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ABSTRACT:

We present a new method of detecting North Atlantic Right Whale (NARW) upcalls using a Multimodel Deep
Learning (MMDL) algorithm. A MMDL detector is a classifier that embodies Convolutional Neural Networks
(CNNSs) and Stacked Auto Encoders (SAEs) and a fusion classifier to evaluate their output for a final decision. The
MMDL detector aims for diversity in the choice of the classifier so that its architecture is learned to fit the data.
Spectrograms and scalograms of signals from passive acoustic sensors are used to train the MMDL detector. Guided
by previous applications, we trained CNNs with spectrograms and SAEs with scalograms. Outputs from individual
models were evaluated by the fusion classifier. The results obtained from the MMDL algorithm were compared to
those obtained from conventional machine learning algorithms trained with handcrafted features. It showed the
superiority of the MMDL algorithm in terms of the upcall detection rate, non-upcall detection rate, and false alarm
rate. The autonomy of the MMDL detector has immediate application to the effective monitoring and protection of
one of the most endangered species in the world where accurate call detection of a low-density species is critical,

especially in environments of high acoustic-masking. © 2021 Acoustical Society of America.
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I. INTRODUCTION

The North Atlantic Right Whale (Eubalaena glacialis,
NARW) is one of the most endangered whale species in the
world. The current population estimate for NARWs off the
east coast of North America is 451 (Hayes et al., 2017,
Reeves, 2003), and a decreasing trend and low reproduction
rates (Cooke, 2018), combined with high levels of human
activities, such as shipping and fisheries, underscore their
precarious situation. Efficient tracking of their numbers,
migration paths, and habitat use is vital in lowering the
number of preventable injuries and deaths and promoting
their recovery. Passive acoustics is frequently used for the
purpose as a reliable, safe, and effective technology to moni-
tor the NARW by detecting their signature up-calls. Up-calls
are narrowband vocalizations with frequency swings in the
range of 50-440Hz (Clark, 1982). Time-frequency repre-
sentations have, in the past, provided the domain for detect-
ing NARW up-calls with edge detection (Gillespie, 2004),
and pattern detection via convolutional methods (Mellinger
and Clark, 1993). However, these methods have led to high
levels of false positives (Urazghildiiev et al., 2009). Feature
engineering and machine learning (Mellinger, 2004;
Urazghildiiev and Clark, 2006) have reduced false-positive
rates and increased detection rates to more than 80%.
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Gillespie (2004) was able to determine whale types by clas-
sifying edge data extracted from spectrograms.
Urazghildiiev and Clark (Urazghildiiev and Clark, 2006)
applied a generalized likelihood ratio test (GLRT) detector
of polynomial-phase signals with unknown amplitude to
deal with locally stationary Gaussian noise. In Esfahanian
et al. (2015), classifying Linear Binary Patterns (LBP)
extracted from up-call spectrograms resulted in 93% up-call
detection accuracy. In Ibrahim et al. (2016), they were able
to reduce the false positive rate to 1.48% using linear sup-
port vector machines (LSVM) to classify Mel Frequency
Cepstral Coefficients (MFCC) obtained from two comple-
mentary discrete wavelet transform (DWT) subspaces.

Our overarching research objective is to develop an
effective and autonomous set of computational tools for the
passive acoustic monitoring of fishes and marine animals
such as NARWSs. Recent studies suggest that sophisticated
preprocessing and handcrafted feature extraction procedures
may not be needed for deep learning based detectors and
classifiers (Ibrahim et al., 2018b). Deep learning algorithms
such as autoencoders, convolutional neural networks
(CNNs), and recurrent neural networks (RNNs), can act as
feature extractors and classifiers (Ibrahim et al., 2016).
Notably, CNNs are excellent choices for identifying spatial
patterns in images, and RNNs for the extraction of discrimi-
native patterns from time series or signals (Chérubin et al.,
2020; Ibrahim et al., 2018b). However, the vanishing
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gradients phenomenon, involving the decay of feedback
information over time, prevents most RNNs from memoriz-
ing long-term dependency of an input time sequence. Long
Short-Term Memory (LSTM) networks solve this problem
through the introduction of additional gate parameters in
each neuron, which select the attributes to memorize or for-
get. A Multi model Deep Learning detector (Ibrahim, 2019)
is an ensemble of classifiers consisting of CNNs and
Stacked Auto Encoders (SAEs) random in the number and
size of such hyperparameters as neuron count and kernel
size. The outputs of these classifiers are used to train a
fusion algorithm, which is itself a classifier, to determine the
class of an input. We show in the study herein that the
MMDL model outperforms representative transfer learning
methods based on pretrained models such as ResNet101 and
VGG19. The remainder of the paper is organized as follows.
Section II reviews the vocalization types of NARWs. The
description of the proposed MMDL detector and its applica-
tion to the NARW detection are presented in Secs. III and
IV, respectively. Section V presents the detection results
from a database of NARW up-calls. Concluding remarks are
given in Sec. VL.

Il. NARW SOUNDS

Right whales vocalize a variety of low-frequency
sounds, and the calling repertoires of the three species are
similar (Parks and Tyack, 2005). So called moans, groans,
belches, and pulses have most of their acoustic energy below
500 Hz. Occasionally, a vocalization will have spectral con-
tent up to 4 kHz. One typical right whale vocalization used to
communicate with other right whales is the so-called “up-
call.” Tt is a short chirp, or a “whoop” sound that rises from
about 50to 440Hz and lasts about 2s. Up-calls are often
described as “contact” calls as they appear to function as sig-
nals that bring whales together (Parks and Tyack, 2005).
The Cornell University dataset (Clark et al., 2002; Parks
et al., 2009) used in this study includes both NARW up-calls
(Fig. 1) and background noise with other sounds (Fig. 2) in
2-s clips sampled at 2000 Hz. Figure 1 shows the spectrogram
of commonly encountered types of up-calls. Some up-calls
possess more than one chirp [Figs. 1(c)-1(e)] and recordings
are typically very noisy as evidenced in Fig. 1(b)

lll. MULTIMODEL DEEP LEARNING

Data classification is an iterative process involving
problem formulation, data analysis, feature extraction, fea-
ture selection, classifier selection, and model validation.
There are several common reasons why classification mod-
els fail. These reasons include insufficient data preprocess-
ing, lack of model validation, overfitting during the training
stage, and the unsuitability of the model for the data.
Ibrahim (2019) proposed a multimodel approach based on
deep learning for data classification and event forecasting.
The MMDL algorithm fuses results from different types of
classifiers which collectively cancel the shortcomings of
individual classifiers. The proposed MMDL model for
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NARW upcall detection consists of two types of classifiers:
CNNs and SAEs. CNNs are chosen because of their capability
of extracting both low-level and high-level features from
images. SAEs are selected for their performance in extracting
pertinent information-bearing features for data compression.

CNNSs have proven to be one of the most effective deep
learning algorithms for image classification and identifica-
tion (Gu et al., 2018). CNN networks became popular after
the exceptional performance of AlexNet in the 2012
ImageNet competition (Krizhevsky et al., 2012). The three
main components of a CNN network are convolution, pool-
ing, and activation. A convolutional layer convolves input
data with a set of (d x n) kernels or filter impulse responses
to produce feature maps. A pooling layer operates on each
feature map independently to reduce its size. The non-linear
max pooling operation is one of the most frequently used.
An activation layer consists of a non-linear operation that,
like signal conditioning, controls the range of its input.
Rectified Linear Unit (ReLU) is a commonly used activation
function. The convolve- pool-activate process is repeated
until a set of sufficiently discriminative and concise features
is obtained. The feature vector is fed to a fully connected
layer with an activation function, mostly either Sigmoid or
SoftMax, for decision making.

The SAE is a popular algorithm which consists of mul-
tiple layers of unsupervised autoencoders, followed by a
fully-connected layer with either SoftMax or Sigmoid as an
activation function. SAE training is a two-step process con-
sisting of unsupervised learning followed by supervised
learning. Unlabeled samples are input to the SAE’s first
layer for unsupervised training. The Auto-Encoder (AE)
layers are stacked so that the resulting parameter vector of
layer k-1 is used as an input to train the kth AE layer. Once
the AEs are trained, labelled data are fed to the fully-
connected layer to train its parameters. The structure of such
a SAE is shown in Fig. 3.

The flow chart of the MMDL model used in this study
is now shown in Fig. 4. The output of each CNN and SAE
are piped into a fusion block for decision making. The
fusion block inspects the outputs from individual models in
search of locally consistent, discriminative, and representa-
tive patterns. The types of features used in the MMDL com-
ponents are chosen based on the results of an early study by
Moreno-Seco et al. (2006) that tested the efficacy of such
fusion mechanisms as Majority Voting, Unweighted
Average, and PatternNet. The study revealed that PatternNet
consistently outperformed other methods; spectrograms (a
visual representation of sound based on the time evolution
of its Fourier transforms) worked better with CNNs, and
scalograms (a visual representation of sound based on the
time evolution of its wavelet transforms) worked better with
SAEs. Hence, we paired CNNs with spectrograms and SAEs
with scalograms, as shown in Fig. 4. That is, the CNNs in
the MMDL detector are trained with spectrogram images
and the SAEs are trained with scalogram images. For each
of the SAEs and CNNs, we defined a range in which its
hyperparameters are randomly generated. Hyperparameters,
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FIG. 1. (Color online) NARW up-call sound spectrograms with various types of background noise.

described in Sec. IV C, can be chosen to control the learning
curves. They can make the network architecture both com-
putationally inexpensive and structurally simpler than a
deep CNN, and they can be chosen to adapt to data size,
thus reducing the probability of overfitting.

IV. NARW UP-CALL CLASSIFICATION

A. Data preparation

The NARW sound dataset was collected with an array
of 19 Marine Autonomous Recording Units (Urazghildiiev
and Clark, 2006) during 22 deployment periods from June
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26, 2007, to May 8, 2013. The dataset consisted of 2-s audio
clips, sampled at 2kHz, that were transformed to both a
spectrogram and a scalogram, then resized for a resolution
of 100 x 100 pixels. Spectrogram images were generated by
organizing the sound signal into 80-ms frames with 50%
overlap. A 1024-point discrete Fourier transform (DFT) of
each frame, multiplied by a Hamming window to reduce
sidelobe leakage, was computed. The resulting spectrograms
were saved as pseudo RGB images to be processed by
CNNE.

A scalogram displays an approximation of the magni-
tude of the continuous wavelet transform (CWT) of a signal
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FIG. 2. (Color online) Background noise and other sound spectrograms.

(Halberstadt, 2020). This representation of the localized
wavelet transform is well suited for the analysis of nonsta-
tionary phenomena by revealing the frequency content of
the signal for each frame, while tracking evolving phenom-
ena in both time and scale. Unlike the spectrogram, which
decomposes an input signal into sinusoids of infinite dura-
tion, CWT decomposes the signal into wavelets.

To create a scalogram image, we processed each
audio clip with a CWT filter bank and formed an image of
the magnitude of the CWT coefficients. Wavelet filters are
logarithmically spaced bandpass filters. We recorded the
center frequency of the filters on the ordinate of the scalo-
gram. Figure 5 shows a spectrogram and a scalogram of
both an up-call and background noise sample taken from
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the data set. We used a data augmentation procedure to
increase the number and diversity of our training data and
to improve the performance of the MMDL detector. The
data were augmented by adding Gaussian-distributed
noise with zero mean and 0.2 variance. Other augmenta-
tion schemes for images include rotation (*=15°), scaling
(0.6—1), reflection around x axis, and shearing (0°-30°).
After applying the augmentation procedure, the training
data set contained approximately 5000 images per class
(up-calls and non-calls) as compared to 2000 prior to data
augmentation. The proposed classifier was trained solely
with the augmented training data set. A testing dataset
with additional 80665 audio files was used solely for
model validation.
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FIG. 3. (Color online) SAE network for up-call detection.

B. Model set-up and implementation

Deep neural network algorithms require significant fine
tuning to work with specific data sets, thus posing the ques-
tion of finding suitable structures and architectures as an
important research challenge (He et al., 2021). The proposed

Spectrogram Image —

Input Sound

Scalogram Image

MMDL method automates the architecture construction pro-
cess by introducing diversity in the classifiers and by ran-
domizing a wide range of hyperparameters to allow the
system to learn a suitable network architecture for a given
dataset. The fusion mechanism ensures that the system takes

p

44 Fusion H Classification

A 4

SAE;

FIG. 4. (Color online) The proposed MMDL model for NARW up-call detection.
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FIG. 5. (Color online) (a) Spectrogram of a NARW up-call, (b) spectrogram of background noise, (c) scalogram of NARW up-call in (a). (d) Scalogram of
background noise in (b). The image resolution is 100 x 100 pixels. The x and y axes represent time and frequency, respectively.

advantage of the strengths of both “good classifiers” and
exclude the “outliers.” The algorithmic steps for training the
MMDL detector are as follows:

(1) Prepare a training dataset by converting sound files to
spectrograms and scalograms. If necessary, perform
data augmentation.

(2) Define a range for the hyperparameter values for each
CNN and SAE.

(3) Generate n; CNNs with hyperparameter values ran-
domly assigned from the preset ranges.

(4) Train each one of the n; CNNs with the spectrograms.

(5) Generate n, SAEs with hyperparameter values randomly
assigned from the preset ranges.

(6) Train each one of the n, SAEs with the scalograms.

In the test phase, the following steps are used:

(1) Compute a spectrogram and a scalogram for each input
sound.

(2) Input each spectrogram simultaneously to all the CNNss.

(3) Input each scalogram simultaneously to all the SAEs.

(4) Extract the predicted label and the predicted probability
vector of each sound from each CNN. The predicted
probability vector is the SoftMax layer output corre-
sponding to the input spectrogram.

(5) Extract the predicted label and the predicted probability
vector of each sound from each SAE.

(6) Pipe the labels and the predicted probability vectors
obtained in Steps 4 and 5 into the fusion classifier to
make a final decision on the label of the input.

J. Acoust. Soc. Am. 150 (2), August 2021

C. Network architecture

To evaluate and characterize the proposed MMDL
architecture, we tested three different detectors comprised
of 5, 10, and 15 CNNs and SAEs, respectively. Each CNN
block has a convolutional layer with randomly-picked
hyperparameters (i.e., neuron count and kernel size), a batch
normalization layer, a max-pooling layer, and a ReLu acti-
vation layer. The hyperparameters are shown in Tables I
and II. The number of AEs in each SAE and the number of
neurons in each hidden layer are the two randomly-
generated hyperparameters. Each randomized SAE is
designed as follows: L random numbers, representing the
number of hidden neurons for a single AE in a stack, are
generated. The AEs are stacked together, in decreasing order
of their numbers, to form an SAE. The sorting ensures that
each layer reduces the dimension of the captured features.
The generated CNN and SAE structures are trained individ-
ually. As mentioned earlier, SAEs are trained using scalo-
grams, and CNNs are trained using spectrograms. The
outputs of the SAEs and CNNs are subsequently fused to

TABLE I. Range of randomly generated hyperparameters for each CNN.

Hyperparameter Range
Number of convolutional layers block 1-5

Kernel size (1-3-5-7) odd numbers
Number of kernels (8-64)
Mini-batch size 16-256

Optimizer Adam, SGDM, SGD, RMSProp
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TABLE II. Range of randomly generated hyperparameters for each SAE.

Hyperparameter Range
Number of AEs 1-5
Number of hidden neurons in each AE 150-800
Sparsity regularization 164
12 weight regularization 0.01-0.05

determine the signal’s class. The fusion classifier is

described in the next subsection.

D. Fusion strategies

We tested three types of fusion strategies: Majority
Vote, Average, and PatternNet. Average and PatternNet
fuse predicted probabilities provided by the Softmax layers
of individual models. Majority Voting fuses the predicted
class labels of individual models.

The Weighted Average strategy takes the vote and con-
fidence of a model into consideration by assigning weights
according to the uncertainty of each model. Ju et al. (2018)
showed that a weighted average is a good strategy when
models have similar performances. Following Abidalkareem
et al. (2020) and Wang et al. (2018a), activations of individ-
ual models were concatenated into a vector that was then
piped into a PatternNet, essentially forming an optimized
feed forward network for pattern recognition (Wang et al.,
2018b). In our approach, we used the predicted probability
vectors from individual shallow models (in general weak
classifiers) to train the PatternNet in order to create a strong
classifier. The PatterNet here acts as a mixer of the predicted
probability vectors. In order to optimize its performance, we
adopted the cross-entropy measure as the loss function and
the scaled conjugate gradient method as the training proce-
dure for the PatternNet. Our experiments showed that this
approach was appropriate for fusing predicted probabilities
because the MMDL architecture allows each model to con-
tribute according to its strength.

TABLE III. Results of different input-model combinations (each has five
CNN models or five SAE models).

Models type Upcall detection Non-upcall detection False alarm
Spectrogram + CNNs 90.1% 99.% 0.9%
Scalogram + CNNs 88.6% 98.9% 1.08%
Spectrogram + SAEs 86.25% 98.97% 1.02%
Scalogram + SAEs 89.34% 99.01% 0.99%

V. APPLICATION TO THE NAWR UPCALL DETECTION

The data used in this study was initially labeled by
using an edge detector, resulting in a substantial number of
false labels. We generated spectrograms of all the audio
clips and relabeled them based on visual and audio inspec-
tion of the samples. We trained the models with the cor-
rectly labeled images.

To evaluate our model performance at detecting
NARW up-calls, we compared its detection rate to those of
conventional machine learning algorithms trained with
handcrafted features as done in Ibrahim et al. (2018a),
Ibrahim et al. (2018b), and Ibrahim er al. (2018c,d). The
handcrafted features were derived from combinations of
MFCCs, Gammatone Filter Cepstral Coefficients (GFCC),
and wavelet subspace projections of the recordings. We
showed that coupling MFCC or GFCC features with two-
stage Daubechies wavelet (db4) projections significantly
improved the performance and provided the best results
with 92.27% up-call detections and 1.48% false alarm rates
(Fig. 6).

For the MMDL testing, we first confirmed the best type
of input for each type of models. Four random combina-
tions of either CNNs or SAEs with scalogram or spectro-
gram were tested. Five CNNs or SAEs were used per model
type. The number of layers for each of the five CCNs or
SAEs models was also randomly assigned between 3 and 5.
The results are shown in Table III for CNNs and SAEs.
They confirm that the best detection rate is obtained when
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FIG. 6. (Color online) NARW upcall, non-upcall detection, and false alarm rate results using conventional machine learning methods with handcraft fea-
tures. Features tested were combinations indicated along the abscissa. DWT is the 2-stage DWT with the Daubechies-4 wavelet.
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TABLE IV. Results of different ensemble methods (each has five CNN
models and five SAE models).

TABLE V. MMDL model classification accuracy for three combinations of
subnetwork numbers in each model.

Ensemble method ~ Up-call detection Non-up-call detection False alarm

Majority voting 96% 98.7% 0.41%
Unweighted average 98.1% 99.1% 0.18%
PatternNet 100.0% 100.0% 0.07%

Number of Models Up-call detection Non-up-call detection False alarm
5 CNNs, 5 SAEs 99.3% 99.9% 0.07%
10 CNNs, 10 SAEs 99.8% 100.0% 0.02%
15 CNNs, 15 SAEs 100.0% 100.0% 0%

spectrograms (scalograms) are used as input to CNNs
(SAEs).

Three different fusion methods with varying relative
numbers of CNN and SAE subnetworks were tested. These
networks were tested using 80665 test files compared to
only 1500 files in the previous studies by Ibrahim et al.
(2018c,d). All results were compiled through a fivefold
cross-validation test. Using 15 CNN subnetworks on the
spectrogram images, and 15 SAE subnetworks on the scalo-
gram images, the most accurate fusion method is shown to
be PatternNet (Table IV). When the relative number of sub-
networks was randomly varied between 5, 10, and 15 and
fused with PatternNet, increasing the number of subnet-
works increased the classification accuracy (Table V).

The performance of the model composed of five CNNs
+ five SAEs was compared to the following standard deep
CNN models: ResNetl01, VGG19, MobileNetv2, and
EfficentNet. We adopted a transfer learning approach to
transfer knowledge of the pretrained models to detect upcalls.
The concept of transfer learning is to use an existing deep
learning model trained in one domain (usually with a large
dataset) to perform a classification task in another domain
(usually with a smaller dataset). To use a pretrained model, a
fine-tuning procedure needs to be applied. In the procedure,
the outer layers of the pretrained model are replaced with
additional layers whose weights are trained using the dataset
in the new domain. The number of layers added to a pre-
trained model affects the performance of the model. Another
parameter to be tuned is the learning rate, which is also
application-dependent. In our application, for each pretrained
model, we removed the output layers and replaced them with
one (for ResNetlOl, VGG19) or three dense layers (for
MobileNetv2 and EfficentNet) and a softmax activation layer.
We froze the other layers in the pretrained model and only
train the weights of the newly added layers. We also used the

TABLE VI. Performance comparison with standard deep CNN models.

following learning rates: 0.001, 0.004, 0.005 for RestNet101,
VGG19, MobileNetv2 and 0.0001 for EfficentNet. Table VI
shows that the MMDL model led to more upcall detections
than these pretrained Deep Learning models. In addition, the
MMDL model is computationally less expensive and structur-
ally simpler than VGG19 and ResNet101, but more complex
than MobileNetv2 and EfficentNet.

VI. CONCLUSION

In this study, a new approach for NARW upcall detec-
tion was proposed. The NARW sound dataset was collected
with multiple recording units equipped with passive acoustic
sensors over a period of many years. These recorded signals
were converted to spectrograms and scalograms and classi-
fied by our proposed MMDL detector. Our algorithm is
composed of a number of CNNs and SAEs with randomly
chosen design parameters. The detector does not require
sophisticated preprocessing and it automates its architecture
construction. MMDL combines the advantages of diversity
offered by CNNss, extracting discriminative features at both
local and global levels, and SAEs, which are designed for
data abstraction and reproduction. We showed that the ran-
domness of the model structure and the distinct characteris-
tics of CNNs and SAEs render the integrated MMDL
detector robust against data variability. The effectiveness of
the proposed MMDL model for NARW upcall detection
was verified with Cornell University’s (Clark et al., 2002)
dataset after relabeling the entire set by visual and aural
inspection of the audio files and their spectrograms. Our
labels are available on Github (https://github.com/Aliklawat/
North-Atlantic-Right-Whales-Data_Corrected-labels) for use
by the research community. Our experimental study demon-
strated that the MMDL detector outperformed conventional
machine learning methods as well as representative deep
CNN models which we focused our analysis on, in terms of

Model Up-call detection Non-up-call detection #Parameters FLOPS
5 CNNs, 5 SAEs 99.3% 99.9% 35M 1.2B

ResNet101 + Spectrogram 96% 99.4% 44M 7.6B

ResNet101 + Scalogram 89% 98% 44M 7.6B

VGG19 + Spectrogram 92% 99% 138M 19.6B
VGG19 + Scalogram 87.4% 98.8% 138M 19.6B
MobileNetv2 + Spectrogram 85.9% 97.5% 6.9M 585M
MobilenetV2 + Scalogram 85.2% 97.4% 6.9M 585M
EfficentNet + Spectrogram 87.35% 97.6% 5.3M 0.39B
EfficentNet + Scalogram 86.1% 97.53% 5.3M 0.39B
J. Acoust. Soc. Am. 150 (2), August 2021 lbrahimetal. 1271
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upcall detection rate, non-upcall detection rate, and false
alarm rate; though it is computationally less efficient than
MobileNet and EfficientNet. Since the attributes of the
MMDL system are not signal specific, we conjecture that it
can be used as a classifier for all applications in which multi-
ple classes are involved. As such, the deep learning algorithm
is a significant advancement on conventional machine learn-
ing methods. The near zero false-positive, false-negative and
false alarm rates indicate that this new MMDL detector could
be a powerful tool in the detection and monitoring of the low
density, endangered NARW, especially in environments with
high acoustic-masking.
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