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ABSTRACT:
We present a new method of detecting North Atlantic Right Whale (NARW) upcalls using a Multimodel Deep

Learning (MMDL) algorithm. A MMDL detector is a classifier that embodies Convolutional Neural Networks

(CNNs) and Stacked Auto Encoders (SAEs) and a fusion classifier to evaluate their output for a final decision. The

MMDL detector aims for diversity in the choice of the classifier so that its architecture is learned to fit the data.

Spectrograms and scalograms of signals from passive acoustic sensors are used to train the MMDL detector. Guided

by previous applications, we trained CNNs with spectrograms and SAEs with scalograms. Outputs from individual

models were evaluated by the fusion classifier. The results obtained from the MMDL algorithm were compared to

those obtained from conventional machine learning algorithms trained with handcrafted features. It showed the

superiority of the MMDL algorithm in terms of the upcall detection rate, non-upcall detection rate, and false alarm

rate. The autonomy of the MMDL detector has immediate application to the effective monitoring and protection of

one of the most endangered species in the world where accurate call detection of a low-density species is critical,

especially in environments of high acoustic-masking.VC 2021 Acoustical Society of America.
https://doi.org/10.1121/10.0005898
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I. INTRODUCTION

The North Atlantic Right Whale (Eubalaena glacialis,
NARW) is one of the most endangered whale species in the

world. The current population estimate for NARWs off the

east coast of North America is 451 (Hayes et al., 2017;
Reeves, 2003), and a decreasing trend and low reproduction

rates (Cooke, 2018), combined with high levels of human

activities, such as shipping and fisheries, underscore their

precarious situation. Efficient tracking of their numbers,

migration paths, and habitat use is vital in lowering the

number of preventable injuries and deaths and promoting

their recovery. Passive acoustics is frequently used for the

purpose as a reliable, safe, and effective technology to moni-

tor the NARW by detecting their signature up-calls. Up-calls

are narrowband vocalizations with frequency swings in the

range of 50–440Hz (Clark, 1982). Time-frequency repre-

sentations have, in the past, provided the domain for detect-

ing NARW up-calls with edge detection (Gillespie, 2004),

and pattern detection via convolutional methods (Mellinger

and Clark, 1993). However, these methods have led to high

levels of false positives (Urazghildiiev et al., 2009). Feature
engineering and machine learning (Mellinger, 2004;

Urazghildiiev and Clark, 2006) have reduced false-positive

rates and increased detection rates to more than 80%.

Gillespie (2004) was able to determine whale types by clas-

sifying edge data extracted from spectrograms.

Urazghildiiev and Clark (Urazghildiiev and Clark, 2006)

applied a generalized likelihood ratio test (GLRT) detector

of polynomial-phase signals with unknown amplitude to

deal with locally stationary Gaussian noise. In Esfahanian

et al. (2015), classifying Linear Binary Patterns (LBP)

extracted from up-call spectrograms resulted in 93% up-call

detection accuracy. In Ibrahim et al. (2016), they were able

to reduce the false positive rate to 1.48% using linear sup-

port vector machines (LSVM) to classify Mel Frequency

Cepstral Coefficients (MFCC) obtained from two comple-

mentary discrete wavelet transform (DWT) subspaces.

Our overarching research objective is to develop an

effective and autonomous set of computational tools for the

passive acoustic monitoring of fishes and marine animals

such as NARWs. Recent studies suggest that sophisticated

preprocessing and handcrafted feature extraction procedures

may not be needed for deep learning based detectors and

classifiers (Ibrahim et al., 2018b). Deep learning algorithms

such as autoencoders, convolutional neural networks

(CNNs), and recurrent neural networks (RNNs), can act as

feature extractors and classifiers (Ibrahim et al., 2016).

Notably, CNNs are excellent choices for identifying spatial

patterns in images, and RNNs for the extraction of discrimi-

native patterns from time series or signals (Ch�erubin et al.,
2020; Ibrahim et al., 2018b). However, the vanishinga)Electronic mail: aibrahim2014@fau.edu
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gradients phenomenon, involving the decay of feedback

information over time, prevents most RNNs from memoriz-

ing long-term dependency of an input time sequence. Long

Short-Term Memory (LSTM) networks solve this problem

through the introduction of additional gate parameters in

each neuron, which select the attributes to memorize or for-

get. A Multi model Deep Learning detector (Ibrahim, 2019)

is an ensemble of classifiers consisting of CNNs and

Stacked Auto Encoders (SAEs) random in the number and

size of such hyperparameters as neuron count and kernel

size. The outputs of these classifiers are used to train a

fusion algorithm, which is itself a classifier, to determine the

class of an input. We show in the study herein that the

MMDL model outperforms representative transfer learning

methods based on pretrained models such as ResNet101 and

VGG19. The remainder of the paper is organized as follows.

Section II reviews the vocalization types of NARWs. The

description of the proposed MMDL detector and its applica-

tion to the NARW detection are presented in Secs. III and

IV, respectively. Section V presents the detection results

from a database of NARW up-calls. Concluding remarks are

given in Sec. VI.

II. NARW SOUNDS

Right whales vocalize a variety of low-frequency

sounds, and the calling repertoires of the three species are

similar (Parks and Tyack, 2005). So called moans, groans,

belches, and pulses have most of their acoustic energy below

500Hz. Occasionally, a vocalization will have spectral con-

tent up to 4 kHz. One typical right whale vocalization used to

communicate with other right whales is the so-called “up-

call.” It is a short chirp, or a “whoop” sound that rises from

about 50 to 440Hz and lasts about 2 s. Up-calls are often

described as “contact” calls as they appear to function as sig-

nals that bring whales together (Parks and Tyack, 2005).

The Cornell University dataset (Clark et al., 2002; Parks

et al., 2009) used in this study includes both NARW up-calls

(Fig. 1) and background noise with other sounds (Fig. 2) in

2-s clips sampled at 2000Hz. Figure 1 shows the spectrogram

of commonly encountered types of up-calls. Some up-calls

possess more than one chirp [Figs. 1(c)–1(e)] and recordings

are typically very noisy as evidenced in Fig. 1(b)

III. MULTIMODEL DEEP LEARNING

Data classification is an iterative process involving

problem formulation, data analysis, feature extraction, fea-

ture selection, classifier selection, and model validation.

There are several common reasons why classification mod-

els fail. These reasons include insufficient data preprocess-

ing, lack of model validation, overfitting during the training

stage, and the unsuitability of the model for the data.

Ibrahim (2019) proposed a multimodel approach based on

deep learning for data classification and event forecasting.

The MMDL algorithm fuses results from different types of

classifiers which collectively cancel the shortcomings of

individual classifiers. The proposed MMDL model for

NARW upcall detection consists of two types of classifiers:

CNNs and SAEs. CNNs are chosen because of their capability

of extracting both low-level and high-level features from

images. SAEs are selected for their performance in extracting

pertinent information-bearing features for data compression.

CNNs have proven to be one of the most effective deep

learning algorithms for image classification and identifica-

tion (Gu et al., 2018). CNN networks became popular after

the exceptional performance of AlexNet in the 2012

ImageNet competition (Krizhevsky et al., 2012). The three

main components of a CNN network are convolution, pool-

ing, and activation. A convolutional layer convolves input

data with a set of (d� n) kernels or filter impulse responses

to produce feature maps. A pooling layer operates on each

feature map independently to reduce its size. The non-linear

max pooling operation is one of the most frequently used.

An activation layer consists of a non-linear operation that,

like signal conditioning, controls the range of its input.

Rectified Linear Unit (ReLU) is a commonly used activation

function. The convolve- pool-activate process is repeated

until a set of sufficiently discriminative and concise features

is obtained. The feature vector is fed to a fully connected

layer with an activation function, mostly either Sigmoid or

SoftMax, for decision making.

The SAE is a popular algorithm which consists of mul-

tiple layers of unsupervised autoencoders, followed by a

fully-connected layer with either SoftMax or Sigmoid as an

activation function. SAE training is a two-step process con-

sisting of unsupervised learning followed by supervised

learning. Unlabeled samples are input to the SAE’s first

layer for unsupervised training. The Auto-Encoder (AE)

layers are stacked so that the resulting parameter vector of

layer k-1 is used as an input to train the kth AE layer. Once

the AEs are trained, labelled data are fed to the fully-

connected layer to train its parameters. The structure of such

a SAE is shown in Fig. 3.

The flow chart of the MMDL model used in this study

is now shown in Fig. 4. The output of each CNN and SAE

are piped into a fusion block for decision making. The

fusion block inspects the outputs from individual models in

search of locally consistent, discriminative, and representa-

tive patterns. The types of features used in the MMDL com-

ponents are chosen based on the results of an early study by

Moreno-Seco et al. (2006) that tested the efficacy of such

fusion mechanisms as Majority Voting, Unweighted

Average, and PatternNet. The study revealed that PatternNet

consistently outperformed other methods; spectrograms (a

visual representation of sound based on the time evolution

of its Fourier transforms) worked better with CNNs, and

scalograms (a visual representation of sound based on the

time evolution of its wavelet transforms) worked better with

SAEs. Hence, we paired CNNs with spectrograms and SAEs

with scalograms, as shown in Fig. 4. That is, the CNNs in

the MMDL detector are trained with spectrogram images

and the SAEs are trained with scalogram images. For each

of the SAEs and CNNs, we defined a range in which its

hyperparameters are randomly generated. Hyperparameters,
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described in Sec. IVC, can be chosen to control the learning

curves. They can make the network architecture both com-

putationally inexpensive and structurally simpler than a

deep CNN, and they can be chosen to adapt to data size,

thus reducing the probability of overfitting.

IV. NARW UP-CALL CLASSIFICATION

A. Data preparation

The NARW sound dataset was collected with an array

of 19 Marine Autonomous Recording Units (Urazghildiiev

and Clark, 2006) during 22 deployment periods from June

26, 2007, to May 8, 2013. The dataset consisted of 2-s audio

clips, sampled at 2 kHz, that were transformed to both a

spectrogram and a scalogram, then resized for a resolution

of 100� 100 pixels. Spectrogram images were generated by

organizing the sound signal into 80-ms frames with 50%

overlap. A 1024-point discrete Fourier transform (DFT) of

each frame, multiplied by a Hamming window to reduce

sidelobe leakage, was computed. The resulting spectrograms

were saved as pseudo RGB images to be processed by

CNNs.

A scalogram displays an approximation of the magni-

tude of the continuous wavelet transform (CWT) of a signal

FIG. 1. (Color online) NARW up-call sound spectrograms with various types of background noise.
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(Halberstadt, 2020). This representation of the localized

wavelet transform is well suited for the analysis of nonsta-

tionary phenomena by revealing the frequency content of

the signal for each frame, while tracking evolving phenom-

ena in both time and scale. Unlike the spectrogram, which

decomposes an input signal into sinusoids of infinite dura-

tion, CWT decomposes the signal into wavelets.

To create a scalogram image, we processed each

audio clip with a CWT filter bank and formed an image of

the magnitude of the CWT coefficients. Wavelet filters are

logarithmically spaced bandpass filters. We recorded the

center frequency of the filters on the ordinate of the scalo-

gram. Figure 5 shows a spectrogram and a scalogram of

both an up-call and background noise sample taken from

the data set. We used a data augmentation procedure to

increase the number and diversity of our training data and

to improve the performance of the MMDL detector. The

data were augmented by adding Gaussian-distributed

noise with zero mean and 0.2 variance. Other augmenta-

tion schemes for images include rotation (615�), scaling
(0.6–1), reflection around x axis, and shearing (0�–30�).
After applying the augmentation procedure, the training

data set contained approximately 5000 images per class

(up-calls and non-calls) as compared to 2000 prior to data

augmentation. The proposed classifier was trained solely

with the augmented training data set. A testing dataset

with additional 80 665 audio files was used solely for

model validation.

FIG. 2. (Color online) Background noise and other sound spectrograms.
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B. Model set-up and implementation

Deep neural network algorithms require significant fine

tuning to work with specific data sets, thus posing the ques-

tion of finding suitable structures and architectures as an

important research challenge (He et al., 2021). The proposed

MMDL method automates the architecture construction pro-

cess by introducing diversity in the classifiers and by ran-

domizing a wide range of hyperparameters to allow the

system to learn a suitable network architecture for a given

dataset. The fusion mechanism ensures that the system takes

FIG. 3. (Color online) SAE network for up-call detection.

FIG. 4. (Color online) The proposed MMDL model for NARW up-call detection.
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advantage of the strengths of both “good classifiers” and

exclude the “outliers.” The algorithmic steps for training the

MMDL detector are as follows:

(1) Prepare a training dataset by converting sound files to

spectrograms and scalograms. If necessary, perform

data augmentation.

(2) Define a range for the hyperparameter values for each

CNN and SAE.

(3) Generate n1 CNNs with hyperparameter values ran-

domly assigned from the preset ranges.

(4) Train each one of the n1 CNNs with the spectrograms.

(5) Generate n2 SAEs with hyperparameter values randomly

assigned from the preset ranges.

(6) Train each one of the n2 SAEs with the scalograms.

In the test phase, the following steps are used:

(1) Compute a spectrogram and a scalogram for each input

sound.

(2) Input each spectrogram simultaneously to all the CNNs.

(3) Input each scalogram simultaneously to all the SAEs.

(4) Extract the predicted label and the predicted probability

vector of each sound from each CNN. The predicted

probability vector is the SoftMax layer output corre-

sponding to the input spectrogram.

(5) Extract the predicted label and the predicted probability

vector of each sound from each SAE.

(6) Pipe the labels and the predicted probability vectors

obtained in Steps 4 and 5 into the fusion classifier to

make a final decision on the label of the input.

C. Network architecture

To evaluate and characterize the proposed MMDL

architecture, we tested three different detectors comprised

of 5, 10, and 15 CNNs and SAEs, respectively. Each CNN

block has a convolutional layer with randomly-picked

hyperparameters (i.e., neuron count and kernel size), a batch

normalization layer, a max-pooling layer, and a ReLu acti-

vation layer. The hyperparameters are shown in Tables I

and II. The number of AEs in each SAE and the number of

neurons in each hidden layer are the two randomly-

generated hyperparameters. Each randomized SAE is

designed as follows: L random numbers, representing the

number of hidden neurons for a single AE in a stack, are

generated. The AEs are stacked together, in decreasing order

of their numbers, to form an SAE. The sorting ensures that

each layer reduces the dimension of the captured features.

The generated CNN and SAE structures are trained individ-

ually. As mentioned earlier, SAEs are trained using scalo-

grams, and CNNs are trained using spectrograms. The

outputs of the SAEs and CNNs are subsequently fused to

FIG. 5. (Color online) (a) Spectrogram of a NARW up-call, (b) spectrogram of background noise, (c) scalogram of NARW up-call in (a). (d) Scalogram of

background noise in (b). The image resolution is 100� 100 pixels. The x and y axes represent time and frequency, respectively.

TABLE I. Range of randomly generated hyperparameters for each CNN.

Hyperparameter Range

Number of convolutional layers block 1–5

Kernel size (1–3–5–7) odd numbers

Number of kernels (8–64)

Mini-batch size 16–256

Optimizer Adam, SGDM, SGD, RMSProp
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determine the signal’s class. The fusion classifier is

described in the next subsection.

D. Fusion strategies

We tested three types of fusion strategies: Majority

Vote, Average, and PatternNet. Average and PatternNet

fuse predicted probabilities provided by the Softmax layers

of individual models. Majority Voting fuses the predicted

class labels of individual models.

The Weighted Average strategy takes the vote and con-

fidence of a model into consideration by assigning weights

according to the uncertainty of each model. Ju et al. (2018)
showed that a weighted average is a good strategy when

models have similar performances. Following Abidalkareem

et al. (2020) and Wang et al. (2018a), activations of individ-
ual models were concatenated into a vector that was then

piped into a PatternNet, essentially forming an optimized

feed forward network for pattern recognition (Wang et al.,
2018b). In our approach, we used the predicted probability

vectors from individual shallow models (in general weak

classifiers) to train the PatternNet in order to create a strong

classifier. The PatterNet here acts as a mixer of the predicted

probability vectors. In order to optimize its performance, we

adopted the cross-entropy measure as the loss function and

the scaled conjugate gradient method as the training proce-

dure for the PatternNet. Our experiments showed that this

approach was appropriate for fusing predicted probabilities

because the MMDL architecture allows each model to con-

tribute according to its strength.

V. APPLICATION TO THE NAWR UPCALL DETECTION

The data used in this study was initially labeled by

using an edge detector, resulting in a substantial number of

false labels. We generated spectrograms of all the audio

clips and relabeled them based on visual and audio inspec-

tion of the samples. We trained the models with the cor-

rectly labeled images.

To evaluate our model performance at detecting

NARW up-calls, we compared its detection rate to those of

conventional machine learning algorithms trained with

handcrafted features as done in Ibrahim et al. (2018a),

Ibrahim et al. (2018b), and Ibrahim et al. (2018c,d). The
handcrafted features were derived from combinations of

MFCCs, Gammatone Filter Cepstral Coefficients (GFCC),

and wavelet subspace projections of the recordings. We

showed that coupling MFCC or GFCC features with two-

stage Daubechies wavelet (db4) projections significantly

improved the performance and provided the best results

with 92.27% up-call detections and 1.48% false alarm rates

(Fig. 6).

For the MMDL testing, we first confirmed the best type

of input for each type of models. Four random combina-

tions of either CNNs or SAEs with scalogram or spectro-

gram were tested. Five CNNs or SAEs were used per model

type. The number of layers for each of the five CCNs or

SAEs models was also randomly assigned between 3 and 5.

The results are shown in Table III for CNNs and SAEs.

They confirm that the best detection rate is obtained when

TABLE II. Range of randomly generated hyperparameters for each SAE.

Hyperparameter Range

Number of AEs 1–5

Number of hidden neurons in each AE 150–800

Sparsity regularization 16–4

l2 weight regularization 0.01–0.05

FIG. 6. (Color online) NARW upcall, non-upcall detection, and false alarm rate results using conventional machine learning methods with handcraft fea-

tures. Features tested were combinations indicated along the abscissa. DWT is the 2-stage DWT with the Daubechies-4 wavelet.

TABLE III. Results of different input-model combinations (each has five

CNN models or five SAE models).

Models type Upcall detection Non-upcall detection False alarm

Spectrogram þ CNNs 90.1% 99.% 0.9%

Scalogram þ CNNs 88.6% 98.9% 1.08%

Spectrogram þ SAEs 86.25% 98.97% 1.02%

Scalogram þ SAEs 89.34% 99.01% 0.99%
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spectrograms (scalograms) are used as input to CNNs

(SAEs).

Three different fusion methods with varying relative

numbers of CNN and SAE subnetworks were tested. These

networks were tested using 80 665 test files compared to

only 1500 files in the previous studies by Ibrahim et al.
(2018c,d). All results were compiled through a fivefold

cross-validation test. Using 15 CNN subnetworks on the

spectrogram images, and 15 SAE subnetworks on the scalo-

gram images, the most accurate fusion method is shown to

be PatternNet (Table IV). When the relative number of sub-

networks was randomly varied between 5, 10, and 15 and

fused with PatternNet, increasing the number of subnet-

works increased the classification accuracy (Table V).

The performance of the model composed of five CNNs

þ five SAEs was compared to the following standard deep

CNN models: ResNet101, VGG19, MobileNetv2, and

EfficentNet. We adopted a transfer learning approach to

transfer knowledge of the pretrained models to detect upcalls.

The concept of transfer learning is to use an existing deep

learning model trained in one domain (usually with a large

dataset) to perform a classification task in another domain

(usually with a smaller dataset). To use a pretrained model, a

fine-tuning procedure needs to be applied. In the procedure,

the outer layers of the pretrained model are replaced with

additional layers whose weights are trained using the dataset

in the new domain. The number of layers added to a pre-

trained model affects the performance of the model. Another

parameter to be tuned is the learning rate, which is also

application-dependent. In our application, for each pretrained

model, we removed the output layers and replaced them with

one (for ResNet101, VGG19) or three dense layers (for

MobileNetv2 and EfficentNet) and a softmax activation layer.

We froze the other layers in the pretrained model and only

train the weights of the newly added layers. We also used the

following learning rates: 0.001, 0.004, 0.005 for RestNet101,

VGG19, MobileNetv2 and 0.0001 for EfficentNet. Table VI

shows that the MMDL model led to more upcall detections

than these pretrained Deep Learning models. In addition, the

MMDL model is computationally less expensive and structur-

ally simpler than VGG19 and ResNet101, but more complex

than MobileNetv2 and EfficentNet.

VI. CONCLUSION

In this study, a new approach for NARW upcall detec-

tion was proposed. The NARW sound dataset was collected

with multiple recording units equipped with passive acoustic

sensors over a period of many years. These recorded signals

were converted to spectrograms and scalograms and classi-

fied by our proposed MMDL detector. Our algorithm is

composed of a number of CNNs and SAEs with randomly

chosen design parameters. The detector does not require

sophisticated preprocessing and it automates its architecture

construction. MMDL combines the advantages of diversity

offered by CNNs, extracting discriminative features at both

local and global levels, and SAEs, which are designed for

data abstraction and reproduction. We showed that the ran-

domness of the model structure and the distinct characteris-

tics of CNNs and SAEs render the integrated MMDL

detector robust against data variability. The effectiveness of

the proposed MMDL model for NARW upcall detection

was verified with Cornell University’s (Clark et al., 2002)
dataset after relabeling the entire set by visual and aural

inspection of the audio files and their spectrograms. Our

labels are available on Github (https://github.com/Aliklawat/

North-Atlantic-Right-Whales-Data_Corrected-labels) for use

by the research community. Our experimental study demon-

strated that the MMDL detector outperformed conventional

machine learning methods as well as representative deep

CNN models which we focused our analysis on, in terms of

TABLE IV. Results of different ensemble methods (each has five CNN

models and five SAE models).

Ensemble method Up-call detection Non-up-call detection False alarm

Majority voting 96% 98.7% 0.41%

Unweighted average 98.1% 99.1% 0.18%

PatternNet 100.0% 100.0% 0.07%

TABLE V. MMDL model classification accuracy for three combinations of

subnetwork numbers in each model.

Number of Models Up-call detection Non-up-call detection False alarm

5 CNNs, 5 SAEs 99.3% 99.9% 0.07%

10 CNNs, 10 SAEs 99.8% 100.0% 0.02%

15 CNNs, 15 SAEs 100.0% 100.0% 0%

TABLE VI. Performance comparison with standard deep CNN models.

Model Up-call detection Non-up-call detection #Parameters FLOPS

5 CNNs, 5 SAEs 99.3% 99.9% 35M 1.2B

ResNet101 þ Spectrogram 96% 99.4% 44M 7.6B

ResNet101 þ Scalogram 89% 98% 44M 7.6B

VGG19 þ Spectrogram 92% 99% 138M 19.6B

VGG19 þ Scalogram 87.4% 98.8% 138M 19.6B

MobileNetv2 þ Spectrogram 85.9% 97.5% 6.9M 585M

MobilenetV2 þ Scalogram 85.2% 97.4% 6.9M 585M

EfficentNet þ Spectrogram 87.35% 97.6% 5.3M 0.39B

EfficentNet þ Scalogram 86.1% 97.53% 5.3M 0.39B
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upcall detection rate, non-upcall detection rate, and false

alarm rate; though it is computationally less efficient than

MobileNet and EfficientNet. Since the attributes of the

MMDL system are not signal specific, we conjecture that it

can be used as a classifier for all applications in which multi-

ple classes are involved. As such, the deep learning algorithm

is a significant advancement on conventional machine learn-

ing methods. The near zero false-positive, false-negative and

false alarm rates indicate that this new MMDL detector could

be a powerful tool in the detection and monitoring of the low

density, endangered NARW, especially in environments with

high acoustic-masking.
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