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Abstract—Hyperspectral pansharpening aims to synthesize a
low-resolution hyperspectral image (LR-HSI) with a registered
panchromatic image (PAN) to generate an enhanced HSI with
high spectral and spatial resolution. Recently proposed HS
pansharpening methods have obtained remarkable results using
deep convolutional networks (ConvNets), which typically consist
of three steps: (1) up-sampling the LR-HSI, (2) predicting the
residual image via a ConvNet, and (3) obtaining the final fused
HSI by adding the outputs from first and second steps. Recent
methods have leveraged Deep Image Prior (DIP) to up-sample
the LR-HSI due to its excellent ability to preserve both spatial
and spectral information, without learning from large data sets.
However, we observed that the quality of up-sampled HSIs can
be further improved by introducing an additional spatial-domain
constraint to the conventional spectral-domain energy function.
We define our spatial-domain constraint as the [, distance
between the predicted PAN image and the actual PAN image. To
estimate the PAN image of the up-sampled HSI, we also propose a
learnable spectral response function (SRF). Moreover, we noticed
that the residual image between the up-sampled HSI and the
reference HSI mainly consists of edge information and very
fine structures. In order to accurately estimate fine information,
we propose a novel over-complete network, called HyperKite,
which focuses on learning high-level features by constraining
the receptive from increasing in the deep layers. We perform
experiments on three semi-synthetic and one real HSI datasets to
demonstrate the superiority of our DIP-HyperKite over the state-
of-the-art pansharpening methods. The deployment codes, pre-
trained models, and final fusion outputs of our DIP-HyperKite
and the methods used for the comparisons will be publicly made
available at https:/github.com/wgcban/DIP- HyperKite.git.

Index Terms—Hyperspectral pansharpening, Hyperspectral
image fusion, Deep Image Prior, Spatial and Spectral constraints,
Over-complete representations.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) with a large num-

ber of spectral bands have gained immense attention
in the field of remote sensing due to its applications in
broad research areas such as classification [1], unmixing [2],
anomaly detection [3], change detection [4], etc. However, due
to the limited incident energy available when capturing an
image, hyperspectral imaging systems face trade-offs between
spectral resolution, spatial resolution, and signal-to-noise ratio
(SNR) [5]. For this reason, hyperspectral imaging systems can
provide images with high spectral resolution but with low
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spatial resolution. In contrast, multispectral imaging systems
can provide data with high spatial resolution but with fewer
spectral bands (e.g., panchromatic images or multispectral
images (MSIs) with three or four spectral bands). Low spatial
resolution in HSIs leads to relatively poor performance in
some practical remote sensing applications, such as road
topology extraction [6], and spectral unmixing [7]. Therefore,
full-resolution HSIs with high spatial and spectral resolution
are desired. One way to obtain such ideal HSIs is to fuse
high spectral resolution HSIs with high spatial resolution
PAN/MSIs. This fusion process is called HS pansharpening
in the remote sensing literature, which is indeed a form of
super-resolution [8].

Traditional pansharpening methods can be mainly divided
into five classes [5], [9]: (1) Component Substitution (CS),
(2) Multi-Resolution Analysis (MRA), (3) Bayesian, (4) ma-
trix factorization, and (5) variational. Component substitution
methods rely on substituting the spatial component of the HSI
with the MSI/PAN image. The family of CS contains algo-
rithms such as Gram—Schmidt adaptive (GSA) [10], [11], prin-
cipal component analysis (PCA) [12]-[14], and intensity-hue-
saturation (IHS) [15]. Even though the CS methods usually
generate pansharpened HSIs with accurate spatial information,
sometimes they suffer from critical spectral distortions. The
MRA approaches are based on injecting the spatial details ob-
tained through the multi-scale decomposition of the MSI/PAN
image into the HSL In order to extract the spatial details from
the PAN image, several algorithms have been proposed in the
literature, such as decimated wavelet transform (DWT) [16],
undecimated wavelet transform (UDWT) [17], smoothing
filter-based intensity modulation (SFIM) [18], modulation
transfer function with generalized Laplacian pyramid (MTF-
GLP) [19], and MTF-GLP with high-pass modulation (MTF-
GLP-HPM) [20]. In contrast to the CS methods, the MRA
family performs better in spectral preservation, but is more
sensitive to registration errors which may cause critical distor-
tions in the spatial domain. Due to these inherent advantages
and disadvantages of CS and MRA approaches, there have
been works which attempted to combine both CS and MRA
methods. One of the representatives of hybrid CS and MRA
algorithm is guided filter PCA (GFPCA) [21]. The Bayesian-
based methods also provide a convenient way to regularize
the fusion methods by modeling the posterior distribution of
the target HSI provided that the LR-HSI and MSI/PAN image.
Examples of the algorithms based on the Bayesian inference
framework include convex regularization under a Bayesian
framework (abbreviated as Hysure) [22], naive Bayesian
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Gaussian prior (abbreviated as BF) [23], and sparsity promoted
Gaussian prior (abbreviated as BFS) [24]. Finally, the coupled
non-negative matrix factorization (abbreviated as CNMF) is
one of the examples for matrix factorization-based methods,
which regularizes the fusion problem by using the priors of
spectral unmixing [25]. More recently, the variational methods
have gained a significant attention in HS pansharpening [26]-
[28]. These methods perform pansharpening by modeling
the relationship between PAN, LR-HSI, and HR-HSI images
into an objective function based on some prior knowledge
or certain assumptions. However, the fusion performance of
traditional pansharpening approaches is generally limited due
to their inadequate representation ability [29]. In addition,
the algorithms mentioned above may result in severe quality
degradation when the assumptions do not align with a par-
ticular dataset. Furthermore, most traditional pansharpening
approaches typically reach the optimal solution through an
iterative process, which is time-consuming and inefficient.

Recently, deep learning (DL) models based on convolutional
neural networks (ConvNets) have also been introduced for the
HS pansharpening problem due to ConvNets’ excellent ability
to learn high-level features automatically [8], [29]. ConvNet-
based HS pansharpening methods generally consist of three
steps,

1) Up-sampling step: Up-sampling the LR-HSI to the spa-
tial resolution of the PAN image,

2) Residual reconstruction step: Concatenating the up-
sampled HSI and PAN image along the spectral dimen-
sion and passing it through a residual learning network
to learn the residual image,

3) Final fusion step: Obtaining the final fused HSI by
adding the up-sampled HSI and the residual image.

There have been many methods proposed to up-sample LR-
HSI to the spatial resolution of PAN. In the earliest studies,
nearest-neighbor and bicubic interpolation were the famous
methods to perform up-sampling. However, the methods men-
tioned above conduct upsampling on each band of the LR-
HSI successively, thus ignoring the high spectral correlation of
HSIs which may lead to spectral distortions [30], [31]. In order
to minimize the spectral distortion, data-driven up-sampling
techniques (i.e., deep super-resolution networks) have also
been utilized in HS pansharpening. The LapSRN [32] network
is an example of such a data-driven super-resolution method,
which progressively super-resolves a LR image in a coarse-
to-fine manner in a Laplacian pyramid framework. However,
the LapSRN method requires a large number of images for
training which is impractical in the HS domain due to the
limited number of datasets available to the public. A remedy
to the problem mentioned above was proposed by Ulyanov et
al. [31] where they proposed a deep learning-based super-
resolution framework called deep image prior (DIP). The
proposed method uses a randomly initialized ConvNet to
upsample an image, using its structure as an image prior,
similar to bicubic upsampling. However, this method does not
require any training but produces much cleaner results with
sharper edges. Motivated by the super-resolution performance
of DIP in the RGB domain, researchers have applied DIP

to the HS pansharpening problem [30], [33] and achieved
impressive results. However, we observed that the energy
function defined in HS DIP up-sampling directly applies the
energy function formulated for the RGB DIP process, where
they only impose spectral-domain constraint by computing the
L, distance between the down-sampled version of the target
up-sampled HSI and the LR-HSI. However, the existing HS
DIP methods do not impose any spatial-domain constraint by
utilizing the available PAN image. We address this issue by
introducing an additional spatial-domain constraint to the HS
DIP process as our first contribution.

For residual reconstruction, various ConvNet architectures
have been proposed in the literature to accurately predict
the residual component between the up-sampled HSI and
the reference HSI with less spectral and spatial distortion.
Among those, Giuseppe et al. [34] was the first to intro-
duce simple three-layer ConvNet architecture for the resid-
ual learning. Further, Lin et al. [35] improved the spatial
and spectral prediction capability of Giuseppe’s work (ab-
breviated as HyperPNN) by introducing spectral and spatial
prediction modules. To further enhance the representational
power of ConvNets, attention mechanisms [36] have also
been introduced. Among those, Zheng et al. [30] proposed a
spatial and spectral attention mechanism (abbreviated as DHP-
DARN) for the residual learning in which they cascade several
channel-spatial-attention residual blocks to adaptively learn
more informative channel-wise and spatial-domain features
simultaneously. More recently, Xu et al. [37] proposed a
design (abbreviated as SDPNet) based on two encoder-decoder
networks to extract deep-level features from two types of
source images with densely connected blocks to strengthen
feature propagation. However, we experimentally observed
that most of the existing residual learning methods fail when
predicting the high-frequency information, such as edges and
delicate structures in the residual image. The main reason
for this observation is due to the fact that the increasing
receptive field of the network in the deep layers. Motivated
by this observation, we introduce an over-complete network,
called HyperKite, for residual reconstruction task as our sec-
ond contribution, which constrains the receptive field from
increasing in deep layers thus extracting more high-frequency
information.

The main contributions of this paper are summarized as
follows:

1) A novel spatial constraint is introduced for the DIP
up-sampling process. To the best of our knowledge,
this is the first study that integrates both spatial and
spectral-domain constraints to the DIP up-sampling. The
proposed spatial constraint significantly improves the
spatial and spectral performance measures of the up-
sampled HSIs.

2) An over-complete network, called HyperKite is pro-
posed for the residual reconstruction, which is highly
capable of extracting high-frequency information of the
residual image by appropriately constraining the recep-
tive field of the network.

3) We conduct extensive experiments to clearly demon-
strate the improvements brought in from our contribu-



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH YEAR 3

tions to the HS pansharpening. We compared the fusion
performance of DIP-HyperKite with both conventional
and deep learning-based approaches. The deployment
codes, pre-trained models, and final fusion results of our
DIP-HyperKite as well as the comparison methods in the
results and discussion will be publicly made available at
https://github.com/wgcban/DIP-HyperKite.git.
The rest of this paper is organized as follows. Section II
provides some basics of DIP and over-complete representa-
tions. In Section III, the proposed DIP-HyperKite is described
in detail. Section IV describes the datasets and performance
metrics that we used in the experiments. In Section V, the ex-
perimental results on different datasets are presented. Finally,
the conclusions are drawn in Section VL.

II. RELATED WORK
A. DIP for HSI up-sampling

Generally, ConvNets have an excellent ability to learn real-
istic image priors from a large amount of visual data, placing
them in leading positions on the benchmarks of various image
processing tasks [38], [39]. Contrary to the general opinion on
deep networks that they require large data to capture image
priors, DIP [31] has shown that a randomly initialized network
can capture low-level image statistics before any training.
Concretely, in HS pansharpening, DIP can generate the up-
sampled HSI xg;p of the LR-HSI y with spatial up-sampling
factor B by taking a fixed randomly initialized vector z as
the input, and utilizing the deep network as a parametric
function Xgp = fs(z). Next, the network is optimized over
its parameters 6 to obtain the up-sampled HSI xgi, as follows:

Xgip = IE_H Q(Xaip; ¥) + R(Xqip), (1)

where Q(X4ip; y) is an energy function that controls the fidelity
toward the LR-HSI y, and R(Xg;,) is a regularization function
based on prior knowledge. In [31], it has been shown that the
regularization term R(X4p) can be implicitly substituted by
the deep network. Therefore, the minimization problem in (1)
has simplified to optimizing the network over its parameters
6 as follows:

0% = arg min Q(Xdip; y) s-t. Xaip = fo(2), (2)

where #*denotes the optimal set of parameters of the network.
Furthermore, the most straightforward and commonly utilized
energy function in HS pansharpening is that the L, distance
[35] between the down-sampled version of the up-sampled
HSI xgp and the LR-HSI y as follows:

Q(Xaip; ¥) =||d(xaip) — Y||1 s.t. Xaip = fo(2), (3)

where d(-) denotes the down-sampling operator by a factor of

8.

B. Over-complete ConvNets

Most of the current architectures in deep learning are
“encoder-decoder” [40]-[42] based. Here, the encoder trans-
lates the high-dimensional input to a low-dimensional la-
tent space while the decoder learns to take the latent low-
dimensional representation back to a high-dimensional output.

e Comry 20 + Up-sampling

——+ Conv 2D+ Down-sampling

(a) (B)

Fig. 1. (a) Effect of under-complete ConvNet on receptive field where the
deeper layers focus on a larger region of the input thus extracting high-
level/low-frequency information. (b) Effect of over-complete ConvNet on
receptive field where the deeper layers focus on a much smaller region in
the input thus extracting low-level/high-frequency information.

These type of architectures learn low-level features at their
initial layers and high-level features at their deeper layers.
These are termed under-complete networks as the input is
taken to a lower spatial dimension in the latent space.

In signal processing, over-complete dictionaries are widely
used for their highly robust characteristic [43]. The number
of basis functions here are more than the number of input
signal samples which enables a higher flexibility for capturing
structure in data. In [44], over-complete auto-encoders were
found to be better feature extractors for denoising when com-
pared to under-complete auto-encoders. In an over-complete
network [45], the encoder takes the input data to a higher
spatial dimension unlike a traditional encoder. This is achieved
by using an upsampling layer after every convolutional layer
in the encoder. Using upsampling layers in the encoder causes
the receptive field to be constrained in the deep layers. This
causes the deep layers in the network to learn more fine-
context high-frequency information when compared to under-
complete networks. Increase in receptive field for an over-
complete network can be generalized in an i** layer as follows:

1\ 26-1)
RF(wrtI) = (5) x k x k, (4)

where the initial receptive field of the conv filter is assumed
to be £ x k on the image I. This phenomenon has been
visualized in Fig 1. As shown in Figure 1 (b), by employing
an upsampling layer after every convolutional layer in the
encoder, the over-complete network restricts the receptive field
size to a smaller region which forces the network to learn very
fine edges as it tries to focus heavily on smaller regions. This
is completely different from the conventional under-complete
architectures where they perform downsampling after each
convolution block which makes the network to focus on a
much larger region in the input as shown in Figure 1 (a).

Over-complete networks in deep learning is a new topic
and was initially proposed for medical image segmentation of
small anatomy [45]. It has since been successfully extended to
solve fine-context requiring tasks like fine edge segmentation
of 3D volumes [46], deep subspace clustering [47], MRI
reconstruction [48], adversarial defense against videos [49]
and image restoration problems like single image de-raining
[50].
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Fig. 2. The overall flowchart of our proposed DIP-HyperKite for HS pansharpening. In the first step, we up-sample the LR-HSI y via DIP process to obtain
the up-sampled HSI xg;p. The DIP process takes a fixed noise tensor z as input for a given LR-HSI y, and produces the up-sampled HSI x4, by optimizing
the proposed spatial+spectral energy function Qss over the DIP network parameters 6. In the second step, we take the up-sampled HSI x4, and the PAN
image p as inputs to predict the residual component Xrs using our proposed over-complete network - HyperKite. Finally, the predicted residual image Xres

is added to the up-sampled HSI xg;p to obtain the pansharpen HSI x.

III. METHODOLOGY

The overall flowchart of the proposed DIP-HyperKite for
HS pansharpening is shown in Figure 2. As can be seen from
Figure 2 the proposed method consists of two main steps. In
the first step, the LR-HSI y € R™>"*" with w x h pixels
and [ spectral bands is up-sampled to the spatial resolution of
the PAN image p € R1*PwXBh where 3 denotes the ratio
between spatial resolution of p and y. We denote the output
from the DIP process as Xgp € R'S¥*Fh In the second
step, we train an over-complete deep network which takes up-
sampled HSI xgp and the corresponding PAN images p as
inputs to predict the residual component X,s between the up-
sampled HSI xgip and the reference HSI Xpr.

A. Up-sampling via DIP

As shown in Figure 2, the low resolution HSI y is up-
sampled to the spatial resolution of the PAN image p using
the DIP. This recently introduced DIP method is different
from the other existing up-sampling techniques such as bicubic
interpolation, and LapSRN [51]. The main advantage of DIP
over these conventional methods is that it does not require a
large dataset for training. In other words, for each LR image
y, the DIP network takes a fixed random tensor z as an input
and optimize the network parameters # by minimizing the loss
function @ which is defined in terms of the output up-sampled
image Xgp and available LR-HSI y as given in (3). In contrast,
the LapSRN network utilized in [52] is highly relied upon the
RGB image datasets and the knowledge adaptation techniques.
Furthermore, the bicubic and LapSRN methods up-sample
each band in the HSI separately; thus ignoring the high spatial
correlation between the spectral bands, which results in the
loss of spatial details. Although the DIP method is capable
of producing high-quality upsampling images compared to
the other existing methods, it only utilizes the information

from the LR-HSI y, thus only imposing constraint on the
spectral domain. However, we observed that the quality of
the sampled HSIs can be further improved by incorporating
an additional spatial constraint in the loss function using the
available PAN image p. In the next section we explain our
novel spatial+spectral loss function.

Kdip
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Fig. 3. The proposed learnable spectral response function s, and the
computational procedure of evaluating the spatial loss term Qspatizi. We take
the up-sampled HSI x4, as the input, and feed it in to a Global Average
Pooling (GAP) layer, which yielding a vector with a single entry for each
spectral band. Then we pass it through a gating mechanism by forming a
bottleneck with two fully-connected (FC) layers (1 x 1 convolutions) around
the non-linearity to learn the spectral response of each band. Next, we apply
a Softmax activation function to obtain normalized spectral response s, and
then take the channel-wise multiplication followed by channel averaging to
obtain the estimated PAN image p. Finally, we compute the the L1 distance
between the estimated PAN image p and the reference PAN image p to obtain
the spatial 10ss Qspatial-

1) Proposed spatial+spectral energy function for HS DIP:
As we discussed in Section II-A, the energy function given in
(3) enforces a constraint only in spectral domain by defining
the L; distance between up-sampled HSI xg;, and the LR HSI
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y. Instead, we propose a loss function (denoted by Q) for
HS DIP, which enforces the constraints in both spatial and
spectral domains as follows:

Y sliloxali] | —p| » O

st = ||d(xdlp) - Y||1 +A
—— ievl 1

spectral energy

-

spatial energy

where s € R denotes the spectral response function, s[i]
(scalar) is the spectral response of i-th band, x[i] € R
is the i-th band image of the up-sampled HSI Xgip, @ is the
element-wise multiplication, and A is a regularization constant.
The first term in (5) enforces the spectral constraint on Xgp as
in (3), and the additional second term enforces the constraint
in spatial domain on Xgp by utilizing the available PAN image
p.

In the simplest case, the spectral response function can be
approximated as the average across all spectral bands (ie.
sfz] = 1/I;Vi € [1,1]) [53], [54]. In this scenario, the spatial
loss term in (5) enforces that the average across all the spectral
bands in up-sampled HSI x4, to be close as possible to the
PAN image p, thus assuming a flat (i.e. uniform) spectral
response. However, in general, this assumption is not valid
as spectral response varies with wavelength coverage and dif-
ferent spectral bands describe the same semantic information
across a wide spectral range with varying quality (i.e. PSNR)
[55].

A recent attempt [55] estimates the spectral response func-
tion s by utilizing the larger eigenvalue of the structure tensor
(ST) matrix (originally proposed in Harris corner detection
algorithm [56]). However, this method cannot be directly
utilized in an end-to-end deep learning network due to the
difficulties encountered while performing back-propagation. In
addition, it is highly computationally complex as it requires
to compute derivatives of each band image along both z-
and y-directions at each iteration of learning as part of
constructing the structure tensor matrix. Instead, we propose
a computationally lightweight and learnable spectral response
function which can be easily integrated into the spatial loss
term in (5) and can be simultaneously learned with DIP.

In this part we describe our novel way of estimating
the spectral response function which is computationally
lightweight, differentiable, and can be easily integrated into
the existing DIP learning process. The overall computational
procedure of estimating the spectral response function and
thereby evaluating the spatial energy that we introduced for
the DIP process in (5) is graphically depicted in Figure 3.
First, we assume that the spectral response is proportional
to the ratio of information in each spectral band. The next
problem arises with this assumption is how do we quantify
the information embedded in each spectral band. Motivated by
recently proposed Squeeze-and-Excitation networks, we utilize
global average pooling to quantify the global information
present in each band. Formally, a statistic q € R'*! which
quantifies the informative features in each spectral band is
generated by shrinking the up-sampled HSI xg;, through its

TABLE I
HYPERPARAMETER VALUES OF THE DIP NETWORK.
Hyperparameter Value
z BIZXBRXPw U(O, 0‘1)
Ng = Ny [128,128, 128, 128, 128]
kg = ky [37 3,3,3, 3]
ns [4,4,4,4,4]
ks [1,1,1,1,1]
Optimizer Adam
Number of iterations 1300
Learning rate 0.001
Weight decay 0.0001
Momentum 0.9
Batch size 4

LeakyReLU slope 0.2

spatial dimensions h x w such that the i-th element in q is
calculated as:

x; (1, h). (6)

q(i) =

NE

1

=
Il

1 h
hxwz
h=1

Next, we use a simple gating mechanism to capture the
dependencies among spectral bands using the band-wise de-
scriptor g that we obtained in the previous step. The gating
mechanism consists of two Fully-Connected (FC) layers that
give the network more flexibility to automatically learn the
best spectral response function during the training process,
resulting in better performance than direct normalization that
does not involve any parameters to learn. We parameterize the
spectral response function s by forming a bottleneck with two
FC layers around the non-linearity as follows:

s = o(wy d(w1q)), (7

where ¢ is the Sigmoid activation function, & is the ReLU
non-linearity, and wi, wa are the learnable weight matrices.
Here, we use Sigmoid activation to guarantee that the spectral
responses of all the bands sump up to one.

2) DIP network: Figure 4 illustrates a U-Net like deep
network that we used for the DIP method. The DIP network in-
cludes five down-sampling blocks d[i], five upsampling blocks
ufi], and five skip-connection blocks sk[i] (i = 1,2,..,5).
We use stride convolutions as the down-sampling operator, bi-
linear up-sampling as the upsampling operator, and Lanczos2
as non-linearity. We initialize the input noise vector with
uniform noise between 0 and 0.1. The Table I tabulates the
values of all the hyperparameters of DIP network.

B. Residual learning via over-complete HyperKite

Our motivation to design an over-complete network for the
residual learning task emerged after observing the residual
images between DIP up-sampled image Xg;, and reference HSI
X as visualized in Figure 5. As we can see from Figure 5,
the residual images correspond to different wavelength band
mainly consists of boundary information like edges and other
high-frequency components. In order to accurately capture this
fine information, we design an over-complete HyperKite for
the residual learning as shown in Figure 6.



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH YEAR 6

d[1| d[z] d[3| d|4]

Q

:I

Input noizse &

A v Vv

sk[1] |skf2] ||sk[3] | sk4] ||sk[s]-

|5]

Kalt Falt]

v

ul1]

Ed[ii
ﬁ'

Kali

u[5] u[4| uf3] uf2]
2

Output , ®
HR HS

Conv Downsample BN LeakyRelU Upsample

Ky 1]
® . . f,rl—
N kd i]

*

Fig. 4. The DIP network utilized for the up-sampling process. The DIP network is a U-Net like network which consists of five down-sampling blocks d[i],
five upsampling blocks uli], and five skip-connection blocks sk[i] (i = 1,2, ..,5). The values of all the hyperparameters of DIP network is summarized in

Table L

h 3

Fig. 5. We observed that the residual component Xres (see third column)
between up-sampled HSI x;, (see first column) and the reference HSI yer
(see second column) mainly consists of boundary information and very fine
structures. To support this observation we show the residual component Xres
for three different wavelength bands (i.e. band 10, band 52, and band 100)
in the Pavia Center data set which will be introduced in Section IV-A. This
observation motivated us to use an over-complete network for the residual
learning task, which is highly capable of learning low-level features such
as fine edges and structures by transforming the input image into a higher
dimension. We recommend that readers zoom in on this image to get a close-
up view.

The proposed HyperKite consists of an Initial Feature
Extraction Network (IFEN), a High-dimensional Feature Map-
ping Network (HDFMN), and a Final Residual Reconstruction
Network (FRRN). The input to the HyperKite x;, is obtained
by concatenating the up-sampled HSI x4 and the PAN image
p along the spectral dimension (denoted as [Xgp,p]). The
HyperKite starts with the IFEN layer, where one 3 x 3 con-
volutional layer is applied followed by Batch Normalization
(BN) and LeakyReLU non-linearity to extract initial feature
representation as:

Fp, = firen(Xin), (8)

TABLE II
HYPERPARAMETER VALUES OF HYPERKITE.

Hyperparameter Value

n [32, 64, 128, 128, 64, 32, []
k [3,3,3,3,3,3,3]
Optimizer Adam

Num_it 2500

Learning rate 0.001

Weight decay 0.0001

Momentum 0.9

Batch size 4

LeakyReLU slope 0.2

where firen(-) denotes the 3 x 3 convolution followed by
LeakyReLU and batch normalization, Fp, denotes the ex-
tracted features transformed from x;, in D; € R"OIxSwxsh
dimensional pixel-space, and n[0] is the number of filters in
the convolutional layer. Figure 7 (a) shows six example feature
maps of Fp, for the 20-th patch of the Pavia Center dataset
that we will introduce in Section IV. As we can see from the
figure, the initial feature extraction network fien(-) extract
low-level feature of the input X;,. In order to capture high-level
features that required for the residual learning, we successively
transform the output of IFEN into three higher-dimensional
pixel-spaces by utilizing the “bilinear” up-sampling denoted
as DQ = Rn[z]xz,ﬁwx2ﬁh, D4 = ]Rn[S]Xalﬁwx‘l-,Sh. and DS =
R4IX85wX8BR Then we perform 3 x 3 convolution followed
by BN and LeakyReLU to extract meaningful high-level
features at each higher-dimensional space as:

2 :fDZ(TF'Dl): 9
. = fp, (1 Fp,), (10
s :fDS(TFDA):! (11)

where 1 denotes the “bilinear” interpolation by a factor of
2, fp,(-) : d € {2,4,8} denotes the 3 x 3 convolution
layer followed by BN and LeakyReLU at the d-th higher-
dimensional feature space. Next, we successively transform the
extracted high-level features to the original dimensional space



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH YEAR 7

N Dy
U ¥V T 0 NEYDN
Conv Downsample BN LeakyRelLU Upsample
N (NN N D
A | ~Fp,
L
Dy

t
Q

F‘D!

A

IFEN

[xdhm P]

Fig. 6. The proposed HyperKite architecture for the residual prediction task. We denote the kernel size and the number of filters associated with each
convolution block (shown in red color box) as k[-] and n[-], respectively. The values of all hyperparameters for HyperKite is summarized in Table IL

D, by employing “bilinear” downsampling and skip connec-
tions. Formally, we can define the operations of HDFMN as:

Fp, = fp,(l Fs @ Fy), (12)
Fp, = fp,({ Fp, ® F2), (13)
Fp, =| Fp,, (14)

where | denotes the “bilinear” downsampling by a factor of
2, & denotes the feature concatenation operator, fp,(-) :d €
{0,2,4} denotes the 3 x 3 convolution followed by BN and
LeakyReLU at the d-th dimensional feature space, and Fp, is
the most relevant high-level features obtained at Dy € {0,2,4}
space. After flowing through all the downsampling layers
(decoder blocks), a 3 x 3 convolutional layer is employed to
recover the spectral dimension, and reconstruct the residual
image Xps as:

Xres = fFRN'N(FDl S5 FDI)-; (15)
where frrnn denotes the 3 x 3 convolutional layer followed
by BN and LeakyReLU employed at FRNN.

After carrying out DIP up-sampling and residual prediction
of our DIP-HyperKite, the DIP up-sampled HSIs Xgip and Xyes
are created. Finally, we can obtain the fused HSI x by using
Xgip and Xpes as:

X = Xpes T Xdip- (16)

To this end, we utilize L, loss to optimize HyperKite, which
has been demonstrated as a superior choice for remote sensing
image SR [5], [35] and also experimentally verified to be
effective for improving the fusion accuracy. For the training
set {xF x* 3V where x£ is the k-th input, x%; is the k-th
reference HSI, and N is the total number of training HSIs in

the training set. The L, loss function utilized for HyperKite
training can be defined as follows:

L(@):%Z

Moreover, all the parameter details of our proposed HyperKite
are summarized in Table II. We train our network in Pytorch
framework using an NVIDIA Quadro 8000 GPU. We use
Adam optimizer with a learning rate of 0.001, weight decay
of 0.0001 and momentum 0.9 to train HyperKite. We use a
batch size of 4 and train the network for 2500 epcochs.

(xhp + Fiperie(05) ) = x| - (17)

1

IV. EXPERIMENTAL SETTINGS
A. Datasets

To evaluate the performance of our proposed DIP-HyperKite
for HS pansharpening, we conduct a series of experiments
on three semi-synthetic and one real HSI datasets, which are
described in detail below.

1) Pavia Center dataset: The Pavia Center scene was
captured by the ROSIS camera [57]. The original HSI consists
of 115 spectral bands spanning from 430 to 960 nm. The
spatial size of the original image is 1096 x 1096 pixels, where
a single pixel is equivalent to geometric resolution of 1.3x 1.3
m?. The thirteen noisy spectral bands in the original HST were
discarded, thus resulting in a HSI with 102 spectral bands
spanning from 430 to 860 nm. In addition, a rectangular area
of size 1096 x 381 pixels with no information at the center of
the original HSI was also discarded, and the resulting “two-
part” image with size of 1096 x 715 x 102 was used for
the experiments. Following the same experimental procedure
outlined in [30], we also used only the top-left corner of the
HSI with size of 960 x 640 x 102, and partitioned it into
24 cubic patches of size 160 x 160 x 102 with no overlap,
which constituted the reference images (Xef) of Pavia Center
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Fig. 7. Visualization of filter responses of HyperKite. (a) Feature maps from
the first layer of encoder. (b) Feature maps from the second layer of encoder.
(c) Feature maps from the third layer of encoder. (d) Feature maps from the
third layer of encoder. By restricting the receptive field, HyperKite is able to
focus on edges and smaller regions. Zoom in recommended.

data set. In order to generate PAN images (p) and LR-HSIs
(y) corresponding to each HR-HSI, we utilize Wald’s protocol
[58]. Following the Wald’s protocol, we generate PAN images
(p) of size 160 x 160 by averaging first 61 spectral bands
of HR reference HSI. In order to generate LR-HSIs of size
40 x 40 x 102, we spatially blurred the HR reference HSI with
an 8 x 8 Gaussian filter, and then downsampled the result. The
scaling factor (3) was set to 4 for the Pavia Center dataset.
We randomly select 17 cubic patches for the training, and the
rest of the seven patches forms the testing set of the Pavia
Center dataset.

2) Botswana dataset: The Botswana scene was acquired by
the Hyperion sensor on the NASA’s Earth Observing 1 (EO-1)
satellite. The original Botswana HSI consists of 242 spectral
bands spanning from 400 to 2500 nm with spectral resolution
of 10 nm. The spatial size of the original Botswana image
is 1496 x 256 pixels. We remove the uncalibrated and noisy
spectral bands in the original image, thus resulting in a HSI
with 145 spectral bands. Following [30], we also use only the
top-left corner of the HSI with size of 1200 x 240 x 145, and
partitioned it into 20 cubic patches of size 120 x 120 with
no overlap, which constitute the reference images X of the
Botswana dataset. Next, we generate PAN images p of size
120 % 120 by averaging first 31 spectral bands of HR-HSI. We
utilized same procedure mentioned for Pavia Center dataset to
generate LR-HSIs y except we keep the down-sampling factor
B as 3. We randomly select 14 cubic patches for training, and
the rest of the patches are utilized for testing.

3) Chikusei dataset [59]: The Chikusei scene was captured
by the Headwall Hyperspec-VNIR-C imaging sensor over the
agricultural and urban areas in Chikusei, Japan. The original
Chikusei HSI consists of 128 spectral bands spanning from
363 to 1018 nm. The spatial size of the Chikusei HSI is 2517 x
2335 pixels, where a single pixel is equivalent to geometric

resolution of 2.5 x 2.5 m?. We used top-left corner of the HSI
with size of 2304 x 2304 x 128, and partitioned it into 81
cubic patches of size 256 x 256 x 128 with no overlap, which
constituted the reference images X¢ of Chikusei dataset. Next,
we generate PAN images and LR-HSIs following the same
procedure mentioned for Pavia Center dataset. We randomly
select 61 cubic patches for training, and the rest of the patches
are utilized for testing.

4) Los Angeles Dataset: The Los Angeles dataset is a real
HSI dataset that was acquired over a port in the city of Los
Angeles. This dataset consists of LR-HSI and the HR-PAN
image which were captured by the Hyperion sensor on the EO-
1 satellite and the advanced land imager (ALI), respectively.
The original LR-HSI consists of 242 spectral bands with a
spatial resolution of 30 m. The spatial resolution of PAN
image is 10 m. During the pre-processing, the uncalibrated and
noisy spectral bands of LR-HSI were removed, thus resulting
in a LR-HSI with 145 spectral bands for experimentation.
Therefore, the well-trained model on the Botswana data set
can be generalized to the Los Angeles data set. The size of
the LR-HSI is 120x 120x 145, and the size of the experimental
PAN image is 360 x 360.

Note: The standard deviation (o) of the Gaussian filter
that we use to generate LR-HSIs is calculated as [30], [60]:

= 0.4247p. (18)

1
N \/2 x 2.7725887 /532

B. Performance measures

In order to evaluate the quality of the proposed pan-
sharpening method, we use different image quality mea-
sures. Following [30], we use reference-based metrics such
as Cross-Correlation (CC), Spectral Angle Mapping (SAM),
Root Mean Square Error (RMSE), Errur Relative Globale
Adimensionnelle Desynthese (ERGAS), and Peak Signal to
Noise Ratio (PSNR) to evaluate pansharpening performance
on semi-synthetic datasets where the reference HSI is avail-
able. For the real HSI dataset where the reference image is
not available to evaluate the above performance measures,
we adopt no-reference based performance metrics such as
spectral distortion (D)), spatial distortion (Dg), and Quality
with No-Reference (QNR). These measures have been widely
used in the HSI processing community and are appropriate for
evaluating fusion in spectral and spatial resolutions.

1) CC: The CC metric characterizes the geometric distor-
tion, and is defined as:

CC(X, Xre) IZCCS xt xt),
i=1
where CCS denotes the cross-correlation for a single-band

image as follows:

(19)

CCS(A,B)

> i=1(Aj — pa)(Bj — pp)

ST A P T (By — pp)?
(20)

where n is the total number of pixels in the image, and py =

%ZLI A ; is the sample mean of A. The ideal value of CC
is 1.0, which indicates that the two HSIs are highly correlated.
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2) SAM: SAM is a spectral measure which is defined

SAM(X, Xrf) Z SAM(X;, Xref;)

j=1

where given the vectors a, b € R?,

SAM(a, b) = arccos ((a,7b> ),

(22)
llalllIbll

where < a,b > denotes the inner product between a ~=-
b, and ||-||, is the Ly norm. The SAM is a measure of
spectral shape preservation. The SAM values reported in
experiments are in degrees and thus belongs to (—90, 90].
optimal value of SAM is 0.0. The values of SAM reported in
our experiments have obtained by averaging the values for all
image pixels.

3) RSNR/ RMSE: The reconstruction SNR (RSNR) or root
mean square error (RMSE) is related to the difference between
the reference and fuse images, which is defined as follows:

1
RMSE(X, Xpr) = ——Ix — Xpet|| %, (23)

xeeI2
RSNR(X, Xref) = 10log;o (ﬁ) S )
ref || 7

4) ERGAS: Relative dimensionless global error in synthesis
(ERGAS) calculates the amount of spectral distortion in the
image. The ERGAS measure is defined as:

ol RMSE(x, x%)
ERGAS = 100— IZ( L) ) (25)

i=1
where d is the ratio between the linear resolution of the PAN
image and the HSIs. defined as:

PAN linear spatial resolution

d =
HS linear spatial resolution

; (26)

where RMSE(x’, x%;) = %, and p(x%;) is the sample
mean of the i-th band of X, The ideal value of ERGAS is
0.

5) PSNR: PSNR also assess the fusion quality of each
spectral bands, and the average PSNR is calculated as:

I . 2
1 max (X‘ )

PSNR = — 101 S A 27
a ; o810 (RMSE(x* x;;f)) @D

where max (x;) is the maximum pixel value in the i-th
band of Xpf. A larger value of PSNR indicates a higher
reconstruction quality in spatial information of the fusion
result.

6) QNR: To quantitatively evaluate the pansharpening per-
formance on real data sets which do not have reference HSI,
we adopt the Quality with No-Reference (QNR) metric [30].

The QNR metric can be defined as:
QNR=(1- D,)"(1— Ds)”, (28)

where D, defined the amount of spectral distortion, Dg
quantifies the amount of spatial distortion, and 7 and p are

e frn s maas |

;I’ / *33:\ ::\

A A A bl A
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Fig. 8. The variation of CC, SAM, RMSE, ERGAS, and PSNR with the
regularization constant A in our spectral+spectral energy function Qss for
Pavia Center dataset. We select A = 0.8 as the optimal value of regularization
constant for the Pavia Center dataset by considering all the performance

metrics.
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Fig. 9. The variation of CC, SAM, RMSE, ERGAS, and PSNR with the
regularization constant A in our spectral+spectral energy function Qss for
Botswana dataset. We select A = 0.8 as the optimal value of regularization
constant for the Botswana dataset by considering all the performance metrics.

two coefficients (usuvally set to 1). The amount of spectral
distortion D, is calculated as:

l — 1 Z Z ”Q!h gz Q?{l,!?z”'?,

‘-I1—1 q2=1,427q1

Dy, = (29)

where parameter € is usually set to 1. QJ+% = Q(y”,y%)
and Q1+92 = Q(x%,x%) are denote the Q-index [61] which
calculates the dissimilarities between couples of spectral bands
for LR-HSI y and pansharpen HSI x. The spatial distortion
Dg is calculates as:

b
Ds— TZ Kq

where 4 is typically set to 1, and p, denotes the simulated LR-
PAN image with the same size of LR-HSI. The ideal values
of Dy, Dg, and QNR are 0, 0, and 1, respectively.

=t

Q(y4, )|’ (30)

V. RESULTS AND DISCUSSION

This section presents the results of our proposed DIP-
HyperKite for HS pansharpening, and compares it with the
state-of-the-art methods on the Pavia Center, Botswana, and
Chikusei datasets. For better clarity, we divide this section
into two parts. In the first part (section V-A), we highlight
the contribution from our proposed spatial+spectral energy
function for the DIP up-sampling process and compare it
with available state-of-the-art up-sampling techniques such
as nearest-neighbor, bicubic, LapSRN, and DIP with only
spectral loss. In the second part (section V-B), we present
the final fusion results that we obtain from our proposed
HyperKite network and compare it with classical and deep-
learning-based pansharpening approaches.

A. Effect of the proposed spatial+spectral energy function for
the DIP up-sampling process

As we discussed in Section III-A, the recently proposed
pansharpening methods such as DHP-DARN [30] and DHP
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Fig. 10. The variation of CC, SAM, RMSE, ERGAS, and PSNR with the
regularization constant A in our spectral+spectral energy function Qss for
Chikusei dataset. We select A = 0.8 as the optimal value of regularization
constant for the Chikusei dataset by considering all the performance metrics.

TABLE III
AVERAGE QUANTITATIVE RESULTS FOR DIFFERENT UP-SAMPLING
TECHNIQUES ON THE PAVIA CENTER DATASET.

CC SAM RMSE RSNR ERGAS PSNR
Method x10~1

M {) ) 1 ) M
Nearest-neighbor 0.809 770 1.22 0.63 19.97 19.65
Bicubic 0.840 745 113 11.26 1848 20.36
LapSRN [32] 0.843 7.37 112 11.56 18.16 20.49
DIP+spectral [30] 0.844 804 0.94 1491 1542  21.89
DIP+Qss (ours) 0.900 RB.18 0.58 2436 9.66 26.15

(+66%) - (318%) (634%)  (F1I%)  (+195%)

[33] utilized the DIP process to up-sample the LR-HSI instead
of using the nearest-neighbor, bicubic, or LapSRN techniques
due to its excellent performance. However, we have observed
that the quality of up-sampled HSI can be further improved
by carefully redesigning the loss function used in the DIP
optimization. Instead of only utilizing spectral constraint in
the DIP loss function, we derived a novel loss function with
spectral and spatial constraints. This section demonstrates
the performance improvement brought by our proposed spa-
tial+spectral loss function to the DIP up-sampling process. We
compare DIP with the proposed spatial+spectral loss against
the DIP with spectral loss only. Furthermore, to make the
analysis more comprehensive, we also added a conventional
up-sampling techniques used in the HS pansharpening domain,
such as nearest-neighbor, and bicubic. Further, motivated by
the experimental discussion in [30], we also added the results
from LapSRN [32], which is trained on a large amount of
RGB images.

1) Tuning the hyperparameter X\ in our spatial+spectral
energy function: We start our discussion with the effect of
the regularization constant A in our proposed spatial+spectral
loss function as defined in (5). The variation of CC, SAM,
RMSE, ERGAS and PSNR values when varying the regu-
larization parameter A from 0.0 to 1.0 for the Pavia Center,
Botswana and Chikusei datasets are shown in Figure 8, Figure

TABLE IV
AVERAGE QUANTITATIVE RESULTS FOR DIFFERENT UP-SAMPLING
TECHNIQUES ON THE BOTSWANA DATASET.

CC SAM RMSE RSNR ERGAS PSNR
Method %102

M d ) Y ) M
Nearest-neighbor 0.854 232 .87 20.03 9.08 28.87
Bicubic 0.852 242 .67 20.60 877 29.17
LapSRN [32] 0.858 247 6.27 34.01 827 29.01
DIP+spectral [30] 0.833 240 6.66 3291 875 29.75
DIP+Qss (ours) 0.861 2.30 539 37.80 8.13 31.28

G04%)  (42%)  C140%)  112%)  (-L7%) (+5.2%)

TABLE V
AVERAGE QUANTITATIVE RESULTS FOR DIFFERENT UP-SAMPLING
TECHNIQUES ON THE CHIKUSEI DATASET.

CC SAM RMSE RSNR ERGAS PSNR
Method %102

M ) ) M ) M
Nearest-neighbor 0.861 4.05 9.99 1826 17.03 2373
Bicubic 0.884 3.86 9.31 20.07 15775  24.52
LapSRN [32] 0.885 3.75 8.53 21.37 1433 25.06
DIP+spectral [30] 0.869 4.64 1.54 24.16  13.80 25.75
DIP+Qss(ours) 0.885 5.05 5.56 29.69 10.18 28.06

“01%) - (263%)  (+229%)  (262%)  (+8.9%)

9, and Figure 10, respectively. As can be seen from these
figures, as the value of the regularization constant A increases,
the performance metrics also begin to improve, then hit a
saturation point, and then degrade, for all three data sets.
Therefore, we carefully select the regularization constant A
for each dataset by considering all the performance metrics.
For example, consider the variation of the performance metrics
with the regularization constant A for the Pavia Center dataset
which is shown in Figure 8. As we can see, when the value of
the regularization constant increases from 0.0 to 0.8, we can
see that CC, RMSE, ERGAS, and PSNR start to improve, and
when A increases beyond 0.8 the performance metrics start to
degrade. Therefore, we set A = 0.8 as the optimal value of
the regularization constant of our proposed spatial+spectral
energy term for the Pavia Center dataset. The variation in
performance metrics with the regularization parameter A for
the Botswana and Chikusei datasets are also shown in Figure
9 and Figure 10, respectively. Following the same analysis we
described for the Pavia Center dataset, we select A = 0.8
as the optimal value of the regularization constant for the
Botswana and Chikusei datasets. Note that the performance
improvement bringing from our proposed spatial+spectral loss
function for the DIP upsampling process. Under the optimal
regularization constant (A = 0.8), our spatial+spectral energy
function improves the quality of up-sampled HSIs over the
spectral loss (equivalent to A = 0 point in Figure 8, 9,
and 10) in-terms of CC, RMSE, ERGAS, and PSNR metrics
by 6.64%, 37.8%, 63.4%, 37.3%, and 19.5%, respectively
for the Pavia Center dataset. For the Botswana dataset, our
proposed loss function improves CC, SAM, RMSE, ERGAS,
and PSNR metrics over the DIP with spectral loss by 3.3%,
4.2%, 19.1%, 14.7%, 7.0%, and 5.2%, respectively. Similarly
for the Chikusei dataset, our method improves CC, RMSE,
ERGAS, and PSNR metrics compared to DIP with spectral
loss by 1.8%, 26.3%, 22.9%, 26.2%, and 8.9%, respectively.

Discussion on the regularization constant A: Let us
first consider the case where the regularization constant A
is set to zero. This is equivalent to the case where we only
have the spectral constraint. In this case, the DIP network
minimizes the distance between the down-sampled version of
the up-sampled HSI and the LR-HSI. Since the down-sampling
operator acts as a low-pass filter in the frequency domain,
what DIP network actually minimizes is that the distance
between the low-pass version of the up-sampled HSI and the
LR-HSL Because of this reason, the up-sampled HSI from
the DIP network trained only with spectral constraint lacks
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Fig. 11. Up-sampled images of 1-st patch (in 1-st row) and 11-th patch
(in 2-nd row) of Pavia Center dataset. (a) LR-HSL (b) Nearest-neighbor. (c)
Bicubic. (d) LapSRN [32]. (e) DIP with only spectral energy [30]. (f) DIP
with our spatial+spectral energy (Qss;A = 0.8). (g) Reference. The RGB
image is generated by utilizing the 10-th, 30-th, and 60-th bands of the HSI
for blue, green and red bands, respectively.

Fig. 12. Up-sampled images of 12-th (in first row) and 14-th (in second row)
patch of Botswana dataset. (a) LR-HSIL (b) Nearest-neighbor. (c) Bicubic.
(d) LapSRN [32]. (e) DIP with only spectral energy [30]. (f) DIP with our
spatial+spectral energy (Qss; A = 0.8). (g) Reference. The RGB image is
generated by utilizing the 10-th, 35-th, and 61-th bands of the HSI for blue,
green and red bands, respectively.

the high frequency components such as edge information and
fine structures. Now let us consider the case where we have
both spatial and spectral constraint in the DIP loss function.
As we described in Section III-A, we combined the spatial
and spectral constraints via regularization parameter A. The
value of A controls the fidelity of the predicted PAN image
towards the actual PAN image. Since the predicted PAN image
and the up-sampled HSI are coupled via spectral response
function, to make the predicted PAN image close as possible
to the actual PAN image, the DIP network tries to predict
some of the high-frequency components such as edges and
fine structures in the PAN image, while maintaining the low-
pass version of the up-sampled HSI close to the LR-HSIL
Therefore, the regularization constant what actually controls
is the amount of high-frequency components fused from PAN
image to the up-sampled HSI. This explain the observation
that we made from Figure 8, Figure 9, and Figure 10, where

Fig. 13. Up-sampled images of 37-th (in first row) and 50-th (in second
row) patch of Chikusei dataset. (a) LR-HSI. (b) Nearest-neighbor. (c) Bicubic.
(d) LapSRN [32]. (e) DIP with only spectral energy [30]. (f) DIP with our
spatial+spectral energy (Qss (A = 0.8). (g) Reference. The RGB image is
generated by utilizing the 12-th, 20-th, and 29-th bands for blue, green and
red bands, respectively.

when the value of the regularization parameter increases the
DIP network embed some of the high-frequency information
to the up-sampled HSI, which ultimately helps to improve the
quality of the up-sampled image. However, when the value
of the regularization constant is large, the spatial loss term
starts to dominate the loss function, and resulting in drop
of spectral-domain performance metrics such as SAM and
ERGAS. Therefore, we can achieve high-quality up-sampled
HSIs by appropriately controlling the regularization parameter
in spatial+spectral energy function.

2) Comparison of DIP with the proposed spatial+spectral
loss with state-of-the-art up-sampling techniques: In the pre-
vious section, we determined the optimal value of the reg-
ularization constant A for our proposed spatial+spectral loss
function for the three datasets. In this section, we compare DIP
with our spatial+spectral loss against DIP with only spectral
loss, and other commonly used up-sampling techniques such
as nearest neighbor, bicubic, and LapSRN, both qualitatively
and quantitatively.

Table III summarizes the quantitative results of nearest-
neighbor, bicubic, LapSRN, and DIP up-sampling methods for
the Pavia Center dataset. For this dataset, our proposed DIP
method improves the quality of up-sampled images in terms of
CC, SAM, RSNR, ERGAS, and PSNR performance measures
by 6.6%, 37.3%, 63.4% 37.3%. and 19.5%, respectively. We
have also noticed that this improvement is accompanied by
a drop in the SAM index which is around 1.8% compared
to the DIP with spectral loss. This fall in the SAM index is
not that significant compared to the improvements we have
achieved in terms of all other performance measures. Further,
we can cross-verify these quantitative results with qualitative
results that we have shown in Figure 11 for the Pavia Center
dataset. We can see that the DIP up-sampled images with our
proposed spatial+spectral constraint looks much more closer
to the reference image, and have predicted very fine structures
and edges compared to other upsampling methods.

We also summarize the quantitative results for different
up-sampling methods for the Botswana dataset in Table IV.
As we can see, DIP with the proposed spatial+spectral loss
improves the quality of up-sampled images in terms of all
the performance metrics by a significant margin: CC value
increased by 0.4%, SAM value reduced by 4.3%, RMSE value
reduced by 14.0%, RSNR value improved by 11.2%, ERGAS
value reduced by 1.7%, and PSNR value value increased by
5.2%. Also, we can verify these quantitative results with the
qualitative results shown in Figure 12 for the Botswana dataset.
Similar to the qualitative results that we have observed for the
Pavia Center dataset, we can see the the up-sampled images
using DIP with our proposed spatial+spectral loss is much
more closer to the reference HSL

Finally, we summarize the quantitative results for different
upsampling methods for the Chikusei dataset in Table V. In
this case also, the performance of DIP up-sampled images
with our proposed spatial+spectral loss outperforms five out of
six performance measures that we considered for the analysis.
As we can see from the Table V, our DIP method has
increased the value of CC by 0.1%, has decreased the value
of RMSE by 26.3%, has increased the RSNR by 22.9%, has
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TABLE VI
THE AVERAGE QUANTITATIVE RESULTS ON THE PAVIA CENTER DATASET.

TABLE VIII
THE AVERAGE QUANTITATIVE RESULTS ON THE CHIKUSEI DATASET.

CC SAM RMSE RSNR ERGAS PSNR
Method %x10—2

yp) }) [£9)] (1) ) yp)
GFPCA [21] 0.883 476 1.98 3422 7.0 37.05
BF [23] 0.903 5.15 1.94 3440 6.62 37.89
BES [24] 0917 469 172 36.84 6.39 37.99
SFIM [18] 0928 379 143 40.51 6.43 39.55
GS [11] 0.733 564 296 26.37 8.17 35.13
GSA [11] 0.943 352 142 40.73 4.30 41.38
MTE-GLP-HPM [20] 0929 382 145 3938 6.40 39.85
CNME [25] 0.900 472 1.91 36.73 5.75 39.65
MTE-GLP [19] 0.938 3.81 1.52 3938 4.41 41.05
HySure [22] 0960 298 1.13 4524 3.69 43.14
HyperPNN [35] 0946 397 111 46.55 4.77 41.57
DHP-DARN [30] 0.953 360 1.05 46.66 4.44 42,24
DIP-HyperKite (ours) 0.974 2.85 1.03 4697 3.62 43.53

CC SAM RMSE RSNR ERGAS PSNR
Method %x10—2

(1) }) [£9)] (1) ) yp)
PCA [13] 0.845 B92 345 3432 6.64 31.26
GFPCA [21] 0.902 8.31 3.98 29034 744 29.09
BF [23] 0918 960 3.44 31.99 6.63 30.22
BES [24] 0.925 8.10 3.05 3437 6.00 31.09
SFIM [18] 0946 6.76 2.55 3747 543 32.61
GS [11] 0.961 6.62 2.55 38.08 4.95 3293
GSA [11] 0950 7.15 234 39.60 4.70 33.52
MTE-GLP-HPM [20] 0955 6.81 2.25 4070 4.77 33.97
CNMEF [25] 0.960 6.64 2.20 40.79 4.39 34.14
MTE-GLP [19] 0.956 6.55 220 40.70 445 34.12
HySure [22] 0966 6.13 1.80 44.60 3.77 3591
HyperPNN [35] 0.967 6.09 1.67 48.62 3.82 36.70
DHP-DARN [30] 0969 643 1.56 49.17 3.95 37.30
DIP-HyperKite (ours) 0.980 5.61 1.29 51.72 285 38.65

TABLE VII

THE AVERAGE QUANTITATIVE RESULTS ON THE BOTSWANA DATASET.

CC SAM RMSE RSNR ERGAS PSNR
Method %1072

M ) 1 ¢ M
PCA [13] 0946 222 174 57.10 2.89 28.17
GFPCA [21] 0.925 248 1.97 53.81 3.18 26.75
BF [23] 0919 241 186 5543 3.37 26.88
BES [24] 0918 239 1.85 55.52 3.38 2691
SFIM [18] 0.890 331 256 48.30 298 21.27
GS [11] 0.949 2.17 1.68 51.55 274 28.32
GSA [11] 0964 186 1.28 63.02 2.16 30.78
MGH [20] 0962 190 1.33 62.23 2.15 3047
CNMF [25] 0.951 228 1.38 6090 248 29.63
MG [19] 0963 1.88 1.32 6223 2.16 3045
HySure [22] 0963 193 119 63.80 2.12 30.97
HyperPNN [35] 0.957 192 1.06 66.22 240 29.00
DHP-DARN [30] 0954 191 105 66.22 2.35 29.98
DIP-HyperKite (ours) 0.974 1.68 0.96 67.98 1.89 3212

decreased the ERGAS by 26.2%, and has increased the PSNR
by 8.9% over the state-of-the-art results. Similar to the Pavia
Center dataset, in this dataset also we have observed that
the drop in SAM index; however this is negligible compared
to the performance gained in terms of the other quantitative
measures. Furthermore, following the similar trend with other
datasets, we have included the qualitative results in Figure 13
for the Chikusei dataset. From the qualitative results also we
can see that DIP with our spatial+spectral constraint is able
to predict very fine structures and edges more accurately than
the other methods.

In summary, we have shown that the DIP method with our
proposed spatial+spectral constraints outperforms the state-of-
the-art up-sampling methods with a significant margin in all
the datasets that we have considered in this study. In the next
section, we present final fusion results and compare them
with state-of-the-art pansharpening algorithms, qualitatively
and quantitatively.

B. Final fusion results on semi-synthetic HS datasets:

In this section we compare final fusion results from our DIP-
HyperKite with the state-of-the-art pansharpening approaches
such as PCA [13], GFPCA [21], BF [23], BFS [24], SFIM
[18], GS [11], GSA [11], MTF-GLP-HPM [20], CNMF [25],

Fig. 14. Visual results generated by different pansharpening algorithms for
the first (in first and second column), third (in third and fourth column), 12-th
(in fifth and sixth column), 20-th (in seventh and eight column), 21-st (in
nine and tenth column) patches of the Pavia Center dataset. (a) SFIM [18].
(b) GS [11]. (c) GSA [11]. (d) MTE-GLP-HPM [20]. (e) CNMF [25]. (f)
MTEF-GLP [19]. (g) HySure [22]. (h) HyperPNN [35]. (i) DHP-DARN [30].
(j) DIP-HyperKite (ours). (k) Reference.

MTF-GLP [19], HySure [22], HyperPNN [35], and DHP-
DARN [30] for Pavia Center, Botswana, and Chikusei datasets.
a) Final Fusion results on the Pavia Center dataset:
The average quantitative results for different pansharpening
approaches on the testing set of the Pavia Center dataset
are shown in Table VI. As can be seen from Table VI, our
proposed HyperKite achieves the highest CC value compared
to all the other pansharpening approaches that we have con-
sidered in this study. A higher CC value indicates that the
fused HSI is closer to the actual HSI with less geometric
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Fig. 15. Visual results generated by different pansharpening algorithms for
the first (in first and second column), fourth (in third and fourth column),
12-th (in fifth and sixth column), 16-th (in seventh and eight column), 19-st
(in nine and tenth column) patches of the Botswana dataset. (a) SFIM [18].
(b) GS [11]. (c) GSA [11]. (d) MTE-GLP-HPM [20]. (e) CNMF [25]. (f)
MTE-GLP [19]. (g) HySure [22]. (h) HyperPNN [35]. (i) DHP-DARN [30].
(j) DIP-HyperKite (ours). (k) Reference.

distortion. Furthermore, our proposed DIP-HyperKite achieved
the smallest values for SAM, RMSE, and ERGAS perfor-
mance measures, indicating the best fusion performance over
the other pansharpening approaches. Especially the smallest
SAM and ERGAS indicate that our DIP-HyperKite can fuse
HSIs with less spectral distortion than the state-of-the-art
methods. In addition, our DIP-HyperKite improved the PSNR
metric by 3.6% over the state-of-the-art value. To further
verify the fusion quality of our proposed DIP-HyperKite, we
present qualitative results in Figure 14 for the Pavia Center
dataset. To better highlight the fusion quality between different
pansharpening approaches, we have shown the Mean Absolute
Error (MAE) plots along with the RGB composite image
for each fused HSI. According to the figure, the MAE maps
corresponding to our DIP-HyperKite are much purple than the
other pansharpening approaches, indicating minor fusion error.
This is mainly because of the ability of our HyperKite network
to predict very fine structures and edges by constraining the
receptive field of the deep network.

b) Final Fusion results on the Botswana dataset: The
Table VII summarizes the average quantitative results of
different fusion methods on the Botswana dataset. Similar to
the Pavia Center dataset, we can see that our DIP-HyperKite
outperforms all the other HS pansharpening approaches by
a considerable margin. Concretely, our DIP-HyperKite has

N —
1

Fig. 16. Visual results generated by different pansharpening algorithms for
the fifth (in first and second column), 13-th (in third and fourth column),
16-th (in fifth and sixth column), 27-th (in seventh and eight column), 32-nd
(in nine and tenth column) patches of the Chikusei dataset. (a) SFIM [18].
(b) BF [23]. (c) GSA [11]. (d) MTF-GLP-HPM [20]. (e) BES [24]. (f) MTE-
GLP [19]. (g) HySure [22]. (h) HyperPNN [35]. (i) DHP-DARN [30]. (j)
DIP-HyperKite (ours). (k) Reference.

improved the CC by 1.03%, and PSNR by 3.71%. In addition,
our method has reduced the SAM by 9.68%, RMSE by 8.57%,
and ERGAS by 10.85%. Furthermore, we have shown quali-
tative results related to different pansharpening approaches on
Botswana dataset in Figure 15. By observing the RGB images
and MAE plots in Figure 15, we can see that the fusion results
related to our method are much closer to reference image than
the other pansharpening approaches.

c¢) Final Fusion results on the Chikusei dataset: In this
section, we compare the qualitative and quantitative results
on the Chikusei dataset. The average quantitative results of
different pansharpening approaches on the Chikusei dataset is
listed in Table VIII. Similar to the results we have observed for
the other two datasets, for this dataset also our proposed DIP-
HyperKite outperforms all the pansharpening approaches that
we considered for the analysis. Our pansharpening method im-
proves the CC, SAM, RMSE, RSNR, ERGAS, and PSNR per-
formance measures over the state-of-the-art results by 1.45%,
19.0%, 6.67%, 0.67%, 18.5%, and 0.90%, respectively. To
further highlight the fusion quality of our method we present
the qualitative results of selected panshaprpening approaches
for the Chikusei dataset is shown in Figure 16. By observing
the RGB composite image and the MAE maps we can clearly
see that the fusion quality of the proposed DIP-HyperKite is
higher than the other pansharpening approaches.
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Fig. 17. The variation of MAE with spectral band for the 3-rd, 8-th, and 32-nd patch of (a). Pavia Center, (b). Botswana, and (c).Chikusei dataset, respectively.

Fig. 18. Visual results obtained by different pansharpening methods for the Los Angeles dataset. (a) Real LR-HSL. (b) Real PAN image. (c) GSA [10]. (d)
PCA [13]. (e) MG [19]. (f) MGH [20]. (g) GFPCA [21]. (h) CNMF [25]. (i) HySure [22]. (j) HyperPNN [35]. (k) DHP-DARN [30]. (1) DIP-HyperKite

(ours). Note that the LR-HSI is zoomed in for visualization.

Variation of MAE with each spectral band: We visualize
the variation of MAE with the spectral band for a randomly
selected test image from the testing set of Pavia Center,
Botswana, and Chikusei datasets in Figure 17 to further
highlight the difference between the proposed DIP-HyperKite
and state-of-the-art pansharpening method - DHP-DARN [30].
As shown in Figure 17, the proposed DIP-HyperKite results
in overall low MAE across the spectral bands compared to the
DHP-DARN. This further demonstrates the low spectral and
spatial distortions introduced by our proposed DIP-HyperKite.

C. Final Fusion Results on a Real Hyperspectral Dataset

This section demonstrates the generalization capability of
our proposed HyperKite on a real HSI dataset: the Los Angeles

dataset. Since the Los Angeles dataset does not have reference
HSI to compute the reference-based quantitative measures, we
utilize three no-reference-based metrics following the previous
works [30], namely D), Dg and QNR as described in Section
IV-B.

To obtain the pansharpen results on the Los Angeles dataset,
we utilize the DIP-HyperKite trained on the Botswana dataset.
The no-reference quantitative results and qualitative results
for the Los Angeles dataset are presented in Table IX and
Figure 18, respectively. The two Bayesian approaches that we
previously used for comparisons on simulated HSI datasets are
excluded because they require a corresponding blur matrix as
an input to the algorithm, which is not available for the full-
scale validation of the Los Angeles dataset.

TABLE IX
QUANTITATIVE RESULTS (ND—REFERENCE METRICS) FOR DIFFERENT PANSHARPENING METHODS ON THE LOSS ANGELES DATASET.
Metric GSA  PCA MG MGH GFPCA CNMF HySure HyperPNN DHPDARN  DIP HyperKite
DA(— 0) 00750 00873 00478 00481 0.0697 0.0030 0.0520 _ 0.0580 0.0459 0.0431
Ds(—0) 00942 0.1326 00432 00700 0.1891 01692 0.0485  0.0391 0.0372 0.0347
QNR(— 1) 08378 07916 009111 08853 07544 07535 09011  0.9052 09186 0.9240
TABLE X
AVERAGE INFERENCE TIME PER HSI FOR DIFFERENT PANSHARPENING ALGORITHMS ON TESTING SET OF BOTSWANA DATASET.
Method | PCA GFPCA BF BFS SFIM GS GSA MGH CNMF MG HySure Hyper DHP- | DIP Hyper. DIP-
PNN DARN Kite  HyperKite
Time(ms) | 2168 6710 002 15536.1 222.6 191.6 227.0 3472 4375 3416 35415 08  58305.2| 583020 15 58304.4




IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, MONTH YEAR 15

According to the no-reference-based quantitative results
shown in Table IX, we can see that our proposed DIP-
HyperKite achieves outstanding results compared to existing
pansharpening approaches. These quantitative results can be
further validated with the qualitative results depicted in Figure
18. All these qualitative and visual results demonstrate the
high potential and generalization capability of our proposed
DIP-HyperKite for HS pansharpening.

D. Inference Time

Table X presents the average inference time per HSI on the
testing set of Botswana dataset for different pansharpening
methods. As we discussed previously, the proposed DIP-
HyperKite consists of two steps where we first up-sample LR-
HSI via DIP process, and then predict the residual image via
HyperKite. Therefore, in Table X, we presents the average in-
ference time for each step separately (i.e., DIP and HyperKite).
As can be seen from the Table X, we observe relatively high
inference time for our DIP-HyperKite and DHP-DARN [30]
methods because they both utilize DIP for up-sampling which
needs to be optimized for each LR-HSI separately during the
testing. In average, the DIP up-sampling process takes about
58 s ( 58,000 ms) to up-sample a LR-HSI with spatial size of
40 % 40 by a scaling factor of 3 as shown in Table X for the
Botswana dataset.

VI. CONCLUSION

In this paper, we have presented a novel approach for HS
pansharpening, which mainly consists of three steps: (1) Up-
sampling the LR-HSI via DIP, (2) Predicting the residual
image via over-complete HyperKite, and (3) Obtaining the
final fused HSI by summation. The previously proposed DIP
methods for HS up-sampling only impose a constraint in the
spectral-domain by utilizing LR-HSI. To better preserve both
spatial and spectral information, we first exploited an addi-
tional spatial constraint to DIP by utilizing the available PAN
image, thereby introduced both spatial and spectral constraints
to the DIP. The comprehensive experiments conducted on three
HS datasets showed that our proposed spatial+spectral loss
function significantly improved the quality of up-sampled HSIs
in CC, RMSE, RSNR, SAM, ERGAS, and PSNR performance
measures. Next, in the residual prediction task, we have
shown that the residual component between up-sampled HSI
and the reference HSI primarily consists of edge information
and very fine structures. Motivated by this observation, we
proposed a novel over-complete deep-learning network for
the residual prediction task. In contrast to the conventional
under-complete representations, we have shown that our over-
complete network is competent to focus on high-level features
such as edges and fine structures by constraining the receptive
field of the network. Finally, the fused HSI is obtained
by adding the residual HSI and the up-sampled HSI. The
comprehensive experiments conducted on three semi-synthetic
and one real HS datasets demonstrated the superiority of our
DIP-HyperKite over the other state-of-the-art results in terms
of qualitative and quantitative evaluations.
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