Problem
We observe that when

∑
x∈X ρx ≤ 1, a trivial solution for (D) is given by σ̃{x} � ρx for all x ∈ X, and σ̃∅ �

1−∑
x∈X ρx. The vector σ̃ so constructed indeed represents a probability distribution over P and satisfies Con-

straints (1a). Furthermore, for each maximal chain C ∈ C,
∑

{S∈P | S∩C≠∅} σ̃S � ∑
x∈Cρx ≥

(2)
πC. Therefore, σ̃ is a feasi-

ble solution of (D). However, in general,
∑

x∈X ρx may be larger than one, which prevents the aforementioned
construction of σ̃ from being a probability distribution. Thus, to construct a feasible solution of (D), some proba-
bility must be assigned to subsets of elements of size larger than one. This is governed by the following quantity,
defined for each maximal chain C ∈ C:

δC :� ∑
x∈C

ρx −πC: (4)

The role of δ � (δC)C∈C in assigning probabilities to subsets of elements can be better understood by considering
the following optimization problem:

(Q) : minimize
∑
S∈P

σS

subject to
∑

{S∈P | x∈S}
σS � ρx, ∀x ∈ X (5)

∑
{S∈P | |S∩C | ≥2}

σS(|S ∩ C| − 1) ≤ δC, ∀C ∈ C (6)

σS ≥ 0, ∀S ∈ P:

Problems (Q) and (D) are related in that the set of Constraints (1a)–(1b) is equivalent to the set of Constraints
(5)–(6); see the proof of Proposition 1. Furthermore, the objective function in (Q) is analogous to Constraint (1c)

Figure 3. Hasse diagram of a poset P (left) and its fivemaximal chains (right).
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in (D). The feasibility of (Q) is straightforward (for example, σ̃ constructed above is a feasible solution); however,
a feasible solution of (Q) may not be a probability distribution.

Given a maximal chain C ∈ C, Constraint (6) bounds the total amount of probability that can be assigned to
subsets that contain more than one element in C. One can see that for a subset S ∈ P such that |S ∩ C| ≤ 1, the
probability σS assigned to S does not influence Constraint (6). However, the more elements from C a subset S
contains, the smaller the probability that can be assigned to S, because of scaling by the factor ( |S ∩ C| − 1). Thus,
δ determines the amount of probability that can be assigned to larger subsets.

Let z∗(Q) denote the optimal value of (Q). Then, the following result holds:

Proposition 1. (D) is feasible if and only if z∗(Q) ≤ 1.

Proof of Proposition 1. First, let us show that the set of Constraints (1a)–(1b) is equivalent to the set of Con-
straints (5)–(6). Let σ ∈ R

P
≥0 that satisfies

∑
{S∈P | x∈S} σS � ρx for all x ∈ X. For every maximal chain C ∈ C, the fol-

lowing equality holds: ∑
x∈C

ρx �
∑
x∈C

∑
{S∈P | x∈S}

σS �
∑
S∈P

σS
∑
x∈C

1{x∈S} �
∑

{S∈P | S∩C≠∅}
σS|S ∩ C|: (7)

Therefore, for every maximal chain C ∈ C, the following equivalence is satisfied:∑
{S∈P | S∩C≠∅}

σS ≥ πC ,
(4), (7)

δC ≥ ∑
{S∈P | S∩C≠∅}

σS(|S ∩ C| − 1) � ∑
{S∈P | |S∩C | ≥2}

σS(|S ∩ C| − 1): (8)

Now, let us show that (D) is feasible if and only if the optimal value of (Q) satisfies z∗(Q) ≤ 1.
– If there exists σ ∈ R

P
≥0 that satisfies (1a)–(1b), then we showed that σ is a feasible solution of (Q). Furthermore,

the objective value of σ is equal to one, which implies that z∗(Q) ≤ 1.
– If z∗(Q) ≤ 1, let σ∗ be an optimal solution of (Q). Necessarily, σ∗∅ � 0, and the vector σ̂ ∈ R

P defined as follows is
feasible for (D): σ̂S � σ∗S, for every S ∈ P \∅, and σ̂∅ � 1− z∗(Q) . w

Therefore, proving Theorem 1 is equivalent to showing that z∗(Q) ≤ 1. In fact, we show a stronger result, which
will be crucial for solving our network interdiction game in Section 5:

Theorem 2. z∗(Q) �max{max{ρx, x ∈ X},max{πC, C ∈ C}}.
It is easy to see that z∗(Q) ≥max{max{ρx, x ∈ X},max{πC, C ∈ C}}. Indeed, any feasible solution σ ∈ R

P
≥0 of (Q)

satisfies
∑

S∈P σS ≥
∑

{S∈P | x∈S} σS � ρx for every x ∈ X, and
∑

S∈P σS ≥
∑

{S∈P | S∩C≠∅} σS ≥
(8)
πC for every C ∈ C. To

show the reverse inequality, we must prove that there exists a feasible solution of (Q) with objective value equal
to max{max{ρx, x ∈ X},max{πC, C ∈ C}}. This is the focus of the next section.

3. Constructive Proof of Theorem 2
Essentially, we design a combinatorial algorithm to compute a feasible solution of (Q) with objective value exact-
ly equal to max{max{ρx, x ∈ X},max{πC, C ∈ C}}. Recall from Section 2.3 that such a feasible solution is optimal
for (Q) and can be used to construct a feasible solution of (D); see the proof of Proposition 1.

Before formally introducing our algorithm, we discuss the main ideas behind its design. In each iteration, the
algorithm selects a subset of elements and assigns a positive weight to it. Let us discuss the execution of the first
iteration of the algorithm.

Firstly, we determine the collection of subsets that can be assigned a positive weight without violating any of
the constraints in the Problem (Q). Essentially, this is dictated by the maximal chains C ∈ C for which δC � 0. In-
deed, for any C ∈ C with δC � 0, the following equivalence holds:

∑
{S∈P | |S∩C | ≥2} σS︸︷︷︸

≥0
(|S ∩ C| − 1)︸����︷︷����︸

>0

≤ 0 if and only

if σS � 0 for all S ∈ P such that |S ∩ C| ≥ 2. Therefore, our algorithm must select a subset of elements S ∈ P that in-
tersects every maximal chain C ∈ C for which δC � 0 in at most one element.

To precisely characterize this collection of subsets, we consider the notion of subposet generated by a subset of
maximal chains, introduced in Section 2.1. In particular, by considering C′ the set of maximal chains C ∈ C such
that δC � 0, and X′ the subset of elements x ∈ X such that ρx > 0, we can show (in Proposition 2) that the condition
stated in Lemma 2 is satisfied and P′ � (X′,� C′ ) is a poset. Interestingly, the subsets of elements that the algo-
rithm can select from at that iteration are the antichains of P′. In any poset, a chain and an antichain intersect in
at most one element. By definition of � C′ , this implies that |S ∩ C| ≤ 1 for every antichain S ⊆ X′ of P′ and every
maximal chain C ∈ C of P such that δC � 0.
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Now, we need to determine which antichain of P′ to select. Let S′ ⊆ X′ denote the subset of elements selected
by the algorithm in the first iteration. Recall that an optimal solution of (Q) satisfies Constraints (1a)–(1b) with
the least total amount of weight assigned to subsets of elements of X. Thus, it is desirable that the weight as-
signed to S′ in this iteration contribute toward satisfying all Constraints (1b). To capture this requirement, our al-
gorithm selects S′ as the set of minimal elements of P′. The selected S′ is an antichain of P′, intersects with every
maximal chain of P, and enables us to prove the optimality of the algorithm.

Secondly, we discuss how to determine the maximum amount of weight w′ that can be assigned to S′ in the
first iteration, without violating any of the Constraints (5) and (6). This is governed by the remaining maximal
chains C ∈ C for which δC > 0 and the elements constituting S′. If w′ is larger than δC|S′ ∩C | −1 for C ∈ C such that
|S′ ∩ C| ≥ 2, then the corresponding Constraint (6) will be violated. Similarly, w′ cannot be larger than any ρx,
x ∈ S′. Thus, the weight to assign to S′ is

w′ �min min {ρx, x ∈ S′}, min
δC

|S′ ∩ C| − 1
, C ∈ C | δC > 0 and |S′ ∩ C| ≥ 2

{ }}
:

{
At the end of the iteration, the algorithm updates the vectors ρ and δ, as well as the sets of elements X′ and maxi-
mal chains C′ to consider in subsequent iterations. In particular, we will show that some maximal chains need to
be removed in order to preserve the conservation law at each iteration. The algorithm terminates when there are
no more elements x ∈ X with positive ρx. We are now in the position to formally present Algorithm 1.

Algorithm 1 (Optimal Solution of (Q))
Input: Finite nonempty poset P � (X,� ), and vectors ρ ∈ R

X
≥0, δ ∈ R

C
≥0.

Output: Vector σ ∈ R
P
≥0.

A1: C1 ← C, ρ1
x ← ρx, ∀x ∈ X, δ1C ← δC, ∀C ∈ C1

A2: X1 ←{x ∈ X | ρ1
x > 0}, C

1 ←{C ∈ C1 | δ1C � 0}, Ĉ
1 ← {C ∈ C1 | δ1C > 0}

A3: k← 1

A4: while Xk ≠ ∅ do
A5: Construct the poset Pk � (Xk,�

C
k)

A6: Select Sk the set of minimal elements of Pk

A7: wk ←min
{
min

{
ρk
x, x ∈ Sk

}
,min

{ δkC
|Sk∩C|−1 , C ∈ Ĉ

k | |Sk ∩ C| ≥ 2
}}
, and σSk ← wk

A8: ρk+1
x ← ρk

x −wk1{x∈Sk}, ∀x ∈ X, and δk+1C ← δkC −wk(|Sk ∩ C| − 1)1{|Sk∩C|≥2}, ∀C ∈ C

A9: Ck+1 ←{C ∈ Ck | the minimal element of C ∩ Xk in P is in Sk}
A10: Xk+1 ← {x ∈ Xk | ρk+1

x > 0}, C
k+1 ← {C ∈ Ck+1 | δk+1C � 0}, Ĉ

k+1 ←{C ∈ Ck+1 | δk+1C > 0}
A11: k← k+ 1

A12: end while

We illustrate Algorithm 1 with an example in Appendix B.
Let n∗ denote the number of iterations of Algorithm 1. Since it has not yet been shown to terminate, we suppose

that n∗ ∈ N
⋃{+∞}. For every maximal chain C ∈ C, let us define the sequence (πk

C)k∈[[1,n∗+1]] induced by Algorithm 1
as follows:

π1
C :� πC, and for every k ∈ [[1,n∗]], πk+1

C :� πk
C −wk1{Sk∩C≠∅}: (9)

Given k ∈ [[1,n∗ + 1]], πk
C (respectively, ρk

x) represents the remaining value associated with the maximal chain C ∈ C
(respectively, the element x ∈ X) after the first k− 1 iterations of the algorithm. For convenience, we let X0 ← X.

We now proceed with proving Theorem 2. Our proof consists of three main parts:
Part 1: Algorithm 1 is well defined (Proposition 2).
Part 2: It terminates and outputs a feasible solution of (Q) (Proposition 3).
Part 3: It assigns a total weight

∑n∗
k�1w

k equal to max{max{ρx, x ∈ X},max{πC, C ∈ C}} at termination (Prop-
osition 4).
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3.1. Part 1: Well Definedness of Algorithm 1
To show that Algorithm 1 is well defined, we need to ensure that at each iteration k ∈ [[1,n∗]] of the algorithm, Pk

is a poset. Lemma 2 can be applied to show this, provided that we are able to prove that C
k
preserves the decom-

position of maximal chains intersecting in Xk. This property, and some associated results, are stated below:

Proposition 2. Each iteration of Algorithm 1 is well defined. In particular, for every k ∈ [[1,n∗ + 1]], the following hold:
i. For every maximal chain C ∈ C, δkC determines the remaining weight that can be assigned to subsets that intersect C at

more than one element:

∀C ∈ C, δkC � ∑
x∈C

ρk
x −πk

C, (10)

∀C ∈ C k, δkC ≥ 0: (11)

ii. Ck preserves the decomposition of maximal chains intersecting in Xk−1:

∀(C1,C2) ∈ C2 | C1 ∩ C2 ∩ Xk−1 ≠ ∅, (C1,C2) ∈ (C k)2 ⇒ (C2
1,C

1
2) ∈ (C k)2:

iii. πk satisfies the conservation law on the maximal chains of Ck that intersect in Xk−1:

∀(C1,C2) ∈ (C k)2 | C1 ∩ C2 ∩ Xk−1 ≠ ∅, πk
C1 +πk

C2 � πk
C2
1
+πk

C1
2
: (12)

iv. Pk � (Xk,�
C
k) is a poset.

Proof of Proposition 2. We show (i)–(iv) by induction.

First, consider k � 1. Since C1 � C, ρ1 � ρ, π1 � π, and δ1 � δ, then (i) follows from (2) and (4). Since X0 � X and
C1 � C, then (ii) is automatically satisfied. (iii) is a direct consequence of (3).

Now we apply Lemma 2 to show (iv), that is, P1 � (X1,�
C
1) is a poset. Specifically, we show that C

1
preserves

the decomposition of maximal chains intersecting in X1. Consider C1,C2 ∈ C
1
such that C1 ∩ C2 ∩ X1 ≠ ∅. Let

x∗ ∈ C1 ∩ C2 ∩ X1, and let us consider the other two maximal chains C2
1 and C1

2, which we know from (ii) are in C1

because X1 ⊆ X0. We can rewrite C1 � {x−k, : : : ,x−1,x0 � x∗,x1, : : : ,xn} and C2 � {y−l, : : : ,y−1,y0 � x∗,y1, : : : ,ym}.
Then, C2

1 � {x−k, : : : ,x−1,x∗,y1, : : : ,ym} and C1
2 � {y−l, : : : ,y−1,x∗,x1, : : : ,xn}. From (i)–(iii), since C1,C2 ∈ C

1
;

the conservation law is satisfied by π1 on the maximal chains in C1 intersecting in X0; C2
1,C

1
2 ∈ C1; and since

δ1 ≥ 0 on C1: ∑n
i�−k

ρ1
xi
+∑m

j�−l
ρ1
yj
� π1

C1 +π1
C2 � π1

C2
1
+π1

C1
2
� ∑

x∈C2
1

ρ1
x +

∑
x∈C1

2

ρ1
x − δ1C2

1
− δ1C1

2
≤ ∑n

i�−k
ρ1
xi
+∑m

j�−l
ρ1
yj
:

Therefore, δ1C2
1
� δ1C1

2
� 0 and C2

1,C
1
2 ∈ C

1
. From Lemma 2, P1 � (X1,�

C
1) is a poset.

We now assume that (i)–(iv) hold for k ∈ [[1,n∗]] and show that they also hold for k+ 1:
i. Since Pk is a poset, the k−th iteration of the algorithm is well defined; we can consider the set Sk and the weight

wk at that iteration. Then, for every C ∈ C, (A8) and (9) give us∑
x∈C

ρk+1
x −πk+1

C � ∑
x∈C

ρk
x −πk

C −wk|Sk ∩ C| +wk1{Sk∩C≠∅} � δkC −wk(|Sk ∩ C| − 1)1{Sk∩C≠∅} � δk+1C :

Now, consider a maximal chain C ∈ Ck. Since δk ≥ 0 on Ck, then Ck � C
k⋃

Ĉ
k
(from (A10)).

a. If C ∈ C
k
, then by definition of �

C
k , C ∩ Xk is a chain in Pk. From Lemma 1, Sk is an antichain of Pk. There-

fore, |Sk ∩ (C ∩ Xk)| ≤ 1. Because Sk ⊆ Xk, we obtain that |Sk ∩ C| � |Sk ∩ Xk ∩ C| ≤ 1. Thus, δk+1C �(A8)
δkC−

wk(|Sk ∩ C| − 1)1{|Sk∩C|≥2} � δkC � 0.
b. If C ∈ Ĉ

k
, then by definition ofwk: δk+1C �(A8)

δkC −wk(|Sk ∩ C| − 1)1{|Sk∩C|≥2} ≥(A7)
0.

In summary, for all C ∈ Ck, δk+1C ≥ 0. Since Ck+1 ⊆(A9)
Ck, then for all C ∈ Ck+1, δk+1C ≥ 0.

ii. Consider C1,C2 ∈ Ck+1 ⊆ Ck such that C1 ∩ C2 ∩ Xk ≠ ∅, and let C2
1 and C1

2 be two other maximal chains such

that C2
1
⋃
C1
2 � C1⋃C2. Since Xk ⊆(A10)

Xk−1, then C1 ∩ C2 ∩ Xk−1 ≠ ∅. Therefore, by inductive hypothesis, C2
1, C

1
2 ∈ Ck

as well. Let x1 (respectively, y1) denote the minimal element of the chain C1 ∩ Xk (respectively, C2 ∩ Xk) in P. Since

C1, C2 ∈ Ck+1, then (x1,y1) ∈(A9) (Sk)2. Let x∗ ∈ Xk denote an intersecting element of C1 and C2. Since C1 ∩ Xk is a chain
in P, contains x∗, and whose minimal element is x1, then necessarily x1� x∗. Similarly, we obtain that y1� x∗.
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Therefore, the minimal element of C2
1 ∩ Xk (respectively, C1

2 ∩ Xk) in P is x1 ∈ Sk (respectively, y1 ∈ Sk). Thus,
C2
1,C

1
2 ∈ Ck+1, and Ck+1 preserves the decomposition of maximal chains of P intersecting in Xk.

iii. Now, given C1, C2 in Ck+1 that intersect in Xk, we just proved that C2
1 and C1

2 are in Ck+1 as well. Therefore, for

all C ∈ {C1,C2,C2
1,C

1
2}, πk+1

C �(9)πk
C −wk (because Sk ∩ C≠ ∅). By inductive hypothesis, since Ck+1 ⊆ Ck and Xk+1 ⊆ Xk,

πk satisfies the conservation law between C1, C2, C2
1, and C1

2. Thus, we conclude that πk+1
C1 +πk+1

C2 � πk
C1 +πk

C2

−2wk � πk
C2
1
+πk

C1
2
− 2wk � πk+1

C2
1
+πk+1

C1
2
.

iv. This is a consequence of (i)–(iii); the proof is analogous to the one derived for k � 1.
Therefore, we conclude by induction that (i)–(iv) hold for every k ∈ [[1,n∗ + 1]]. w

The proof of Proposition 2 highlights the importance of our construction of Ck+1 for k ∈ [[1,n∗]] as given in (A9).
This step of the algorithm ensures that C k+1 preserves the decomposition of maximal chains intersecting in Xk. It
also ensures that each maximal chain in C k+1 intersects Sk. A direct consequence is that πk+1 satisfies the conserva-
tion law on the maximal chains of C k+1 that intersect in Xk. This implies that C

k+1
preserves the decomposition of

maximal chains intersecting in Xk+1, and Pk+1 is a poset (Lemma 2). The issue, however, is that some maximal
chains in C k may be removed when constructing Ck+1, and we must ensure that the corresponding Constraints (6)
will still be satisfied by the output of the algorithm. This is the focus of the next part.

3.2. Part 2: Feasibility of Algorithm 1’s Output
The second main part of the proof of Theorem 2 is to show that the algorithm terminates and outputs a feasible
solution of (Q). Showing that the algorithm terminates is based on the fact that there is a finite number of ele-
ments and maximal chains. From (A10), we deduce that Constraints (5) are automatically satisfied at termination,
since an element x ∈ X is removed whenever the remaining value ρk

x is zero. Similarly, from Proposition 2, we ob-
tain that Constraints (6) are satisfied for all maximal chains in Cn

∗+1, that is, the maximal chains that are not re-
moved by the algorithm. For the remaining maximal chains C ∈ C \Cn∗+1, we create a finite sequence of
“dominating” maximal chains and show that Constraint (6) being satisfied for the last maximal chain of the se-
quence implies that it is also satisfied for the initial maximal chain C. To carry out this argument, we essentially
need the following lemma:

Lemma 3. Consider C(1) ∈ C, and suppose that C(1) ∈ Ck1 \Ck1+1 and C(1) ∩ Xk1 ≠ ∅ for some k1 ∈ [[1,n∗]]. Then, there exists
C(2) ∈ Ck1+1 such that δk1C(1) ≥ δk1C(2) and C(2) ∩ Xk1 ⊇ C(1) ∩ Xk1 .

Proof of Lemma 3. Consider C(1) ∈ C, and suppose that there exists k1 ∈ [[1,n∗]] such that C(1) ∈ C k1 \C k1+1 and
C(1) ∩ Xk1 ≠ ∅. This case arises when the minimal element of C(1) ∩ Xk1 in P is not a minimal element of Pk1 . Then,
there is a chain in Pk1 whose maximal element is the minimal element of C(1) ∩ Xk1 in P, and whose minimal ele-
ment is a minimal element of Pk1 . By definition of Pk1 , this chain is contained in a maximal chain in C

k1 (Lemma 2).
We then exploit (i)–(iii) in Proposition 2 to show that there exists a maximal chain in Ck1+1 satisfying the desired
properties.

Formally, let x∗ denote the minimal element of C(1) ∩ Xk1 in P. Since C(1) ∉ Ck1+1, then x∗ ∉ Sk1 . Let C′ ⊆ Xk1 de-
note a maximal chain of Pk1 that contains x∗. From Lemma 1, the minimal element of C′ in Pk1 , which we denote
y1, is a minimal element of Pk1 . Therefore, y1 ∈ Sk and y1 ≠ x∗. Thus, |C′| ≥ 2, and there exists a maximal chain C2 ∈
C
k1 such that C′ � C2 ∩ Xk1 (Lemma 2). Since C(1) ∩ C2 ∩ Xk1−1 ⊇ {x∗}≠ ∅, let us consider the other two maximal

chains C2
1,C

1
2 ∈ C such that C2

1
⋃
C1
2 � C(1)⋃C2. Since C(1) and C2 are in Ck1 , then from Proposition 2, C2

1 and C1
2 are

in Ck1 as well. Let us rewrite C(1) � {x−m, : : : ,x0 � x∗, : : : ,xn}, C2 � {y−q, : : : ,y0,y1, : : : ,yp � x∗, : : : ,yp+r},
C2
1 � {x−m, : : : ,x−1,yp, : : : ,yp+r}, and C1

2 � {y−q, : : : ,yp,x1, : : : ,xn}; they are illustrated in Figure 4.
Since x∗ is the minimal element of C(1) ∩ Xk1 in P, then for all i ∈ [[−m, − 1]], ρk1

xi
� 0. Because C2 ∈ C

k1 and
C2
1 ∈ Ck1 , and from the conservation law between C(1), C2, C2

1, and C1
2, we obtain

πk1
C1
2
−πk1

C(1) �(12)πk1
C2 −πk1

C2
1
�(10)∑p+r

j�−q
ρk1
yj − δk1C2︸︷︷︸

�0
−∑−1
i�−m

ρk1
xi︸︷︷︸

�0
−∑p+r

j�p
ρk1
yj + δk1C2

1︸︷︷︸
≥0

≥(11)∑p−1
j�−q

ρk1
yj : (13)

This implies that

δk1C(1) �(10)
∑n
i�0

ρk1
xi −πk1

C(1) +
∑p−1
j�−q

ρk1
yj −

∑p−1
j�−q

ρk1
yj �(10)δk1C1

2
+πk1

C1
2
−πk1

C(1) −
∑p−1
j�−q

ρk1
yj ≥(13)δk1C1

2
:
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Since y1 is the minimal element of C2 ∩ Xk1 in Pk1 , it is also the minimal element of C2 ∩ Xk1 in P. Therefore, y1 is
the minimal element of C1

2 ∩ Xk1 in P. Since y1 ∈ Sk1 , then C1
2 ∈ Ck1+1.

Finally, since for all i ∈ [[−m, − 1]], xi ∉ Xk1 , then C1
2 ∩ Xk1 ⊇ {x∗,x1, : : : ,xn} ∩ Xk1 � C(1) ∩ Xk1 , as illustrated in

Figure 4. In conclusion, given C(1) ∈ Ck1 \Ck1+1 such that C(1) ∩ Xk1 ≠ ∅, there exists C(2) :� C1
2 ∈ Ck1+1 such that

δk1C(1) ≥ δk1C(2) and C(2) ∩ Xk1 ⊇ C(1) ∩ Xk1 . w

As shown in the next proposition, one of Lemma 3's implications is that if a maximal chain C(1) is removed af-
ter the k1− th iteration of the algorithm, then there exists another maximal chain C(2) that dominates C(1) in that if
the output of the algorithm satisfies Constraint (6) for C(2), then it also satisfies that constraint for C(1). Additional-
ly, it is guaranteed that C(2) is not removed before the k1 + 1− th iteration of the algorithm. We now show the fea-
sibility of Algorithm 1’s output:

Proposition 3. Algorithm 1 terminates and outputs a feasible solution of (Q).

Proof of Proposition 3. We recall that the algorithm terminates after iteration n∗ if Xn∗+1 � ∅. First, note that X1 ⊆
X and for all k ∈ [[1,n∗]], Xk+1 ⊆(A10)

Xk. Additionally, Ĉ
1 ⊆ C, and from (A8), Ĉ

k+1⊆ Ĉ
k
for every k ∈ [[1,n∗]]. Now,

consider k ∈ [[1,n∗]], and the weight wk chosen by the algorithm at iteration k. From (A7), there exists x ∈ Xk such
that wk � ρk

x, or there exists C ∈ Ĉ
k
such that wk � δkC

|Sk∩C|−1. In the first case, x ∉ Xk+1, so Xk+1⊆===== Xk. In the second case,
either C ∉ Ck+1 or C ∈ Ck+1 with δk+1C � 0; this implies that C ∉ Ĉ

k+1
and Ĉ

k+1⊆===== Ĉ
k
.

Thus, for every k ∈ [[1,n∗]], |Xk+1 × Ĉ
k+1| < |Xk × Ĉ

k|. Since |X1 × Ĉ
1| ∈ N, if n∗ were equal to +∞, we would obtain

an infinite decreasing sequence of natural integers. Therefore, we conclude that n∗ ∈ N, that is, the algorithm ter-
minates. At termination, Xn∗+1 � ∅.

Next, we show that the output σ ∈ R
P
≥0 of the algorithm is a feasible solution of (Q). First, the equality Con-

straints (5) are trivially satisfied:

∀x ∈ X, ρx �(A1)
ρ1
x �(A8)

ρn∗+1
x︸︷︷︸
�0

+∑n∗
k�1

wk1{x∈Sk} �(A7)∑n∗
k�1

σSk1{x∈Sk} �
∑

{S∈P | x∈S}
σS:

Figure 4. (Color online) Illustration of C(1), C2, C2
1, and C1

2. The filled nodes are the elements inXk1 , the hatched nodes are the
elements that may or may not be inXk1 , and the white nodes are the elements that are not inXk1 . The “double” node y1 is in Sk1 .
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Regarding Constraints (6), we first show the following equality:

∀C ∈ C, δn
∗+1

C �(A8)
δ1C −

∑n∗
k�1

wk(|Sk ∩ C| − 1)1{|Sk∩C|≥2} �(A1), (A7)
δC −

∑
{S∈P | |S∩C|≥2}

σS(|S ∩ C| − 1):

Therefore, Constraints (6) are satisfied if and only if for every C ∈ C, δn
∗+1

C ≥ 0.
From Proposition 2, we know that for all C ∈ Cn

∗+1, δn
∗+1

C ≥ 0. Now, consider C(1) ∈ C, and suppose that there ex-

ists k1 ∈ [[1,n∗]] such that C(1) ∈ Ck1 \Ck1+1. If C(1) ∩ Xk1 � ∅, then for every l ∈ [[k1,n∗]], |Sl ∩ C(1)| � 0 because Sl ⊆(A6)
Xl

and Xl ⊆(A10)
Xk1 . Therefore, because C(1) ∈ Ck1 , we have δn

∗+1
C(1) �(A8)

δk1C(1) −∑n∗
l�k1w

l(|Sl ∩ C(1)| − 1)1{|Sl∩C(1) |≥2} � δk1C(1) ≥
(11)

0:
If C(1) ∩ Xk1 ≠ ∅, then there exists C(2) ∈ Ck1+1 such that δk1C(1) ≥ δk1C(2) and C(2) ∩ Xk1 ⊇ C(1) ∩ Xk1 (Lemma 3). For any

i ∈ [[k1,n∗]], Si ∩ C(2) ⊇ Si ∩ C(1) because Si ⊆(A6), (A10)
Xk1 . Then, we obtain

∀l ∈ [[k1,n∗ + 1]], δlC(1) �(A8)
δk1C(1) −

∑l−1
i�k1

wi(|Si ∩ C(1)| − 1)1{|Si∩C(1) |≥2}

≥ δk1C(2) −
∑l−1
i�k1

wi(|Si ∩ C(2)| − 1)1{|Si∩C(2) |≥2} �(A8)
δlC(2) : (14)

In particular, δn
∗+1

C(1) ≥ δn
∗+1

C(2) .
By induction, we construct a sequence of maximal chains (C(s)), a sequence of increasing integers (ks), and a ter-

mination point s∗ ∈ N, such that for all s ∈ [[1, s∗ − 1]], C(s) ∈ Cks \Cks+1, δn∗+1C(s) ≥ δn
∗+1

C(s+1) , and δn
∗+1

C(s∗) ≥ 0. Note that s∗ exists
since ks ≤ n∗ + 1. This implies that δn

∗+1
C(1) ≥⋯≥ δn

∗+1
C(s∗) ≥ 0.

Thus, for every C ∈ C, δn
∗+1

C ≥ 0, and Constraints (6) are satisfied by the output σ of the algorithm. In conclusion,
the algorithm outputs a feasible solution of (Q). w

The output of Algorithm 1, by design, satisfies Constraints (5), and also Constraints (6) for the maximal chains
in Cn

∗+1. Recall that the remaining maximal chains were removed after an iteration k in order to maintain the con-
servation law on the resulting set Ck+1. This conservation law played an essential role in proving Proposition 3,
that is, in showing that Constraints (6) are also satisfied for the maximal chains that are not in Cn

∗+1 (see the proof
of Lemma 3).

3.3. Part 3: Optimality of Algorithm 1
The final part of the proof of Theorem 2 consists in showing that the total weight used by the algorithm is exactly
max{max{ρx, x ∈ X},max{πC, C ∈ C}}. This is done by considering the following quantity: for every
k ∈ [[1,n∗ + 1]], Wk :�max{max{ρk

x, x ∈ X},max{πk
C, C ∈ C}}. First, we show that for every k ∈ [[1,n∗]],

Wk+1 �Wk −wk. Then, we show that Wn∗+1 � 0. Using a telescoping series, we obtain the desired result. Lemma 3
is also used to conclude that max{πk

C, C ∈ C} is attained by a maximal chain C ∈ Ck+1.

Proposition 4. The total weight used by Algorithm 1 when it terminates ismax{max{ρx, x ∈ X},max{πC, C ∈ C}}.
Proof of Proposition 4. For all k ∈ [[1,n∗ + 1]], letWk :�max{max{ρk

x, x ∈ X},max{πk
C, C ∈ C}}. First, we show that

for every k ∈ [[1,n∗]], Wk+1 �Wk −wk. Consider k ∈ [[1,n∗]], and let C ∈ C \Ck+1. Then, there exists k1 ≤ k such that

C ∈ Ck1 \Ck1+1. If C ∩ Xk1 � ∅, then πk+1
C ≤(9)πk

C ≤(9)πk1
C �(10)−δk1C ≤(11)0. If C ∩ Xk1 ≠ ∅, then Lemma 3 implies that there ex-

ists C(2) ∈ Ck1+1 such that for all l ∈ [[k1,n∗ + 1]], δlC ≥(14)δlC(2) , and C(2) ∩ Xl ⊇ C ∩ Xl. Consequently, we obtain

∀l ∈ [[k1,n∗ + 1]], πl
C �(10) ∑

x∈C∩Xl

ρl
x − δlC +πl

C(2) + δlC(2) −
∑

x∈C∩Xl

ρl
x −

∑
x∈(C(2)∩Xl) \ (C∩Xl)

ρl
x ≤(14)πl

C(2) :

In particular, πk
C ≤ πk

C(2) and πk+1
C ≤ πk+1

C(2) . As in Proposition 3, we construct a sequence of maximal chains (C(s)), a
sequence of increasing integers (ks), and a termination point s′ ∈ N, such that C(1) � C and for all
s ∈ [[1, s′ − 1]], C(s) ∈ Cks \Cks+1, πk

C(s) ≤ πk
C(s+1) , and πk+1

C(s) ≤ πk+1
C(s+1) . At termination, C(s′) ∈ Cks′ , and either ks′ � k+ 1 or

ks′ < k+ 1 and C(s′) ∩ Xks′ � ∅. If ks′ � k+ 1, then πk
C ≤ πk

C(s′) and πk+1
C ≤ πk+1

C(s′) , with C(s′) ∈ Ck+1. If ks′ < k+ 1 and

Dahan, Amin, and Jaillet: Probability Distributions on Posets and Network Interdiction Games
12 Mathematics of Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS



C(s′) ∩ Xks′ � ∅, then πk+1
C ≤(9)πk

C ≤ πk
C(s′) ≤

(9)
πks′
C(s′) �(10) −δks′C(s′) ≤

(11)
0 ≤ ρk+1

x ≤ρk
x for all x ∈ X. Thus,Wk �max{max{ρk

x, x ∈ X},
max{πk

C, C ∈ Ck+1}}, andWk+1 �max{max{ρk+1
x , x ∈ X},max{πk+1

C , C ∈ Ck+1}}.
Since Xk ≠ ∅, ρk

x ≥ ρk+1
x ≥ 0 for every x ∈ Xk, and ρk

x � ρk+1
x � 0 for every x ∈ X\Xk, then

max{ρk
x, x ∈ X} �max{ρk

x, x ∈ Xk}, and max{ρk+1x , x ∈ X} �max{ρk+1
x , x ∈ Xk}.

Next, let x ∈ Xk \Sk. Then, there exists y ∈ Sk such that y�
C
kx. By definition, there exists C ∈ C

k
such that y,x ∈ C.

In fact, y is theminimal element ofC ∩ Xk in Pk, andC ∈ Ck+1. SinceC ∈ C
k
, thenπk

C �(10)∑x′∈Cρ
k
x′ ≥ ρk

x + ρk
y ≥ ρk

x. Further-

more, since y ∈ Sk, then wk ≤(A7)ρk
y. Thus, ρ

k+1
x � ρk

x ≤ πk
C − ρk

y ≤ πk
C −wk �(9)πk+1

C , from which we conclude that Wk �
max{max{ρk

x, x ∈ Sk},max{πk
C, C ∈ Ck+1}} andWk+1 �max{max{ρk+1

x , x ∈ Sk},max{πk+1
C , C ∈ Ck+1}}.

Finally, we note that for all C ∈ Ck+1, πk+1
C �(9)πk

C −wk because Sk ∩ C≠ ∅, and for all x ∈ Sk, ρk+1
x �(A8)

ρk
x −wk. Put-

ting everything together, we conclude

Wk+1 �max{max{ρk+1
x , x ∈ Sk},max{πk+1

C , C ∈ Ck+1}}
�max{max{ρk

x, x ∈ Sk},max{πk
C, C ∈ Ck+1}} −wk �Wk −wk:

Next, we show that Wn∗+1 � 0. First, ρn∗+1
x � 0 for all x ∈ X. Secondly, πn∗+1

C �(10)−δn∗+1C ≤(11)0 for all C ∈ Cn
∗+1. Thirdly,

Sn
∗
≠ ∅ because Xn∗ ≠ ∅. This implies that Wn∗+1 �max{max{ρn∗+1x , x ∈ Sn

∗ },max{πn∗+1
C , C ∈ Cn

∗+1}} � 0. Finally, us-
ing a telescoping series, we obtain∑

S∈P
σS �(A7)∑n∗

k�1
(Wk −Wk+1) �W1 −Wn∗+1︸︷︷︸

�0
�(A1), (9)

max{max{ρx, x ∈ X},max{πC, C ∈ C}}: w

In conclusion, Propositions 2, 3, and 4 enable us to show that Algorithm 1 outputs a feasible solution of (Q) with
objective value equal to max{max{ρx, x ∈ X},max{πC, C ∈ C}}. Therefore z∗(Q) ≤max{max{ρx, x ∈ X},max{πC,
C ∈ C}}. Since we already established the reverse inequality at the end of Section 2.3, we conclude that
z∗(Q) �max{max{ρx, x ∈ X},max{πC, C ∈ C}}, thus proving Theorem 2.

Furthermore, since ρx ≤ 1 for every x ∈ X, and πC ≤ 1 for every C ∈ C, then z∗(Q) ≤ 1. This implies that (D) is fea-
sible: Given the output σ of Algorithm 1, the vector σ̂ ∈ R

P
≥0 obtained from σ by additionally assigning 1− z∗(Q) to∅ is a feasible solution of Problem (D) and proves Theorem 1.

In fact, (Q) is a generalization of the minimum-weighted fractional coloring problem on comparability graphs
(Hoàng [20]). The comparability graph of the poset P � (X,� ) is an undirected graph whose set of nodes is X
and whose edges are given by the pairs of comparable elements in P. In the special case where for all C ∈
C,

∑
x∈Cρx � πC (i.e., Inequalities (2) are tight), (Q) is equivalent to the minimum-weighted fractional coloring

problem on the comparability graph of P. Algorithm 1 can then be refined into Hoàng’s O(|X|2)-time algorithm.
Given EP the edge set of the cover graph of P (as defined in Section 2.1), the number of iterations of Algorithm 1

is upper bounded by |X| + |EP|. However, Algorithm 1 requires at each iteration k the storage of the possibly expo-
nentially many maximal chains C in Ck, along with their corresponding values δkC. Next, we develop an efficient
implementation of Algorithm 1 when π is an affine function of the elements constituting each maximal chain of P.

4. Affine Case: Polynomial Algorithm
Consider Problem (D) for a given poset P � (X,� ) and vectors ρ ∈ [0,1]X and π ∈ (−∞,1]C satisfying (2). In addi-
tion, we assume that the value of each maximal chain C ∈ C in P is given by πC � α−∑

x∈Cβx, with α ∈ R and βx ∈
R for every x ∈ X. We observe that π satisfies the conservation law (3), and (D) is feasible. In this section, we refine
Algorithm 1 for this special case and show that an optimal solution of (Q) can be computed in polynomial time.

Our polynomial algorithm performs (A5) and (A7) without enumerating all the maximal chains of P. Instead,
it runs subroutines based on the shortest path algorithm in the directed cover graph of P to construct the subpo-
set Pk and compute the maximum weight wk that can be assigned at each iteration k ∈ [[1,n∗]]. Let us discuss the
execution of the first iteration of the algorithm.

Firstly, we augment the poset P by adding an artificial source element s and destination element t that satisfy
s� x� t, for every x ∈ X; let P∗ denote the augmented poset. Then, the algorithm stores the directed cover graph
HP∗ � (X⋃{s, t},EP∗ ) of P∗. An s− t path of size n is a sequence of edges {e1 � (s1, t1), : : : , en � (sn, tn)} such that
s1 � s, tn � t, and for all i ∈ [[1,n− 1]], ti � si+1. Note that the set of maximal chains C of P is equivalent to the set of
s− t paths of HP∗ : The set of nodes in X visited by an s− t path is a maximal chain C ∈ C and vice versa.
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Next, the algorithm sets the length ρy + βy to every edge (x,y) ∈ EP∗ with y≠ t and sets the length −α to every
edge (x, t) ∈ EP∗ with x ∈ X. Thus, the length of every s− t path in HP∗ , whose corresponding maximal chain is

C ∈ C, is
∑

x∈C(ρx + βx) −α �(4)δC. We then compute the shortest distances between all pairs of nodes in HP∗ : We
first topologically sort HP∗ , and then run the classical shortest path algorithm in directed acyclic graphs starting
from each node of HP∗ . We store the shortest distances in a matrix M � (mxy)(x,y)∈(X⋃{s,t})2 . By definition of P1 �
(X1,�

C
1) in Algorithm 1, and because δC ≥(2)0 for every C ∈ C, we obtain that for every (x,y) ∈ (X1)2 with x≠ y,

x�
C
1y if and only if the length msx +mxy +myt of a shortest s− t path in HP∗ that goes through x and y is zero.

Thus, this shortest path subroutine replaces (A5) and constructs P1 in polynomial time. The algorithm then se-
lects its set of minimal elements S1.

Now, we compute the weight w1 to assign to S1 without enumerating all maximal chains C ∈ Ĉ
1
such that

|S1 ∩ C| ≥ 2: Our algorithm constructs the subposet P̂
1
:� (S1⋃{s, t},� | S1⋃{s,t}) of P∗ and stores its directed cover

graph H
P̂
1 � (S1⋃{s, t},E

P̂
1). The length of each edge (x,y) ∈ E

P̂
1 is set to the shortest distance mxy from x to y in

the graph HP∗ . Then, we extend the shortest path algorithm in directed acyclic graphs to obtain, for each
q ∈ [[1, |S1|]], the distance ℓ̂

q
of a shortest path from s to t that traverses q elements of S1. The maximum weight to

assign to S1 can be efficiently computed as w1 �min
{
min ρx, x ∈ S1

{ }
,min

{
ℓ̂
q

q−1 , q ∈ [[2, |S1|]]
}}
, which replaces (A7).

Finally, the algorithm updates the vector ρ and the set of elements with positive ρ. In addition, w1 must be sub-
tracted from the scalar α to capture the update (9). This in turn will change the lengths of the edges in HP∗ for the
next iteration. The key challenges for the analysis of the subsequent iterations k are to account for the fact that
some maximal chains are removed by Algorithm 1, and that the length of an s− t path in HP∗ , whose correspond-
ing maximal chain is C ∈ C, is not necessarily δkC. We now formally present Algorithm 2.

Algorithm 2 (Optimal Solution of (Q) in Affine Case)
Input: Finite nonempty poset P � (X,� ), scalar α ∈ R, and vectors ρ ∈ R

X
≥0, β ∈ R

X.
Output: Vector σ̃ ∈ R

P
≥0.

B1: Augment the poset into P∗ � (X ⋃ {s, t},� ), where s�x� t,∀x ∈ X
B2: Construct the directed cover graphHP∗ � (X ⋃ {s, t},EP∗ )
B3: ρ̃1

x ← ρx, ∀x ∈ X, ρ̃1
t ← 0, β1x ← βx, ∀x ∈ X, β1t ←−α, X̃

1 ← {x ∈ X | ρ̃1
x > 0}

B4: k← 1
B5: while X̃

k
≠ ∅ do

B6: Set the length of every edge (x,y) ∈ EP∗ to ρ̃k
y + βky

B7: Mk � (mk
xy)(x,y)∈(X⋃{s,t})2 ← all-pairs shortest distance matrix for the graphHP∗

B8: Construct the poset P̃
k � (X̃k

,� k):∀x,y ∈ X̃
k
with x≠ y, x �ky,mk

sx +mk
xy +mk

yt � 0
B9: Select S̃

k
the set of minimal elements of P̃

k

B10: Construct the subposet P̂
k � (S̃k⋃{s, t},�|

S̃
k⋃{s,t}) of P∗

B11: Construct the directed cover graphH
P̂
k � (S̃k⋃{s, t},E

P̂
k), and topologically sort it

B12: ℓ̂
k,q
x ←+∞,∀x ∈ X

⋃{s, t},∀q ∈ [[−1, |S̃k|]], ℓ̂
k,−1
s ← 0

B13 for x ∈ S̃
k⋃{s} in topologically sorted order, and y ∈ S̃

k⋃{t} such that (x,y) ∈ E
P̂
k do

B14: for q ∈ [[−1, |S̃k| − 1]] such that ℓ̂
k,q+1
y > ℓ̂

k,q
x +mk

xy do

B15: ℓ̂
k,q+1
y ← ℓ̂

k,q
x +mk

xy
B16: end for
B17: end for

B18: w̃k ←min{min{ρ̃k
x, x ∈ S̃

k},min{ℓ̂
k,q
t

q−1 , q ∈ [[2, |S̃k|]]}}, σ̃
S̃
k ← w̃k

B19: βk+1x ← βkx, ∀x ∈ X, βk+1t ← βkt + w̃k, ρ̃k+1
x ← ρ̃k

x − w̃k1{x∈S̃k}, ∀x ∈ X
⋃{t}

B20: X̃
k+1 ←{x ∈ X̃

k | ρ̃k+1
x > 0}

B21: k← k+ 1
B22: end while
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For every maximal chain C ∈ C, we define the following sequence induced by Algorithm 2, which represents
the length of the corresponding s− t path in HP∗ at the beginning of each iteration:

∀k ∈ [[1,n∗ + 1]], ℓkC :�∑
x∈C

(ρ̃k
x + βkx) + βkt : (15)

We now proceed with proving by induction that Algorithm 2 is a refinement of Algorithm 1:

Proposition 5. Algorithm 1’s and Algorithm 2’s outputs are identical. In particular, for every k ∈ [[1,n∗ + 1]], the follow-
ing hold:

i. The remaining values for each element are identical: for every x ∈ X, ρ̃k
x � ρk

x, and X̃
k � Xk.

ii. For every maximal chain C ∈ C, the length of its corresponding s− t path in HP∗ is at least δkC. Furthermore, this inequali-
ty is tight for every maximal chain in Ck:

∀C ∈ C, ℓkC ≥ δkC, (16)

∀C ∈ Ck, ℓkC � δkC: (17)

iii. P̃
k � (X̃k

,� k) is a poset identical to Pk � (Xk,�
C
k), and S̃k � Sk.

iv. The weights assigned by both algorithms are identical: w̃k � wk.

Proof of Proposition 5. We show (i)–(iv) by induction. First, consider k � 1. Since ρ̃ � ρ � ρ1, then X̃
1 � X1. Fur-

thermore, for all C ∈ C, ℓ1C �(15)∑x∈C(ρx + βx) − α �(4)δ1C ≥(2)0. Therefore, for every (x,y) ∈ (X1)2 with x≠ y, x�
C
1y if and

only if there exists C ∈ C
1
such that x,y ∈ C, which in turn is equivalent to the length of a shortest path in HP∗ tra-

versing x and y being zero. Thus, P̃
1 � P1, and S̃

1 � S1. Next, because ℓ1 � δ1, we obtain that

w̃1 �(B18)min
{
min{ρ̃1

x, x ∈ S̃
1},min

{
ℓ̂
1,q
t

q− 1
, q ∈ [[2, |S̃1|]]

}}
� min

{
min{ρ1

x, x ∈ S1},min
{

δ1C
|S1 ∩ C| − 1

, C ∈ C | |S1 ∩ C| ≥ 2
}}
:

Note that |S1 ∩ C| ≤ 1 for every maximal chain C ∈ C
1
, by definition of P1. Since C1 � C, we deduce that

{C ∈ C | |S1 ∩ C| ≥ 2} � {C ∈ Ĉ
1 | |S1 ∩ C| ≥ 2}. Therefore,

w̃1 �min
{
min{ρ1x, x ∈ S1},min

{
δ1C

|S1 ∩ C| − 1
, C ∈ Ĉ

1 | |S1 ∩ C| ≥ 2
}}

�(A7)
w1:

We now assume that (i)–(iv) hold for k ∈ [[1,n∗]] and show that they also hold for k+ 1:
i. Since ρ̃k � ρk, S̃

k � Sk, and w̃k � wk, then for every x ∈ X, ρ̃k+1
x �(B19) ρ̃k

x − w̃k1{x∈S̃k} � ρk
x −wk1{x∈Sk} �(A8)

ρk+1
x . This

also implies that X̃
k+1 � Xk+1.

ii. For every maximal chain C ∈ C, ℓkC ≥ δkC implies that

ℓk+1C �(15), (B19)
ℓkC − w̃k|S̃k ∩ C| + w̃k ≥ δkC −wk|Sk ∩ C| +wk1{Sk∩C≠∅} �(A8)

δk+1C : (18)

If C ∈ Ck+1, then Sk ∩ C≠ ∅. Since Ck+1 ⊆ Ck, then ℓkC � δkC by inductive hypothesis. Therefore, (18) is tight for
C ∈ Ck+1.

iii. Consider (x,y) ∈ (Xk+1)2 with x≠ y. If x�
C
k+1y, then there exists C∗ ∈ C

k+1 ⊆ Ck+1 such that x,y ∈ C∗. Conse-

quently, ℓk+1C∗ �(17)δk+1C∗ � 0 ≤ δk+1C ≤(16)ℓk+1C for every C ∈ C. Therefore, the s− t path corresponding to C∗ is a shortest
path inHP∗ that goes through x and y and has length zero. Thus, x� k+1y.

Now, assume that x and y are not comparable in Pk+1. Two cases arise:
Case 1. x and y are not comparable in P. Then, there is no s− t path in HP∗ that goes through x and y, which im-

plies that x and y are not comparable in P̃
k+1

.
Case 2. x � y in P. Then, δk+1C > 0 for all C ∈ Ck+1 such that x,y ∈ C, by definition of Pk+1. Let C′ ∈ C be the maxi-

mal chain corresponding to a shortest path in HP∗ that goes through x and y. If C′ ∈ Ck+1, then ℓk+1C′ �(17)δk+1C′ > 0. If
C′ ∉ Ck+1, then by applying Lemma 3 as in Section 3, we obtain that there exists a maximal chain C(2) ∈ Ck+1 such

that δk+1C′ ≥ δk+1C(2) and C(2) ∩ Xk+1 ⊇ C′ ∩ Xk+1. Consequently, x,y ∈ C(2) and ℓk+1C′ ≥(16)δk+1C′ ≥ δk+1C(2) > 0. Thus, x and y are

not comparable in P̃
k+1

.
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In conclusion, P̃
k+1 � Pk+1 and S̃

k+1 � Sk+1.
iv. First, we note that

min
{
ℓ̂
k+1,q
t

q − 1
, q ∈ [[2, |S̃k+1|]]

}
� min

{
ℓk+1C

|Sk+1 ∩ C| − 1
, C ∈ C | |Sk+1 ∩ C| ≥ 2

}
: (19)

If the minimization problem in (19) is infeasible, that is, there is no maximal chain C ∈ C such that |Sk+1 ∩ C| ≥ 2,
then {C ∈ Ĉ

k+1 | |Sk+1 ∩ C| ≥ 2} � ∅. In this case, we obtain w̃k+1 �(B18)min{ρ̃k+1
x , x ∈ S̃

k} �min{ρk+1
x , x ∈ Sk} �(A7)

wk+1.
Next, consider the case where (19) is feasible. We now show that the optimal value of (19) is achieved by a

maximal chain in Ck+1: Let C∗ ∈ C be an optimal solution of (19) and assume that C∗ ∉ Ck+1. Since
C∗ ∩ Xk+1 ⊇ C∗ ∩ Sk+1 ≠ ∅, then by applying Lemma 3, there exists a maximal chain C(2) ∈ Ck+1 such that δk+1C∗ ≥ δk+1C(2)
and C(2) ∩ Sk+1 ⊇ C∗ ∩ Sk+1. Therefore, we obtain

ℓk+1C∗

|Sk+1 ∩ C∗| − 1
≥(16) δk+1C∗

|Sk+1 ∩ C∗| − 1
≥ δk+1C(2)

|Sk+1 ∩ C(2)| − 1
�(17) ℓk+1C(2)

|Sk+1 ∩ C(2)| − 1
:

Thus, C(2) ∈ Ck+1 is also an optimal solution of (19). Since |C(2) ∩ Sk+1| ≥ |C∗ ∩ Sk+1| ≥ 2, then by definition of Pk+1,
δk+1C(2) > 0 and C(2) ∈ Ĉ

k+1
. Then, we derive the following inequality:

∀C ∈ Ĉ
k+1 | |Sk+1 ∩ C| ≥ 2,

δk+1C

|Sk+1 ∩ C| − 1
�(17) ℓk+1C

|Sk+1 ∩ C| − 1
≥ ℓk+1C(2)

|Sk+1 ∩ C(2)| − 1
�(17) δk+1C(2)

|Sk+1 ∩ C(2)| − 1
:

Therefore, C(2) ∈ arg min δk+1C
|Sk+1∩C|−1 , C ∈ Ĉ

k+1 | |Sk+1 ∩ C| ≥ 2|
{ }

, and we obtain

w̃k+1 �(B18)min min ρ̃k+1
x , x ∈ S̃

k+1{ }
,min

ℓk+1C

|S̃k+1 ∩ C| − 1
, C ∈ C | |S̃k+1 ∩ C| ≥ 2

{ }{ }

�(17) min min ρk+1
x , x ∈ Sk+1

{ }
,min

δk+1C

|Sk+1 ∩ C| − 1
, C ∈ Ĉ

k+1 | |Sk+1 ∩ C| ≥ 2

{ }{ }
�(A7)

wk+1:

We conclude by induction that (i)−(iv) hold for every k ∈ [[1,n∗ + 1]]. w

In conclusion, Algorithm 2 computes an optimal solution of (Q) when π is an affine function of the elements
constituting each maximal chain. Importantly, Algorithm 2 is a polynomial algorithm: Its running time is gov-
erned by (B7) and (B13)–(B17), which both require O(|X||EP|) operations because HP∗ and H

P̂
k are directed acyclic

graphs (Ahuja et al. [2]). Since the algorithm terminates after n∗ ≤ |X| + |EP| iterations, Algorithm 2 runs in
O(|X||EP|2) time.

5. Applications to Network Interdiction
In this section, we introduce a strategic interdiction game involving a routing entity and an interdictor interact-
ing on a flow network. We use Theorems 1 and 2 on the existence of probability distributions over posets to char-
acterize the equilibria of this game. We also provide a solution approach for the equilibrium computation of this
game, which involves solving a minimum-cost circulation problem and running Algorithm 2.

5.1. Game-Theoretic Model
Consider a flow network, modeled as a simple directed acyclic connected graph G � (V,E), where V (respectively,
E) represents the set of nodes (respectively, the set of edges) of the network. For each edge (i, j) ∈ E, let cij ∈ R>0

denote its capacity. Assume that a single commodity can be sent through G from a source node s ∈ V to a destina-
tion node t ∈ V. Let Λ denote the set containing all s− t paths of G.

A flow, denoted by the vector f ∈ R
Λ
≥0, enters the network from s and leaves from t. A flow f is said to be feasi-

ble if the flow through each edge does not exceed its capacity; that is, for all (i, j) ∈ E, fij :�∑
{λ∈Λ | (i,j)∈λ} fλ ≤ cij. Let

F denote the set of feasible flows of G. Given a feasible flow f ∈ F , let F( f ) :�∑
λ∈Λ fλ denote the amount of flow

sent from the node s to the node t. Each edge (i, j) ∈ E is associated with a marginal transportation cost, denoted
bij ∈ R>0. For each s− t path λ ∈Λ, bλ :�∑

(i,j)∈λbij represents the cost of transporting one unit of flow through λ.
Given a feasible flow f ∈ F , T( f ) :� ∑

λ∈Λbλfλ denotes the total transportation cost of f .
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We define a two-player game Γ :� 〈{1, 2}, (F ,I ), (u1,u2)〉 on the flow network G. Player 1 (P1) is the routing en-
tity that chooses to route a flow f ∈ F of goods through the network, and Player 2 (P2) is the interdictor who si-
multaneously chooses a subset of edges I ∈ 2E to interdict. The action set for P1 (respectively, P2) is F (respective-
ly, I :� 2E). For every edge (i, j) ∈ E, dij ∈ R>0 denotes the cost of interdicting (i, j). Thus, the cost of an interdiction
I ∈ I is given by C(I) :�∑

(i,j)∈Idij. In this model, P2 (respectively, P1) gains (respectively, looses) the flow that
crosses the edges that are interdicted by P2. The model captures strategic routing situations when P1 cannot ob-
serve P2’s actions before sending its flow and cannot reroute its flow after the interdiction. We do not consider
partial edge interdictions for the sake of simplicity. The effective flow when a flow f is chosen by P1 and an inter-
diction I is chosen by P2 is f I, where f Iλ � fλ1{λ∩I�∅} for all λ ∈Λ. We also suppose that the transportation cost
incurred by P1 is for the initial flow f and not for the effective flow f I. This modeling choice reflects an ex ante
monetary fee paid by P1 to the network owner who provides P1 the access to send a quantity of flow through
the network.

The payoff of P1 is the value of effective flow assessed by P1 net the cost of transporting the initial flow:
u1( f , I) � p1F( f I) −T( f ), where p1 ∈ R>0 is the marginal value of effective flow for P1. Similarly, the payoff of P2
is the value of interdicted flow assessed by P2 net the cost of interdiction: u2( f , I) � p2(F( f ) − F( f I)) −C(I), where
p2 ∈ R>0 is the marginal value of interdicted flow for P2.

In playing the game Γ, P1 can route goods in the network using a flow f realized from a chosen probability dis-
tribution on the set F and P2 can interdict subsets of edges according to a probability distribution on the set I .
Specifically, P1 and P2 respectively choose a mixed routing strategy σ1 ∈ Δ(F ) and a mixed interdiction strategy
σ2 ∈ Δ(I), where Δ(F ) � {σ1 ∈ R

F
≥0 |

∑
f∈F σ1f � 1}, and Δ(I) � {σ2 ∈ R

I
≥0 |

∑
I∈I σ2I � 1} denote the strategy sets.

Here, σ1f (respectively, σ2I ) represents the probability assigned to the flow f (respectively, interdiction I) by P1’s

routing strategy σ1 (respectively, P2’s interdiction strategy σ2). The players’ strategies are independent random-
izations. Given a strategy profile σ � (σ1,σ2) ∈ Δ(F ) × Δ(I), the expected payoffs are expressed as

U1(σ1,σ2) � p1Eσ[F(f I)] −Eσ[T(f )], (20)

U2(σ1,σ2) � p2(Eσ[F(f )] −Eσ[F (f I)]) −Eσ[C(I)]: (21)

We will also use the notations Ui(σ1, I) �Ui(σ1,1{I}) and Ui(f ,σ2) �Ui(1{f },σ2) for i ∈ {1, 2}. We focus on character-
izing the mixed strategy Nash equilibria of the game 〈{1, 2}, (Δ(F ),Δ(I)), (U1,U2)〉. A strategy profile (σ1∗ ,σ2∗ ) ∈
Δ(F ) × Δ(I) is a mixed strategy Nash Equilibrium of game Γ if for all σ1 ∈ Δ(F ), U1(σ1∗ ,σ2∗ ) ≥U1(σ1,σ2∗ ) and for all
σ2 ∈ Δ(I), U2(σ1∗ ,σ2∗ ) ≥U2(σ1∗ ,σ2). Equivalently, in a NE (σ1∗ ,σ2∗ ), σ1∗ (respectively, σ2∗ ) is a best response to σ2

∗

(respectively, σ1
∗
). Let Σ denote the set of NE of Γ.

We now proceed with the equilibrium analysis of the game Γ.

5.2. Properties of Nash Equilibria
Γ is strategically equivalent to a zero-sum game; in particular, the following transformation preserves the set of NE:

∀( f , I) ∈ F × I ,
1
p1

u1( f , I) + 1
p2

C(I) � F( f I) − 1
p1

T( f ) + 1
p2

C(I)≕ ũ1( f , I), (22)

∀( f , I) ∈ F × I ,
1
p2

u2( f , I) − F( f ) + 1
p1

T( f ) � −F( f I) + 1
p1

T( f ) − 1
p2

C(I) � −ũ1( f , I): (23)

Therefore, Γ and Γ̃ :� 〈{1, 2}, (F ,I), (ũ1, − ũ1)〉 have the same equilibrium set. Additionally, NE of Γ are inter-
changeable, that is, if (σ1∗ ,σ2∗ ) ∈ Σ and (σ1′ ,σ2′ ) ∈ Σ, then (σ1∗ ,σ2′ ) ∈ Σ and (σ1′ ,σ2∗ ) ∈ Σ. Also note that because of
the splittable nature of the flow for any routing strategy σ1 ∈ Δ(F ) of P1, one can consider an equivalent pure
strategy f̄ ∈ F defined by f̄ λ � Eσ1[ fλ] for all λ ∈Λ, which satisfies Ui(σ1,σ2) �Ui( f̄ ,σ2) for all i ∈ {1, 2} and
σ2 ∈ Δ(I), because ui(·, I) is an affine function for every I ∈ I .

The abovementioned properties imply that linear programming techniques can be used to obtain the NE of Γ.
However, this would entail solving a linear program of exponential size, containing |Λ| + 1 variables and 2|E| + |E|
constraints. Instead, we derive an approach for efficiently solving Γ: We show that by utilizing the primal and
dual solutions of a minimum-cost circulation problem and applying our results on posets (Theorems 1 and 2),
we can obtain a complete equilibrium characterization for game Γ. Furthermore, using Algorithm 2, we obtain a
polynomial-time approach to compute NE of this game.
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We begin by considering the following “natural” network flow problem:

(M) : maximize F(f ) − 1
p1

T(f )

subject to
∑

{λ∈Λ | (i, j)∈λ}
fλ ≤ min

dij
p2

, cij

{ }
, ∀(i, j) ∈ E

fλ ≥ 0, ∀λ ∈ Λ:

This problem consists in finding a feasible flow f in F that maximizes u1(f ,∅) with the constraint that the flow
through each edge (i, j) is no more than dij=p2. Game theoretically, this threshold captures P2’s best response to
P1. Indeed, if fij > dij=p2 for some (i, j) ∈ E, then P2 has an incentive to interdict (i, j), resulting in an increase of
P2’s payoff (because u2( f , {(i, j)}) � p2 fij − dij > 0). Thus, (M) can be viewed as the problem in which P1 maxi-
mizes its payoff while limiting P2’s incentive to interdict any of the edges. For each s− t path λ ∈Λ, let us denote
π0
λ :� 1− bλ=p1. Then, the value p1π0

λ represents the gain in P1’s payoff when one unit of flow traveling along λ

reaches the destination node. The primal and dual formulations of (M) are given as follows:

(MP) : maximize
∑
λ∈Λ

π0
λ fλ

subject to
∑

{λ∈Λ | (i, j)∈λ}
fλ ≤ dij

p2
, ∀(i, j) ∈ E

∑
{λ∈Λ | (i, j)∈λ}

fλ ≤ cij, ∀(i, j) ∈ E

fλ ≥ 0, ∀λ ∈Λ

(MD) : minimize
∑
(i, j)∈E

dij
p2

ρij + cijµij

( )

subject to
∑

(i, j)∈λ
(ρij +µij) ≥ π0

λ, ∀λ ∈Λ

ρij ≥ 0, ∀(i, j) ∈ E

µij ≥ 0, ∀(i, j) ∈ E:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Let O∗

(MP) (respectively, O
∗
(MD) ) denote the set of optimal solutions of (MP) (respectively, (MD)). By strong duali-

ty, the optimal value of (MP) is identical to that of (MD); we denote it by z∗(M) . Note that (MP) and (MD) may
have an exponential number of variables and constraints, respectively. However, equivalent polynomial-size pri-
mal and dual formulations of (M) can be derived; see Appendix C. Thus, f ∗ ∈O∗

(MP) and (ρ∗,µ∗) ∈O∗
(MD) can be

efficiently computed by using an interior point method (Karmarkar [22]) or a dual network simplex algorithm
(Orlin et al. [27]). Alternatively, (M) can be formulated as a minimum-cost circulation problem in a graph G′ �
(V′,E′) such that V′ � V, E′ � E

⋃{(t, s)}. The capacity of each edge (i, j) ∈ E is given by min{dij=p2, cij}, and edge
(t, s) is uncapacitated. The transportation cost of each edge (i, j) ∈ E is given by bij=p1, and the transportation cost
of edge (t, s) is −1. Thus, (MP) and (MD) can be solved using known combinatorial algorithms (Ahuja et al. [2]).

From complementary slackness, we know that any pair of optimal primal and dual solutions f ∗ ∈O∗
(MP) and

(ρ∗,µ∗) ∈O∗
(MD) satisfies the following properties:

∀(i, j) ∈ E, ρ∗
ij > 0 ⇒ f ∗ij �

∑
{λ∈Λ | (i, j)∈λ}

f ∗λ �
dij
p2

, (24)

∀(i, j) ∈ E, µ∗
ij > 0 ⇒ f ∗ij �

∑
{λ∈Λ | (i, j)∈λ}

f ∗λ � cij, (25)

∀λ ∈Λ, f ∗λ > 0 ⇒ ∑
(i, j)∈λ

(ρ∗
ij +µ∗

ij) � π0
λ: (26)

These properties, along with Theorems 1 and 2, enable us to derive the following result:

Theorem 3. A strategy profile (σ1∗ ,σ2∗ ) ∈ Δ(F ) × Δ(I ) is an NE of the game Γ if and only if there exists a pair of optimal
primal and dual solutions f ∗ ∈O∗

(MP) and (ρ∗,µ∗) ∈O∗
(MD) such that

∀λ ∈Λ,
∑
f∈F

σ1
∗
f fλ � f ∗λ, (27)

∀(i, j) ∈ E,
∑

{I∈I | (i, j)∈I}
σ2

∗
I � ρ∗

ij, (28)

∀λ ∈Λ,
∑

{I∈I | I∩λ≠∅}
σ2

∗
I ≥ π∗

λ, (29)
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where π∗
λ :� π0

λ −
∑

(i,j)∈λµ
∗
ij for all λ ∈Λ. The corresponding equilibrium payoffs are U1(σ1∗ ,σ2∗ ) � p1

∑
(i,j)∈Ecijµ∗

ij and
U2(σ1∗ ,σ2∗ ) � 0.

Thus, optimal primal and dual solutions of (M) provide necessary and sufficient conditions for a strategy pro-
file to be an NE. In particular, optimal primal solutions represent the expected flows sent by P1 in equilibrium.
Additionally, optimal dual solutions characterize the marginal probabilities with which network components are
interdicted in equilibrium; that is, P2’s equilibrium strategy interdicts each edge (i, j) ∈ E with probability ρ∗

ij and
interdicts each path λ ∈Λ with probability at least π0

λ −
∑

(i,j)∈λµ
∗
ij.

Although showing that (27)–(29) are sufficient conditions is relatively straightforward, the key challenge
lies in proving that they are also necessary. In proving Theorem 3, we first show the existence of an interdic-
tion strategy σ2

∗ ∈ Δ(I) satisfying (28) and (29) given an optimal dual solution of (M). In fact, this existence
problem is an instantiation of Problem (D) that we introduced in Section 2.2 and positively answered in Theo-
rem 1. Secondly, showing that (28) and (29) are necessary conditions satisfied by P2’s interdiction strategies
in equilibrium involves exploiting strong duality in the strategically equivalent zero-sum game Γ̃. Finally,
the necessary Condition (27) is a consequence of the s− t paths having positive transportation costs. The proof
exploits Theorem 2, which guarantees the existence of P2’s strategy that, with positive probability 1−max
{max{ρ∗

ij, (i, j) ∈ E},max{1− bλ=p1 −∑
(i,j)∈λµ

∗
ij, λ ∈Λ}}, does not interdict any edges at all in equilibrium.

We remark that for the case when the path transportation costs are assumed to be nonnegative (instead of
strictly positive), Conditions (28) and (29) are still necessary and sufficient for equilibrium interdiction strategies.
However, (27) is only a sufficient condition for equilibrium routing strategies. Indeed, if a path with low interdic-
tion costs has zero cost of transportation, P2 will interdict this path with probability one. Any flow sent by P1
along this path will then always be interdicted, and in fact P1 can select an equilibrium strategy that saturates
this path and violates constraints in (MP).

In fact, dual solutions of (M) can be used to infer additional equilibrium properties: Given an s− t path λ ∈Λ,
π0
λ is the probability above which λ must be interdicted by P2 to limit P1’s incentive to send any flow through

the network. However, when edges belonging to λ have high interdiction costs, P2 chooses not to interdict these
edges, which may result in the interdiction probability of λ being less than π0

λ. This reduction of interdiction
probability of λ is captured by

∑
(i,j)∈λµ

∗
ij. By complementary slackness (25), µ∗

ij > 0 for (i, j) ∈ λ only when
cij � f ∗ij ≤ dij=p2. Hence, the equilibrium interdiction probability of λ is given by π∗

λ � π0
λ −

∑
(i,j)∈λµ

∗
ij.

Consequently, if an s− t path λ ∈Λ is such that
∑

(i,j)∈λµ
∗
ij > 0, then each unit of flow sent through λ increases

P1’s payoff by p1
∑

(i,j)∈λµ
∗
ij. This is captured by P1’s equilibrium strategies, with expected flow f ∗ ∈O∗

(MP) , that
saturate every edge (i, j) ∈ E for which µ∗

ij > 0. Since f ∗ only takes s− t paths that are interdicted with probabili-
ty exactly π∗, the resulting equilibrium payoff for P1 is given by p1

∑
(i,j)∈E cijµ∗

ij. Note also that f ∗ does not take
any s− t path λ for which π0

λ < 0. This captures the fact that P1 has no incentive to send its flow through s− t
paths λ for which bλ > p1. Recall from (M) that f ∗ is such that interdicting any edge does not increase P2’s
payoff. Furthermore, P2 only interdicts edges for which the value from the interdicted flow compensates the
interdiction cost (from (24)). Thus, P2’s payoff is zero in equilibrium. It is interesting to note that P1’s strate-
gies and payoff in equilibrium can be expressed in terms of edge values and are independent of the chosen
path decomposition of f ∗.

Proof of Theorem 3. We prove this theorem by showing that Conditions (27)–(29) are sufficient for a strategy
profile to be an NE (Step 1); satisfied by at least one strategy profile (Step 2); and satisfied by every NE (Step 3).

Step 1. Let f ∗ ∈O∗
(MP) and (ρ∗,µ∗) ∈O∗

(MD) . First, we show that a strategy profile (σ1∗ ,σ2∗ ) ∈ Δ(F ) × Δ(I) satisfy-
ing (27)–(29) is an NE of Γ. We write the following inequality for P1’s payoff:

∀f ∈ F , U1(f ,σ2∗ ) �(20)p1
∑
λ∈Λ

fλEσ2
∗ [1− 1{I∩λ≠∅}] −

∑
λ∈Λ

bλfλ � p1
∑
λ∈Λ

π0
λfλ − p1

∑
λ∈Λ

fλ
∑

{I∈I | I∩λ≠∅}
σ2

∗
I

≤(29)p1
∑
λ∈Λ

fλ
∑

(i, j)∈λ
µ∗
ij � p1

∑
(i, j)∈E

fijµ∗
ij ≤ p1

∑
(i, j)∈E

cijµ∗
ij: (30)

Now, given λ ∈Λ such that f ∗λ > 0, we obtain∑
{I∈I | I∩λ≠∅}

σ2
∗

I ≤∑
I∈I

σ2
∗
I |I ∩ λ| � ∑

(i, j)∈λ

∑
I∈I

σ2
∗

I 1{(i,j)∈I} �(28) ∑
(i, j)∈λ

ρ∗
ij ≤(26), (29) ∑

{I∈I | I∩λ≠∅}
σ2

∗
I : (31)
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Furthermore, for all (i, j) ∈ E such that µ∗
ij > 0, f ∗ij �(25) cij. Then, Inequality (30) is tight for f ∗, and

U1(σ1∗ ,σ2∗ ) �(27)U1(f ∗,σ2∗ ) � p1
∑

(i,j)∈E cijµ
∗
ij.

Similarly, regarding P2’s payoff, we first derive the following inequality:

∀I ∈ I ,
∑
(i, j)∈I

dij
p2

≥ ∑
(i, j)∈I

∑
{λ∈Λ | (i, j)∈λ}

f ∗λ � ∑
λ∈Λ

f ∗λ|I ∩ λ| ≥ ∑
λ∈Λ

f ∗λ1{I∩λ≠∅} � F(f ∗) − F(f ∗I): (32)

Therefore, for all I ∈ I , U2(σ1∗ , I) �(27)U2( f ∗, I) �(21)p2(F( f ∗) − F( f ∗I)) −∑
(i,j)∈Idij ≤

(32)
0.

Now, consider I ∈ supp(σ2∗ ). From (31), we obtain that for every λ ∈ Λ such that f ∗λ > 0, |I ∩ λ| ≤ 1. Furthermore,

for every (i, j) ∈ I,
∑

{λ∈Λ | (i,j)∈λ} f
∗
λ �(24) dij=p2 because ρ∗

ij > 0. Thus, for all S ∈ supp(σ2∗ ), Inequality (32) is tight, and

U2(σ1∗ , I) � 0. Therefore, U2(σ1∗ ,σ2∗ ) � 0, and (σ1∗ ,σ2∗ ) is an NE.
Step 2. Let f ∗ ∈O∗

(MP) and (ρ∗,µ∗) ∈O∗
(MD) . Next, we show that there exists a strategy profile satisfying

(27)–(29), and obtain the value of the zero-sum game Γ̃. Trivially, if P1 chooses the pure strategy f ∗, (27) is then
satisfied. We now argue that there exists an interdiction strategy σ̃2 ∈ Δ(I) satisfying (28) and (29). First, we de-
fine the following binary relation on E, denoted � G: Given (u,v) ∈ E2, u� Gv if either u � v, or there exists an s− t
path λ ∈ Λ that traverses u and v in this order. Since G is a directed acyclic connected graph, we obtain the follow-
ing lemma, which is proven in Appendix A:

Lemma 4. PG � (E,� G) is a poset, whose set of maximal chains is the set of s− t paths Λ.

Thus, showing that there exists σ̃2 ∈ Δ(I) satisfying (28) and (29) is an instantiation of Problem (D). Since
(ρ∗,µ∗) ∈O∗

(MD) , then Condition (2) is satisfied, that is, for all λ ∈ Λ,
∑

(i,j)∈λρ
∗
ij ≥ π∗

λ. Additionally, for any s− t

path λ ∈Λ, π∗
λ � 1−∑

(i,j)∈λ
(
bij=p1 +µ∗

ij

)
, and π∗ is an affine function of the edges constituting each s− t path.

Therefore, π∗ satisfies the conservation law described in (3). Finally, since ρ∗
ij ∈ [0, 1] for all (i, j) ∈ E, and π∗

λ ≤ 1 for

all λ ∈Λ, all conditions of Theorem 1 are satisfied, and there exists an interdiction strategy σ̃2 ∈ Δ(I ) satisfying
(28) and (29). In particular, σ̃2 can be constructed from Algorithm 2.

From Step 1, ( f ∗, σ̃2) ∈ Σ. Then, P1’s equilibrium payoff in the zero-sum game Γ̃ is

∀(σ1∗ ,σ2∗ ) ∈ Σ, Ũ1(σ1∗ ,σ2∗ ) � Ũ1( f ∗, σ̃2) �(22) 1
p1

U1( f ∗, σ̃2) + 1
p2

Eσ̃2[C(I)] �(28) z∗(M) : (33)

Step 3. Let (σ1′ ,σ2′ ) ∈ Δ(F ) × Δ(I) be an NE of Γ. We now show that (σ1′ ,σ2′ ) satisfies (27)–(29) for some pair of
optimal primal and dual solutions of (M). In particular, we first prove that f ′ :� Eσ1

′ [ f ] is necessarily an optimal
solution of (MP): Given (ρ∗,µ∗) ∈O∗

(MD) , consider the equilibrium interdiction strategy σ̃2 described in Step 2 and
constructed from Algorithm 2. From Theorem 2, σ̃2

∅ � 1−max{max{ρ∗
ij, (i, j) ∈ E},max{π∗

λ, λ ∈Λ}} > 0. Since ∅ ∈
supp(σ̃2) and (σ1′ , σ̃2) ∈ Σ, then for all (i, j) ∈ E, 0 ≤U2(σ1′ ,∅) −U2(σ1′ , {(i, j)}) �(21)dij − p2 f ′ij. Therefore, f ′ is a feasible

solution of (MD). In addition, z∗(M) �(33) Ũ1(σ1′ ,∅) �(22)F(f ′) − 1
p1

T(f ′). Thus, f ′ ∈O∗
(MP) .

Secondly, we show that σ2
′
necessarily satisfies (28) and (29) for some optimal solution of (MD). For every

(i, j) ∈ E, let ρ′
ij :�

∑
{I∈I | (i,j)∈I}σ

2′
I . We can then derive the following inequalities:

z∗(M) �(33)max
f∈F

Ũ1(f ,σ2′ ) �(22)
∑
(i, j)∈E

dij
p2
ρ′
ij +max

f∈F
∑
λ∈Λ

fλ π0
λ −

∑
{I∈I | I∩λ≠∅}

σ2
′
I

( ){ }

� ∑
(i, j)∈E

dij
p2
ρ′
ij + min

µ∈RE
≥0

∑
(i, j)∈E

cijµij

∣∣∣ ∀λ ∈Λ,
∑

(i, j)∈λ
µij ≥ π0

λ −
∑

{I∈I | I∩λ≠∅}
σ2

′
I

{ }
(34)

≥ ∑
(i, j)∈E

dij
p2
ρ′
ij + min

µ∈RE
≥0

∑
(i, j)∈E

cijµij

∣∣∣ ∀λ ∈Λ,
∑

(i, j)∈λ
µij ≥ π0

λ −
∑

(i, j)∈λ
ρ′
ij

{ }
(35)

≥ min
ρ,µ∈RE

≥0

∑
(i, j)∈E

dij
p2

ρij + cijµij

( ) ∣∣∣ ∀λ ∈ Λ,
∑

(i, j)∈λ
(ρij +µij) ≥ π0

λ

{ }
� z∗(M) : (36)
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Thus, inequalities (35) and (36) are tight. Note that (34) is a consequence of the strong duality theorem, and (35)
holds because

∑
{I∈I | I∩λ≠∅}σ

2′
I ≤∑

(i,j)∈λρ
′
ij for every λ ∈Λ.

Let µ′ :� arg minµ∈RE
≥0
{∑(i,j)∈E cijµij | ∀λ ∈Λ,

∑
(i,j)∈λµij ≥ π0

λ −
∑

{I∈I | I∩λ≠∅}σ
2′
I }. Then, (35) and (36) imply that

(ρ′,µ′) ∈O∗
(MD) . Furthermore, by definition of µ′,

∑
{I∈I | I∩λ≠∅}σ

2′
I ≥ π0

λ −
∑

(i,j)∈λµ
′
ij for every λ ∈ Λ. Thus, σ2

′
satis-

fies (28) and (29) with (ρ′,µ′) ∈O∗
(MD) . w

A direct consequence of Theorem 3 is that some quantities related to the players’ actions in equilibrium can be
computed in closed form using the game parameters and the optimal primal and dual solutions of (M). They are
summarized in the following corollary:

Corollary 1. NE of the game Γ satisfy the following properties:
i. Expected amount (respectively, cost) of initial flow sent by P1 is given by F(f ∗) (respectively, T(f ∗)),
ii. Expected cost of P2’s interdiction strategy is given by

∑
(i,j)∈E dijρ∗

ij,

iii. Expected amount of interdicted flow is given by
∑

(i,j)∈Eρ
∗
ij dij=p2,

iv. Expected amount of effective flow is given by F(f ∗) −∑
(i,j)∈Eρ

∗
ij dij=p2 ,

where f ∗ ∈O∗
(MP) and (ρ∗,µ∗) ∈O∗

(MD) .

Given f ∗ ∈O∗
(MP) and (ρ∗,µ∗) ∈O∗

(MD) , the expected amount of interdicted flow achievable by any interdiction
strategy satisfying (28) is upper bounded by

∑
(i,j)∈Eρ

∗
ijdij=p2. Property (iii) in Corollary 1 shows that this upper

bound is achieved by P2’s strategy in equilibrium. In other words, given the marginal edge interdiction probabil-
ities ρ∗, P2 randomizes its interdictions to maximize the amount of interdicted flow, while still limiting P1’s in-
centive to deviate from its strategy.

Note that despite the exponential number of actions of both players, an NE can be computed in polynomial
time. Indeed, we first solve the polynomial-size formulation of (M) and use the flow decomposition algo-
rithm to obtain f ∗ ∈O∗

(MP) and (ρ∗,µ∗) ∈O∗
(MD) (see Appendix C). Since π∗ is an affine function of the edges con-

stituting each s− t path, we run Algorithm 2 on the poset PG � (E,� G) (Lemma 4) to compute an interdiction
strategy σ̃2 ∈ Δ(I) satisfying (28) and (29). Given HPG

� (E,EPG
) the directed cover graph of PG, we deduce that

σ̃2 can be obtained in O(|E||EPG
|2) time. Since G is a simple directed acyclic graph, then each (i, j) ∈ E is adjacent

to at most |V| − 2 edges (i′, j′) in G such that i′ � j or j′ � i. This in turn implies that the degree of each (i, j) ∈ E in
HPG

is at most |V| − 2. Therefore, the total number of edges in HPG
is upper bounded by |EPG

| ≤ 1
2 |E|(|V| − 2). In

conclusion, the NE ( f ∗, σ̃2) is computed in O(|V|2|E|3) time. In this NE, P1 sends its flow along at most |E| s− t
paths (from the flow decomposition theorem), and P2 randomizes over at most 1

2 |V||E| + 1 interdictions (given
by the number of iterations in Algorithm 2).

We remark that in the simpler case where each s− t path has an identical transportation cost, (M) can be
viewed as a maximum flow problem. Then, this solution approach simply computes an NE of Γ from a maxi-
mum flow for P1 and a minimum-cut set for P2.

For the sake of completeness, we characterize the game instances for which pure NE exist. From Theorem 3, a
pure NE exists if and only if there exists (ρ∗,µ∗) ∈O∗

(MD) such that ρ∗ ∈ {0,1}E . Since bλ > 0 for every λ ∈Λ, then
ρ∗
ij < 1 for every (i, j) ∈ E at optimality of (MD), and a pure NE exists if and only if ρ∗

ij � 0 for every (i, j) ∈ E. The
corresponding pure NE are ( f ∗,∅) with f ∗ ∈O∗

(MP) . Note that this case occurs when the interdiction costs for P2 or
transportation costs for P1 are too high.

Finally, we analyze the set of s− t paths (respectively, set of edges) that are chosen (respectively, interdicted) in
at least one NE. From Theorem 3, the set of s− t paths chosen by P1 in at least one NE is given by

⋃
f ∗∈O∗

(MP)
supp(f ∗). Similarly, the set of edges interdicted by P2 in at least one NE is given by

⋃
(ρ∗,µ∗)∈O∗

(MD) supp(ρ∗). To
efficiently compute these sets of critical components, we utilize the notion of strict complementary slackness.
Specifically, optimal solutions f † and (ρ†, µ†) of (MP) and (MD) satisfy strict complementary slackness if

∀(i, j) ∈ E, either ρ†
ij > 0 or f †ij �

∑
{λ∈Λ | (i, j)∈λ}

f †λ <
dij
p2

, (37)

∀(i, j) ∈ E, either µ†
ij > 0 or f †ij �

∑
{λ∈Λ | (i, j)∈λ}

f †λ < cij, (38)

∀λ ∈Λ, either f †λ > 0 or
∑

(i, j)∈λ
(ρ†

ij +µ†
ij) > π0

λ: (39)
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We say that f † and (ρ†,µ†) form a strictly complementary primal-dual pair of optimal solutions of (M). Note that
such a pair is guaranteed to exist by the Goldman-Tucker theorem (Goldman and Tucker [16]). We now show
the following result:

Proposition 6. Let f † and (ρ†,µ†) be a strictly complementary primal-dual pair of optimal solutions of (M). The set of s−
t paths (respectively, the set of edges) chosen with positive probability by P1’s strategy (respectively, P2’s strategy) in at
least one NE is given by supp( f †) (respectively, supp(ρ†)).
Proof of Proposition 6. Let f † and (ρ†,µ†) be optimal solutions of (MP) and (MD) that satisfy strict
complementary slackness. We denote σ̃2 ∈ Δ(I ) the interdiction strategy, constructed from Algorithm 2, that
interdicts every edge (i, j) ∈ E with probability ρ†

ij, and interdicts every s− t path λ ∈Λ with probability at least

π0
λ −

∑
(i,j)∈λµ

†
ij. Given Σ the set of NE of the game Γ, let H1 :�⋃

(σ1∗ ,σ2∗ )∈Σ
⋃

f∈supp(σ1∗ )supp(f ) and
H2 :�⋃

(σ1∗ ,σ2∗ )∈Σ
⋃

I∈supp(σ2∗ )I.

From Theorem 3, we know that (f †, σ̃2) ∈ Σ. Consequently, H1 ⊇ supp(f †) and H2 ⊇ supp(ρ†). To show the re-
verse inclusions, consider (σ1∗ ,σ2∗ ) ∈ Σ. Theorem 3 implies that there exists (ρ∗,µ∗) ∈O∗

(MD) such that∑
{I∈I | (i,j)∈I}σ

2∗
I � ρ∗

ij. Consider (i, j) ∈ E such that ρ∗
ij > 0. By complementary slackness between (ρ∗,µ∗) and f †,

dij=p2 �(24)∑{λ∈Λ | (i,j)∈λ} f
†
λ . Then, from strict complementary slackness (37), ρ†

ij > 0. Therefore, H2 ⊆ supp(ρ†), which

implies thatH2 � supp(ρ†).
Similarly, given (σ1∗ ,σ2∗ ) ∈ Σ, Theorem 3 implies that there exists f ∗ ∈O∗

(MP) such that f ∗ � Eσ1
∗ [ f ]. Consider λ ∈

λ such that f*λ > 0. Then, by complementary slackness between f ∗ and (ρ†,µ†), ∑(i,j)∈λ(ρ†
ij +µ†

ij) �
(26)

π0
λ. From (39),

f †λ > 0. Therefore,H1 ⊆ supp( f †); we conclude thatH1 � supp( f †). w

Thus, by computing a strictly complementary primal-dual pair of optimal solutions f † and (ρ†,µ†) of (M),
Proposition 6 shows that the set of critical s− t paths of the network is given by supp( f †), and the set of critical
network edges is given by supp(ρ†). Such a pair can be efficiently computed using any of the existing methods in
the literature (see Adler and Monteiro [1], Balinski and Tucker [7], Jansen et al. [21]).
We note that in the setting that we consider, P2may need to interdict edges that are not part of any minimum-

cut set and can even belong to different cut sets; Figure 5 illustrates an example. In this example, the equilibrium
interdiction strategy targets edges (s, 1) and (1, t) that do not belong to a same cut set. Thus, Proposition 6 gener-
alizes the previously studied max-flow min-cut-based metrics of network criticality (see Assadi et al. [4], Dwive-
di and Yu [14], Gueye et al. [18]).

In summary, our results in Section 5 provide a new approach to solve the strategic interdiction game Γ and de-
rive equilibrium properties for settings involving multiple interdictions, heterogeneous cost parameters, and
general network topology.

6. Concluding Remarks
In this article, we studied an existence problem of probability distributions over partially ordered sets and
showed its applications to a class of interdiction games on flow networks. In the existence problem, we con-
sidered a poset, where each element and each maximal chain is associated with a value. Under two relevant
conditions on these values, we showed that there exists a probability distribution over the subsets of this pos-
et, with the following properties: the probability that each element (respectively, maximal chain) is contained
in a subset (respectively, intersects with a subset) is equal to (respectively, as large as) the corresponding val-
ue. We provided a constructive proof of this result by designing a combinatorial algorithm that exploits

Figure 5. (Color online) NE when p1 � 10, p2 � 1, bij � 1 for all (i, j) ∈ E. The label of each edge (i, j) represents (f †ij , cij,dij). Edge(s, 1) is interdicted by the equilibrium interdiction strategy σ̃2, but is not part of the minimum-cut set.
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structural properties of the problem. In the special case where the maximal chain values depend affinely on
their constituting elements, we refined our algorithm to compute a probability distribution that satisfies the
desired properties in polynomial time.

By applying this existence result, we solved a generic formulation of strategic network interdiction game
between a routing entity and an interdictor. To overcome the computational and analytical challenges of the
formulation, we proposed a new approach for characterizing equilibria of the game. This approach relies on
our existence result on posets as well as optimal primal and dual solutions of a minimum-cost circulation
problem. In addition, we showed that Nash equilibria of the game can be efficiently computed with our re-
fined algorithm on posets. Finally, we demonstrated that the critical network components that are chosen in
equilibrium by both players can be computed from a strictly complementary primal-dual pair of optimal solu-
tions of the circulation problem.
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Appendix A. Remaining Proofs

Proof of Lemma 1. Let P be a finite nonempty poset, and let S be the set of minimal elements of P. If |S| � 1, then
S is an antichain of P. Now, assume that |S| ≥ 2, and consider (x,y) ∈ S2 with x≠ y. Since x (respectively, y) is a
minimal element of P, then y�x (respectively, x�y). Therefore, x and y are incomparable, and S is an antichain
of P.

Now, consider a maximal chain C ∈ C and assume that C does not contain any minimal element of P. Let x be the min-
imal element of (C,� |C). Since x is not a minimal element of P, there exists y ∈ X\C such that y � x. By transitivity of � ,
y � x′ for every x′ ∈ C. Therefore, C

⋃ {y} is a chain containing C, which contradicts the maximality of C. Thus, every
maximal chain of P intersects with the set of minimal elements of P. w

Proof of Lemma 2. Consider X′ ⊆ X and C′ ⊆ C that preserves the decomposition of maximal chains intersecting in X′.
Let us show that � C′ defined in Section 2.1 is a partial order on X′:

–Reflexivity: For every x ∈ X′, x� C′x by definition.
– Antisymmetry: Consider (x,y) ∈ (X′)2 such that x� C′y and y� C′x. If x≠ y, then we would have x � y and y � x, which con-

tradicts� being a partial order. Therefore, x � y.
– Transitivity: Consider (x,y,z) ∈ (X′)3, and assume that x� C′y and y� C′z. If x � y or y � z, then we trivially obtain that x� C′z.

Now, let us assume that x≠ y and y≠ z. By definition of � C′ , there exists C1 ∈ C′ such that (x,y) ∈ (C1)2 and x � y. Similarly,
there exists C2 ∈ C′ such that (y, z) ∈ (C2)2 and y � z. We can rewrite C1 and C2 as follows: C1 � {x0, : : : ,xl � x,xl+1, : : : ,xl+m �
y,xl+m+1, : : : ,xl+m+n} and C2 � {y0, : : : ,yq � y,yq+1, : : : ,yq+r � z,yq+r+1, : : : ,yq+r+s}. Now, consider the maximal chain C2

1 �{x0, : : : ,xl � x,xl+1, : : : ,xl+m � y,yq+1, : : : ,yq+r � z, yq+r+1, : : : ,yq+r+s}, as illustrated in Figure A.1.
Since C1 and C2 intersect in y ∈ X′, and C′ preserves the decomposition of maximal chains intersecting in X′, we de-

duce that C2
1 ∈ C′ as well. Furthermore, (x,z) ∈ (C2

1)2, and the transitivity of � implies that x � z. Therefore, x� C′z.
Thus, � C′ is a partial order on X′, and P′ � (X′,� C′ ) is a poset.
Let C ⊆ X′ be a maximal chain of P′ of size at least two. Let us rewrite C � {x1, : : : ,xn} with n ≥ 2, where for all

k ∈ [[1,n− 1]], xk �:C′xk+1. We show by induction on k ∈ [[2,n]] that there exists C′ ∈ C′ such that {x1, : : : ,xk} ⊆ C′. If k � 2,

Figure A.1. (Color online) Illustration of the transitivity of�C′ . C2
1 is represented by the thick chain.
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then by definition, there exists C′ ∈ C′ such that {x1,x2} ⊆ C′. Now, assume that the result holds for k ∈ [[2,n− 1]]. Consider
C1 ∈ C′ such that {x1, : : : ,xk} ⊆ C1. Since xk �C′xk+1, then there exists C2 ∈ C′ such that (xk,xk+1) ∈ (C2)2. Analogously, we can
show that C2

1 (illustrated in Figure A.1), which is in C′, contains {x1, : : : ,xk+1}. Therefore, by induction, there exists C′ ∈ C′

such that C � {x1, : : : ,xn} ⊆ C′. Since C ⊆ X′, then we have C � C ∩ X′ ⊆ C′ ∩ X′.
Now, assume that there exists x′ ∈ C′ ∩ X′ \C. For every k ∈ [[1,n]], (xk,x′) ∈ (C′)2. Therefore, x′ is comparable in P′ with

every element of the chain C. This implies that C
⋃{x′} is a chain in P′, which contradicts the maximality of C in P′.

Therefore, C � C′ ∩ X′. w

Proof of Lemma 4. Let us show that � G is a partial order on E.
–Reflexivity: For every u ∈ E, u� Gu by definition.
–Antisymmetry: Consider (u,v) ∈ E2 such that u� Gv and v� Gu. If u≠ v, then there exist λ1 and λ2 in Λ such that λ1 traverses

u and v in this order, and λ2 traverses v and u in this order. They can be written as follows: λ1 � {u1, : : : ,un,
u,un+1, : : : ,un+m,v,un+m+1, : : : ,un+m+p} and λ2 � {v1, : : : ,vq,v,vq+1, : : : ,vq+r,u,vq+r+1, : : : ,vq+r+s}. Then, {u,un+1, : : : ,un+m,v,
vq+1, : : : ,vq+r} is a cycle (see Figure A.2), which contradicts G being acyclic. Therefore, u � v.

– Transitivity: Consider (u,v,w) ∈ E3 and assume that u� G v and v� Gw. If u � v or v � w, then we trivially obtain that u�Gw.
Now, let us assume that u≠ v and v≠ w. Then, there exist λ1 and λ2 inΛ such that λ1 traverses u and v in this order and λ2 tra-
verses v and w in this order. They can be written as λ1 � {u1, : : : ,un,u,un+1, : : : ,un+m,v,un+m+1, : : : ,un+m+p} and
λ2 � {v1, : : : ,vq,v,vq+1, : : : ,vq+r,w,vq+r+1, : : : ,vq+r+s}. Then, λ2

1 � {u1, : : : ,un,u,un+1, : : : ,un+m,v, vq+1, : : : ,vq+r,w,vq+r+1, : : : ,vq+r+s} is
an s− t path (see Figure A.3) and traverses u and w in this order. Therefore, u�Gw.

In conclusion, PG � (E,�G) is a poset.
Next, we prove that the set of maximal chains C of PG is Λ. Consider a maximal chain C ∈ C of PG. If C � {u} is of size

one, then necessarily u � (s, t), because G is connected. Therefore, C � {u} is an s− t path. Now, assume that |C| ≥ 2. Let us
write C � {u1, : : : ,un}, where for every k ∈ [[1,n− 1]], uk �:Guk+1. Since u1 �G u2 and u2 �G u3, then there exist λ1 and λ2 in Λ

such that λ1 traverses u1 and u2 in this order, and λ2 traverses u2 and u3 in this order. When proving the transitivity of
�G, we showed that there exists λ2

1 ∈Λ that traverses u1, u2, and u3 in this order. By repeating this process, we obtain an
s− t path λ ∈ Λ such that C ⊆ λ.

Now, assume that there exists u ∈ λ\C. Since C ⊆ λ and u ∈ λ, then u is comparable with every element of C (by
definition of�G). Therefore, C

⋃{u} is a chain in PG, which contradicts the maximality of C. Therefore, C � λ and C ⊆Λ.
To show the reverse inclusion, consider an s− t path λ ∈Λ. By definition of �G, λ is a chain in PG. Let us assume that

there exists a maximal chain C ∈ C such that λ⊆===== C. Let us write λ � {u1, : : : ,un} where for every k ∈ [[1,n− 1]], uk �G uk+1,
and let v ∈ C\λ. Since λ ⊂ C and v ∈ C, then v is comparable with every element of λ. By transitivity of�G, if there exists
k ∈ [[1,n]] such that v �G uk, then for every l ∈ [[k,n]], v �Gul. Similarly, if there exists k ∈ [[1,n]] such that uk �Gv, then for ev-
ery l ∈ [[1, k]], ul �G v. Therefore, three cases can arise:

– v �G u1. In this case, there exists λ1 � {w1, : : : ,wn,v,wn+1, : : : ,wn+m,u1,wn+m+1, : : : ,wn+m+p} ∈Λ. However, since λ is an s− t
path, then the start node of u1 is s, which is also the start node of w1. Therefore, {w1, : : : ,wn,v,wn+1, : : : ,wn+m} is a cycle, which is
a contradiction.

– un �G v. In this case, there exists λ1 � {v1, : : : ,vq,un,vq+1, : : : ,vq+r,v,vq+r+1, : : : ,vq+r+s} ∈Λ. Analogously, {vq+1, : : : ,vq+r,v,
vq+r+1, : : : ,vq+r+s} is a cycle in the acyclic graph G.

– uk �G v �G uk+1 for some k ∈ [[1,n− 1]]. In this case, there exist two s− t paths λ1 � {v1, : : : ,vq,uk,vq+1, : : : ,
vq+r,v,vq+r+1, : : : ,vq+r+s} ∈Λ and λ2 � {w1, : : : ,wn,v,wn+1, : : : ,wn+m,uk+1,wn+m+1, : : : ,wn+m+p} ∈Λ. One can verify that
{vq+1, : : : ,vq+r,v,wn+1, : : : ,wn+m} is a cycle in G. This contradicts G being acyclic.

Thus, λ � C and Λ ⊆ C. In conclusion, C �Λ. w

Figure A.2. (Color online) Proof of antisymmetry of�G by contradiction: if v�G v, v�G u, and u≠ v, then one can see that u and
v necessarily belong to a cycle (shown in thick edges), although G is acyclic.
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Appendix B. Illustration of Algorithm 1
Consider the poset P represented by the Hasse diagram given in Figure B.1.

In this poset P, the set of maximal chains is given by C � {{1,3,4}, {2,3,5}, {1,3,5}, {2,3,4}}. We assume that the values
assigned to each maximal chain are π134 � π135 � 0:8 and π234 � π235 � 0:6, and the values assigned to each element are
ρ1 � 0:4, ρ2 � 0:3, ρ3 � 0:5, ρ4 � 0:5, ρ5 � 0:7.

First, we can see that for all C ∈ C,
∑

x∈C ρx ≥ πC and π134 +π235 � π135 +π234. Therefore, Conditions (2) and (3) are satis-
fied, and we can run Algorithm 1 to optimally solve (Q) (and construct a feasible solution of (D)). Figure B.2(a) (respec-
tively, Figure B.2(b)), illustrates each iteration of the algorithm using the poset P (respectively, the posets Pk, for
k ∈ [[1,n∗]]).

• k � 1: X1 � X � [[1, 5]], C1 � C, ρ1
x � ρx for all x ∈ X. Note that δ134 � 0:6, δ235 � 0:9, δ135 � 0:8, and δ234 � 0:7. Since for all

C ∈ C, δ1C � δC > 0, then C
1 � ∅, and Ĉ

1 � C. Therefore, each pair of elements in P1 � (X1,�
C
1 ) is incomparable and

S1 � {1,2, 3, 4, 5}. Then one can check that minx∈S1ρ1
x � 0:3 and min{C∈Ĉ1 | |S1∩C|≥2}

δ1C
|S1∩C|−1 � 0:3. Therefore,

σS1 � w1 � 0:3 � ρ1
2 � δ1134

|S1∩{1,3,4}|−1.
Next, the values are updated as follows: ρ2

1 � 0:1, ρ2
2 � 0, ρ2

3 � 0:2, ρ2
4 � 0:2, ρ2

5 � 0:4, and δ2134 � 0, δ2235 � 0:3, δ2135 � 0:2,
δ2234 � 0:1. Since each maximal chain’s minimal element is in S1, then C2 � C. We conclude the first iteration of the algorithm by

lettingX2 � {1, 3, 4, 5}, C2 � {{1, 3, 4}}, and Ĉ
2 � {{2, 3, 5}, {1, 3, 5}, {2,3, 4}}.

• k � 2 : The set of minimal elements of the new poset P2 � (X2,�
C
2 ) is given by S2 � {1, 5}. Furthermore, minx∈S2ρ2

x � 0:1 and

min{C∈Ĉ2 | |S2∩C|≥2}
δ2C

|S2∩C|−1 � 0:2, which imply that σS2 � w2 � 0:1 � ρ2
1. Then, the values are updated as follows:

ρ3
1 � 0, ρ3

2 � 0, ρ3
3 � 0:2, ρ3

4 � 0:2, ρ35 � 0:3, and δ3134 � 0, δ3235 � 0:3, δ3135 � 0:1, δ3234 � 0:1.
Now, one can see that the minimal element of {2, 3, 5} ∩ X2 and {2, 3, 4} ∩ X2 in P is 3 ∉ S2. Therefore, C3 � {{1,3, 4}, {1, 3, 5}},

X3 � {3, 4, 5}, C3 � {{1, 3, 4}}, and Ĉ
3 � {{1,3, 5}}.

• k � 3 : The set of minimal elements of P3 � (X3,�
C
3 ) is given by S3 � {3, 5}. Since minx∈S3ρ3

x � 0:2, and min{C∈Ĉ3 | |S3∩C|≥2}
δ3C

|S3∩C|−1 � 0:1, then σS3 � w3 � 0:1 � δ3135
|S3∩{1,3, 5}|−1. The values are updated as follows: ρ4

1 � 0, ρ4
2 � 0, ρ4

3 � 0:1, ρ4
4 � 0:2, ρ4

5 � 0:2, and

δ4134 � 0, δ4235 � 0:2, δ4135 � 0, δ4234 � 0:1. Then, X4 � {3,4, 5}, C4 � C3, C
4 � {{1, 3, 4}, {1, 3, 5}}, and Ĉ

4 � ∅.
• k � 4 : The set of minimal elements of P4 � (X4,�

C
4 ) is S4 � {3}. Then, σS4 � w4 �minx∈S4ρ4

x � ρ4
3 � 0:1, and the new values

are ρ5
1 � 0, ρ5

2 � 0, ρ5
3 � 0, ρ5

4 � 0:2, ρ55 � 0:2, and δ5C � δ4C for all C ∈ C. The new sets are X5 � {4,5}, C5 � C4,

C
5 � {{1,3, 4}, {1, 3, 5}}, and Ĉ

5 � ∅.
• k � 5 : The set of minimal elements of P5 � (X5,�

C
5 ) is given by S5 � {4, 5}, and the weight associated with it is

σS5 � w5 � ρ5
4 � ρ5

5 � 0:2. Then, ρ6
x � 0 for all x ∈ X, and δ6C � δ5C for all C ∈ C.

Since X6 � ∅, the algorithm terminates and outputs σ, which satisfies Constraints (5) and (6). The total weight utilized
is

∑
S∈P σS � 0:8 �max{max{ρx, x ∈ X},max{πC, C ∈ C}}. Therefore, from Theorem 2, σ is an optimal solution of (Q). Since

0:8 ≤ 1, then σ̂ ∈ R
P
≥0 given by σ̂S � σS for every S ∈ P \∅, and σ̂∅ � 0:2 is a feasible solution of (D).

Figure B.1. Hasse diagram of a poset P.

Figure A.3. (Color online) Proof of transitivity of�G: if u�G v, and v�Gw, then one can construct an s− t path λ2
1 (in thick line)

that traverses u andw in this order.

Dahan, Amin, and Jaillet: Probability Distributions on Posets and Network Interdiction Games
Mathematics of Operations Research, Articles in Advance, pp. 1–27, © 2021 INFORMS 25



Appendix C. Minimum-Cost Circulation Problem
Primal and dual linear formulations of (M) of polynomial size are given as follows:

(M′
P) : maximize

∑
{i∈V | (i, t)∈E}

fit −
∑

(i, j)∈E

bij
p1
fij

subject to
∑

{j∈V | (j, i)∈E}
fji �

∑
{j∈V | (i, j)∈E}

fij, ∀i ∈ V \ {s, t}

0 ≤ fij ≤ cij, ∀(i, j) ∈ E

0 ≤ fij ≤ dij
p2

, ∀(i, j) ∈ E:

(M′
D) : minimize

∑
(i, j)∈E

cijρij +
dij
p2

µij

subject to yi − yj + ρij + µij ≥ − bij
p1

, ∀(i, j) ∈ E | i ≠ s and j ≠ t

− yj + ρsj + µsj ≥ − bsj
p1

, ∀j ∈ V | (s, j) ∈ E

yi + ρit + µit ≥ 1 − bit
p1

, ∀i ∈ V | (i, t) ∈ E

ρij ≥ 0, ∀(i, j) ∈ E

µij ≥ 0, ∀(i, j) ∈ E:

Let z∗(M′) denote the optimal value of (MP
′ ) and (MD

′ ). We show the following result:

Lemma C.1. Any s− t path decomposition of any optimal solution f ′ of (MP
′ ) is an optimal solution of (MP). Furthermore, given

any optimal solution (ρ′,µ′,y′) of (MD
′ ), (ρ′,µ′) is an optimal solution of (MD).

Figure B.2. (Color online) Illustration of Algorithm 1 for the poset P given in Figure B.1. (a) Poset P at the beginning of each iter-
ation of the algorithm. The solid nodes are in Xk, the dashed nodes are in X\Xk, and the filled nodes are in Sk. An edge is solid if
there exists a maximal chain in C

k
that contains both end nodes of the edge. The values ρk

x are given next to each element. (b) Pk,
for k ∈ [[1,5]]. The values ρk

x are given next to each element. Sk is given by the filled nodes.

(b)

(a)
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Proof of Lemma C.1. Let f ∗ ∈ R
Λ
≥0 be an optimal solution of (MP). Then, f ′ ∈ R

E
≥0 defined by f ′ij �

∑
{λ∈Λ | (i,j)∈λ} f

∗
λ is a feasi-

ble solution of (MP
′ ). Therefore, z∗(M′) ≥ z∗(M) . Now, let f ′ ∈ R

E
≥0 be an optimal solution of (MP

′ ). From the flow decomposi-

tion theorem, there exists a vector f ∗ ∈ R
Λ
≥0 such that for all (i, j) ∈ E, f ′ij �

∑
{λ∈Λ | (i,j)∈λ} f

∗
λ. Since f ∗ is a feasible solution of

(MP), then z∗(M) ≥ z∗(M′) . In conclusion, z∗(M) � z∗(M′) , and an optimal solution of (MP) can be obtained by decomposing an
optimal solution of (MP

′ ) into s− t paths.

Now, consider an optimal solution (ρ′,µ′,y′) of (MD
′ ). Then, one can verify that for every s− t path λ ∈Λ,∑

(i, j)∈λ(ρ′
ij +µ′

ij) ≥ 1−∑
(i,j)∈λbij=p1 � π0

λ (the y′ cancel in a telescopic manner along each s− t path). Therefore, (ρ′,µ′) is a
feasible solution of (MD). Because z∗(M′) � z∗(M) , we conclude that (ρ′,µ′) is an optimal solution of (MD). w
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