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Abstract— An active-passive microwave retrieval algorithm for 

simultaneous determination of soil surface roughness parameters (vertical 

RMS height (𝒔) and horizontal correlation length (𝒍)) is presented for bare 

soils. The algorithm is based on active-passive microwave covariation 

including the improved Integral Equation Method (I2EM) and is tested with 

global SMAP observations. Estimated retrieval results for 𝒔 and 𝒍 are 

overall consistent with values in the literature, indicating the validity of the 

proposed algorithm. Sensitivity analyses showed that the developed 

roughness retrieval algorithm is independent of permittivity for 𝜺𝒔 > 10 [-]. 

Furthermore, the physical model basis of this approach (I2EM) allows 

application of different autocorrelation functions (ACF), such as Gaussian 

and exponential ACFs. Global roughness retrieval results confirm bare 

areas in deserts such as Sahara or Gobi. However, the type of ACF used 

within roughness parameter estimation is important. Retrieval results for 

the Gaussian ACF describe a rougher surface than retrieval results for the 

exponential ACF. No correlations were found between roughness results 

and the amount of precipitation or the soil texture, which could be due to 

the coarse spatial resolution of the SMAP data. The extension of this 

approach to vegetated soils is planned as an add-on study.  
 

Index Terms— correlation length, I2EM, radar, radiometer, 
RMS height, SMAP 

I. INTRODUCTION 

A. Motivation for surface roughness estimation 
The estimation and monitoring of geophysical parameters via earth-
observation satellites is crucial for improving our understanding of 
global environmental and hydrological processes. Soil roughness is 
an essential parameter in physical processes related to water, energy, 
and nutrient flow and exchange, since it characterizes the boundary 
between the pedosphere and atmosphere [1]. Soil roughness 
influences microwave signals from soil surfaces and contributes to 
measurements from active as well as passive sensors. Both radar 
backscatter |𝑆𝑃𝑃|2 [dB] and microwave emissivity 𝐸𝑃 [-], based on 
brightness temperature 𝑇𝐵𝑃 [K], are sensitive to surface roughness 
[2], [3].  

Despite its importance for environmental applications, soil 
roughness has played a minor role in land parameter retrieval with 
microwave remote sensing in recent decades [4], [5]. For instance, 
soil roughness is an important parameter in land surface modeling of 
soil erosion applications, because it defines the soil surfaces that 
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represent “the interface between the eroding soil body and the erosive 
agent” [6], [1], [3], [5]. 

Retrieval of geophysical parameters such as soil roughness or soil 
moisture is mainly performed at lower frequencies, like at L-band 
(1.4 GHz), due to the higher sensitivity of active and passive 
microwave signatures to soil moisture (under vegetation) compared 
to C-band (~ 6 GHz) and higher frequency bands [3], [7], [8]. 
Further, the operational monitoring of soil moisture content on global 
scales has been mainly performed continuously with passive 
microwave sensors up to now. Passive microwave sensors are used 
predominantly since soil roughness and vegetation hold a stronger 
influence on backscatter than on soil-emitted brightness temperature 
[9].  

The primary disadvantage of passive-only retrievals is the coarse 
spatial resolution of microwave radiometers (> 40 km), which is 
sufficient for large-scale applications, such as global climate 
modelling. Yet, for weather forecasting and agricultural yield 
management, soil moisture information of at least 10 km spatial 
resolution is desired [10]. Active microwave sensors provide a higher 
spatial resolution than passive microwave sensors. Unfortunately, 
studies in recent years have shown that estimations of geophysical 
parameters, more precisely soil moisture, on the basis of radar-only 
retrievals are more prone to errors than radiometer-only or combined 
methods [9]. This might be due to two reasons: Firstly, there are 
difficulties in quantifying all occurring scattering effects [9], [11-13], 
and secondly, the impact of terrain and vegetation morphology are 
often not considered adequately in radar retrievals due to complex 
plant structures [9]. Thus, the combination of both active and passive 
sensor systems can improve monitoring of geophysical parameters, 
such as soil surface roughness, by leveraging the advantages of both 
sensors while overcoming their individual limitations. 

Currently, the existing soil moisture retrieval algorithms for a joint 
processing of radar and radiometer microwave satellite data are 
neural network based approaches [e.g. 14, 15], the change detection 
method [7], [16], [17], [18], and the Soil Moisture Active Passive 
(SMAP) optional [10] and the SMAP baseline [10], [19] downscaling 
algorithms. In all of these algorithms soil roughness is considered 
only as a secondary effect. For one, soil roughness is corrected either 
by collecting multi-configuration data (variety of frequency and/or 
polarization) or by optimizing it within the parameter retrieval 
algorithm until the model predictions coincided with the actual 
measured data. Second, roughness is considered as static and fixed to 
a constant value for single land cover classes according to the 
classification of the International Geosphere-Biosphere Program 
(IGBP), as done within the SMAP L2 & L3 soil moisture algorithms 
[20]. However, Saatchi et al. noted that for a precise monitoring of 
soil moisture, accurate determination of surface roughness is key to 
correctly deriving soil moisture information from radar data [21]. 

B. Parameterization of Surface Roughness in Remote Sensing 
The two fundamental parameters describing soil surface roughness 

are the standard deviation of the surface height variation (or vertical 
RMS height), with its related autocorrelation function (ACF), and the 
horizontal correlation length [8]. The degree of correlation between 
two laterally separated locations of one surface can be estimated 
through the surface correlation function 𝑝(𝜉), with 𝜉 as displacement 
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between those two locations. With increasing separation between two 
locations on the surface, 𝑝(𝜉) decreases, and at a certain distance, the 
so-called horizontal correlation length, the vertical RMS heights at 
the two locations are considered statistically uncorrelated [8]. 

Due to the non-standardized naming convention, the terminology 
for both parameters is ambiguous. Common parameterizations for the 
vertical RMS height are 𝑆𝐷, 𝜎 or 𝑠 [4], [8], [22], [23], and for the 
horizontal correlation length 𝐿𝐶 or 𝑙 [2], [24]. In this study, the 
standard deviation of the surface height variation is denoted by 𝑠 
[cm], with its related ACF [-], and the horizontal correlation length 
by 𝑙 [cm], which is the naming convention already used, e.g., in [1], 
[8], [25], [26]. 

For the sake of completeness, it should be mentioned that passive 
microwave retrievals often refer to a different roughness parameter. 
They are using a radiative transfer model to simulate effects of 
surface roughness on measured brightness temperature 𝑇𝐵𝑃 [4]. This 
model is the analytical zero-order solution to the Radiative Transfer 
equation, commonly referred to as the tau-omega (𝜏 − 𝜔) model [27], 
which is basis for numerous microwave emission models, such as the 
L-band Microwave Emission of the Biosphere (L-MEB) model, 
employed in the current SMOS L2 algorithm [23]. Within these 
models, soil emission is calculated based on a semi-empirical 
approach first proposed by Wang & Choudhury 1981 [28], known as 
𝐻𝑄𝑁 [24] or 𝐻 − 𝑄 model [29]. Wang & Choudhury [28] pointed 
out that the Fresnel equations can be used to describe the reflectivity 
of a smooth but not a rough soil surface. In the latter case, scattering 
of the incident wave occurs in many directions and the reflected parts 
“in the specular direction would be lower than the Fresnel 
reflectivity” [28]. To consider reflectivity losses caused by increasing 
surface roughness, the soil roughness loss factor, ℎ = 𝐻𝑅  · 𝑐𝑜𝑠𝑁𝜃, 
was introduced [4] . Here, another roughness parameter, called 𝐻𝑅 
[23], is used to characterize roughness effects on passive microwave 
signatures.  

In this study, we determine the vertical RMS height and the 
horizontal correlation length of a surface, and can link ℎ with 𝑠 by 
𝐻𝑅 = (2 · 𝑠 · 𝑘)2, where 𝑘 [cm-1] is the wave number (𝑘 =  2𝜋 𝜆⁄ ) 
[4], [22], [23], [30]. In the 𝐻𝑄𝑁 model, the parameter 𝑄 is called the 
polarization mixing factor which accounts for differences in values 
between the horizontal and the vertical polarization. Lastly, within 
the 𝐻𝑄𝑁 model to describe the reflectivity of a rough surface, the 
parameter 𝑁 accounts for multi-angular and dual-polarization 
measurements which is set equal to two in most studies [24], [28].  

In addition to 𝑠 and 𝑙, a third roughness parameter is defined as the 
root-mean-square (RMS) slope 𝑚, “a quantity proportional to the 
ratio of [𝑠 to 𝑙]” [8], indicating the degree of roughness of one 
surface. For a one-dimensional height profile for one random surface, 
𝑚 is defined as 𝑚 = [−𝑠2𝑝′′(0)]1/2, with 𝑝′′(0) as the second 
derivative of the surface correlation function 𝑝(𝜉), evaluated at the 
origin (𝜉 = 0). Since 𝑝(𝜉) is an even function, 𝑝′′(0) is a negative 
quantity [8]. For modeling of electromagnetic scattering at soil 
surfaces, assumptions of the functional forms of 𝑝(𝜉) have to be 
made. The most common forms are the exponential and the Gaussian 
correlation functions. In case of a Gaussian ACF, 𝑚 can be calculated 
by 𝑚 =  √2 𝑠/𝑙 [8], [31]. In theory, in case of an exponential ACF a 
surface does not have a RMS slope. This is due to the fact, that this 
correlation function is not differentiable at the origin, since in order 
to describe a correlation it has to be an even function [32]. Hence, 
Dierking, 2000 presented the derivation of an “effective” RMS slope 
for exponentially correlated surfaces, which always has to be 
considered in relation to the frequency of the acquisition system. 
Therefore, the exponential RMS slope can be calculated by 𝑚 =

 √2/𝜋 ∗ 𝑠/𝑙 ∗ √5𝑘𝑙 − 𝑎𝑟𝑐𝑡𝑎𝑛 (5𝑘𝑙) [31]. The RMS slope 𝑚 is one 
of the validation criteria for the Small Perturbation Model (SPM) [8]. 
In general, for L-band, 𝑚 should be lower than 0.3 [8] or 0.4 [31], 
[32] in case of bare soil surfaces with moderate RMS heights [32]. 

Overall, the type of employed wave scattering model is essential 
for modelling of electromagnetic wave interaction with vegetation or 
soil and should be considered carefully depending on its advantages 
and disadvantages. 

When observing soil surfaces with remote sensing techniques, the 
observed roughness scales are mainly a function of the wavelength of 
the sensing system. In detail, the observable roughness scales can 
either be equivalent or larger (but limited by resolution cell extent) 
than the wavelength of the sensing system, whereas smaller scales 
would not contribute significantly to the signal [8]. In the field of 
microwave remote sensing, surface roughness is mainly observed at 
centimeter scale, since “[a]t microwave frequencies, the wavelength 
is on the order of centimeters to a few tens of centimeters” [8]. 
Exceptions are found for surfaces that include effects of large-scale 
topography when resolution cell sizes are in the order of the 
topographic variations. 

The objective of this study is to simultaneously determine the 
vertical (𝑠) and horizontal (𝑙) components of bare soil surface 
roughness through the combination of active and passive microwave 
data on global scale. 

II. DATA 
Data for this study come from the NASA SMAP mission [3]. This 

mission was launched in 2015 with the aim to exploit synergies 
between active and passive instruments at L-band frequency. It is the 
first soil moisture dedicated space-borne mission developed to 
provide moisture products from active and passive microwave 
satellite data [3], [33]. Unfortunately, the SMAP radar went out of 
service in July 2015 after only three months of operations, but the 
SMAP radiometer continues to deliver high-quality data [34]. Due to 
the radar failure, the investigation period with SMAP data in this 
study is limited to the period from 14th of April until 7th of July 2015.  

The data used in this study are the SMAP L1B Radar Half-Orbit 
Time-Ordered low resolution backscatter |𝑆𝑃𝑃|2 [35], the SMAP L1C 
Radiometer Half-Orbit Time-Ordered Brightness Temperatures 𝑇𝐵𝑃 
[36], the physical soil temperature 𝑇𝑆 and soil moisture obtained from 
the SMAP L3SM_P products [37], all posted on a 36 km Equal-Area 
Scalable Earth-2 (EASE-2) grid [20], [38]. 

In order to guarantee analyses exclusively over bare soils we filter 
the global surface roughness results for vegetation, water or snow. 
We used the vegetation optical depth (VOD) posted on a 36 km 
EASE-2 grid from the SMAP dataset processed with the multi-
temporal dual-channel retrieval algorithm (MT-DCA) [38], and the 
surface condition quality flags for snow and frozen ground from the 
SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km 
EASE-Grid Freeze/Thaw State [39] for filtering. Pixels with VOD 
greater than 0.06, with more than one day covered by snow or frozen 
ground during the investigation period, or with more than 5% water 
fraction are masked out. 
Previous studies emphasized the impact of large-scale roughness 
effects due to topography on satellite microwave observations [e.g. 
40, 41]. Therefore, significant topography is normally excluded or 
treated with special care in satellite data products of various missions 
such as SMOS [42] or SMAP [33]. In this study, effects of 
topography on 36 km-scale SMAP observation-based soil roughness 
estimates are assumed to be non-significant mainly due to two 
reasons: First, after filtering of SMAP retrieval input parameters 
(backscatter, emissivity) only regions with DEM (digital elevation 
model) slope angles, extracted from the SRTM V4 [43], smaller than 
25° are analyzed. Hence, only bare soils with flat to moderate terrain 
are considered. Second, at the resolution cell size of 36 km intra-cell 
variations in DEM slope angles are assumed to compensate 
themselves (co-occurrence of up- and down-slopes) up to a certain 
degree. This might be reflected in non-significant correlations 
(R=0.42 for 𝑠 & R=-0.32 for 𝑙) between SMAP retrieval results and 
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the standard deviation of DEM slopes within the 36 km resolution 
cells. 

III. METHODS 
In the course of developing combined active-passive microwave 

retrieval algorithms for geo-physical parameters (e.g. soil moisture), 
the relationship between the radar backscatter (|𝑆𝑃𝑃|2) and the 
emissivity (𝐸𝑃 =  𝑇𝑏𝑃

/𝑇) of a radiometer was found to be quasi linear 
[20]. For the SMAP algorithms, it is expressed by the two regression 
parameters 𝛼 and 𝛽, with 𝛼𝑃−𝑃𝑃 [-] being the 𝑃-polarized intercept 
and 𝛽𝑃−𝑃𝑃 [-] being the 𝑃-polarized slope of the linear regression (1) 
[20], [44]. 

𝐸𝑃 =  𝛼𝑃−𝑃𝑃 + 𝛽𝑃−𝑃𝑃 ∗ |𝑆𝑃𝑃|2 (1) 

For bare soils, the intercept 𝛼𝑃−𝑃𝑃 is 1, due to the fact that 
vegetation cover is absent [45]. Therefore, the slope 𝛽𝑃−𝑃𝑃 describes 
the covariation between emissivity and backscatter for bare soils and 
is defined as follows [44]: 

𝛽𝑃−𝑃𝑃 =
𝐸𝑃−1

|𝑆𝑃𝑃|2
 =   

𝑇𝑏𝑃
𝑇𝑆

 − 1

|𝑆𝑃𝑃|2
,  (2) 

where 𝑇𝑆 is the surface physical temperature within the top 5 cm of 
the soil [2].  

In (2) 𝛽𝑃−𝑃𝑃 is referred to as the covariation parameter, for 
respective polarization 𝑃. The specific form of (2) allows us to 
calculate 𝛽𝑃−𝑃𝑃 based on electromagnetic interaction models of bare 
surface backscatter and emissivity, 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 [-], like the SPM, the 
Integral Enhanced Method (I2EM) or the Numerical Maxwell Model 
in 3-D (NMM3D), ordered with increasing model complexity.  

𝛽𝑃−𝑃𝑃 can also be calculated from quasi-simultaneously acquired 
active and passive microwave measurements, henceforth 𝛽𝑃−𝑃𝑃 

𝐷𝑎𝑡𝑎 . The 
only limiting factor is that both sensors (radar and radiometer) must 
have the same spatial resolution in order to observe roughness at the 
same scales.  

For surface roughness estimation, we calculate 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 and 𝛽𝑃−𝑃𝑃 

𝐷𝑎𝑡𝑎  
based on simulated and data-based backscatter and emissivity, 
respectively. Then, we minimize the absolute difference between 
model prediction 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 and the calculated observations-driven 
𝛽𝑃−𝑃𝑃 

𝐷𝑎𝑡𝑎  for 𝑠 and 𝑙 estimation by selecting the 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 based on the 

permittivity closest to the actual permittivity of the SMAP L3SM_P 
product (cf. sec. II.) (converted according to the dielectric mixing 
model of Topp et al. [46]).  

In order to avoid invalid combinations of surface roughness 
parameters, we use the RMS slope 𝑚 with 𝑚 <  0.4 to filter the 
retrieval results (cf. sec. I.B.). As mentioned before, this condition is 
also used as validity criterion for the SPM [8], which is equivalently 
valid for I2EM when L-band frequency is applied [47]. The details for 
modelled and data-based covariation parameters are as follows. 
A. Model-based Retrieval of Active-Passive Microwave Covariation 

𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 is calculated by forward simulations of surface emissivity 

(𝐸𝑃) and backscatter (|𝑆𝑃𝑃|2) using (2). We first defined a physically 
meaningful and sufficiently large range of values for 𝑠 ∈ [0, 10] cm 
in 0.1 cm steps, and 𝑙 ∈ [1, 40] cm in 0.5 cm steps. The third input 
parameter is soil permittivity and ranges from 𝜀𝑠 ∈ [2.6, 78] in 0.1 
steps. Within forward wave scattering models several types of ACFs 
for simulations can be assumed. It is a requirement for simulating the 
surface backscatter and emissivity and is detached from in situ or 
remote sensing data. In this study, results for 𝑠 and 𝑙 are calculated 
using either Gaussian or Exponential ACF.  

In this study, we simulate backscatter and emissivity values with 
the I2EM to calculate 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 [8]. The reason for employing the I2EM 
is its common physical basis for backscatter and emissivity based on 
𝑠 and 𝑙, frequency 𝑓, type of ACF, incident angle 𝜃 and soil 

permittivity 𝜀𝑠 [8], [47], [48]. Details on model formulations 
(computer codes) can be found in the supplement of [8]. Because of 
its analytical formulation, I2EM is preferred over computationally 
more expensive numerical methods, such as the NMM3D [49]. 

B. Data-based Retrieval of Active-Passive Microwave Covariation 
The covariation parameter calculated with (2) based on microwave 

observations is called data-based covariation parameter 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎  [-]. 

This parameter is dependent on the observation conditions and the 
sensitivity of the recording system to the natural phenomenon. 

In this study, 𝛽𝑃−𝑃𝑃 
𝐷𝑎𝑡𝑎 , is calculated based on SMAP observations 

specified in section II. 

C. Advantage of Active and Passive Microwave Signature 
Combination 

As an example of how the joint use of radar and radiometer can 
improve soil moisture estimations, Fig. 1 shows overlays of radar-
only and radiometer-only cost functions along permittivity 𝜀𝑠 and 
roughness parameter s simulated with the I2EM. 

 
Similar to Akbar et al. the computed backscatter 𝛥 |𝑆𝑃𝑃|2 (radar-

only) and emissivity 𝛥 𝐸𝑃 (radiometer-only) spaces are displayed for 
a vector of unknowns (x̅ = [𝜀𝑠, 𝑠, 𝑙]) [34]. 𝜀𝑠 ranges from 2.6 to 50 in 
0.1 steps, 𝑠 values from 0.05 cm to 10 cm, and 𝑙 values from 1 cm to 
21 cm, each in 0.1 cm steps. In Fig. 1, we assume 𝑙 = 14 cm and plot 
𝛥 |𝑆𝑃𝑃|2 < −30 dB and 𝛥 𝐸𝑃 < 0.01 [−] to emphasize model 
predictions in the vicinity of the true test point (black cross), which is 

 
Fig. 1.  Overlay of radar-only (𝛥 |𝑆𝑃𝑃|2 = ||𝑆𝑃𝑃|2(𝑥̅) −  |𝑆𝑃𝑃|2

𝑇𝑟𝑢𝑒|
2 [dB]) 

and radiometer-only (𝛥 𝐸𝑃 =  |𝐸𝑃(𝑥̅) − 𝐸𝑃 𝑇𝑟𝑢𝑒
|2 [-]) cost functions modelled 

with I2EM assuming a Gaussian ACF: (A) Overlay for horizontal polarization, 
(B) Overlay for vertical polarization. The black cross is the true test point 
(global minimum) at input parameters 𝜀𝑠 = 15 [−], 𝑠 = 2 𝑐𝑚 and 𝑙 = 14 𝑐𝑚. 
Study similar to Akbar et al., 2017 [34]. 
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the global minimum of the cost function. The results for the 
horizontal polarization (cf. Fig. 1A) and the vertical polarization (cf. 
Fig. 1B) are shown individually since “scattering polarization 
behaviors are different” [34]. 

It can be understood from Fig. 1 that the possible range of valid 
permittivity values that yield 𝛥 |𝑆𝑃𝑃|2 ≅ 0 extend over the entire 
range of initial 𝜀𝑠 values. This holds true for both polarizations. The 
possible range of values for 𝑠 spans from 1.2 cm to 5 cm. In the case 
of the radiometer, the possible range of permittivity values is slightly 
reduced and extends from 14 to 50 for the horizontal polarization (cf. 
Fig. 1A) and from 14 to 30 for the vertical polarization (cf. Fig. 1B). 
However, the range of possible values for 𝑠 now covers the entire 
range of initial 𝑠 values (from 0.05 cm to 5 cm). Therefore, if only 
radars or radiometers are used, it is not clear which pairs (𝜀𝑠, 𝑠) lead 
to most accurate estimates. This disadvantage is further amplified by 
the presence of measurement noise. 

By combining radar- and radiometer-only cost functions, the search 
space for optimum parameter values is significantly reduced, since 
the complementary physics of backscatter and emissivity limits the 
possible parameter search space. Consequently, lower retrieval errors 
can be achieved compared to retrievals only based on one sensor. The 
combined approach effectively reduces the susceptibility of radars to 
permittivity and the susceptibility of radiometers to roughness. 

IV. SENSITIVITY ANALYZES 

A. Simulation-based performance assessment of the retrieval 
algorithm 

 
Fig. 2.  Comparison of correlation coefficient (R), root-mean square error 
(RMSE), and unbiased root-mean square error (ubRMSE) between original 
roughness parameters 𝒔 and 𝒍 and perturbated roughness parameters 𝒔̂ and 𝒍̂ 
from retrieval input parameters with added random noise, along the weighting 
factor 𝒇𝒘 controlling the strength of added random noise ranging from 0% to 
10%. (A) Vertical RMS-height (𝒔, 𝒔̂). (B) Horizontal correlation length (𝒍, 𝒍̂). 

In order to assess the performance of the proposed active-passive 
covariation based retrieval algorithm for surface roughness parameter 

estimation, simulations with noise-added retrieval input parameters 
have been performed. We simulated backscatter coefficients and 
emissivity values with the I2EM for a wide range of roughness and 
permittivity values, based on which we estimated the surface 
roughness parameter 𝑠 and 𝑙 with the proposed approach. Afterwards, 
we added random noise to the I2EM simulated backscatter and 
emissivity. The subsequently estimated surface roughness parameters 
based on the noise-added simulations are denoted by ŝ and 𝑙. The 
random noise is generated based on the variance of the respective 
simulated parameter (backscatter, emissivity), randomly generated 
values uniformly distributed in the interval [0, 1], and a weighting 
factor 𝑓𝑤 for each realization between 0% and 10%. In total, 1001 
realizations are incorporated. The results for 𝑠̂ and 𝑙 are then 
compared to the originally estimated roughness parameters 𝑠 and 𝑙. 
Fig. 2 displays the correlation coefficient (R), root-mean square error 
(RMSE) and unbiased root-mean square error (ubRMSE) between 
original and perturbated surface roughness estimates as a function of 
the weighting factor 𝑓𝑤 (strength of added noise). 

It can be seen that correlation coefficients decrease to 0.85 between 
s and 𝑠̂ and to 0.43 between 𝑙 and 𝑙 for the maximum 𝑓𝑤 of 10%. 
Here, the decrease for surface parameter 𝑙 is more rapid and larger in 
magnitude than for surface parameter 𝑠, showing that 𝑙 is more 
sensitive to added noise on input parameters (backscatter, emissivity). 
The RMSE and ubRMSE increase concurrently with increasing 𝑓𝑤 
from 0 to 1.42 cm for 𝑠 and from 0 to 7.98 cm for 𝑙. In summary, this 
simulation study serves as a first-order performance assessment of 
the proposed retrieval approach. However, validation of the approach 
with real world observations is paramount in a follow-on study. 

B. Analysis of sensitivity on soil permittivity 
As shown in Fig. 1 in an overlay study, the influence on backscatter 

and emissivity is twofold with roughness and permittivity of the soil. 
In order to minimize the influence of permittivity, the covariation 
formulation in (2) (cf. sec. III.) was developed in this study. As (2) 
represents a ratio, it is anticipated that the permittivity-dependent 
reflectivity term in the emissivity and backscatter formulation (cf. 
[44] for modelling details) is comparable and minimizes its influence.  

In order to evaluate this permittivity influence on our proposed 
covariation-based retrieval algorithm, we compared the full range of 
physically reasonable 𝜀𝑠-values with the estimated model-based 
covariation parameter 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙, computed with NMM3D as well as 
I2EM (cf. sec. III.A.). As shown in Fig. 3, 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 remains nearly 
constant over the entire range of permittivity values for both 
employed models except for small permittivity values. 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 
changes only for 𝜀𝑠 lower than approx. ten, representing arid and 
hyper-arid soils. The reason for this is found in the formulation of 
covariation with emission over backscatter (cf. (2), sec. III.). The 
backscatter falls exponentially to very low values for these small 
permittivity values, which in turn causes larger dynamics in 
covariation. However, for 𝜀𝑠 > 10 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙, calculated based on 
backscatter and emissivity from I2EM, is insensitive to permittivity 
dynamics. Consequently, both model simulations (NMM3D & I2EM) 
predict that the retrieval algorithm is independent of permittivity 
variations in case of non-arid soils.  

As the independence of our approach for 𝜀𝑠 > 10 is only based on 
NMM3D and I2EM simulations, the exact permittivity value from 
which on our approach is insensitive may vary with other models, 
depending on the respective model design. 
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Fig.  3.  Influence of soil permittivity 𝜀𝑠 on covariation parameter 𝛽𝑃−𝑃𝑃

𝑀𝑜𝑑𝑒𝑙 modelled with NMM3D or I2EM assuming a Gaussian ACF, 𝑠 of 0.5 cm, 1.5 cm and 3 
cm and the ratio 𝑙/𝑠 of 4 cm, 7 cm and 10 cm. (A) NMM3D results for 𝛽𝐻−𝐻𝐻

𝑀𝑜𝑑𝑒𝑙, (B) NMM3D results for 𝛽𝑉−𝑉𝑉
𝑀𝑜𝑑𝑒𝑙, (C) I2EM results for 𝛽𝐻−𝐻𝐻

𝑀𝑜𝑑𝑒𝑙, (D) I2EM results for 
𝛽𝑉−𝑉𝑉

𝑀𝑜𝑑𝑒𝑙. The y-axes are interrupted since 𝛽𝑃−𝑃𝑃
𝑀𝑜𝑑𝑒𝑙 increases to large negative values for very smooth surfaces. 

V. RESULTS 
This section presents the roughness results obtained from SMAP 
observations using the proposed covariation-based active-passive 
algorithm (cf. (2), sec. III.). Additionally, the results for varying 
ACFs are compared and analyzed in the context of changing weather 
and soil conditions. 

A. Results of Surface Roughness Parameter Estimation 
In the following, the retrieval results for the roughness parameters 

𝑠 and 𝑙 are presented. Note that the proposed approach only applies to 
bare surfaces. These regions are located almost exclusively in North 
Africa, Asia or Australia. For reasons of better readability, we will 
therefore only display results for this sub-region. 

Fig. 4 illustrates the median of estimated 𝑠 and 𝑙 for the sub-region 
Africa-Asia-Australia, which were calculated assuming a Gaussian 
ACF. The results for 𝑠 are between 0.35 cm and 7 cm, with a 
majority of the values (~72.3%) between 0.35 cm and 2.5 cm. The 
lowest values for 𝑠 are found within the Sahara, and the highest 
values at the edges of deserts (e.g. Sahara, Gobi) or in the Arabian 
Peninsula due to increasing vegetation cover (e.g. shrublands) or 
rocks (cf. Fig. 4A). The results for 𝑙 range between 1.75 cm and 20.5 
cm, with correlation lengths mostly (~86.4%) of 6 cm to 16 cm. The 
lowest values for 𝑙 are estimated, for example, in the Sahara or in the 
southern part of Australia. The highest values for 𝑙 are found in the 
northwestern part of Australia as well as in Kazakhstan and Mongolia 
(cf. Fig. 4B). 

Comparing the roughness estimates calculated assuming either a 
Gaussian (cf. Fig. 4) or an exponential ACF (cf. Fig. 5), the 
roughness patterns for the two ACFs generally appear similar. 
However, results for the Gaussian ACF are higher for 𝑠 and lower for 
𝑙 compared to the results for the exponential ACF. About 72.3% of 
all 𝑠 values assuming a Gaussian ACF are between 0.35 cm and 2.5 
cm, whereas over 82.2% of all 𝑠 values are located in the same range 
when assuming an exponential ACF. In addition, over 86.4% of 

values for 𝑙 are located between 6 cm to 16 cm for the Gaussian ACF, 
but only 60.2% are located in that same range for the exponential 
ACF, since overall larger 𝑙 values are retrieved (cf. Fig. 5). 

 

 
Fig. 4.  Temporal median (April-July 2015) of estimated surface roughness 
parameters 𝑠 and 𝑙 from SMAP observations for the sub-region Africa-Asia-
Australia assuming a Gaussian ACF. (A) Vertical RMS height 𝑠, (B) 
Horizontal correlation length 𝑙. 
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Based on estimated roughness results for 𝑠 and with 𝑁 = 2 (cf. sec. 

I.B.), the roughness loss factor ℎ is calculated assuming a Gaussian 
ACF (cf. Fig. 6A) or an exponential ACF (cf. Fig. 6B). The values 
for ℎ are in the range between 0 and 2. As can be seen in Fig. 6, 
assuming a Gaussian ACF, the majority of values (~79.7%) are 

located between 0 and 1.5 with a peak between 0.6 and 0.7 (cf. inset 
of Fig. 6A). In case of an exponential ACF, approx. 86.1% of all 
values for ℎ are located in the range between 0 and 1.5. However, its 
peak is also between 0.6 and 0.7, whereas the magnitude is dropping 
significantly towards higher values. Hence, overall lower values for ℎ 
are obtained assuming an exponential instead of a Gaussian ACF. By 
definition, the spatial patterns of ℎ are equivalent to the ones of 𝑠 (cf. 
Fig. 4-6). 

For a more detailed investigation of the differences between the 
results of both ACFs, we analyzed their power spectra, as described 
in [50]. Defined as “a measure of the amplitude of each Fourier 
component scattered by a rough surface” [51], the power spectrum 
explains the surface type assumed for the ACF. We calculated the 
respective power spectrum for both ACFs along different wave 
numbers according to [50] and normalized them by their respective 
amplitude to allow direct comparisons. 

Fig. 7 shows the normalized power spectra of both ACFs and the 
case for L-band (𝜆 = 21 cm) as a red dashed line. The roughness 
values calculated with an exponential ACF stay below the level of the 
values calculated with Gaussian ACF. Hence, the Gaussian ACF 
describes a rougher soil surface, whereas the exponential ACF 
describes a smoother soil surface at L-band, according to presented 
retrieval results displayed in Fig. 4 and 5. 

 
Fig. 7.  Comparison of the normalized power spectra [-] for the Gaussian 
(black line) and exponential (blue dashdot line) autocorrelation functions 
(ACF) at L-band (red dashed line) along wave number k [cm-1], calculated 
based on (9) and (10) of [50]. 

B. Comparison of Surface Roughness Estimates with Precipitation 
and Soil Conditions  

Analyses are performed to investigate possible correlations 
between estimated roughness parameters and external factors such as 
weather or soil conditions, since precipitation or wind as well as 
specific soil textures potentially influence soil surface roughness. 

For temporal analyzes, we used data from the Yanco Agricultural 
Institute, Bureau of Meteorology, Australia [52] to investigate the 
influence of precipitation on soil surface roughness with time.  

In Fig. 8 we compare the daily in situ precipitation measurements 
and the corresponding SMAP soil moisture [37] values with 
roughness retrieval results at the Yanco test site, Australia.  

For one, the variations in surface roughness parameters across the 
entire period from 14th of April until 7th of July 2015 show 
differences between lowest and highest estimate of 2 cm for 𝑠 and 10 
cm for 𝑙, assuming a Gaussian ACF, as well as differences of 0.75 cm 
for 𝑠 and 8 cm for 𝑙, assuming an exponential ACF. Hence, estimated 
roughness parameters 𝑠 and 𝑙 vary less during the investigated period 
if an exponential ACF is assumed.  

Second, it can be seen that soil moisture and precipitation follow 
each other and correlate, as expected. However, both show no 
correlation with the SMAP-based results for 𝑠 and 𝑙, regardless the 

 
Fig. 5.  Temporal median (April-July 2015) of estimated surface roughness 
parameters 𝑠 and 𝑙 from SMAP observations for the sub-region Africa-Asia-
Australia assuming an exponential ACF. (A) Vertical RMS height 𝑠, (B) 
Horizontal correlation length 𝑙. 

Fig. 6.  Temporal median (April-July 2015) of estimated roughness loss factor 
ℎ for the sub-region Africa-Asia-Australia based on surface roughness 
parameters 𝑠 from SMAP observations. (A) Gaussian ACF, (B) Exponential 
ACF. 
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type of ACF (cf. Fig. 8). This lack of correlation between roughness 
results and precipitation was also tested between roughness and soil 
moisture for the entire sub-region Africa-Asia-Australia (not shown 
here). Analysis of temporal correlation between the change of 
estimated roughness parameters 𝑠 and 𝑙 and the SMAP soil moisture 
dynamics show no significant correlation, whereby the most frequent 
value in the analyzed histograms is zero with a standard deviation of 
0.14. 

 
Fig. 8.  Daily precipitation measurements from the Yanco agricultural 

institute, Bureau of Meteorology, Australia [52] (bright blue bars) and soil 
moisture from SMAP [37] (dark blue stars) in comparison with retrieval 
results for surface roughness parameters 𝑠 and 𝑙, based on SMAP 
observations, assuming a Gaussian ACF (black bars) or exponential ACF 
(gray bars), at the Yanco weather station (NSW, 34.60°S, 146.42°E). 
 

In addition, the estimated roughness patterns were compared with 
VOD from SMAP MT-DCA retrievals [38] and sand or clay fractions 
of soils from [53], both posted on the 36 km EASE-2 grid. 

Fig. 9 shows that retrieval results for 𝑠 are slightly increasing until 
VOD class 0.015 to 0.03 and then slightly decrease. In contrast, 
results for 𝑙 are slightly decreasing until VOD class 0.015 to 0.03 and 
then slightly increase. Despite the overall similar distribution 
patterns, the value ranges for both ACFs are significantly different 
for roughness parameter 𝑙, with much larger ranges for the 
exponential ACF. However, no influence of vegetation could be 
observed at higher VOD values. In extended analyses up to VOD of 
1.12 (not shown here), we get higher values for 𝑠 and lower values 
for 𝑙. Reason for this is that with increasing vegetation canopy we 
rather get a mix of signal effects from ground (roughness) and 
vegetation. The value ranges of estimated 𝑠 and 𝑙 for all VOD classes 
from 0 to 0.06 thus confirm the effective filtering before estimating 
the surface roughness parameters (cf. Section II.). 

 

 
Fig. 9.  Comparison of estimated surface roughness parameters 𝑠 and 𝑙 with 
vegetation optical depth (VOD) [-] [38], both from SMAP observations for the 
sub-region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF. 

 
Fig. 10.  Comparison of estimated surface roughness parameters 𝑠 and 𝑙 
retrieved from SMAP observations with sand fractions from [53] for the sub-
region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF. 

Lastly, we compared surface roughness results with the sand and 
clay fractions used as ancillary data within the SMAP parameter 
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retrievals [53], in order to analyze if soil texture might influence the 
roughness retrieval of a soil surface. Fig. 10 shows that the overall 
distribution patterns are quite similar for both employed ACFs. 
Similar to results displayed in Fig. 9, the value ranges are larger for 
the exponential ACF than for the Gaussian ACF. It can be seen that 
estimated 𝑠 peaks for the smallest sand fraction (0-10%). On the 
contrary, results for estimated 𝑙 are lowest for the smallest sand 
fraction. Additionally, the overall dynamic of 𝑙 along increasing sand 
fractions (from 20% to 90%) is very low with absolute differences in 
median values of only 0.75 cm (Gaussian ACF), and 2.5 cm 
(exponential ACF) (cf. Fig. 10). In summary, the value ranges for 𝑠 
are similar for both ACFs, whereas the ranges for 𝑙 assuming an 
exponential ACF are approximately two to three times larger than for 
the Gaussian ACF. However, the variation between sand fractions is 
reasonable and does not show a distinct correlation between 
roughness parameters and sand fractions. 
When comparing the roughness results with clay fractions (not shown 
here), the most significant finding is that there is no correlation 
between clay fractions and the soil surface roughness parameters, 
similar to the case for sand fractions. Another finding is that there are 
no estimates of 𝑠 and 𝑙 for clay fractions greater than 70%. The fact 
that no roughness results overlap with clay fractions greater than 70% 
is consistent with the global distribution of clay fractions from the 
Harmonized World Soil Database (HWSD) [54]. 

VI. DISCUSSION 
Our covariation-based approach requires equivalent spatial 

resolution for radar and radiometer acquisitions in order to observe 
roughness at the same scales. Most space-borne radar sensors provide 
a much higher resolution than radiometer sensors. In the case of the 
SMAP mission, the radar had a spatial resolution of ~3 km until its 
failure, whereas the radiometer has a resolution of ~40 km [3]. In this 
study we used the SMAP low resolution radar and radiometer data 
with the same spatial resolution of 36 km. Since our approach is 
limited to simultaneously acquired polarimetric active/passive 
microwave datasets with comparable spatial resolutions, data suitable 
beyond this study include the airborne PALS datasets [16], [55] or 
the space-borne AQUARIUS data [56]. Despite these limitations in 
acquisition and resolution, our roughness retrieval technique 
outperforms ground-based sensing methods in terms of acquisition 
time and spatial coverage. 

For evaluation of the proposed approach, we conducted several 
model-based sensitivity studies, compared retrieval results with 
literature values, and investigated possible correlations of roughness 
parameters with precipitation or soil texture. These analyzes will be 
discussed in the following. A direct validation based on experimental 
surface roughness data is not feasible due to the lack of available (in 
situ) datasets at satellite foot print scale (36 km). 

The covariation-based approach including the forward model I2EM 
for the retrieval of 𝑠 and 𝑙 provides the possibility of employing 
varying ACFs and the simultaneous estimation of both roughness 
components with centimeter precision. Although we are only able to 
retrieve a wavelength-dependent roughness scales (here L-band), this 
approach enables the simultaneous estimation of both surface 
roughness parameters 𝑠 and 𝑙 by minimizing the influence of soil 
moisture (cf. sec. IV). The study from [47] showed that the I2EM is in 
good agreement with the SPM at low frequencies and with the 
standard Kirchhoff model (KM) at high frequency regions. 

For SPM the roughness influence on backscatter and emissivity is a 
multiplicative factor to the reflection coefficient, detailed in [44]. 
Hence, forming the ratio in (2) (cf. sec. III.) should cancel the 
permittivity influence, if reflection coefficients in backscatter (Bragg 
scattering) and emission (Fresnel scattering) are identical. This is the 
case for horizontal polarization, but not for vertical polarization [44]. 
Thus, a residual dependence on soil moisture remains, which we 
analyzed in Section IV.B. These analyzes showed that this 

dependence is strongest for low permittivity and approaches towards 
a constant value for higher permittivity. In detail, for permittivity 
values of ten and higher the value of the SPM-based ratio of Bragg to 
Fresnel scattering coefficients is approaching to a constant value of 
six. Therefore, a quasi-independence from soil permittivity for values 
of ten and higher is found when estimating roughness parameters 
which motivates the combined active-passive microwave approach. 
Similar to SPM, analyses presented in this study based on I2EM 
delineated that our covariation-based approach is independent of 
permittivity for values 𝜀𝑠 > 10 (cf. sec. IV.B.). 

However, in this study we are only presenting results for the sub-
region Africa-Asia-Australia since our approach is limited to bare 
soils. These regions are mostly arid to hyper-arid with very low 
permittivity which hardly changes in space and time due to the lack 
of precipitation. Hence, the approach presented in this study 
minimizes the permittivity-dependency in two ways. On the one 
hand, our covariation-based approach is independent of permittivity 
for non-arid soils (𝜀𝑠 > 10) by utilizing the covariation formulation 
(cf. sec. III., (2)). On the other hand, our presented roughness 
retrievals (cf. sec. V.) are quasi-independent of permittivity since we 
are only analyzing bare soils of dry regions with almost static soil 
moisture content. We tested this in a small add-on study where we 
fixed the input permittivity for all bare soil areas to a constant value 
of three and retrieved 𝑠 and 𝑙. Analyses showed that we achieved 
very similar results as with inserting SMAP-based permittivity, with 
average RMSE for the entire sub-region Africa-Asia-Australia of 
0.33 cm (𝑠) or 0.87 cm (𝑙) assuming a Gaussian ACF.  

Within the proposed approach, we consider the two commonly 
applied ACFs of Gaussian and exponential type for characterization 
of the soil surface. Previous studies by [25] and [45] showed that for 
rather smooth bare surfaces the correlation function is close to the 
exponential ACF, whereas for very rough surfaces it is close to the 
Gaussian ACF. Especially for surface roughness of agriculturally 
managed soils, parameterization is more complex and variable, since 
the ACF is affected by the characteristics of tillage, spanning several 
roughness scales. Nonetheless, also for agriculturally managed soils 
most studies confirm an exponential ACF for smooth and Gaussian 
ACF for very rough surfaces (e.g. after plowing) [25], [57], [58]. 
Moreover, previous studies pointed out that surface roughness 
parameters are close to an exponential ACF when sensing over bare 
soils at L-Band [11], [29], [59]. Comparison of roughness results 
outlined the differences between both ACFs. We estimated values for 
𝑠 mainly in the range between 0.35 cm and 2.5 cm and for 𝑙 between 
6 cm to 16 cm, assuming a Gaussian ACF. For the assumption of an 
exponential ACF we estimated overall lower 𝑠 and higher 𝑙 values.  
Thus, the exponential ACF describes a smoother roughness pattern 
whereas the Gaussian ACF describes a rather rough surface 
roughness pattern, equivalent to literature [25], [57], [58]. Ogilvy and 
Foster [51] investigated in a numerical study Gaussian and 
exponential correlation functions of theoretically generated random 
rough surfaces. They found that the exponential ACF tends to 
correlate roughness on a fine scale due to a rapid loss of correlation. 
By contrast, the Gaussian ACF decreases more slowly over distance 
and hence tends to correlate roughness not on a very fine scale [51]. 
Their explanation for varying roughness correlations was found to be 
the shape of the respective power spectra. In the case of the 
exponential ACF, it is a Lorentzian transform of the correlation 
function, whereas in the case of the Gaussian ACF it is given by the 
Fourier transform of the correlation function [51]. Hence, the 
influence of the employed ACF type is distinct and the assumption of 
Zhixiong et al. that for homogeneous agricultural fields the ACF is 
unrelated to surface roughness conditions cannot be confirmed here 
[60]. 

In this study, we also presented results for the roughness loss factor 
ℎ, which is the prominent parameter used in passive microwave 
retrievals based on the 𝐻𝑄𝑁-model [24], [28] (cf. sec. I.B.). Results 
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for ℎ are located mainly between 0 and 1.5 with most values between 
0.6 and 0.7, independent of the employed type of ACF. In the 
literature, typical values for 𝐻𝑅 are located between 0 and 1.7, 
depending on the type and amount of vegetation canopy [24]. These 
correspond to ℎ values between 0 and 1 (cf. sec. I.B.). Values for 𝐻𝑅 
greater than 1 are only estimated for forests, with typical values for 
grass or open shrublands mostly around 0.4 [24], which equals an ℎ 
value of 0.23.  

With our covariation-based approach, where ℎ peaks between 0.6 
and 0.7, we are apparently overestimating ℎ since our study areas are 
limited to bare soils only. Nonetheless, similar studies which are 
estimating the single scattering albedo 𝜔 directly instead within the 
𝜏 − 𝜔 model are also retrieving higher values compared to theoretical 
definitions [61]. Hence, we directly retrieve 𝑠 and subsequently ℎ, 
with estimated roughness values for ℎ fitting to the expected smooth 
to moderately rough bare surfaces. 

For detailed analyses of temporal changes within estimated surface 
roughness parameters and possible correlations with precipitation we 
investigated results at the Yanko station, Australia. Surface roughness 
changes with weather (e.g. precipitation, wind) and agricultural 
managing techniques (e.g. plowing) [1]. Hence, we correlated 
retrieved 𝑠 and 𝑙 parameters with respective precipitation 
measurements over the entire investigation period (April to July 
2015) but could not find significant correlations. Although, 
consequential “meteorological impacts cause a smoothing of the soil 
surface” [1] no such influence of rain events on estimated roughness 
parameters could be detected in this study. Reason for this is most 
likely related to the coarse spatial resolution of the SMAP data, since 
the impacts of rainfall events are limited to the respective affected 
surface. Also the study from [62] showed that precipitation can lead 
to changes in surface roughness, but these changes strongly 
dependent on the initial condition of the soil surface. Further, the 
assumption maybe only applies to agricultural managed soils right 
after tilling, when the soil surface is disturbed. Zhao et al., points to 
various studies regarding soil surface roughness variation due to 
different tillage practices and water erosion processes [62]. 

Surface roughness results and analyzes based on small-scale 
experimental microwave data from NASA’s APEX12 campaign can 
be found in [63]. 

For detailed analyses of globally retrieved roughness patterns from 
SMAP observations, we compared results for 𝑠 and 𝑙 with sand or 
clay fractions. From those analyses, it can be understood that for our 
study setup the respective sand or clay fraction of a soil shows no 
distinct influence on 𝑠 and 𝑙. However, we compared all roughness 
results retrieved from SMAP observations at once. This means that 
we do not consider different types of soils. Thus, comparisons of 
roughness results with individual major soil types to account for sand 
or clay dominated soils is needed to investigate the relation between 
surface roughness and specific soil types in more detail [64]. 

VII. SUMMARY AND CONCLUSIONS 
This study presents a covariation-based active-passive microwave 

retrieval algorithm for simultaneous estimation of vertical and 
horizontal soil surface roughness components (𝑠, 𝑙) from bare soils. 
Within this approach we use radar and radiometer data from both 
horizontal and vertical polarizations with equivalent spatial resolution 
to calculate the active-passive microwave covariation for each 
individual radar-radiometer acquisition pair (no time series needed). 
This way, the approach enables a simultaneous retrieval of both 
roughness parameters (𝑠, 𝑙) over a larger area (compared to in situ 
measurements).  

Results show that the proposed approach leads to valid retrievals of 
𝑠 and 𝑙, with consistencies of more than 90% between model 
simulations and roughness results. 

By conducting a series of model-based (NMM3D & I2EM) 
sensitivity tests, it was found that the influence of permittivity (soil 
moisture) on our covariation-based approach is only significant for 
(hyper-) arid soils with εs < 10 (cf. sec. IV). But for these soils the 
permittivity is small and static along space and time, which enables 
fixing its value to a constant. First tests (not shown) for the sub-
region Africa-Asia-Australia affirm this option. 

We also tested the effectiveness of our filtering of data, in order to 
ensure analyses exclusively over bare soils, based on VOD values. 
Since no influence of vegetation could be observed at higher VOD 
values we concluded that the filtering prior to the estimation of 
roughness results for vegetation was successful.  

Moreover, no significant correlation between precipitation and 
surface roughness parameters could be found despite the often 
applied assumption that soil surface roughness smoothens with 
precipitation. One reason could be that this assumption only applies 
to agricultural managed soils after tilling. Furthermore, results outline 
that changes in surface roughness are not correlated to changes in soil 
moisture.  

Similar to correlations between estimated roughness patterns and 
precipitation or soil moisture, no correlation could be found between 
roughness parameters and sand or clay fractions. The reason for the 
lack of correlations in all correlation analyses might be that we 
investigate global roughness patterns from SMAP observations with 
~36 km spatial resolution where precipitation effects might be non-
dominant in the recorded signal. 

Detailed investigations regarding the influence of the assumed type 
of ACF revealed that both Gaussian and exponential ACF describe 
different types of roughness patterns, and our conclusions are 
consistent with previous studies. Hence, the employed type of ACF 
for surface roughness estimation is crucial and must be considered 
carefully. 

In summary, the retrieved roughness parameters have the potential 
to improve soil moisture estimates, even from satellite data and for 
global scales. This supports soil moisture estimation for 
hydrometeorology or climate research. 

The proposed technique for surface roughness retrieval from 
combined active and passive microwave signatures is currently 
limited to bare soils. In order to enable the estimation under vegetated 
soils, our covariation-based algorithm needs to be updated for 
vegetation-based scattering as well as emission [44]. 
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