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ABSTRACT. In this note we describe centralizers of volume preserving partially
hyperbolic diffeomorphisms which are homotopic to identity on Seifert fibered
and hyperbolic 3-manifolds. Our proof follows the strategy of Damjanovic,
Wilkinson and Xu [10] who recently classified the centralizer for perturbations
of time-1 maps of geodesic flows in negative curvature. We strongly rely on
recent classification results in dimension 3 established in [5, 6].

1. Introduction. In [10], Damjanovic, Wilkinson and Xu investigate centralizers
of certain partially hyperbolic diffeomorphisms and prove the following beautiful
rigidity result: The centralizer of a perturbation of a time-1 map of an Anosov
geodesic flow is either virtually Z or it is virtually R. In the latter case the partially
hyperbolic diffeomorphism is the time-1 map of a smooth Anosov flow.

The proof in [10] works equally well in any dimension. Here we point out that,
if one considers only 3-manifolds, then some lemmas can be strengthened to obtain
the rigidity result for a much broader class of partially hyperbolic diffeomorphisms.

For any diffeomorphism f: M — M, we denote the centralizer of f by

Z(f) ={g € Diff(M) | go f = fog},

where Diff (M) is the space of C''-diffeomorphisms of M.

We say that f: M — M is a discretized Anosov flow if f is a partially hyperbolic
diffeomorphism such that there exists a (topological) Anosov flow ©': M — M and
a function h: M — R* such that f(z) = ¢"®)(x) for all z € M.

In this note, the partially hyperbolic diffeomorphism f is always assumed to be
a C*° diffeomorphism.
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IThis is the same definition as in [5], see Appendix G of [5] for more details. Note that a
discretized Anosov flow is a much broader class than what is called a discretized flow in [10],
which is just a time-1 map of an Anosov flow.
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Theorem A. Let f: M — M be a volume-preserving partially hyperbolic diffeo-
morphism on a 3-manifold. If f is a discretized Anosov flow and 71 (M) is not
virtually solvable then either Z(f) is virtually {f™ | n € Z} or f embeds into a
smooth Anosov flow.

Using the main results of [5, 6], we then deduce the following results.

Theorem B. Let f: M — M be a volume-preserving partially hyperbolic diffeo-
morphism on a Seifert 3-manifold which is homotopic to the identity. Then either
Z(f) is virtually {f™ | n € Z} or Z(f) is virtually R and a power of f embeds into
an Anosov flow.

Theorem C. Let f: M — M be a volume-preserving dynamically coherent partially
hyperbolic diffeomorphism on a hyperbolic 3-manifold. Then either Z(f) is virtually
{f"|neZ} or Z(f) is virtually R and a power of f embeds into an Anosov flow.

Remark 1.1. Note that Theorem B is a generalization of the 3-dimensional case of
Theorem 3 of [10]. (One has to take a power of f to obtain the embedding into an
Anosov flow only in the case when M is a k-cover of the unit tangent bundle of a
hyperbolic surface or an orbifold, see Remark 7.4 in [5]).

Remark 1.2. The reason we exclude virtually solvable 71 (M) in Theorem A is that,
in this case, f would be a discretized Anosov flow of a suspension of an Anosov
diffeomorphism. Thus f could fail to be accessible and the main motor of the proof,
which is a dichotomy result by Avila, Viana and Wilkinson [2, 3], does not work. If
one asks for f to be accessible, then Theorem A will apply even on manifold with
virtually solvable fundamental group.

In particular, any dynamically coherent, accessible, volume-preserving partially
hyperbolic diffeomorphism f on a manifold with virtually solvable fundamental
group has centralizer virtually Z or virtually R in which case a power of f embeds
into an Anosov flow. (The proof follows as in section 3, but using the classification
results of Hammerlindl and Potrie (see [12]) instead of [5, 6]).

As this note heavily relies on the arguments of [10] to obtain Theorem A, we did
not try to make it self-contained and refer to [10] whenever an argument does not
need a substantial change.

2. Proof of Theorem A. Overall the proof follows the scheme of the proof of
Theorem 3 of [10]. The difference is in the following lemmas which are more general
(when considering the 3-dimensional case) than their counterparts in [10].

In the sequel we always assume that the fundamental group of M is not virtually
solvable.

For f: M — M a dynamically coherent partially hyperbolic diffeomorphism, we
denote by W?, W*, W W and W€ the stable, unstable, center stable, center
unstable and center foliations of f, respectively. Recall that the foliations W?* and
WY are unique, but, in general, the others are not. Thankfully, for discretized
Anosov flow, they are unique.

Lemma 2.1. Let f: M — M be a discretized Anosov flow. Then there exists
a unique pair of center stable W and center unstable W foliations that are
preserved by f. Hence W€ is also unique.

Proof. Since f is a discretized Anosov flow, it admits a pair of center stable and
center unstable foliations such that a good lift f of f to the universal cover M fixes
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each leaf of the lifted foliations (see [5, Proposition G.1]). Thus, by [6, Lemma 7.6],
these foliations are unique. O

As a direct consequence of Lemma 2.1, we obtain that, if g € Z(f), then g
preserves each of the foliations W*, x = ¢, s, u, ¢s, cu.

Following [10], denote by Z¢(f) the subgroup of Z(f) consisting of elements
which fix each leaf of the center foliation of f. o s

Recall that the leaf space of a foliation W* is the space M /W™, where W* is the
lifted foliation to the universal cover. A codimension 1 foliation is called R-covered
if its leaf space is homeomorphic to R, and an Anosov flow is called R-covered if its
weak stable and weak unstable foliations are R-covered (see, e.g., [4]).

Let MCG(M) be the mapping class group of M, defined as the homotopy classes
of diffeomorphisms of M. Denote by Z,(f) the kernel of the homomorphism Z(f) —
MCG(M). We first note that, assuming that the Anosov flow associated to f is
transitive, then Z¢(f) is a subgroup of Zy(f).

Indeed, consider an element g of Z¢(f). Then the induced map g, € Out(m(M))
fixes the conjugacy classes of elements represented by closed center leaves of f.
These closed center leaves are the periodic orbits of the Anosov flow associated
to f. Since this flow is assumed to be transitive, the periodic orbits generates
the m (M) ([1]). So g. is trivial on a generating set hence it is the identity in
Out(m1(M)). Now, a standard obstruction theory argument shows that, when M
is aspherical (which is the case here, because M is 3-dimensional and supports an
Anosov flow), the map MCG(M) — Out(w;(M)) is injective. Thus g € Zo(f).

Lemma 2.2. Let f: M — M be a discretized Anosov flow, and suppose that the
corresponding Anosov flow o' is transitive. Then, the group Z°(f) has finite index
in the kernel Zy(f).

Proof. Suppose that g € Z¢(f). Since f is a discretized Anosov flow, its center
foliation W€ is the orbit foliation of a topological Anosov flow ¢! (cf. [5, Proposition
G.1]). By the preceding lemma g preserves the foliation W°. Thus the map g is
a self orbit equivalence of the transitive Anosov flow ¢! which is homotopic to the
identity. Therefore Theorem 1.1 of [7] applies to g.

Then, either g € Z°(f) or (see case 4 of [7, Theorem 1.1]) ¢! is R-covered and
there exists a map n: M — M, homotopic to identity, and an integer ¢, i # 0,
such that g on’ fixes every leaf of W¢. More precisely, if § and 7 are lifts to M
obtained by lifting the homotopies to identity, then g o i)' fixes every leaf of the
lifted foliation W¢. Equivalently, the map § o 7* acts as the identity on the orbit
space of the Anosov flow (this is how the integer i is found, see [7, Section 2]).

Since g is at least O, if g & Z°(f), then g defines a non-trivial C! action on the
weak-stable leaf space of the Anosov flow ¢!, and thus, by [4, Proposition 6.6], ¢!
is orbit equivalent to a finite cover of the geodesic flow on a (orientable) hyperbolic
surface or orbifold ¥. That is, we are in case 4b of Theorem 1.1 of [7]. So, there
exists k € N such that n* = Id and the integer i above is uniquely defined modulo
k.

Thus, we obtained a map Zy(f) 2 g — @ € Z/kZ. This map is a homomorphism
since if g1, g2 € Zo(f), then the action of g1 o go on the orbit space of the Anosov
flow corresponds to 7~ o7 =% = 5=~ Moreover, the kernel of the map Zy(f) >
g+ 1 € Z/kZ is, by the above, exactly Z¢(f).

Therefore, we found an injective homomorphism Zo(f)/Z¢(f) > [g] — i € Z/kZ.
So Zo(f)/2¢(f) is finite. O
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Lemma 2.3. Let f: M — M be a discretized Anosov flow. Then for any g € Z(f)
and any closed center leaf W€(z), there exists k > 1 such that

9" (We(x)) = We(a).

Proof. This is essentially the same proof as Lemma 17 in [10], but we rewrite it
since we state it in a different setting.

Let ¢': M — M be the topological Anosov flow and h: M — R be the con-
tinuous function such that f(x) = ©"®)(z). We fix a metric on M such that the
orbits of ¢! have unit Speed

Let g € Z(f) Let ¢, f and ¢ be lifts of ¢!, f and g to the universal cover M.
We choose @ and f to be lifts which fix each leaf of the lifted center fohatlon we
(= the flow foliation of ¢'). If g reverses the orientation of the orbits of ¢!, then
we replace g by ¢g?. Thus we can assume that § preserves the ordering of points on
any orbit of @¢.

Recall that all orbits of @' are lines. Hence a closed center leaf W¢(x) lifts to
an orbit segment [z, 37 (x)], T > 0 (where we write & for both the point z € M
and a lift of it to the universal cover M ) The orbit of x under f is an increasing
sequence of points. Hence, there exists a unique N > 0 such that @7 (z) belongs to
the orbit segment (fo FN+1 z]. Then, for any m > 1, the points g™ = belongs
to the orbit segment (g (fN ), 7" (V)] = (fN(Gma), N (Gm)).

The center leaf W¢(g™z) lifts to the orbit segment [¢™z,§™ (T x)]. By the
above discussion we have [z, 3™ (@Tx)] C [§™z, fNT1(§™x)]. Hence the length
of W¢(¢g™x) is bounded by C = (N + 1) max(h). Note that this bound is uniform
in m.

Since there are only finitely many closed center leaves of length less than C| it
follows that every closed center leaf is g-periodic. O

Proposition 2.4. Let f: M — M be a discretized Anosov flow, and suppose that
the Anosov flow o' is transitive. Then Z(f)/Z¢(f) is finite.

Proof. By Lemma 2.2, since Z¢(f) has finite index in Z,(f), it is sufficient to show
that Z(f)/Z20(f) is finite, which we now proceed to do.

Let g € Z(f). By Lemma 2.3, every closed center leaf in W€ is periodic under g.
Now recall that each closed center leaf is a periodic orbit of the transitive Anosov
flow . By [1], the (conjugacy classes of) closed orbits of the transitive Anosov
flow ! generate the fundamental group of M. Thus we can choose a generating set
of closed orbits and choose n large enough so that g™ fixes each closed center leaf
in the generating set of conjugacy classes of 71 (M).

This implies that the element [¢7] € Out(m(M)) is the identity of the outer
automorphism group of m (M).

Thus ¢g", seen as an element of MCG(M), is in the kernel of the homomorphism
MCG(M) — Out(m (M)).

As we recalled earlier, a standard obstruction theory argument shows that the
map MCG(M) — Out(mi(M)) is injective, because M is aspherical. Thus g™ is the
identity in MCG(M). Hence, we conclude that Z(f)/Zy(f) is a torsion subgroup
of MCG(M).
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Now, since M is an irreducible 3-manifold, MCG (M) is virtually torsion free (see
section 5 of [13])%. Thus, Z(f)/20(f) must be finite, since it is a torsion subgroup
of MCG(M). O

Now that we obtained Proposition 2.4, we can copy verbatim the proof of Theo-

rem 5 of [10] and obtain the following result that will allow us to deduce Theorem
A.

Theorem 2.5. Let f be a discretized Anosov flow on a 3-manifold M such that
w1 (M) is not virtually solvable. Suppose that f preserves a volume Vol on M. Then

either Vol has Lebesgue disintegration along W€ or f has virtually trivial centralizer
in Diff (M).

Proof. As w1 (M) is not virtually solvable, by [11, Theorem C], f is accessible.
Because f is volume preserving, it is, thus, transitive ([8]). Hence there exists a
center leaf which is dense in M, which implies that the Anosov flow ! is also
transitive. So Proposition 2.4 apply.

We have that Z(f) is virtually Z¢(f). Moreover, f is ergodic (because it is
accessible, so it is ergodic by [17, 9]) and all the elements of Z(f) are volume
preserving (see [10, Lemma 11}).

From the the proof of Theorem F of [3] (see section 10.3 of [3]) we have the
following lemma.

Lemma 2.6. Under the asssumptions of Theorem 2.5, if Vol has singular disin-
tegration along the leaves of W€, then there exists k > 1 and a full measure set
S C M that intersects every center leaf in exactly k orbits of f.

Using this lemma, we can now copy verbatim the proof of Theorem 5 in [10]
(replacing T' X with M) to obtain Theorem 2.5. O

Proof of Theorem A. If Vol has singular disintegration along the leaves of W€, then
the conclusion of Theorem A follows from Theorem 2.5.

Otherwise, by Theorem F of [3], W€ is absolutely continuous and f = ¢!, where
t: M — M is a smooth volume preserving Anosov flow. In particular, {¢! |t €
R} C Z(f).

Now, if g € Z¢(f), then, by ergodicity of f, the map g preserves Vol, and, hence,
it preserves the disintegration of Vol along W¢. Thus g = 4 for some ¢ € R.

So {¢' | t € R} = Z°(f) and Theorem A follows from Proposition 2.4. O

3. Proofs of Theorems B and C. The two main results of [5, 6] state that, if
f+ M — M is a partially hyperbolic diffeomorphism such that, either f is homo-
topic to the identity and M is Seifert, or that f is dynamically coherent and M is
hyperbolic, then there exists k > 1 such that f* is a discretized Anosov flow.

Since Z(f) C Z(f*), we immediately deduce from Theorem A that, under the
assumptions of Theorem B or Theorem C, either Z(f) is virtually {f™ | n € Z} or
Z(f*) is virtually R and f* embeds into an Anosov flow for some k > 1.

Thus, in order to finish proving Theorems B and C, we only need to show that if
f* is the time-1 map of an Anosov flow which is transitive on a Seifert or hyperbolic
manifold, then the centralizer of f is virtually R.

This last step is given by the next lemma, which is in fact more general.

2Note that McCullough [14] proved that MCG(M) is virtually torsion free for Haken manifolds
and it follows from Mostow Rigidity Theorem for hyperbolic manifolds, which are the only two
cases we need, since, as M supports an Anosov flow, it is either Haken or hyperbolic.
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Lemma 3.1. Suppose that f* is the time-1 map of a transitive Anosov flow that is
not a constant roof suspension of an Anosov diffeomorphism. Then Z(f) is virtually
R.

Recall that suspensions of Anosov diffeomorphisms are on solvmanifolds. In
particular Seifert and hyperbolic manifolds do not support suspensions of Anosov
diffeomorphisms, so Lemma 3.1 apply in the setting of Theorems B and C.

In order to prove Lemma 3.1, we first need a result about topologically weak-
mixing Anosov flows.

Lemma 3.2. Let ot: M — M be a topologically weak-mizing Anosov flow, then,
for every n > 0, the set of periodic orbits of @' that have period not a multiple of
1/n is dense in M

Proof. This is a simple consequence of the spatial equidistribution of orbits of pe-
riods between T and T + ¢ for weak-mixing Anosov flow.

We let P be the set of periodic orbits of ¢!. For any v € P, we let £(v) be the
minimal period of «. For any map K: M — R that is continuous along the orbits
of ¢!, and any € > 0, we have, by [16, Proposition 7.3,

K
ZT<4(’Y)§T+EI’Y ) ﬁ/ Kdupy, as T — +oo,
M

ET<E(7)§T+5 £y

where pp)s is the measure of maximal entropy of .
Let n > 0 be fixed and let Pg%z be the set of periodic orbits of period not
a multiple of 1/n. If @ # M then there would exists an open set U that is
missed by the orbits in Py 1z Taking K to be a smooth approximation of the
characteristic function of U and € < 1/n, we would get that the left hand side of
the above equation is zero along a subsequence, while the right hand side is strictly
positive, as the measure of maximal entropy has full support. A contradiction. [

Proof of Lemma 3.1. Let ¢*: M — M be the Anosov flow such that f* = !, we
will show that f itself commutes with ¢ for any ¢t € R which will prove the claim
(since Z(f) C Z(f*) and Z(f*) is virtually {p* | t € R}).

Since f* = o', we have that, for any m € Z and any x € M,

fl@™(x)) = ™ (f(z)).

Now consider a periodic orbit v of ¢!.

Claim 3.3. Let [ be the period of the orbit vy, then f(7) is a periodic orbit of period
l.
Moreover, if l is irrational, then, for any x € v and any t € R, we have

f(@' (@) = ' (f(=)).
On the other hand if I is rational, say | = p/n, ged(p,n) = 1, then, for any x € v
and any m € Z, we have

Fe™m (@) = ™" (f(2)).

Proof of Claim 5.5. Since f preserves the center foliation, f() is also a periodic
orbit of .

Then, since f* = !, the diffeomorphism f restricts to a conjugacy between the
circle maps ¢'|, and ¢?| #(v) considered as diffeomorphisms of the circle. Since the
rotation number is a conjugacy invariant, we deduce that g01|7 and ¢! #(v) have the
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same rotation numbers, which implies (since ¢! is the time-1 map of a flow) that
the period of v and f(7) are both equal to I. So the first part of the claim is proven.

Now suppose that the period [ is irrational. Then for any ¢t € R, and any point
y € yory € f(v), the sequence p™ (y) converges to ¢! (y) if and only if the sequence
ny converges to t modulo [.

Pick a point z € v, t € R and an integer sequence (ny,) such that ¢™* (x) converges
to ¢'(x). Then, using continuity of f and the fact that f commutes with (!, we
deduce that ¢ (f(z)) = f(¢™*(x)) converges to f(p!(z)).

Since by the above we also have that o™ (f(x)) converges to »!(f(x)), we deduce
that f(p!(z)) = ¢'(f(x)), as claimed.

If | = p/n is rational, then if an integer k is equal to m/n modulo I, we get

Fle™™(@)) = f(" (@) = " (f () = ™/"(f(2))-
This completes the proof of the claim. O

Now take any z € M. We approximate x by a sequence y; — =, ¢ — 00, such
that each y; is periodic. Further we choose y; in such a way that the period of y;
are either irrational or rational of the form p;/q;, ged(p;, ¢;) = 1, with ¢; > 4. Such
choice is possible by Lemma 3.2. By the above discussion we have

Fe" () = @' (f ()
either for every t or for a 1/i-dense set of t’s. In either case for any ¢t € R we can
choose a sequence t; — t, i — oo, such that f(¢% (y;)) = @' (f(y;)). Passing to a
limit as i — oo yields f(p!(z)) = p!(f(z)). Thus {’ | t € R} C Z(f), which proves
the lemma. O
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