Comput. Geom. 92 (2021) 101683

Contents lists available at ScienceDirect = Computaiona
eometry
Computational Geometry: Theory and | ™
N .)
Applications u
www.elsevier.com/locate/comgeo .
. \4/\-(.
Soft subdivision motion planning for complex planar robots R
Check for
. . updates
Bo Zhou?, Yi-Jen Chiang®*, Chee Yap”
2 Department of Computer Science and Engineering, New York University, Brooklyn, NY, USA
b Department of Computer Science, New York University, New York, NY, USA
ARTICLE INFO ABSTRACT
Artic(e history: The design and implementation of theoretically-sound robot motion planning algorithms is
REC@VEC[12 June 2019) challenging. Within the framework of resolution-exact algorithms, it is possible to exploit
Received in revised form 15 April 2020 soft predicates for collision detection. The design of soft predicates is a balancing act

Accepted 1 July 2020

Available online 15 July 2020 between their implementability and their accuracy/effectivity.

In this paper, we focus on the class of planar polygonal rigid robots with arbitrarily
complex geometry. We exploit the remarkable decomposability property of soft collision-

Iéf)}llu:‘ng:ﬁonal geometry detection predicates of such robots. We introduce a general technique to produce such a
Algorithmic motion planning decomposition. If the robot is an m-gon, the complexity of this approach scales linearly
Resolution-exact algorithms in m. This contrasts with the O(m3) complexity known for exact planners. It follows that
Soft predicates we can now routinely produce soft predicates for any rigid polygonal robot. This results
Planar robots with complex geometry in resolution-exact planners for such robots within the general Soft Subdivision Search (SSS)

framework. This is a significant advancement in the theory of sound and complete planners
for planar robots.
We implemented such decomposed predicates in our open-source Core Library. The
experiments show that our algorithms are effective, perform in real time on non-trivial
environments, and can outperform many sampling-based methods.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Motion planning is widely studied in robotics [10,11,5]. Many planners are heuristic, i.e., without a priori guarantees of
their performance (see below for what we mean by guarantees). In this paper, we are interested in non-heuristic algorithms
for the basic planning problem: this basic problem considers only kinematics and the existence of paths. The robot Ry is
fixed, and the input is a triple (o, 8,) where «, 8 are the start and goal configurations of Ry, and © € R? is a polyhedral
environment in d =2 or 3. The algorithm outputs an ©-avoiding path from « to B if one exists, and NO-PATH otherwise.
See Fig. 1 for some rigid robots, and also Fig. 2 for our GUI interface for path planning.

The basic planning problem ignores issues such as the optimality of paths, robot dynamics, planning in the time dimen-
sion, non-holonomic constraints, and other considerations of a real scenario. Despite such an idealization, the solution to
this basic planning problem is often useful as the basis for finding solutions that do take into account the omitted consid-
erations. E.g., given a kinematic path, we can plan a smooth trajectory with a trace that is homotopic to the given path and
the e-closeness.

A

* The conference version of this paper [21] appeared in Proc. 26th European Symposium on Algorithms (ESA 2018), pages 73:1-73:14, 2018. Helsinki, Finland,
Aug. 20-24, 2018. This work is supported in part by National Science Foundation (NSF) Grants CCF-1564132 and CCF-2008768.

* Corresponding author.
E-mail addresses: bz387@nyu.edu (B. Zhou), chiang@nyu.edu (Y.-]. Chiang), yap@cs.nyu.edu (C. Yap).

https://doi.org/10.1016/j.comgeo.2020.101683
0925-7721/© 2020 Elsevier B.V. All rights reserved.

2 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

(a) L-shaped (b) snowflake

(c) C-shaped (d) S-shaped (e) 3-legged

Fig. 1. Some rigid planar robots ((a)-(b): star-shaped; (c)-(e): general shaped).

[NoN) Complex Robot Motion Planning
Example Name 3L_sparks.cfg | T
Input File Name sparks Axt Seed: 1 S
Robot File 3legged .rob Start Configuration
R: 7000 o % 1060
Epsilon: 2| |4 136.0 °
Filled Obstacl o ~
e stacies Raridor theta: 0.0 3
BFS
© Greedy Goal Configuration
Dist+Size
Voronoi Heuristic e 368.0 2
mouse (192, 150) y:i 155.0 '~
box (192, 150) width 1 height 1 =
angle bound 84.375000 90.000000 theta: 0.0 B
box status: FREE
2nd phase: check parents' feature set Exit Run
>> o : -
END of RUN
Run No. 46
robot file name = robots/3legged.rob
input file name = inputs/sparks.txt
nPt=54
nPolygons=18
Step-By-Step ~ Increment: 1 Show Pause Replay >>
>> ---- >> Path Found !
<< >> Hide Box Boundary Animation Speed l 2
5 >> —m-ee >> Time used: 60206.7 ms
Hide Box 55
>> =eme= >> Search Strategy: Greedy Strategy

END of RUN

Fig. 2. GUI interface for planner for a 3-legged robot.

The algorithms for this basic problem are called “planners.” In theory, it is possible to design exact planners because
the basic path planning is a semi-algebraic (non-transcendental) problem. Even when such algorithms are available, exact
planners have relatively high complexity and are non-adaptive, even in the plane (see [13]). So we tend to see inexact imple-
mentations of exact algorithms, with unclear guarantees. When fully explicit algorithms are known, exact implementation
of exact planners is possible using suitable software tools such as the CGAL library [7]. But such algorithms are rare.

In current robotics [11,5], those algorithms that are considered practical and have some guarantees may be classified as
either resolution-based or sampling-based. The guarantees for the former is the notion of resolution completeness and for
the latter, sampling completeness. Roughly speaking, if there exists a path then:

- resolution completeness says that a path will be found if the resolution is fine enough;

- sampling completeness says that a path will be found with high probability if “enough” random samples are taken.

But notice that if there is no path, these criteria are silent; indeed, such algorithms would not halt except by artificial
cut-offs. Thus a major effort in the last 20 years of sampling research has been devoted to the so-called “Narrow Passage”
problem. It is possible to view this problem as a manifestation of the Halting Problem for the sampling approaches: how
can the algorithm halt when there is no path? (A possible approach to address this problem might be to combine sampling
with exact computation, as in [14].)

Motivated by such issues, as well as trying to avoid the need for exact computation, we in [16,17] introduced the
following replacement for resolution complete planners: a resolution-exact planner takes an extra input parameter € > 0
in addition to («, B, 2), and it always halts and outputs either an 2-avoiding path from o« to 8 or NO-PATH. The output
satisfies this condition: there is a constant K > 1 depending on the planner, but independent of the inputs, such that:

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 3

(PATH) If there is a path of clearance Ke, it will output a path;
(NOPATH) if there is no path of clearance €/K, it will output NO-PATH.

Notice that if the optimal clearance! lies between Ke and €/K, then the algorithm may output either a path or NO-PATH.
So there is output indeterminacy. Note that the traditional way of using € is to fix K =1, killing off indeterminacy. Unfor-
tunately, this also leads us right back to exact computation which we had wanted to avoid. We believe that indeterminacy
is a small price to pay in exchange for avoiding exact computation [16]. The practical efficiency of resolution-exact algo-
rithms is demonstrated by implementations of planar robots with 2, 3 and 4 degrees of freedom (DOF) [16,12,19], and also
5-DOF spatial robots [9]. All these robots perform in real-time in non-trivial environments. In view of the much stronger
guarantees of performance, resolution-exact algorithms might reasonably be expected to have a lower efficiency compared
to sampling algorithms. Surprisingly, no such trade-offs were observed: resolution-exact algorithms consistently outperform
sampling algorithms. Our 2-link robot [12,19] was further generalized to have thickness (a feat that exact methods cannot
easily duplicate), and can satisfy a non-self-crossing constraint, all without any appreciable slowdown. Finally, these plan-
ners are more general than the basic problem: they all work for parameterized families Rg(t1,t>...) of robots, where t;’s
are robot parameters. All these suggest the great promise of our approach.

What is New in This Paper. In theoretical path planning, the algorithms often considered simple robots like discs or line
segments. In this paper, we consider robots with complex shapes, which are more realistic models for real-world robots.
We call them “complex robots” (where the complexity comes from the robot geometry rather than from the degrees of
freedom). We focus on planar robots that are rigid and connected. Such a robot can be represented by a compact connected
polygonal set Rg € R? whose boundary is an m-sided polygon, i.e., an m-gon. Informally, we call R a “complex robot” if it
is a non-convex m-gon for “moderately large” values of m, say m > 5. By this criterion, all the robots in Fig. 1 are “complex.”
According to [20], no exact algorithms for m > 3 have been implemented; in this paper, we have robots with m = 18. To see
why complex robots may be challenging, recall that the free space of such robots may have complexity O ((mn)3) (see [1])
when the robot and environment have complexity m and n, respectively. Even with m fixed, this can render the algorithm
impractical. For instance, if m = 10, the algorithm may slow down by 3 orders of magnitude. But our subdivision approach
does not have to compute the entire free space before planning a path; hence the worst-case cubic complexity of the free
space is not necessarily an issue.

More importantly, we show that the complexity of our new method grows only linearly with m. To achieve this, we
exploit a remarkable property of soft predicates called “decomposability.” We show how an arbitrary complex robot can
be decomposed (via triangulation that may introduce new vertices) into an ensemble of “nice triangles” for which soft
predicates are easy to implement. As we see below, there is a significant difference between a single triangle and an
ensemble of triangles. In consequence of our new techniques, we can now routinely construct resolution-exact planners for any
reasonably complex robot provided by a user. This could lead to a flowering of experimentation algorithmics in this subfield.

Technically, it is important to note that the previous soft predicate construction for a triangle robot in [16,18] requires
that the rotation center, i.e., the origin of the (rotational) coordinate system, be chosen to be the circumcenter of the
triangle. But for our new soft predicates the triangles in the triangulation of the complex robot cannot be treated in the
same way. This is because all the triangles of the triangulation must share a common origin, to serve as the rotation center
of the robot. To ensure easy-to-compute predicates, we introduce the notion of a “nice triangulation” relative to a chosen
origin: all triangles must be “nice” relative to this origin. These ideas apply for arbitrary complex robots, but we also exploit
the special case of star-shaped robots to achieve stronger results.

Fig. 2 shows our experimental setup for complex robots. A demo showing the real-time performance of our algorithms is
found in the video clip available through this web link: https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4.

Remark. Although it is not our immediate concern to address noisy environments and uncertainties, it is clear that
our work can be leveraged to address these issues. E.g., users can choose € > 0 to be correlated with the uncertainty in
the environment and the precision of the robot sensors. By using weighted Voronoi diagrams [4], we can achieve practical
planners that have obstacle-dependent clearances (larger clearance for “dangerous” obstacles).

Previous Related Work. An early work is Zhu-Latombe [22] who also classify boxes into FREE or MIXED or STUCK
(using our terminology below). They introduced the concept of M-channels (comprised of FREE or MIXED leaf boxes),
as a heuristic basis to find an F-channel comprising only of FREE boxes. Subsequent researchers (Barbehenn-Hutchinson
[2] and Zhang-Manocha-Kim [20]) continued this approach. Researchers in resolution-based approaches were interested in
detecting the non-existence of paths, but their solutions remain partial because they do not guarantee to always detect
non-existence of paths (of sufficient clearances) [3,20]. The challenge of complex robots was taken up by Manocha’s group
who implemented a series of such examples [20]: a “five-gear” robot, a “2-D puzzle” robot a certain “star” robot with 4
DOFs, and a “serial link” robot with 4 DOFs. Except for the “star,” the rest are planar robots.

Overview of the Paper. Section 2 reviews the fundamentals of our soft subdivision approach. Sections 3 and 4 describe
our new techniques for star-shaped robots and for general complex robots, respectively. We present the experimental results
in Section 5, and conclude in Section 6. The conference version of this paper appeared in [21].

1 See [16, p. 591, just before the last paragraph] for definition of clearance and similar terminology.

4 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

C'\ J
L7 e <
// \\ // \\
! \ ! B
! \ 1 \
I | I |
I | ! |
1 1
apex
(a) triangular set (b) truncated triangular set (c) swept area by a nice triangle (d) sweeping [A, B, C] to [A, B, ("]

(unbounded case)

Fig. 3. Truncated triangular set and swept areas.

2. Review: fundamentals of soft subdivision approach

Our soft subdivision approach includes the following three fundamental concepts (see [16] and the Appendix of [12] for
the details):

e Resolution-exactness. This is an alternative replacement for the standard concept of “resolution completeness” in the
subdivision literature. Briefly, a planner is resolution-exact if there is a constant K > 1 such that if there is a path of
clearance Ke, it will return a path, and if there is no path of clearance €/K, it will return NO-PATH. Here, € > 0 is an
additional input to the planner, in addition to the normal parameters.

e Soft Predicates. Let [JRY be the set of closed axes-aligned boxes in RY. We are interested in predicates that classify
boxes. Let C : RY — {4+1,0, —1} be an (exact) predicate where +1, —1 are called definite values, and O the indefinite
value. For motion planning, we may also identify +1/ —1/0 with FREE/STUCK/MIXED, respectively. In our application,
if p is a free configuration, then C(p) = FREE; if p is on the boundary of the free space, C(p) = MIXED; otherwise
C(p) = STUCK. We extend C to boxes B € OR? as follows: for a definite value v € {+1, -1}, C(B):=v if Cx) =v
for every x € B. Otherwise, C(B):=0. Call C:0ORY— {+1,0, —1} a “soft version” of C if whenever E(B) is a definite
value, C(B) = C(B), and moreover, if for any sequence of boxes B; (i > 1) that converges monotonically to a point p,
C(Bj) = C(p) for i large enough.

e Soft Subdivision Search (SSS) Framework. This is a general framework for a broad class of motion planning algorithms.
One must supply a small number of subroutines with fairly general properties in order to derive a specific algorithm.
For SSS, we need a predicate to classify boxes in the configuration space as FREE/STUCK/MIXED, a method to split
boxes, a method to test if two FREE boxes are connected by a path of FREE boxes, and a method to pick MIXED boxes
for splitting. The power of such frameworks is that we can explore a great variety of techniques and strategies. Indeed
we introduced the SSS framework to emulate such properties found in the sampling framework. It is easy to put these
elements together into an “SSS FindPath” algorithm as in [16, p. 592] or in the ArXiv version [8, Appendix A.2] of [9].

Feature-Based Approach. Following our previous work [16,12], our computation and predicates are “feature based”
whereby the evaluations of box primitives are based on a set ¢(B) of features associated with the box B. Given a polygonal
set 2 € R2 of obstacles, the boundary 92 may be subdivided into a unique set of corners (points) and edges (open line
segments), called the features of Q. Let ®(2) denote this feature set. Our representation of f € ®(£2) ensures this local
property of f: for any point q, if f is the closest feature to q, then we can decide if q is inside 2 or not. To see this, first note that
if f is a corner, then q is outside 2 (since the closest feature f is a corner, f must be a convex corner of Q). But if f
is an edge, our representation assigns an orientation to f such that q is inside € iff q lies to the left of the oriented line
through f.

3. Star-shaped robots

We first consider star-shaped robots. A star-shaped region R is one for which there exists a point A € R such that any
line through A intersects R in a single line segment. We call A a center of R. Note that A is not unique. When a robot Ry
is a star-shaped polygon, we decompose Ry into a set of triangles that share a common vertex at a center A. The rotations
of the robot Ry about the point A can then be reduced to the rotations of “nice” triangles about A. The soft predicates of
nice triangles will be easy to implement because their footprints have special representations.

3.1. Nice shapes for rotation

From now on, by a triangular set we mean a subset T C R? which is written as the non-redundant intersection of three
closed half-spaces: T = Hi N Hy N H3. Non-redundant means that we cannot express T as the intersection of only two half-
spaces. Note that if T is bounded, this is our familiar notion of a triangle with 3 vertices. But T might be unbounded and
have only 2 vertices as in Fig. 3(a). If T is a triangular set, we may arbitrarily call one of its vertices the apex and call the

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 5

Fig. 4. Proof of Lemma 1: T[0,] is not a truncated triangular set (TTS).

resulting T a pointed triangular set. By a truncated triangular set (TTS), we mean the intersection of a pointed triangular
set T with any disc centered at its apex A, as shown in Fig. 3(b).

Notation for Angular Range: It is usual to identify S! (unit circle) with the interval [0, 2] where 0 and 27 are iden-
tified. Let o # B € S'. Then [«, 8] denote the range of angles from o counter-clockwise to 8. Thus [, 8] and [, «] are
complementary ranges in S!. If ® = [, 8], then its width, |©| is defined as 8 — « if 8 > «, and 27 + 8 — o otherwise.
Moreover, we will write “a <6 < 8” to mean that 6 € [«, B].

Fix an arbitrary bounded triangular set Tg, represented by its three vertices A, B, C where A is the apex. For 8 € ST,
let To[6] denote the footprint of Tq after rotating Ty counter-clockwise (CCW) by 6 about the apex. If ® C S', we write
To[®]=J{Tol0]: 6 € ®}. The sets To[0] and To[®] are called footprints of Tp at § and O, respectively. If ® = [«, 8], write
Tole, B] for To[®], and call To[ex, B] the swept area as Ty rotates from « to .

One of our concerns is to ensure that the swept area To[®] is “nice.” Consider an example where [A, B, C] is a triangular
set with apex A (see Fig. 3(c)). Consider the area swept by rotating [A, B, C] in a CCW direction about its apex to position
[A, B, C']. This sweeps out the truncated triangular set shown in Fig. 3(b). This truncated triangular set (TTS) is desirable
since it can be easily specified by the intersection of three half-spaces and a disc. On the other hand, if [A, B, C] is the
triangular set in Fig. 3(d), then no rotation of [A, B, C] would sweep out a truncated triangular set. So the triangular set in
Fig. 3(d) is “not nice,” unlike the triangular set in Fig. 3(c).

In general, let T = [A, B, C] be a bounded triangular set. Let a, b, c denote the corresponding angles at A, B, C. We say
T is nice if either b or c is at least 7t /2 (=90°). We call the corresponding vertex (B or C) a nice vertex. Assuming T is
non-degenerate and nice, there is a unique nice vertex. In the following, we assume (w.l.o.g.) that B is the nice vertex. The
reason for defining niceness is the following.

Lemma 1. Let T be a pointed triangular set. Then T is nice iff for all « € S' (0 < o < 7w — a), the footprints T[0, «] and T[—a, 0] are
truncated triangular sets (TTS).

Proof. If T is nice, T[0,«] and T[—«, 0] are truncated triangular sets (TTS); this is easily seen in Fig. 3(c).

Conversely, if T is not nice, let us assume that ||[A — B|| < ||A — C|| (e.g., Fig. 3(d)). We claim that for sufficiently small
o > 0, either T[0, o] or T[—«, 0] is not a TTS. Assume (w.l.o.g.) that A, B, C are in CCW order; we show that T[0, «] is not
a TTS.

If T is not nice, then b < 90°. Let B — C intersect the CircleB (the circle centered at A that passes through B) at D. Let
Omax = LBAD = 180° — 2b = 2(90° — b), since b= /ABD = /ADB. Note that a TTS is a convex set as it is the intersection of
three half-spaces and one disc; all of them are convex and thus the intersection is also convex. However, for any o < tmax,
T[0, o] is not a TTS since B — C will intersect B’ — C’ inside CircleB (see Fig. 4) — this makes T[0, @] non-convex and thus
itis not a TTS. O

Lemma 2. Let Rg be a star-shaped polygonal region with A as center. If the boundary of Ry is an n-gon, then we can decompose Ry
into an essentially disjoint? union of at most 2n bounded triangular sets (i.e., at most 2n triangles) that are nice and have A as the
apex.

Proof. First, for each vertex v of Rg we add a segment connecting A and v. This decomposes R into a disjoint union of
n triangles (since R is star-shaped). Now consider each of the resulting triangle T = [A, B, C] and let A be the apex of
T. If T is not nice, then both angles b and c (corresponding to vertices B and C) are less than 90°, and we can add a
segment [A, D] that is perpendicular to edge [B, C] and intersects [B, C] at D where D is in the interior of [B, C]. This
effectively decomposes T into two nice triangles [A, D, B] and [A, D, C] with A being the common apex. In this way, we
can decompose Rp into at most 2n nice triangles that have A as the apex. O

2 Aset {A1, ..., Ay} where each A; € R? is said to be essentially disjoint if the interiors of the A;'s are pairwise disjoint.

6 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

3.2. Complex predicates and T/R subdivision scheme

For complex robots in general (not necessarily star-shaped), we can exploit the remarkable decomposability property
of soft predicates. More specifically, suppose Ry = UT=1 T; where each T; is a triangle or other shapes and not necessarily

pairwise disjoint. If we have soft predicates E]‘(B) for each T; (where B is a box), then we immediately obtain a soft
predicate for Ry defined as follows:

FREE ifeach C;(B) is FREE
C(B)={ sTUCK if some C;(B) is STUCK (1)
MIXED otherwise.

Let 0 > 1 and C be the soft version of an exact predicate C. Recall [16,18] that C is o-effective if for all boxes B, if
C(B) = FREE then C(B/0o) = FREE.

Proposition A.
(1) C is a soft version of the exact classification predicate for Ro.
(2) Moreover, if each C; is o -effective, then C is o -effective.

We need o -effectivity in soft predicates in order to ensure resolution-exactness; see [16,18] where this proposition was
proved. Intuitively, o -effectivity ensures that we can satisfy the (PATH) requirement of resolution-exactness as defined in the
introduction. Indeed, o is proportional to the constant K implicit in the definition of resolution-exactness (see [18]). There
are two important remarks. First, this proposition is false if the C; and C were exact predicates. More precisely, suppose C
is the exact predicate for Ro and C; is the exact predicate for each T;. It is true that if C(B) = FREE then C;(B) = FREE
for all j. But if C(B) = STUCK, it does not follow that C;(B) = STUCK for some j. Second, the predicates C,(B) for all the
T;'s must be based on a common coordinate system. As mentioned in Sec. 1, the soft predicate construction for a triangle
robot in [16] does not work here. A technical contribution of this paper is the design of soft predicates CJ (B) for all the
Tj’s that are based on a common coordinate system. In the case of star-shaped robots, we apply Lemma 2 and use the apex
A as the origin of this common coordinate system. Let r; be the length of the longer edge out of A in T;. We define ry as
ro =max;r; (i.e, ro is the radius of the circumcircle of Ry centered at A).

T/R Splitting. The simplest splitting strategy is to split a box B € R? into 2¢ congruent subboxes. In the worst case, to
reduce all boxes to size < € requires time 2(log(1/€)%); this complexity would not be practical for d > 3. In [12,19] we
introduced an effective solution called T/R splitting which can be adapted to configuration space® SE(2) in the current paper.
Write a box B C SE(2) as a pair (B!, B") where B C R? is the translational box and B" C S! an angular range ®. We say
box B = (Bf, B") is ¢-small if B' and B" are both &-small; the former means the width of B! is < ¢; the latter means the
angle (in radians) satisfies |B”| < &/rg. Our splitting strategy is to only split B® (leaving B = S') as long as B! is not g-small.
This is called a T-split, and produces 4 children. Once B! is e-small, we do binary splits of B" (called R-split) until B" is
g-small. We discard B when it is ¢-small. The following lemma (and proof) in [16] can be carried over here:

Lemma 3. ([16]) Assume 0 < & < 7 /2.If B = (BY, B") is &-small and B! is a square, then the Hausdor{f distance between the footprints
of Ro at any two configurations in B is at most (1 + +/2)s.

Soft Predicates. Suppose we want to compute a soft predicate E(B) to classify boxes B. Following the previous work
[16,12], we reduce this to computing a feature set ¢(B) C ®(R2). The feature set ¢(B) of B is defined as comprising those
features f such that

Sep(mg, f) <rg+ro (2)

where mp and rp are respectively the midpoint and radius of the translational box B! of B = (B!, B") (also call them
the midpoint and radius of B), and Sep(X,Y):=inf{|lx — y||: x € X, y € Y} denotes the separation of two Euclidean sets
X,Y € R2. We say that B is empty if #(B) is empty but ¢(B1) is not, where B is the parent of B. We may assume the root
is never empty. If B is empty, it is easy to decide whether B is FREE or STUCK: since the feature set ¢(Bl) is non-empty,
we can find the f; € 5(81) such that Sep(mg, f1) is minimized. Then Sep(mg, f1) > rg, and by the local property of features
(see Feature-Based Approach in Sec. 2), we can decide if mg is inside (B is STUCK) or outside 2 (B is FREE).

For a box B where B" = S', we maintain its feature set ¢(B) as above. But when B’ # S', we compute its feature
set ¢(B) as follows. Recall that we decompose Ro into a set of nice triangles T; with a common apex A. For each Tj,
consider the footprint of T; with A at mp and rotating T; about A from 6; to 6, where B" = [6;,6>]. By Lemma 1 the
resulting swept area is a truncated triangular set (TTS); call it TTS;. We define (cf. [16]) for a 2D shape S the s-expansion
of S, denoted by (S)%, to be the Minkowski sum of S with the Disc(s) of radius s centered at the origin. For a TTS, recall

3 The configuration space of planar rigid robots is SE(2) = R? x S' where S! is the unit circle representing angles [0, 277).

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 7

Fig. 5. Nice triangle [A, B, C].

that TTS=T N D where T = H; N Hy N H3 is an unbounded triangular set (with each H; a half space) and D is a disk
(Fig. 3). Note that (TTS)’ is a proper subset of (H1)’ N (H2)5 N (H3)S N (D)%; a theorem in the next section gives an exact
representation of (TTS)’. We now specify the feature set qb(B) for each T}, let qb](B) comprise those features f satisfying
Sep(mg, f) <rp +r; (replacing ro with r; in Eq. (2)), such that f also intersects the rg-expansion of TTS;. We can think of
d)(B) as a collection of these ¢j (B)’s, each of which is used by the soft predicate CJ(B) so that we can apply Proposition A.

4. General complex robots

When Ry is a general polygon, not necessarily star-shaped, we can still decompose R into a set of triangles T; (j =
1,...,m), and consider the rotation of these triangles relative to a fixed point O (we may identify O with the origin). In
this section, we define what it means for T; to be “nice” relative to a point O. If O lies in the interior of T;, we could
decompose T; into at most 6 nice pointed triangles at O, as in the previous section. Henceforth, assume that O does not
lie in the interior of Tj.

4.1. Basic representation of nicely swept sets

Let T =[A, B, C] be any non-degenerate triangular region defined by the vertices A, B, C. Let the origin O be outside
the interior of T. We define what it means for T to be “nice relative to 0.” W.lo.g., let 0 < ||A|| < ||B| < ||C|| where ||A] is
the Euclidean norm.

We say that T is nice if the following three conditions hold:

(A,B—A)>0, (A,C—A)>0, (B,C—B)>0. (3)

Here (u, v) denotes the dot product of vectors u, v.

A more geometric view of niceness is as follows (see Fig. 5). Draw three concentric circles centered at O with radii
A, IIBIl, IC]l, respectively. Two circles would coincide if their radii are equal, but we will see that the distinctness of
the vertices and niceness prevent such coincidences. Let L4 be the line tangent to the circle of radius ||A|| and passing
through the point A. Let H4 denote the closed half-space bounded by L4 and not containing O. The first condition in (3)
(A, B— A) >0 says that B € Hy4. Similarly, the second condition says that C € H 4. Finally, the last condition says that C € Hp
(where Hp is analogous to Hy).

If T is a nice triangle, then T[«, 8] is called a nicely swept set (NSS). See Fig. 6, where T[«, 8] is shaded in blue. Let T[¢]
be the triangle [A, B, C] and T[B] be [A’, B/, C']. W.Lo.g., assume” that A, B, C appear in counter-clockwise (CCW) order as
indicated in Fig. 6. Then we can subdivide T[c, 8] into two parts: the triangle [A, B, C] and another part which we call a
swept segment.

Notation for Swept Segment: if S is the line segment [A, C], then write S[c, 8] for this swept segment. The boundary of
S[o, B] is decomposed into the following sequence of four curves given in clockwise (CW) order: (i) the arc (A, A’) centered
at O of radius ||A|| from A to A/, (ii) the segment [A’, C'], (iii) the arc (C’, C) centered at O of radius ||C| from C’ to C, (iv)
the segment [C, A].

Our next goal is to consider s-expansion of the swept segment, i.e.,

X = S[a, B] @ Disc(s). (4)

4 In case A, B, C appear in clockwise (CW) order, the boundary of T[e, A] can be similarly decomposed into two parts, comprising the swept segment
S[e, B] and the triangle [A’, B, C']. See Fig. 8.

8 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

Fig. 6. Nicely swept set (NSS, in blue) with A, B, C in CCW order. (For interpretation of the colors in the figure(s), the reader is referred to the web version
of this article.)

Specifically, we want an easy way to detect the intersection between this expansion with any given feature (corner or edge).
To do so, we want to express X as the union of “basic shapes.” A subset of R2 is a 0-basic shape if it is a half-space, a disc
or complement of a disc. We write Disc(r) for the disc of radius r centered at O, and Ann(r,’) for the annulus with inner
radius r and outer radius 1’ centered at O. A shape X is said to be 1-basic if it can be written as the finite intersection
X = ﬂlj‘-zl X;j where Xj’s are 0-basic shapes. The 1-size of X is the minimum k in such an intersection. So polygons with n
sides have 1-size of n. Truncated triangular sets have 1-size of 4. We need some other 1-basic shapes:

e Strips: Strip(a, b;a’,b’) is the region between the two parallel lines a, b and @, b’. Here a,b,d’, b’ are distinct points.

e Truncated strips: TruncStrip(a,b;d’,b’) is the intersection of Strip(a, b;d’,b’) with an annulus; the boundary of this
shape is comprised of two line segments [a, b] and [a’, b'] and two arcs (a,a’) and (b, b’) from the boundary of the
annulus.

e Sectors: Sector(a,b,b’) denotes any region bounded by a circular arc (b, b’) and two segments [a, b] and [a, b'].

Finally, a shape X is said to be 2-basic if it can be written as a finite union of 1-basic shapes, X = UT:] X; where X;'s
are 1-basic. We call {Xy,..., X;n} a basic representation of X. The 2-size of the representation is the sum of the 1-sizes of
X;j's. Thus, for any box B € R2, the s-expansion of B is a 2-basic shape since it is the union of four discs and an octagon.
We now consider the case where X is the s-expansion of a swept segment S[«, 8]. We first decompose S[«, 8] into two
shapes as follows: suppose C” lies on the circle of radius ||C| = ||C’||. Considering both cases of A, B, C being in CCW and
CW orders, there are two possible representations:

(i) If [A’, C"] is parallel to [A, C] and [A’, C"] € Ann(||A||, ||C|]), then we have

Sla, Bl = Sector(A’, C’, C""y U TruncStrip(A, C; A’, C"). (5)
(ii) If [A, C"] is parallel to [A’, C'] and [A, C"] € Ann(]|A|l, |IC|), then we have

Sla, B] = Sector(A, C,C"y U TruncStrip(A, C”; A, C). (6)

The swept segment in Fig. 6 supports the representation (5) but not (6), while the swept segment in Fig. 8 supports the
representation (6) but not (5). Note that they are symmetric cases, with A, B, C in CCW order in Fig. 6 and in CW order
in Fig. 8. Also, if the angular range of [«, 8] is greater than 90 degrees and the points O, A, C are collinear, then both
representations fail! We next show when at least one of the representations succeeds:

Lemma 4. Assume the width of the angular range [«, 8] is at most 7t /2. Then swept segment S[c, 8] can be decomposed into a sector
and a truncated strip as in (5) or (6).

Proof. Our goal is to choose the point C” so that either (5) or (6) holds. Let the swept segment be S[c, 8], with S[a] =
[A,C] and S[B] =[A’,C’]. Let D (resp., D’) be the point such that |D| = ||C|| (resp., |D’|| = |IC||) and O, A, D (resp.,
0, A’, D’) are collinear. Then Sector(0, D, D’), bounded by the arc (D, D’) centered at O, contains either [A, C] or [A’, C'].
If it contains [A, C] (see Fig. 6), then we choose C” such that [A’, C”] C Sector(0, D, D’) and [A, C] is parallel to [A’, C"],
and thus (5) holds. By symmetry, if the sector contains [A’, C’] (see Fig. 8), we can choose C” so that (6) holds. O

Clearly, the s-expansion of a sector is 2-basic. This is also true for truncated strips (w.l.o.g., considering that in the
representation (5)):

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 9

Fig. 7. Expansion of TruncStrip(A, C; A’, C”) of Fig. 6 (in red).

Fig. 8. Nicely swept set (NSS, in blue) with A, B, C in CW order.

Lemma 5. Let X = TruncStrip(A, C; A’, C"). There is a basic representation of X & D(s) of the form {D1, Do, D3, Dy, X’} where
D;’s are discs and X' is the intersection of a convex hexagon with an annulus.

Proof. See Fig. 6 for a figure of X. Let D1 = Disca, Dy = Discc, D3 = Discar, D4 = Discc» where Discp denote the disc
with center P of radius s. These discs are outlined in green in Fig. 7. The boundary of each D; (i =1, ..., 4) intersects the
boundary of X @ D(s) in a circular arc (a;, b;) where a; is closer to O than b;. Let H; be the half space containing X and
bounded by the line through [a;, b;]. We need to check that these half spaces do indeed contain X. Also, let Hs (resp., Hg)
be the half space containing X and bounded by the line through by and a; (resp., b3 and a4). Note that [by,ay] and [bs, as]
are parallel. Then we see that H = ﬂ?zl H; is a convex hexagon containing X, and the intersection H N Ann(||A| —s, |[C|| +5)

is outlined in red in Fig. 7. Observe that this intersection covers all of (X @ Disc(s)) \ Ule D;.

This construction is valid as long as ||A|| > s, i.e., the annulus Ann(||A|| —s, ||C|| +s) is a true annulus. When | A|| <s,
the boundary of X @ Disc(s) no longer has an inner arc of radius |A|| — s, but degenerates into a concave vertex where the
two circles of radius s centered at A and A’ (resp.) meet. O

Combining all these lemmas, we conclude:

Theorem 6. Let T[«, 8] be a nicely swept set where [«, 8] has width < 7t /2. Then T[«, 8] can be decomposed into a triangle, a sector
and a truncated strip. The s-expansion of T[«, B] has a basic representation which is the union of the s-expansions of the triangle,

sector and truncated strip.

Proof. We know that T[«, 8] can be decomposed into a triangle and a swept segment. The swept segment, since [«, 8] has
width <7 /2, can be further decomposed into a sector and a truncated strip. The expansions of the triangle and sector are
clear; the expansion of the truncated strip was the subject of the previous lemma. 0O

The complexity of testing intersection of 2-basic shapes with any feature is proportional to its 2-size, which is O (1). This
theorem assures us that the constants in “O(1)” are small. Note that it is not correct to test if a line segment L intersects
a 1-basic shape X = ﬂ'}zl Xj by just testing if L intersects every Xj, since L could intersect every X; but not all in the
same place(s) so that L N X = #. Therefore, we need to maintain the common intersections between L and all X;'s tested
so far as we loop over all X;j’s; at the end, L intersects X if and only if there is at least one non-empty set of common

10 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

\ N\ B

/ 7%
"* = ;A \
(P | |

Fig. 9. Proof of Lemma 7: A triangle T = [A, B, C] with the origin O in the exterior can be decomposed into at most 4 nice triangles.

intersections. Since the complement of a disk is non-convex, in general this process could result in many sets/segments of
common intersections to maintain. Fortunately, there is at most one complement of a disk in our decomposition of an NSS.
Thus it is enough to maintain just a single set/segment of the common intersection of L with all other 0-basic shapes, and
check with the complement of a disk only at the end.

4.2. Partitioning an n-gon into nice triangles

Suppose P is an n-gon. We can partition it into n — 2 triangles. W.l.o.g., there is at most one triangle that contains the
origin 0. We can split that triangle into at most 6 nice triangles, using our technique for star-shaped polygons (Lemma 2).

Lemma 7. If T is an arbitrary triangle and O is exterior to T, then we can partition T into at most 4 nice triangles.

Proof. Let T = [A, B, C]. In the worst case, all three niceness conditions for T (i.e., B € Hy,C € Hys, and C € Hg, where
0 < ||A|l < |IB]| < |IC]|; recall the geometric view of niceness described right after Eq. (3)) are violated. W.l.o.g., suppose that
among the three edges of T, [A, B] is the closest to O. Let D be the point on [A, B] such that [0, D] L [A, B], and similarly
for E € [A,C] and F € [B, C]; see Fig. 9. Then we add segments [C, D], [D, E],[D, F] to decompose T into 4 triangles
[D,E, Al I[D,E,C],[D,F,B] and [D, F, C]. Note that the line Lp tangent to the circle of radius ||D| (centered at O) and
passing through the point D coincides with [A, B]; similarly, the line Lg coincides with [A, C] and Lf coincides with [B, C].
As before, Hp is the half space bounded by Lp and not containing O; similarly for Hg and Hg. For the triangle [D, E, A],
note that 0 < ||D|| < ||E|| < ||A]| since [A, B] is closer to O than [A,C] (so ||D| < |E|), [0,D] L [D, A] (so ||ID|| < ||A]l)
and [0, E] L [E, A] (so ||E]| < ||A]|). Thus the three niceness conditions for the triangle [D, E, A] are: E € Hp, A € Hp, and
A € Hg. Again, these three conditions are satisfied due to the facts that [A, B] is closer to O than [A, C], [0, D] L [D, A]
and [0, E] L [E, A], i.e, these conditions are automatically satisfied due to the construction of D and E. Similarly, the
three niceness conditions for the triangle [D, E, C] are: E € Hp,C € Hp, and C € Hg, which are again satisfied due to the
construction of D and E. Symmetrically, the triangles [D, F, B] and [D, F, C] are both nice due to the construction of D and
F. Therefore T can be decomposed into at most 4 nice triangles. O

The number 4 in this lemma is the best possible: if T is a triangle with circumcenter O, then any partition of T into
nice triangles would have at least 4 triangles because we need to introduce vertices in the middle of each side of T.

Theorem 8. Let P be an n-gon.
(i) Given any triangulation of P into n — 2 triangles, we can refine the triangulation into a triangulation with < 4n — 6 nice triangles.
(ii) This bound is tight in this sense: for every n > 3, there is a triangulation of P whose refinement has size 4n — 6.

Proof. (i) In the given triangulation of P, we might have a triangle containing O. This triangle can be triangulated into at
most 6 nice triangles (Lemma 2). By Lemma 7, the remaining n — 3 triangles can be refined into 4(n — 3) nice triangles. The
final count is 6 +4(n — 3) =4n —6. .

(ii) We construct an n-gon whose vertices are all on the unit circle. Note that all such vertices are of the form el’. For the
first triangle To, pick the vertices 1,e127/3 eM7/3 (all these vertices ug, ui, uy. Choose the origin O inside To so that for
each triangle [0, u;, uj],i# j € {0, 1,2} we have both ZOu;ju; <90° and ZOuju; < 90°. Therefore each triangle [O, u;, u;]
must be split into 2 nice triangles and overall Top must be split into 6 nice triangles. If n = 3, our result is verified. If n > 3,

3 _2km :
we must add n— 3 additional vertices. Define the vertex vy :=e'3m-2, k=0,1,...,n—2 (note that vo = 1 and vj_y = e127/3

have previously been chosen). Thus we have added new vertices vq, ..., vy—3. Any triangle [v, v¢, vin] must be split into 4
nice triangles. This proves our claim. O

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 11
4.3. Soft predicates and T/R subdivision scheme

We can now follow the same paradigm as for star-shaped robots in Sec. 3.2. We first apply Theorem 8(i) to partition the
robot Ry into a set of nice triangles, Ro = U;T, where all T;'s share a common origin O, and we will use the soft predicates
developed for T; and apply Proposition A. The origin O plays a similar role as the apex in Sec. 3.2. The T/R splitting scheme
is exactly the same: we first perform T-splits, splitting only the translational boxes until they are e-small, and then we
perform R-splits, splitting only the rotational boxes until they are e-small. Essentially the top part of the subdivision tree is
a quad-tree, and the bottom parts are binary subtrees (see Sec. 3.2).

The feature set for a subdivision box B where we perform T-splits is the same as before; the only difference is that
now for a box B where we perform R-splits, we use a new feature set ¢;(B) for each nice triangle T; where O is not
at its vertex (there are at most 6 nice triangles with O at a vertex/apex; see Theorem 8(i)). Suppose T; = [a, b, c] with
0 <|lall = |Ib|l < |ic||. Let rj = [Ic||. Also, suppose the angle range of box B = (Bt, Br~) is B" = [0y, 63]. Recall the footprint
of T;[61,6-] is a nicely swept set (NSS); denote it NSS;. Then the new feature set ¢;(B) for T; comprises those f where
Sep(mg, f) <rp+rj and f also intersects the rg-expansion of NSS; (where mp and rp are the midpoint and radius of B).

4.4. Worst-case time complexity

We now give a worst-case time complexity bound for our SSS algorithm on an input environment with n polygonal
features, assuming a fixed complex robot Ry represented by an m-gon. We establish this bound in the following theorem,
which justifies the claim in the abstract that our method scales linearly in m. Note that the worst-case bounds in (i) and
(ii) of this theorem are highly pessimistic since our SSS algorithm is highly adaptive.

Theorem 9. Suppose our polygonal environment has n features whose corners are given by L-bit rational numbers. Assume a fixed
complex robot Ry represented by an m-gon, and & > 0 is the input resolution parameter. Then
(i) the size of our subdivision tree is O(S), where S is defined as

S:=n2l/e3,

and the constant in O (-) depends on r% with ro being the radius of the circumcircle of Ro;
(ii) the time complexity of our SSS algorithm is O (mS).

Proof. (i) Recall from Secs. 3.2 and 4.3 that in our subdivision tree, the top part is a quad tree subdividing the translational
domain and the bottom parts are binary trees subdividing the rotational domain. The leaves of the quad tree can be FREE
(green), STUCK (red), or e-small (i.e., with width &) MIXED boxes (yellow). Each bottom-part binary tree is attached to a
yellow leaf in the quad tree. Note that the maximum size of each binary tree is reached when the leaves are all ¢-small
(i.e., when each leaf has an angle range (in radians) of ¢/rp) — and thus this maximum binary-tree size is O (27 /(¢/rp)) =
0Q2rrg/e) =0(ro/€).

Our remaining task is then to bound the number of leaves in the quad tree. To do so, observe that each green/red/yellow
leaf has a parent, which must be a MIXED (yellow) node and we call it a penultimate leaf. Let M be the set of such
penultimate leaves. Note that each penultimate leaf has at most 4 green/red/yellow leaves and thus the total number of
leaves in the quad tree is O (|M|). With each bottom-part binary tree attached to a yellow leaf of the quad tree, our overall
subdivision tree has size O(|M| x rg/€).

To bound |M]|, recall that our polygonal environment has n features whose corners are given by L-bit rational numbers.
Then the length of each polygonal edge e is < 2L*1. Also, each penultimate leaf in M is a MIXED (yellow) box B with a non-
empty feature set, where a feature f is included into the feature set of B if Sep(mgp, f) <rg +ro (recall from the paragraph
of Soft Predicates and Eq. (2) in Sec. 3.2; mp and rp are the midpoint and radius of B). In the worst case, each yellow box in
M has the smallest width 2¢ (parent of an ¢-small green/red/yellow leaf with width ¢). Since such boxes in M are essentially
disjoint, each edge e gives rise to at most X = A/(2¢)? such boxes, where A is the area of the union of two rectangles of
2L+1 % (rg 4+ 1g) each, one on each side of e, together with the two discs centered at the two endpoints of e with radius
(rg + o). As each such disc has half of it intersected with the rectangles, only the other half of it contributes to a new area
beyond the rectangles. The area A is thus 2 x 2k+1 x (rp +19) + 7 (rg +10)2, and X is the number of boxes, each of area (2¢)2,
to tile up the area of A. Since each box B has width 2¢, rg is +/2¢, and we have X = 0(2L /e x (1+ (ro/€))) = O(ro - 2L /£2).
Finally, there are n polygonal edges, each giving rise to X boxes in M, and thus we have |M| =nX = O (ro-n2" /). Therefore,
our overall subdivision tree has size O(|M| x ro/¢) = 0 (13 -n2L/e3) = 0(r3 S) = 0(S), where the constant in O(-) depends
on r%. This completes the proof of (i).

(ii) Our SSS algorithm constructs the subdivision tree by splitting boxes and calling our predicates to classify each box.
Each classification takes O (m) time since our predicate is a composition of O (m) simpler predicates. This proves the overall
time complexity of O(mS). O

12 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

Table 1
Robot Statistics.
Robot m (# sides) t (# triangles)
L-shaped 6 4
snowflake 18 24
S-shaped 12 26
3-legged 14 20
C-shaped 18 22

corridor corridor-L corridor-S maze

Fig. 10. Six environments in our experiments.

Table 2
Running Our Planner (R: radius of the robot’s circumcircle around its rotation center; P?: path found?
(Yes/No); Time is in s; S-shaped™: thin version).

Exp# Robot Envir. R € o B P? Time
0 L-shaped gateway 50 2 (18, 98, 340°) (458, 119, 270°) Yes 10.106
1 L-shaped gateway 50 4 (18, 98, 340°) (458, 119, 270°) No 8.431
2 snowflake sparks 56 2 (108, 136, 0°) (358, 155, 0°) Yes 17.846
3 snowflake sparks 56 2 (108, 136, 0°) (358, 155, 180°) Yes 3.370
4 S-shaped sparks 74 4 (132, 80, 90°) (333, 205, 90°) Yes 34.284
5 S-shaped sparks 74 4 (132, 80, 90°) (333, 205, 60°) No 57371
6 3-legged sparks 70 2 (108, 136, 0°) (368, 155, 0°) Yes 41.745
7 L-shaped corridor 68 2 (75, 420, 0°) (370, 420, 0°) Yes 4,012
8 L-shaped corridor 68 3 (75, 420, 0°) (370, 420, 0°) Yes 1.926
9 L-shaped corridor 68 5 (75, 420, 0°) (370, 420, 0°) Yes 2.684
10 L-shaped corridor-L 68 5 (75, 420, 0°) (370, 420, 0°) No 2.908
11 L-shaped corridor-L 68 3 (75, 420, 0°) (370, 420, 0°) Yes 2.255
12 C-shaped corridor-S 80 4 (80, 450, 0°) (380, 450, 0°) Yes 26.200
13 S-shaped maze 38 2 (38, 38, 0°) (474, 474, 90°) No 90.097
14 S-shaped* maze 38 2 (38, 38, 0°) (474, 474, 90°) Yes 79.518

5. Experimental results

We have implemented our approaches in C/C++ with Qt GUI platform. The software and data sets are freely available
from the web site for our open-source Core Library [6]. All experiments are reproducible as targets of Makefiles in
Core Library. Our experiments are on a PC with one 3.4 GHz Intel Quad Core i7-2600 CPU, 16 GB RAM, nVidia GeForce
GTX 570 graphics and Linux Ubuntu 16.04 OS. The results are summarized in Table 2 and Table 3. Table 2 is concerned only
with the behavior of our complex robots; Table 3 gives comparisons with the open-source OMPL library [15]. The robots are
as shown in Fig. 1; their statistics are given in Table 1. Fig. 10 shows the six environments in our experiments.

We select some interesting experiments to analyze characteristic behavior of our planner. Please see Table 2 and the
video (https://cs.nyu.edu/exact/gallery/complex/complex-robot-demo.mp4). In Exp0-1, we show how the parameter € affects
the result. With a narrow gateway, when we change € from 2 to 4, the output changes from a path to NO-PATH for
the same configuration. In Exp2-3, we observe how the snowflake robot rotates and maneuvers to get from the start to
two different goals. For Exp4-5, the difference is in the angles of the goal configuration; in Exp5 this is designed to be
an isolated configuration and the planner outputs NO-PATH as desired. Exp6 shows how the robot squeezes among the
obstacles to move its complex shape through the environment. Exp7-9 use the same L-shaped robot, o, 8 configurations
and the environment; only € varies. The planner can find three totally different paths. When € is small (Exp7), the path is
very carefully adjusted to move the robot around the obstacles. When ¢ is larger (Exp8), the planner finds an upper path
with a higher clearance. When € is even larger (Exp9), the planner chooses a very safe but much longer path at the bottom.
Note that using a larger € usually makes the search faster, since we stop splitting boxes smaller than €, but a longer path
can make the search slower. In Exp10-11, we modify the environment of Exp7-9 by putting a large obstacle at the bottom,
which forces the robot to find a path at the top. Exp12 uses an environment similar to those in Exp7-11 but with much

B. Zhou et al. / Comput. Geom. 92 (2021) 101683 13

Table 3
Comparing with OMPL (“#": Exp#; “Time/P?”: our run time (in s)/path found? (Y/N). Each OMPL
method: Average Time (in s)/Standard Deviation/Success Rate, over 10 runs).

Time/P? PRM RRT EST KPIECE

0 10106/Y 418/253/1 42.13/38.49/1 76.22/110.44/0.9 300/0/0

2 17.846]Y 9.22/6.82/1 210.41/14425/03 271.75/89.31/0.1 240.00/126.47/0.2
3 3.370/Y 300/0/0 300/0/0 300/0/0 300/0/0

4 34284/Y 593/720/1 217.33/134.53/0.3 300/0/0 300/0/0

5 57371/N 300/0/0 300/0/0 300/0/0 300/0/0

6 41745]Y 2.72/489/1 15422/141.77/05 104.32/78.10/0.7 3.16/4.28/1

8 1.926/Y 0.63/0.55/1 300/0/0 3.02/4.71/1 0.41/0.28/1

11 2255)Y 1.49/0.84/1 300/0/0 241.24/124.88/0.2 1.58/1.47/1

12 26200)Y 316/421/1 300/0/0 172.506/120.38/0.7 93.88/88.03/0.8
13 90.097/N 300/0/0 300/0/0 300/0/0 300/0/0

14 79518)Y 300/0/0 236.72/106.44/0.3 300/0/0 39.81/91.57/0.9

smaller scattered obstacles. It is designed for the C-shaped robot, which can rotate while having an obstacle in its pocket.
Exp13-14 use a challenging environment where the small scattered obstacles force the S-shaped robot to rotate around and
only the “thin” version (Exp14, also in Fig. 10 “maze”) can squeeze through.

In Table 3 we compare our planner with several sampling algorithms in OMPL: PRM, RRT, EST, and KPIECE. These exper-
iments are correlated to those in Table 2 (see the Exp #). Each OMPL planner is run 10 times with a time limit 300 seconds
(default), where all planner-specific parameters use the OMPL default values. We see that for OMPL planners there are often
unsuccessful runs and they have to time out even when there is a path. On the other hand, our algorithm consistently
solves the problems in a reasonable amount of time, often much faster than the OMPL planners, in addition to being able
to report NO-PATH.

6. Conclusions

Although the study of rigorous algorithms for motion planning has been around for over 40 years, there has always been
a gap between such theoretical algorithms and the practical methods. Our introduction of resolution-exactness and soft
predicates on the theoretical front, together with matching implementations, closes this gap. Moreover, it eliminated the
“narrow passage” problem that plagued the sampling approaches. The present paper extends our approach to challenging
planning problems for which no exact algorithms exist.

What are the current limitations of our work? We implement everything in machine precision (the practice in this field).
But it can be easily modified to achieve the theoretical guarantees of resolution-exactness if we use arbitrary precision
BigFloats number types. Another limitation is that we have not computed the implicit constant K > 1 of resolution-
exactness; in [18], this constant is shown to be a product of a few constants such as Lipshitz constant and the effectivity
constant (o). However it can be visually seen from our experiments that the actual K is not unreasonably large.

We pose two open problems: One is to find an optimal decomposition of m-gons into nice triangles (currently, we simply
give an upper bound). Such decomposition will have impact for practical complex robots. Second, we would like to develop
similar decomposability of soft predicates for complex rigid robots in R3.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] E. Avnaim,].-D. Boissonnat, B. Faverjon, A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles, in: J.-D. Boisson-
nat, J.P. Laumond (Eds.), Geometry and Robotics, in: LNCS, vol. 391, Springer, Berlin-Heidelberg, 1989, pp. 67-86.

[2] M. Barbehenn, S. Hutchinson, Efficient search and hierarchical motion planning by dynamically maintaining single-source shortest paths trees, IEEE
Trans. Robot. Autom. 11 (2) (1995) 198-214.

[3] J. Basch, L. Guibas, D. Hsu, A. Nguyen, Disconnection proofs for motion planning, in: IEEE Int’l Conf. on Robotics Animation, 2001, pp. 1765-1772.

[4] H. Bennett, E. Papadopoulou, C. Yap, Planar minimization diagrams via subdivision with applications to anisotropic Voronoi diagrams, Comput. Graph.
Forum 35 (5) (2016) 229-247 (Special Issue for Eurographics Symp. on Geometric Processing (SGP) 2016).

[5] H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun, Principles of Robot Motion: Theory, Algorithms, and Implementations,
MIT Press, Boston, 2005.

[6] Core Library, https://cs.nyu.edu/exact/core_pages/downloads.html.

[7] D. Halperin, E. Fogel, R. Wein, CGAL Arrangements and Their Applications, Springer-Verlag, Berlin and Heidelberg, 2012.

[8] C.-H. Hsu, Y.-J. Chiang, C. Yap, Rods and rings: Soft subdivision planner for R"3 x S$°2, arXiv:1903.09416, Mar 2019, this version includes appendices
A-F.

[9] C.-H. Hsu, Y.-J. Chiang, C. Yap, Rods and rings: Soft subdivision planner for R"3 x $°2, in: Proc. 35th Symp. on Comp. Geometry, SoCG 2019, June 18-21,
2019, pp. 43:1-43:17.

[10] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, 1991.

14 B. Zhou et al. / Comput. Geom. 92 (2021) 101683

[11] S.M. LaValle, Planning Algorithms, Cambridge University Press, Cambridge, 2006.

[12] Z. Luo, Y.-J. Chiang,].-M. Lien, C. Yap, Resolution exact algorithms for link robots, in: Proc. 11th Intl. Workshop on Algorithmic Foundations of Robotics,
WAFR’14, Aug. 3-5, 2014, in: Springer Tracts in Advanced Robotics (STAR), vol. 107, Bogazici University, Istanbul, Turkey, 2015, pp. 353-370.

[13] V. Milenkovic, E. Sacks, S. Trac, Robust complete path planning in the plane, in: Proc. 10th Workshop on Algorithmic Foundations of Robotics, WAFR
2012, in: Springer Tracts in Advanced Robotics, vol. 86, Springer, 2012, pp. 37-52.

[14] O. Salzman, M. Hemmer, B. Raveh, D. Halperin, Motion planning via manifold samples, in: Proc. European Symp. Algorithms, ESA, 2011, pp. 493-505.

[15] L. Sucan, M. Moll, L. Kavraki, The open motion planning library, IEEE Robot. Autom. Mag. 19 (4) (2012) 72-82, http://ompl.kavrakilab.org.

[16] C. Wang, Y.-]. Chiang, C. Yap, On soft predicates in subdivision motion planning, Comput. Geom. Theory Appl. 48 (8) (Sept. 2015) 589-605 (Special
Issue for SoCG’'13).

[17] C. Yap, Soft subdivision search in motion planning, in: A. Aladren, et al. (Eds.), Proc. 1st Workshop on Robotics Challenge and Vision, RCV 2013, Robotics
Science and Systems Conf., RSS 2013, Berlin, 2013, arXiv:1402.3213, full paper: http://cs.nyu.edu/exact/papers/.

[18] C. Yap, Soft subdivision search and motion planning, II: axiomatics, in: Frontiers in Algorithmics, in: Lecture Notes in Comp. Sci., vol. 9130, Springer,
2015, pp. 7-22, Plenary talk at 9th FAW, Guilin, China, Aug. 3-5, 2015.

[19] C. Yap, Z. Luo, C.-H. Hsu, Resolution-exact planner for thick non-crossing 2-link robots, in: Proc. 12th Intl. Workshop on Algorithmic Foundations of
Robotics, WAFR’16, Dec. 13-16, 2016, San Francisco, 2016, the appendix in the full paper and arXiv from http://cs.nyu.edu/exact/ and arXiv:1704.05123
[cs.CG] contains proofs and additional experimental data.

[20] L. Zhang, YJ. Kim, D. Manocha, Efficient cell labeling and path non-existence computation using C-obstacle query, Int.]. Robot. Res. 27 (11-12) (2008)
1246-1257.

[21] B. Zhou, Y.-]. Chiang, C. Yap, Soft subdivision motion planning for complex planar robots, in: Proc. 26th European Symp. on Algorithms, ESA 2018,
Helsinki, Finland, Aug. 20-24, 2018, pp. 73:1-73:14.

[22] D. Zhu, J.-C. Latombe, New heuristic algorithms for efficient hierarchical path planning, IEEE Trans. Robot. Autom. 7 (1991) 9-20.

