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Abstract— An active-passive microwave retrieval algorithm for
simultaneous determination of soil surface roughness parameters (vertical
RMS height (s) and horizontal correlation length (1)) is presented for bare
soils. The algorithm is based on active-passive microwave covariation
including the improved Integral Equation Method (I’EM) and is tested with
global SMAP observations. Estimated retrieval results for s and [ are
overall consistent with values in the literature, indicating the validity of the
proposed algorithm. Sensitivity analyses showed that the developed
roughness retrieval algorithm is independent of permittivity for £; > 10 [].
Furthermore, the physical model basis of this approach (I’EM) allows
application of different autocorrelation functions (ACF), such as Gaussian
and exponential ACFs. Global roughness retrieval results confirm bare
areas in deserts such as Sahara or Gobi. However, the type of ACF used
within roughness parameter estimation is important. Retrieval results for
the Gaussian ACF describe a rougher surface than retrieval results for the
exponential ACF. No correlations were found between roughness results
and the amount of precipitation or the soil texture, which could be due to
the coarse spatial resolution of the SMAP data. The extension of this
approach to vegetated soils is planned as an add-on study.

Index Terms— correlation length, I’)EM, radar, radiometer,
RMS height, SMAP

I. INTRODUCTION

A. Motivation for surface roughness estimation

The estimation and monitoring of geophysical parameters via earth-
observation satellites is crucial for improving our understanding of
global environmental and hydrological processes. Soil roughness is
an essential parameter in physical processes related to water, energy,
and nutrient flow and exchange, since it characterizes the boundary
between the pedosphere and atmosphere [1]. Soil roughness
influences microwave signals from soil surfaces and contributes to
measurements from active as well as passive sensors. Both radar
backscatter |Spp|? [dB] and microwave emissivity Ep [-], based on
brightness temperature TBp [K], are sensitive to surface roughness
(21, [3].

Despite its importance for environmental applications, soil
roughness has played a minor role in land parameter retrieval with
microwave remote sensing in recent decades [4], [5]. For instance,
soil roughness is an important parameter in land surface modeling of
soil erosion applications, because it defines the soil surfaces that
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represent “the interface between the eroding soil body and the erosive
agent” [6], [1], [3], [5].

Retrieval of geophysical parameters such as soil roughness or soil
moisture is mainly performed at lower frequencies, like at L-band
(1.4 GHz), due to the higher sensitivity of active and passive
microwave signatures to soil moisture (under vegetation) compared
to C-band (~ 6 GHz) and higher frequency bands [3], [7], [8].
Further, the operational monitoring of soil moisture content on global
scales has been mainly performed continuously with passive
microwave sensors up to now. Passive microwave sensors are used
predominantly since soil roughness and vegetation hold a stronger
influence on backscatter than on soil-emitted brightness temperature
[9].

The primary disadvantage of passive-only retrievals is the coarse
spatial resolution of microwave radiometers (> 40 km), which is
sufficient for large-scale applications, such as global climate
modelling. Yet, for weather forecasting and agricultural yield
management, soil moisture information of at least 10 km spatial
resolution is desired [10]. Active microwave sensors provide a higher
spatial resolution than passive microwave sensors. Unfortunately,
studies in recent years have shown that estimations of geophysical
parameters, more precisely soil moisture, on the basis of radar-only
retrievals are more prone to errors than radiometer-only or combined
methods [9]. This might be due to two reasons: Firstly, there are
difficulties in quantifying all occurring scattering effects [9], [11-13],
and secondly, the impact of terrain and vegetation morphology are
often not considered adequately in radar retrievals due to complex
plant structures [9]. Thus, the combination of both active and passive
sensor systems can improve monitoring of geophysical parameters,
such as soil surface roughness, by leveraging the advantages of both
sensors while overcoming their individual limitations.

Currently, the existing soil moisture retrieval algorithms for a joint
processing of radar and radiometer microwave satellite data are
neural network based approaches [e.g. 14, 15], the change detection
method [7], [16], [17], [18], and the Soil Moisture Active Passive
(SMAP) optional [10] and the SMAP baseline [10], [19] downscaling
algorithms. In all of these algorithms soil roughness is considered
only as a secondary effect. For one, soil roughness is corrected either
by collecting multi-configuration data (variety of frequency and/or
polarization) or by optimizing it within the parameter retrieval
algorithm until the model predictions coincided with the actual
measured data. Second, roughness is considered as static and fixed to
a constant value for single land cover classes according to the
classification of the International Geosphere-Biosphere Program
(IGBP), as done within the SMAP L2 & L3 soil moisture algorithms
[20]. However, Saatchi et al. noted that for a precise monitoring of
soil moisture, accurate determination of surface roughness is key to
correctly deriving soil moisture information from radar data [21].

B. Parameterization of Surface Roughness in Remote Sensing

The two fundamental parameters describing soil surface roughness
are the standard deviation of the surface height variation (or vertical
RMS height), with its related autocorrelation function (ACF), and the
horizontal correlation length [8]. The degree of correlation between
two laterally separated locations of one surface can be estimated
through the surface correlation function p(§), with ¢ as displacement
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between those two locations. With increasing separation between two
locations on the surface, p(¢) decreases, and at a certain distance, the
so-called horizontal correlation length, the vertical RMS heights at
the two locations are considered statistically uncorrelated [8].

Due to the non-standardized naming convention, the terminology
for both parameters is ambiguous. Common parameterizations for the
vertical RMS height are Sp, o or s [4], [8], [22], [23], and for the
horizontal correlation length Lo or [ [2], [24]. In this study, the
standard deviation of the surface height variation is denoted by s
[cm], with its related ACF [-], and the horizontal correlation length
by [ [cm], which is the naming convention already used, e.g., in [1],
[8], [25], [26].

For the sake of completeness, it should be mentioned that passive
microwave retrievals often refer to a different roughness parameter.
They are using a radiative transfer model to simulate effects of
surface roughness on measured brightness temperature TBp [4]. This
model is the analytical zero-order solution to the Radiative Transfer
equation, commonly referred to as the tau-omega (7 — w) model [27],
which is basis for numerous microwave emission models, such as the
L-band Microwave Emission of the Biosphere (L-MEB) model,
employed in the current SMOS L2 algorithm [23]. Within these
models, soil emission is calculated based on a semi-empirical
approach first proposed by Wang & Choudhury 1981 [28], known as
HQN [24] or H— Q model [29]. Wang & Choudhury [28] pointed
out that the Fresnel equations can be used to describe the reflectivity
of a smooth but not a rough soil surface. In the latter case, scattering
of the incident wave occurs in many directions and the reflected parts
“in the specular direction would be lower than the Fresnel
reflectivity” [28]. To consider reflectivity losses caused by increasing
surface roughness, the soil roughness loss factor, h = Hy - cos™8,
was introduced [4] . Here, another roughness parameter, called Hg
[23], is used to characterize roughness effects on passive microwave
signatures.

In this study, we determine the vertical RMS height and the
horizontal correlation length of a surface, and can link h with s by
Hp = (2-s-k)2, where k [cm!] is the wave number (k = 2m/2)
[4], [22], [23], [30]. In the HQN model, the parameter Q is called the
polarization mixing factor which accounts for differences in values
between the horizontal and the vertical polarization. Lastly, within
the HQN model to describe the reflectivity of a rough surface, the
parameter N accounts for multi-angular and dual-polarization
measurements which is set equal to two in most studies [24], [28].

In addition to s and [, a third roughness parameter is defined as the
root-mean-square (RMS) slope m, “a quantity proportional to the
ratio of [s to []” [8], indicating the degree of roughness of one
surface. For a one-dimensional height profile for one random surface,
m is defined as m = [—s2p"(0)]/2, with p”(0) as the second
derivative of the surface correlation function p(§), evaluated at the
origin (¢ = 0). Since p(§) is an even function, p’’(0) is a negative
quantity [8]. For modeling of electromagnetic scattering at soil
surfaces, assumptions of the functional forms of p(§) have to be
made. The most common forms are the exponential and the Gaussian
correlation functions. In case of a Gaussian ACF, m can be calculated
by m = 2 s/1[8], [31]. In theory, in case of an exponential ACF a
surface does not have a RMS slope. This is due to the fact, that this
correlation function is not differentiable at the origin, since in order
to describe a correlation it has to be an even function [32]. Hence,
Dierking, 2000 presented the derivation of an “effective” RMS slope
for exponentially correlated surfaces, which always has to be
considered in relation to the frequency of the acquisition system.
Therefore, the exponential RMS slope can be calculated by m =
J2/m xs/lx \/5k1 — arctan(5kl) [31]. The RMS slope m is one
of the validation criteria for the Small Perturbation Model (SPM) [8].
In general, for L-band, m should be lower than 0.3 [8] or 0.4 [31],
[32] in case of bare soil surfaces with moderate RMS heights [32].

Overall, the type of employed wave scattering model is essential
for modelling of electromagnetic wave interaction with vegetation or
soil and should be considered carefully depending on its advantages
and disadvantages.

When observing soil surfaces with remote sensing techniques, the
observed roughness scales are mainly a function of the wavelength of
the sensing system. In detail, the observable roughness scales can
either be equivalent or larger (but limited by resolution cell extent)
than the wavelength of the sensing system, whereas smaller scales
would not contribute significantly to the signal [8]. In the field of
microwave remote sensing, surface roughness is mainly observed at
centimeter scale, since “[a]t microwave frequencies, the wavelength
is on the order of centimeters to a few tens of centimeters” [8].
Exceptions are found for surfaces that include effects of large-scale
topography when resolution cell sizes are in the order of the
topographic variations.

The objective of this study is to simultaneously determine the
vertical (s) and horizontal (I) components of bare soil surface
roughness through the combination of active and passive microwave
data on global scale.

II. DAtA

Data for this study come from the NASA SMAP mission [3]. This
mission was launched in 2015 with the aim to exploit synergies
between active and passive instruments at L-band frequency. It is the
first soil moisture dedicated space-borne mission developed to
provide moisture products from active and passive microwave
satellite data [3], [33]. Unfortunately, the SMAP radar went out of
service in July 2015 after only three months of operations, but the
SMAP radiometer continues to deliver high-quality data [34]. Due to
the radar failure, the investigation period with SMAP data in this
study is limited to the period from 14™ of April until 7 of July 2015.

The data used in this study are the SMAP L1B Radar Half-Orbit
Time-Ordered low resolution backscatter |Spp|? [35], the SMAP L1C
Radiometer Half-Orbit Time-Ordered Brightness Temperatures TBp
[36], the physical soil temperature T and soil moisture obtained from
the SMAP L3SM P products [37], all posted on a 36 km Equal-Area
Scalable Earth-2 (EASE-2) grid [20], [38].

In order to guarantee analyses exclusively over bare soils we filter
the global surface roughness results for vegetation, water or snow.
We used the vegetation optical depth (VOD) posted on a 36 km
EASE-2 grid from the SMAP dataset processed with the multi-
temporal dual-channel retrieval algorithm (MT-DCA) [38], and the
surface condition quality flags for snow and frozen ground from the
SMAP L3 Radiometer Global and Northern Hemisphere Daily 36 km
EASE-Grid Freeze/Thaw State [39] for filtering. Pixels with VOD
greater than 0.06, with more than one day covered by snow or frozen
ground during the investigation period, or with more than 5% water
fraction are masked out.

Previous studies emphasized the impact of large-scale roughness
effects due to topography on satellite microwave observations [e.g.
40, 41]. Therefore, significant topography is normally excluded or
treated with special care in satellite data products of various missions
such as SMOS [42] or SMAP [33]. In this study, effects of
topography on 36 km-scale SMAP observation-based soil roughness
estimates are assumed to be non-significant mainly due to two
reasons: First, after filtering of SMAP retrieval input parameters
(backscatter, emissivity) only regions with DEM (digital elevation
model) slope angles, extracted from the SRTM V4 [43], smaller than
25° are analyzed. Hence, only bare soils with flat to moderate terrain
are considered. Second, at the resolution cell size of 36 km intra-cell
variations in DEM slope angles are assumed to compensate
themselves (co-occurrence of up- and down-slopes) up to a certain
degree. This might be reflected in non-significant correlations
(R=0.42 for s & R=-0.32 for l) between SMAP retrieval results and
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the standard deviation of DEM slopes within the 36 km resolution
cells.

III. METHODS

In the course of developing combined active-passive microwave
retrieval algorithms for geo-physical parameters (e.g. soil moisture),
the relationship between the radar backscatter (|Spp|?) and the
emissivity (Ep = Ty, /T) of a radiometer was found to be quasi linear
[20]. For the SMAP algorithms, it is expressed by the two regression
parameters a and 8, with ap_pp [-] being the P-polarized intercept
and Bp_pp [-] being the P-polarized slope of the linear regression (1)
[20], [44].

Ep = ap_pp + Bo_pp * |Sppl? M

For bare soils, the intercept ap_pp is 1, due to the fact that
vegetation cover is absent [45]. Therefore, the slope Sp_pp describes
the covariation between emissivity and backscatter for bare soils and
is defined as follows [44]:

Top _ 4
—Ep1 _ Ts 2)
Br—pe |Sppl? ISppl?”’

where Ts is the surface physical temperature within the top 5 cm of
the soil [2].

In (2) Bp_pp is referred to as the covariation parameter, for
respective polarization P. The specific form of (2) allows us to
calculate Sp_pp based on electromagnetic interaction models of bare
surface backscatter and emissivity, SM°%el [-], like the SPM, the
Integral Enhanced Method (I’EM) or the Numerical Maxwell Model
in 3-D (NMM3D), ordered with increasing model complexity.

Bp_pp can also be calculated from quasi-simultaneously acquired
active and passive microwave measurements, henceforth f59% . The
only limiting factor is that both sensors (radar and radiometer) must
have the same spatial resolution in order to observe roughness at the
same scales.

For surface roughness estimation, we calculate %' and S5%5%
based on simulated and data-based backscatter and emissivity,
respectively. Then, we minimize the absolute difference between

model prediction SM°%€! and the calculated observations-driven
LR for s and | estimation by selecting the SO based on the

permittivity closest to the actual permittivity of the SMAP L3SM_P
product (cf. sec. II.) (converted according to the dielectric mixing
model of Topp et al. [46]).

In order to avoid invalid combinations of surface roughness
parameters, we use the RMS slope m with m < 0.4 to filter the
retrieval results (cf. sec. I.B.). As mentioned before, this condition is
also used as validity criterion for the SPM [8], which is equivalently
valid for ’EM when L-band frequency is applied [47]. The details for
modelled and data-based covariation parameters are as follows.

A. Model-based Retrieval of Active-Passive Microwave Covariation

pModel ig calculated by forward simulations of surface emissivity

(Ep) and backscatter (|Spp|?) using (2). We first defined a physically
meaningful and sufficiently large range of values for s € [0,10] cm
in 0.1 cm steps, and [ € [1,40] cm in 0.5 cm steps. The third input
parameter is soil permittivity and ranges from &g € [2.6,78] in 0.1
steps. Within forward wave scattering models several types of ACFs
for simulations can be assumed. It is a requirement for simulating the
surface backscatter and emissivity and is detached from in situ or
remote sensing data. In this study, results for s and [ are calculated
using either Gaussian or Exponential ACF.

In this study, we simulate backscatter and emissivity values with
the I?EM to calculate B5°%¢" [8]. The reason for employing the I’EM
is its common physical basis for backscatter and emissivity based on
s and [, frequency f, type of ACF, incident angle 6 and soil

permittivity &5 [8], [47], [48]. Details on model formulations
(computer codes) can be found in the supplement of [8]. Because of
its analytical formulation, I’EM is preferred over computationally
more expensive numerical methods, such as the NMM3D [49].

B. Data-based Retrieval of Active-Passive Microwave Covariation

The covariation parameter calculated with (2) based on microwave
observations is called data-based covariation parameter BR%% [-].
This parameter is dependent on the observation conditions and the
sensitivity of the recording system to the natural phenomenon.

In this study, BP%% , is calculated based on SMAP observations

specified in section IL.

C. Advantage of Active and Passive Microwave Signature
Combination

As an example of how the joint use of radar and radiometer can
improve soil moisture estimations, Fig. 1 shows overlays of radar-
only and radiometer-only cost functions along permittivity &5 and
roughness parameter s simulated with the I?EM.

5
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Fig. 1. Overlay of radar-only (4 [Spp|? = ||Spp|*(X) — ISPPlZTruelz [dB])
and radiometer-only (4 Ep = |Ep(X) — Ep,,, e|2 [-]) cost functions modelled
with PEM assuming a Gaussian ACF: (A) Overlay for horizontal polarization,
(B) Overlay for vertical polarization. The black cross is the true test point
(global minimum) at input parameters &, = 15 [—], s =2 cm and [ = 14 cm.
Study similar to Akbar ez al., 2017 [34].

Similar to Akbar et al. the computed backscatter 4 |Spp|? (radar-
only) and emissivity 4 Ep (radiometer-only) spaces are displayed for
a vector of unknowns (X = [&, s, []) [34]. & ranges from 2.6 to 50 in
0.1 steps, s values from 0.05 cm to 10 cm, and [ values from 1 cm to
21 cm, each in 0.1 cm steps. In Fig. 1, we assume | = 14 cm and plot
A|Sppl? < —30dB and AEp <0.01[—] to emphasize model
predictions in the vicinity of the true test point (black cross), which is
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the global minimum of the cost function. The results for the
horizontal polarization (cf. Fig. 1A) and the vertical polarization (cf.
Fig. 1B) are shown individually since “scattering polarization
behaviors are different” [34].

It can be understood from Fig. 1 that the possible range of valid
permittivity values that yield 4 [Spp|? = 0 extend over the entire
range of initial & values. This holds true for both polarizations. The
possible range of values for s spans from 1.2 cm to 5 cm. In the case
of the radiometer, the possible range of permittivity values is slightly
reduced and extends from 14 to 50 for the horizontal polarization (cf.
Fig. 1A) and from 14 to 30 for the vertical polarization (cf. Fig. 1B).
However, the range of possible values for s now covers the entire
range of initial s values (from 0.05 cm to 5 cm). Therefore, if only
radars or radiometers are used, it is not clear which pairs (&, s) lead
to most accurate estimates. This disadvantage is further amplified by
the presence of measurement noise.

By combining radar- and radiometer-only cost functions, the search
space for optimum parameter values is significantly reduced, since
the complementary physics of backscatter and emissivity limits the
possible parameter search space. Consequently, lower retrieval errors
can be achieved compared to retrievals only based on one sensor. The
combined approach effectively reduces the susceptibility of radars to
permittivity and the susceptibility of radiometers to roughness.

IV. SENSITIVITY ANALYZES

A. Simulation-based performance assessment of the retrieval
algorithm

| 2
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Fig. 2. Comparison of correlation coefficient (R), root-mean square error
(RMSE), and unbiased root-mean square error (ubRMSE) between original
roughness parameters s and I and perturbated roughness parameters § and 1
from retrieval input parameters with added random noise, along the weighting
factor f,, controlling the strength of added random noise ranging from 0% to
10%. (A) Vertical RMS-height (s, 8). (B) Horizontal correlation length (I, D).

In order to assess the performance of the proposed active-passive
covariation based retrieval algorithm for surface roughness parameter

estimation, simulations with noise-added retrieval input parameters
have been performed. We simulated backscatter coefficients and
emissivity values with the I’EM for a wide range of roughness and
permittivity values, based on which we estimated the surface
roughness parameter s and [ with the proposed approach. Afterwards,
we added random noise to the I?’EM simulated backscatter and
emissivity. The subsequently estimated surface roughness parameters
based on the noise-added simulations are denoted by § and I. The
random noise is generated based on the variance of the respective
simulated parameter (backscatter, emissivity), randomly generated
values uniformly distributed in the interval [0, 1], and a weighting
factor f,, for each realization between 0% and 10%. In total, 1001
realizations are incorporated. The results for § and [ are then
compared to the originally estimated roughness parameters s and [.
Fig. 2 displays the correlation coefficient (R), root-mean square error
(RMSE) and unbiased root-mean square error (ubRMSE) between
original and perturbated surface roughness estimates as a function of
the weighting factor f,, (strength of added noise).

It can be seen that correlation coefficients decrease to 0.85 between
s and § and to 0.43 between [ and { for the maximum f, of 10%.
Here, the decrease for surface parameter [ is more rapid and larger in
magnitude than for surface parameter s, showing that [ is more
sensitive to added noise on input parameters (backscatter, emissivity).
The RMSE and ubRMSE increase concurrently with increasing f;,
from 0 to 1.42 cm for s and from 0 to 7.98 cm for [. In summary, this
simulation study serves as a first-order performance assessment of
the proposed retrieval approach. However, validation of the approach
with real world observations is paramount in a follow-on study.

B. Analysis of sensitivity on soil permittivity

As shown in Fig. 1 in an overlay study, the influence on backscatter
and emissivity is twofold with roughness and permittivity of the soil.
In order to minimize the influence of permittivity, the covariation
formulation in (2) (cf. sec. III.) was developed in this study. As (2)
represents a ratio, it is anticipated that the permittivity-dependent
reflectivity term in the emissivity and backscatter formulation (cf.
[44] for modelling details) is comparable and minimizes its influence.

In order to evaluate this permittivity influence on our proposed
covariation-based retrieval algorithm, we compared the full range of
physically reasonable eg-values with the estimated model-based
covariation parameter SMO%€l, computed with NMM3D as well as
I2EM (cf. sec. IIILA.). As shown in Fig. 3, BM9%%¢' remains nearly
constant over the entire range of permittivity values for both
employed models except for small permittivity values. BA9%¢
changes only for & lower than approx. ten, representing arid and
hyper-arid soils. The reason for this is found in the formulation of
covariation with emission over backscatter (cf. (2), sec. IIl.). The
backscatter falls exponentially to very low values for these small
permittivity values, which in turn causes larger dynamics in
covariation. However, for & > 10 BN, calculated based on
backscatter and emissivity from I’EM, is insensitive to permittivity
dynamics. Consequently, both model simulations (NMM3D & 1?’EM)
predict that the retrieval algorithm is independent of permittivity
variations in case of non-arid soils.

As the independence of our approach for g5 > 10 is only based on
NMM3D and I’EM simulations, the exact permittivity value from
which on our approach is insensitive may vary with other models,
depending on the respective model design.
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Fig. 3. Influence of soil permittivity & on covariation parameter B}°%' modelled with NMM3D or I’EM assuming a Gaussian ACF, s of 0.5 cm, 1.5 cm and 3
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(B) NMM3D results for B9%¢", (C) PEM results for Bf°%¢!, (D) PEM results for

vy - The y-axes are interrupted since Sp-%p increases to large negative values for very smooth surfaces.

V. RESULTS

This section presents the roughness results obtained from SMAP
observations using the proposed covariation-based active-passive
algorithm (cf. (2), sec. III.). Additionally, the results for varying
ACFs are compared and analyzed in the context of changing weather
and soil conditions.

A. Results of Surface Roughness Parameter Estimation

In the following, the retrieval results for the roughness parameters
s and [ are presented. Note that the proposed approach only applies to
bare surfaces. These regions are located almost exclusively in North
Africa, Asia or Australia. For reasons of better readability, we will
therefore only display results for this sub-region.

Fig. 4 illustrates the median of estimated s and [ for the sub-region
Africa-Asia-Australia, which were calculated assuming a Gaussian
ACF. The results for s are between 0.35 cm and 7 cm, with a
majority of the values (~72.3%) between 0.35 cm and 2.5 cm. The
lowest values for s are found within the Sahara, and the highest
values at the edges of deserts (e.g. Sahara, Gobi) or in the Arabian
Peninsula due to increasing vegetation cover (e.g. shrublands) or
rocks (cf. Fig. 4A). The results for [ range between 1.75 cm and 20.5
cm, with correlation lengths mostly (~86.4%) of 6 cm to 16 cm. The
lowest values for [ are estimated, for example, in the Sahara or in the
southern part of Australia. The highest values for [ are found in the
northwestern part of Australia as well as in Kazakhstan and Mongolia
(cf. Fig. 4B).

Comparing the roughness estimates calculated assuming either a
Gaussian (cf. Fig. 4) or an exponential ACF (cf. Fig. 5), the
roughness patterns for the two ACFs generally appear similar.
However, results for the Gaussian ACF are higher for s and lower for
| compared to the results for the exponential ACF. About 72.3% of
all s values assuming a Gaussian ACF are between 0.35 cm and 2.5
cm, whereas over 82.2% of all s values are located in the same range
when assuming an exponential ACF. In addition, over 86.4% of

values for [ are located between 6 cm to 16 cm for the Gaussian ACF,
but only 60.2% are located in that same range for the exponential
ACEF, since overall larger [ values are retrieved (cf. Fig. 5).

[

20

Fig. 4. Temporal median (April-July 2015) of estimated surface roughness
parameters s and [ from SMAP observations for the sub-region Africa-Asia-
Australia assuming a Gaussian ACF. (A) Vertical RMS height s, (B)
Horizontal correlation length L.
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Fig. 5. Temporal median (April-July 2015) of estimated surface roughness
parameters s and [ from SMAP observations for the sub-region Africa-Asia-
Australia assuming an exponential ACF. (A) Vertical RMS height s, (B)
Horizontal correlation length (.

N

Fig. 6. Temporal median (April-July 2015) of estimated roughness loss factor
h for the sub-region Africa-Asia-Australia based on surface roughness
parameters s from SMAP observations. (A) Gaussian ACF, (B) Exponential
ACF.

Based on estimated roughness results for s and with N = 2 (cf. sec.
.B.), the roughness loss factor h is calculated assuming a Gaussian
ACF (cf. Fig. 6A) or an exponential ACF (cf. Fig. 6B). The values
for h are in the range between 0 and 2. As can be seen in Fig. 6,
assuming a Gaussian ACF, the majority of values (~79.7%) are

located between 0 and 1.5 with a peak between 0.6 and 0.7 (cf. inset
of Fig. 6A). In case of an exponential ACF, approx. 86.1% of all
values for h are located in the range between 0 and 1.5. However, its
peak is also between 0.6 and 0.7, whereas the magnitude is dropping
significantly towards higher values. Hence, overall lower values for h
are obtained assuming an exponential instead of a Gaussian ACF. By
definition, the spatial patterns of h are equivalent to the ones of s (cf.
Fig. 4-6).

For a more detailed investigation of the differences between the
results of both ACFs, we analyzed their power spectra, as described
in [50]. Defined as “a measure of the amplitude of each Fourier
component scattered by a rough surface” [51], the power spectrum
explains the surface type assumed for the ACF. We calculated the
respective power spectrum for both ACFs along different wave
numbers according to [50] and normalized them by their respective
amplitude to allow direct comparisons.

Fig. 7 shows the normalized power spectra of both ACFs and the
case for L-band (4 =21 cm) as a red dashed line. The roughness
values calculated with an exponential ACF stay below the level of the
values calculated with Gaussian ACF. Hence, the Gaussian ACF
describes a rougher soil surface, whereas the exponential ACF
describes a smoother soil surface at L-band, according to presented
retrieval results displayed in Fig. 4 and 5.
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Fig. 7. Comparison of the normalized power spectra [-] for the Gaussian
(black line) and exponential (blue dashdot line) autocorrelation functions
(ACF) at L-band (red dashed line) along wave number k [cm™], calculated
based on (9) and (10) of [50].

B. Comparison of Surface Roughness Estimates with Precipitation
and Soil Conditions

Analyses are performed to investigate possible correlations
between estimated roughness parameters and external factors such as
weather or soil conditions, since precipitation or wind as well as
specific soil textures potentially influence soil surface roughness.

For temporal analyzes, we used data from the Yanco Agricultural
Institute, Bureau of Meteorology, Australia [52] to investigate the
influence of precipitation on soil surface roughness with time.

In Fig. 8 we compare the daily in situ precipitation measurements
and the corresponding SMAP soil moisture [37] values with
roughness retrieval results at the Yanco test site, Australia.

For one, the variations in surface roughness parameters across the
entire period from 14" of April until 7" of July 2015 show
differences between lowest and highest estimate of 2 cm for s and 10
cm for [, assuming a Gaussian ACF, as well as differences of 0.75 cm
for s and 8 cm for [, assuming an exponential ACF. Hence, estimated
roughness parameters s and [ vary less during the investigated period
if an exponential ACF is assumed.

Second, it can be seen that soil moisture and precipitation follow
each other and correlate, as expected. However, both show no
correlation with the SMAP-based results for s and [, regardless the
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type of ACF (cf. Fig. 8). This lack of correlation between roughness
results and precipitation was also tested between roughness and soil
moisture for the entire sub-region Africa-Asia-Australia (not shown
here). Analysis of temporal correlation between the change of
estimated roughness parameters s and [ and the SMAP soil moisture
dynamics show no significant correlation, whereby the most frequent
value in the analyzed histograms is zero with a standard deviation of
0.14.

25 0.1
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Fig. 8. Daily precipitation measurements from the Yanco agricultural
institute, Bureau of Meteorology, Australia [52] (bright blue bars) and soil
moisture from SMAP [37] (dark blue stars) in comparison with retrieval
results for surface roughness parameters s and [, based on SMAP
observations, assuming a Gaussian ACF (black bars) or exponential ACF
(gray bars), at the Yanco weather station (NSW, 34.60°S, 146.42°E).

In addition, the estimated roughness patterns were compared with
VOD from SMAP MT-DCA retrievals [38] and sand or clay fractions
of soils from [53], both posted on the 36 km EASE-2 grid.

Fig. 9 shows that retrieval results for s are slightly increasing until
VOD class 0.015 to 0.03 and then slightly decrease. In contrast,
results for [ are slightly decreasing until VOD class 0.015 to 0.03 and
then slightly increase. Despite the overall similar distribution
patterns, the value ranges for both ACFs are significantly different
for roughness parameter [, with much larger ranges for the
exponential ACF. However, no influence of vegetation could be
observed at higher VOD values. In extended analyses up to VOD of
1.12 (not shown here), we get higher values for s and lower values
for I. Reason for this is that with increasing vegetation canopy we
rather get a mix of signal effects from ground (roughness) and
vegetation. The value ranges of estimated s and [ for all VOD classes
from 0 to 0.06 thus confirm the effective filtering before estimating
the surface roughness parameters (cf. Section II.).
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Fig. 9. Comparison of estimated surface roughness parameters s and [ with
vegetation optical depth (VOD) [-] [38], both from SMAP observations for the
sub-region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF.
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Fig. 10. Comparison of estimated surface roughness parameters s and [
retrieved from SMAP observations with sand fractions from [53] for the sub-
region Africa-Asia-Australia. (A) Gaussian ACF, (B) Exponential ACF.
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Lastly, we compared surface roughness results with the sand and
clay fractions used as ancillary data within the SMAP parameter



Fluhrer et al.: Simultaneous Retrieval of Surface Roughness Parameters from Combined Active-Passive Microwave Observations 9

retrievals [53], in order to analyze if soil texture might influence the
roughness retrieval of a soil surface. Fig. 10 shows that the overall
distribution patterns are quite similar for both employed ACFs.
Similar to results displayed in Fig. 9, the value ranges are larger for
the exponential ACF than for the Gaussian ACF. It can be seen that
estimated s peaks for the smallest sand fraction (0-10%). On the
contrary, results for estimated [ are lowest for the smallest sand
fraction. Additionally, the overall dynamic of [ along increasing sand
fractions (from 20% to 90%) is very low with absolute differences in
median values of only 0.75 cm (Gaussian ACF), and 2.5 cm
(exponential ACF) (cf. Fig. 10). In summary, the value ranges for s
are similar for both ACFs, whereas the ranges for [ assuming an
exponential ACF are approximately two to three times larger than for
the Gaussian ACF. However, the variation between sand fractions is
reasonable and does not show a distinct correlation between
roughness parameters and sand fractions.

When comparing the roughness results with clay fractions (not shown
here), the most significant finding is that there is no correlation
between clay fractions and the soil surface roughness parameters,
similar to the case for sand fractions. Another finding is that there are
no estimates of s and [ for clay fractions greater than 70%. The fact
that no roughness results overlap with clay fractions greater than 70%
is consistent with the global distribution of clay fractions from the
Harmonized World Soil Database (HWSD) [54].

VI. DISCUSSION

Our covariation-based approach requires equivalent spatial
resolution for radar and radiometer acquisitions in order to observe
roughness at the same scales. Most space-borne radar sensors provide
a much higher resolution than radiometer sensors. In the case of the
SMAP mission, the radar had a spatial resolution of ~3 km until its
failure, whereas the radiometer has a resolution of ~40 km [3]. In this
study we used the SMAP low resolution radar and radiometer data
with the same spatial resolution of 36 km. Since our approach is
limited to simultaneously acquired polarimetric active/passive
microwave datasets with comparable spatial resolutions, data suitable
beyond this study include the airborne PALS datasets [16], [S5] or
the space-borne AQUARIUS data [56]. Despite these limitations in
acquisition and resolution, our roughness retrieval technique
outperforms ground-based sensing methods in terms of acquisition
time and spatial coverage.

For evaluation of the proposed approach, we conducted several
model-based sensitivity studies, compared retrieval results with
literature values, and investigated possible correlations of roughness
parameters with precipitation or soil texture. These analyzes will be
discussed in the following. A direct validation based on experimental
surface roughness data is not feasible due to the lack of available (in
situ) datasets at satellite foot print scale (36 km).

The covariation-based approach including the forward model I’EM
for the retrieval of s and [ provides the possibility of employing
varying ACFs and the simultaneous estimation of both roughness
components with centimeter precision. Although we are only able to
retrieve a wavelength-dependent roughness scales (here L-band), this
approach enables the simultaneous estimation of both surface
roughness parameters s and ! by minimizing the influence of soil
moisture (cf. sec. IV). The study from [47] showed that the I’EM is in
good agreement with the SPM at low frequencies and with the
standard Kirchhoff model (KM) at high frequency regions.

For SPM the roughness influence on backscatter and emissivity is a
multiplicative factor to the reflection coefficient, detailed in [44].
Hence, forming the ratio in (2) (cf. sec. IIl.) should cancel the
permittivity influence, if reflection coefficients in backscatter (Bragg
scattering) and emission (Fresnel scattering) are identical. This is the
case for horizontal polarization, but not for vertical polarization [44].
Thus, a residual dependence on soil moisture remains, which we
analyzed in Section IV.B. These analyzes showed that this

dependence is strongest for low permittivity and approaches towards
a constant value for higher permittivity. In detail, for permittivity
values of ten and higher the value of the SPM-based ratio of Bragg to
Fresnel scattering coefficients is approaching to a constant value of
six. Therefore, a quasi-independence from soil permittivity for values
of ten and higher is found when estimating roughness parameters
which motivates the combined active-passive microwave approach.
Similar to SPM, analyses presented in this study based on I’EM
delineated that our covariation-based approach is independent of
permittivity for values £ > 10 (cf. sec. [V.B.).

However, in this study we are only presenting results for the sub-
region Africa-Asia-Australia since our approach is limited to bare
soils. These regions are mostly arid to hyper-arid with very low
permittivity which hardly changes in space and time due to the lack
of precipitation. Hence, the approach presented in this study
minimizes the permittivity-dependency in two ways. On the one
hand, our covariation-based approach is independent of permittivity
for non-arid soils (g5 > 10) by utilizing the covariation formulation
(cf. sec. III., (2)). On the other hand, our presented roughness
retrievals (cf. sec. V.) are quasi-independent of permittivity since we
are only analyzing bare soils of dry regions with almost static soil
moisture content. We tested this in a small add-on study where we
fixed the input permittivity for all bare soil areas to a constant value
of three and retrieved s and [. Analyses showed that we achieved
very similar results as with inserting SMAP-based permittivity, with
average RMSE for the entire sub-region Africa-Asia-Australia of
0.33 cm (s) or 0.87 cm (I) assuming a Gaussian ACF.

Within the proposed approach, we consider the two commonly
applied ACFs of Gaussian and exponential type for characterization
of the soil surface. Previous studies by [25] and [45] showed that for
rather smooth bare surfaces the correlation function is close to the
exponential ACF, whereas for very rough surfaces it is close to the
Gaussian ACF. Especially for surface roughness of agriculturally
managed soils, parameterization is more complex and variable, since
the ACF is affected by the characteristics of tillage, spanning several
roughness scales. Nonetheless, also for agriculturally managed soils
most studies confirm an exponential ACF for smooth and Gaussian
ACF for very rough surfaces (e.g. after plowing) [25], [57], [58].
Moreover, previous studies pointed out that surface roughness
parameters are close to an exponential ACF when sensing over bare
soils at L-Band [11], [29], [59]. Comparison of roughness results
outlined the differences between both ACFs. We estimated values for
s mainly in the range between 0.35 cm and 2.5 cm and for [ between
6 cm to 16 cm, assuming a Gaussian ACF. For the assumption of an
exponential ACF we estimated overall lower s and higher [ values.
Thus, the exponential ACF describes a smoother roughness pattern
whereas the Gaussian ACF describes a rather rough surface
roughness pattern, equivalent to literature [25], [57], [58]. Ogilvy and
Foster [51] investigated in a numerical study Gaussian and
exponential correlation functions of theoretically generated random
rough surfaces. They found that the exponential ACF tends to
correlate roughness on a fine scale due to a rapid loss of correlation.
By contrast, the Gaussian ACF decreases more slowly over distance
and hence tends to correlate roughness not on a very fine scale [51].
Their explanation for varying roughness correlations was found to be
the shape of the respective power spectra. In the case of the
exponential ACF, it is a Lorentzian transform of the correlation
function, whereas in the case of the Gaussian ACF it is given by the
Fourier transform of the correlation function [51]. Hence, the
influence of the employed ACF type is distinct and the assumption of
Zhixiong et al. that for homogeneous agricultural fields the ACF is
unrelated to surface roughness conditions cannot be confirmed here
[60].

In this study, we also presented results for the roughness loss factor
h, which is the prominent parameter used in passive microwave
retrievals based on the HQN-model [24], [28] (cf. sec. I.B.). Results
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for h are located mainly between 0 and 1.5 with most values between
0.6 and 0.7, independent of the employed type of ACF. In the
literature, typical values for Hy are located between 0 and 1.7,
depending on the type and amount of vegetation canopy [24]. These
correspond to h values between 0 and 1 (cf. sec. I.B.). Values for Hg
greater than 1 are only estimated for forests, with typical values for
grass or open shrublands mostly around 0.4 [24], which equals an h
value of 0.23.

With our covariation-based approach, where h peaks between 0.6
and 0.7, we are apparently overestimating h since our study areas are
limited to bare soils only. Nonetheless, similar studies which are
estimating the single scattering albedo w directly instead within the
T — w model are also retrieving higher values compared to theoretical
definitions [61]. Hence, we directly retrieve s and subsequently h,
with estimated roughness values for h fitting to the expected smooth
to moderately rough bare surfaces.

For detailed analyses of temporal changes within estimated surface
roughness parameters and possible correlations with precipitation we
investigated results at the Yanko station, Australia. Surface roughness
changes with weather (e.g. precipitation, wind) and agricultural
managing techniques (e.g. plowing) [1]. Hence, we correlated
retrieved s and [ parameters with respective precipitation
measurements over the entire investigation period (April to July
2015) but could not find significant correlations. Although,
consequential “meteorological impacts cause a smoothing of the soil
surface” [1] no such influence of rain events on estimated roughness
parameters could be detected in this study. Reason for this is most
likely related to the coarse spatial resolution of the SMAP data, since
the impacts of rainfall events are limited to the respective affected
surface. Also the study from [62] showed that precipitation can lead
to changes in surface roughness, but these changes strongly
dependent on the initial condition of the soil surface. Further, the
assumption maybe only applies to agricultural managed soils right
after tilling, when the soil surface is disturbed. Zhao et al., points to
various studies regarding soil surface roughness variation due to
different tillage practices and water erosion processes [62].

Surface roughness results and analyzes based on small-scale
experimental microwave data from NASA’s APEX12 campaign can
be found in [63].

For detailed analyses of globally retrieved roughness patterns from
SMAP observations, we compared results for s and [ with sand or
clay fractions. From those analyses, it can be understood that for our
study setup the respective sand or clay fraction of a soil shows no
distinct influence on s and . However, we compared all roughness
results retrieved from SMAP observations at once. This means that
we do not consider different types of soils. Thus, comparisons of
roughness results with individual major soil types to account for sand
or clay dominated soils is needed to investigate the relation between
surface roughness and specific soil types in more detail [64].

VII.  SUMMARY AND CONCLUSIONS

This study presents a covariation-based active-passive microwave
retrieval algorithm for simultaneous estimation of vertical and
horizontal soil surface roughness components (s,!) from bare soils.
Within this approach we use radar and radiometer data from both
horizontal and vertical polarizations with equivalent spatial resolution
to calculate the active-passive microwave covariation for each
individual radar-radiometer acquisition pair (no time series needed).
This way, the approach enables a simultaneous retrieval of both
roughness parameters (s,l) over a larger area (compared to in situ
measurements).

Results show that the proposed approach leads to valid retrievals of
s and [, with consistencies of more than 90% between model
simulations and roughness results.

By conducting a series of model-based (NMM3D & I’EM)
sensitivity tests, it was found that the influence of permittivity (soil
moisture) on our covariation-based approach is only significant for
(hyper-) arid soils with €5 < 10 (cf. sec. IV). But for these soils the
permittivity is small and static along space and time, which enables
fixing its value to a constant. First tests (not shown) for the sub-
region Africa-Asia-Australia affirm this option.

We also tested the effectiveness of our filtering of data, in order to
ensure analyses exclusively over bare soils, based on VOD values.
Since no influence of vegetation could be observed at higher VOD
values we concluded that the filtering prior to the estimation of
roughness results for vegetation was successful.

Moreover, no significant correlation between precipitation and
surface roughness parameters could be found despite the often
applied assumption that soil surface roughness smoothens with
precipitation. One reason could be that this assumption only applies
to agricultural managed soils after tilling. Furthermore, results outline
that changes in surface roughness are not correlated to changes in soil
moisture.

Similar to correlations between estimated roughness patterns and
precipitation or soil moisture, no correlation could be found between
roughness parameters and sand or clay fractions. The reason for the
lack of correlations in all correlation analyses might be that we
investigate global roughness patterns from SMAP observations with
~36 km spatial resolution where precipitation effects might be non-
dominant in the recorded signal.

Detailed investigations regarding the influence of the assumed type
of ACF revealed that both Gaussian and exponential ACF describe
different types of roughness patterns, and our conclusions are
consistent with previous studies. Hence, the employed type of ACF
for surface roughness estimation is crucial and must be considered
carefully.

In summary, the retrieved roughness parameters have the potential
to improve soil moisture estimates, even from satellite data and for
global scales. This supports soil moisture estimation for
hydrometeorology or climate research.

The proposed technique for surface roughness retrieval from
combined active and passive microwave signatures is currently
limited to bare soils. In order to enable the estimation under vegetated
soils, our covariation-based algorithm needs to be updated for
vegetation-based scattering as well as emission [44].
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