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Abstract. In this note we describe centralizers of volume preserving partially

hyperbolic diffeomorphisms which are homotopic to identity on Seifert fibered
and hyperbolic 3-manifolds. Our proof follows the strategy of Damjanovic,

Wilkinson and Xu [10] who recently classified the centralizer for perturbations

of time-1 maps of geodesic flows in negative curvature. We strongly rely on
recent classification results in dimension 3 established in [5, 6].

1. Introduction. In [10], Damjanovic, Wilkinson and Xu investigate centralizers
of certain partially hyperbolic diffeomorphisms and prove the following beautiful
rigidity result: The centralizer of a perturbation of a time-1 map of an Anosov
geodesic flow is either virtually Z or it is virtually R. In the latter case the partially
hyperbolic diffeomorphism is the time-1 map of a smooth Anosov flow.

The proof in [10] works equally well in any dimension. Here we point out that,
if one considers only 3-manifolds, then some lemmas can be strengthened to obtain
the rigidity result for a much broader class of partially hyperbolic diffeomorphisms.

For any diffeomorphism f : M →M , we denote the centralizer of f by

Z(f) := {g ∈ Diff(M) | g ◦ f = f ◦ g},

where Diff(M) is the space of C1-diffeomorphisms of M .
We say that f : M →M is a discretized Anosov flow if f is a partially hyperbolic

diffeomorphism such that there exists a (topological) Anosov flow ϕt : M →M and
a function h : M → R+ such that f(x) = ϕh(x)(x) for all x ∈M1.

In this note, the partially hyperbolic diffeomorphism f is always assumed to be
a C∞ diffeomorphism.
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1This is the same definition as in [5], see Appendix G of [5] for more details. Note that a

discretized Anosov flow is a much broader class than what is called a discretized flow in [10],

which is just a time-1 map of an Anosov flow.
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4478 THOMAS BARTHELMÉ AND ANDREY GOGOLEV

Theorem A. Let f : M → M be a volume-preserving partially hyperbolic diffeo-
morphism on a 3-manifold. If f is a discretized Anosov flow and π1(M) is not
virtually solvable then either Z(f) is virtually {fn | n ∈ Z} or f embeds into a
smooth Anosov flow.

Using the main results of [5, 6], we then deduce the following results.

Theorem B. Let f : M → M be a volume-preserving partially hyperbolic diffeo-
morphism on a Seifert 3-manifold which is homotopic to the identity. Then either
Z(f) is virtually {fn | n ∈ Z} or Z(f) is virtually R and a power of f embeds into
an Anosov flow.

Theorem C. Let f : M →M be a volume-preserving dynamically coherent partially
hyperbolic diffeomorphism on a hyperbolic 3-manifold. Then either Z(f) is virtually
{fn | n ∈ Z} or Z(f) is virtually R and a power of f embeds into an Anosov flow.

Remark 1.1. Note that Theorem B is a generalization of the 3-dimensional case of
Theorem 3 of [10]. (One has to take a power of f to obtain the embedding into an
Anosov flow only in the case when M is a k-cover of the unit tangent bundle of a
hyperbolic surface or an orbifold, see Remark 7.4 in [5]).

Remark 1.2. The reason we exclude virtually solvable π1(M) in Theorem A is that,
in this case, f would be a discretized Anosov flow of a suspension of an Anosov
diffeomorphism. Thus f could fail to be accessible and the main motor of the proof,
which is a dichotomy result by Avila, Viana and Wilkinson [2, 3], does not work. If
one asks for f to be accessible, then Theorem A will apply even on manifold with
virtually solvable fundamental group.

In particular, any dynamically coherent, accessible, volume-preserving partially
hyperbolic diffeomorphism f on a manifold with virtually solvable fundamental
group has centralizer virtually Z or virtually R in which case a power of f embeds
into an Anosov flow. (The proof follows as in section 3, but using the classification
results of Hammerlindl and Potrie (see [12]) instead of [5, 6]).

As this note heavily relies on the arguments of [10] to obtain Theorem A, we did
not try to make it self-contained and refer to [10] whenever an argument does not
need a substantial change.

2. Proof of Theorem A. Overall the proof follows the scheme of the proof of
Theorem 3 of [10]. The difference is in the following lemmas which are more general
(when considering the 3-dimensional case) than their counterparts in [10].

In the sequel we always assume that the fundamental group of M is not virtually
solvable.

For f : M →M a dynamically coherent partially hyperbolic diffeomorphism, we
denote by Ws, Wu, Wcs, Wcu, and Wc the stable, unstable, center stable, center
unstable and center foliations of f , respectively. Recall that the foliations Ws and
Wu are unique, but, in general, the others are not. Thankfully, for discretized
Anosov flow, they are unique.

Lemma 2.1. Let f : M → M be a discretized Anosov flow. Then there exists
a unique pair of center stable Wcs and center unstable Wcu foliations that are
preserved by f . Hence Wc is also unique.

Proof. Since f is a discretized Anosov flow, it admits a pair of center stable and

center unstable foliations such that a good lift f̃ of f to the universal cover M̃ fixes
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each leaf of the lifted foliations (see [5, Proposition G.1]). Thus, by [6, Lemma 7.6],
these foliations are unique.

As a direct consequence of Lemma 2.1, we obtain that, if g ∈ Z(f), then g
preserves each of the foliations W∗, ∗ = c, s, u, cs, cu.

Following [10], denote by Zc(f) the subgroup of Z(f) consisting of elements
which fix each leaf of the center foliation of f .

Recall that the leaf space of a foliation W∗ is the space M̃/W̃∗, where W̃∗ is the
lifted foliation to the universal cover. A codimension 1 foliation is called R-covered
if its leaf space is homeomorphic to R, and an Anosov flow is called R-covered if its
weak stable and weak unstable foliations are R-covered (see, e.g., [4]).

Let MCG(M) be the mapping class group of M , defined as the homotopy classes
of diffeomorphisms of M . Denote by Z0(f) the kernel of the homomorphism Z(f)→
MCG(M). We first note that, assuming that the Anosov flow associated to f is
transitive, then Zc(f) is a subgroup of Z0(f).

Indeed, consider an element g of Zc(f). Then the induced map g∗ ∈ Out(π1(M))
fixes the conjugacy classes of elements represented by closed center leaves of f .
These closed center leaves are the periodic orbits of the Anosov flow associated
to f . Since this flow is assumed to be transitive, the periodic orbits generates
the π1(M) ([1]). So g∗ is trivial on a generating set hence it is the identity in
Out(π1(M)). Now, a standard obstruction theory argument shows that, when M
is aspherical (which is the case here, because M is 3-dimensional and supports an
Anosov flow), the map MCG(M)→ Out(π1(M)) is injective. Thus g ∈ Z0(f).

Lemma 2.2. Let f : M → M be a discretized Anosov flow, and suppose that the
corresponding Anosov flow ϕt is transitive. Then, the group Zc(f) has finite index
in the kernel Z0(f).

Proof. Suppose that g ∈ Z0(f). Since f is a discretized Anosov flow, its center
foliationWc is the orbit foliation of a topological Anosov flow ϕt (cf. [5, Proposition
G.1]). By the preceding lemma g preserves the foliation Wc. Thus the map g is
a self orbit equivalence of the transitive Anosov flow ϕt which is homotopic to the
identity. Therefore Theorem 1.1 of [7] applies to g.

Then, either g ∈ Zc(f) or (see case 4 of [7, Theorem 1.1]) ϕt is R-covered and
there exists a map η : M → M , homotopic to identity, and an integer i, i 6= 0,

such that g ◦ ηi fixes every leaf of Wc. More precisely, if g̃ and η̃ are lifts to M̃
obtained by lifting the homotopies to identity, then g̃ ◦ η̃i fixes every leaf of the

lifted foliation W̃c. Equivalently, the map g̃ ◦ η̃i acts as the identity on the orbit
space of the Anosov flow (this is how the integer i is found, see [7, Section 2]).

Since g is at least C1, if g 6∈ Zc(f), then g defines a non-trivial C1 action on the
weak-stable leaf space of the Anosov flow ϕt, and thus, by [4, Proposition 6.6], ϕt

is orbit equivalent to a finite cover of the geodesic flow on a (orientable) hyperbolic
surface or orbifold Σ. That is, we are in case 4b of Theorem 1.1 of [7]. So, there
exists k ∈ N such that ηk = Id and the integer i above is uniquely defined modulo
k.

Thus, we obtained a map Z0(f) 3 g 7→ i ∈ Z/kZ. This map is a homomorphism
since if g1, g2 ∈ Z0(f), then the action of g̃1 ◦ g̃2 on the orbit space of the Anosov
flow corresponds to η̃−i1 ◦ η̃−i2 = η̃−i1−i2 . Moreover, the kernel of the map Z0(f) 3
g 7→ i ∈ Z/kZ is, by the above, exactly Zc(f).

Therefore, we found an injective homomorphism Z0(f)/Zc(f) 3 [g] 7→ i ∈ Z/kZ.
So Z0(f)/Zc(f) is finite.
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Lemma 2.3. Let f : M →M be a discretized Anosov flow. Then for any g ∈ Z(f)
and any closed center leaf Wc(x), there exists k ≥ 1 such that

gk (Wc(x)) =Wc(x).

Proof. This is essentially the same proof as Lemma 17 in [10], but we rewrite it
since we state it in a different setting.

Let ϕt : M → M be the topological Anosov flow and h : M → R+ be the con-
tinuous function such that f(x) = ϕh(x)(x). We fix a metric on M such that the
orbits of ϕt have unit speed.

Let g ∈ Z(f). Let ϕ̃t, f̃ and g̃ be lifts of ϕt, f and g to the universal cover M̃ .

We choose ϕ̃t and f̃ to be lifts which fix each leaf of the lifted center foliation W̃c

(= the flow foliation of ϕ̃t). If g reverses the orientation of the orbits of ϕt, then
we replace g by g2. Thus we can assume that g̃ preserves the ordering of points on
any orbit of ϕ̃t.

Recall that all orbits of ϕ̃t are lines. Hence a closed center leaf Wc(x) lifts to
an orbit segment [x, ϕ̃T (x)], T > 0 (where we write x for both the point x ∈ M
and a lift of it to the universal cover M̃). The orbit of x under f̃ is an increasing
sequence of points. Hence, there exists a unique N ≥ 0 such that ϕ̃T (x) belongs to

the orbit segment (f̃Nx, f̃N+1x]. Then, for any m ≥ 1, the points g̃mϕ̃Tx belongs

to the orbit segment (g̃m(f̃Nx), g̃m(f̃N+1x)] = (f̃N (g̃mx), f̃N+1(g̃mx)].
The center leaf Wc(gmx) lifts to the orbit segment [g̃mx, g̃m(ϕ̃Tx)]. By the

above discussion we have [g̃mx, g̃m(ϕ̃Tx)] ⊂ [g̃mx, f̃N+1(g̃mx)]. Hence the length
of Wc(gmx) is bounded by C = (N + 1) max(h). Note that this bound is uniform
in m.

Since there are only finitely many closed center leaves of length less than C, it
follows that every closed center leaf is g-periodic.

Proposition 2.4. Let f : M → M be a discretized Anosov flow, and suppose that
the Anosov flow ϕt is transitive. Then Z(f)/Zc(f) is finite.

Proof. By Lemma 2.2, since Zc(f) has finite index in Z0(f), it is sufficient to show
that Z(f)/Z0(f) is finite, which we now proceed to do.

Let g ∈ Z(f). By Lemma 2.3, every closed center leaf in Wc is periodic under g.
Now recall that each closed center leaf is a periodic orbit of the transitive Anosov
flow ϕt. By [1], the (conjugacy classes of) closed orbits of the transitive Anosov
flow ϕt generate the fundamental group of M . Thus we can choose a generating set
of closed orbits and choose n large enough so that gn fixes each closed center leaf
in the generating set of conjugacy classes of π1(M).

This implies that the element [gn∗ ] ∈ Out(π1(M)) is the identity of the outer
automorphism group of π1(M).

Thus gn, seen as an element of MCG(M), is in the kernel of the homomorphism
MCG(M)→ Out(π1(M)).

As we recalled earlier, a standard obstruction theory argument shows that the
map MCG(M)→ Out(π1(M)) is injective, because M is aspherical. Thus gn is the
identity in MCG(M). Hence, we conclude that Z(f)/Z0(f) is a torsion subgroup
of MCG(M).
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Now, since M is an irreducible 3-manifold, MCG(M) is virtually torsion free (see
section 5 of [13])2. Thus, Z(f)/Z0(f) must be finite, since it is a torsion subgroup
of MCG(M).

Now that we obtained Proposition 2.4, we can copy verbatim the proof of Theo-
rem 5 of [10] and obtain the following result that will allow us to deduce Theorem
A.

Theorem 2.5. Let f be a discretized Anosov flow on a 3-manifold M such that
π1(M) is not virtually solvable. Suppose that f preserves a volume Vol on M . Then
either Vol has Lebesgue disintegration along Wc or f has virtually trivial centralizer
in Diff(M).

Proof. As π1(M) is not virtually solvable, by [11, Theorem C], f is accessible.
Because f is volume preserving, it is, thus, transitive ([8]). Hence there exists a
center leaf which is dense in M , which implies that the Anosov flow ϕt is also
transitive. So Proposition 2.4 apply.

We have that Z(f) is virtually Zc(f). Moreover, f is ergodic (because it is
accessible, so it is ergodic by [17, 9]) and all the elements of Z(f) are volume
preserving (see [10, Lemma 11]).

From the the proof of Theorem F of [3] (see section 10.3 of [3]) we have the
following lemma.

Lemma 2.6. Under the asssumptions of Theorem 2.5, if Vol has singular disin-
tegration along the leaves of Wc, then there exists k ≥ 1 and a full measure set
S ⊂M that intersects every center leaf in exactly k orbits of f .

Using this lemma, we can now copy verbatim the proof of Theorem 5 in [10]
(replacing T 1X with M) to obtain Theorem 2.5.

Proof of Theorem A. If Vol has singular disintegration along the leaves of Wc, then
the conclusion of Theorem A follows from Theorem 2.5.

Otherwise, by Theorem F of [3], Wc is absolutely continuous and f = ψ1, where
ψt : M → M is a smooth volume preserving Anosov flow. In particular, {ψt | t ∈
R} ⊂ Z(f).

Now, if g ∈ Zc(f), then, by ergodicity of f , the map g preserves Vol, and, hence,
it preserves the disintegration of Vol along Wc. Thus g = ψt for some t ∈ R.

So {ψt | t ∈ R} = Zc(f) and Theorem A follows from Proposition 2.4.

3. Proofs of Theorems B and C. The two main results of [5, 6] state that, if
f : M → M is a partially hyperbolic diffeomorphism such that, either f is homo-
topic to the identity and M is Seifert, or that f is dynamically coherent and M is
hyperbolic, then there exists k ≥ 1 such that fk is a discretized Anosov flow.

Since Z(f) ⊂ Z(fk), we immediately deduce from Theorem A that, under the
assumptions of Theorem B or Theorem C, either Z(f) is virtually {fn | n ∈ Z} or
Z(fk) is virtually R and fk embeds into an Anosov flow for some k ≥ 1.

Thus, in order to finish proving Theorems B and C, we only need to show that if
fk is the time-1 map of an Anosov flow which is transitive on a Seifert or hyperbolic
manifold, then the centralizer of f is virtually R.

This last step is given by the next lemma, which is in fact more general.

2Note that McCullough [14] proved that MCG(M) is virtually torsion free for Haken manifolds
and it follows from Mostow Rigidity Theorem for hyperbolic manifolds, which are the only two

cases we need, since, as M supports an Anosov flow, it is either Haken or hyperbolic.
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Lemma 3.1. Suppose that fk is the time-1 map of a transitive Anosov flow that is
not a constant roof suspension of an Anosov diffeomorphism. Then Z(f) is virtually
R.

Recall that suspensions of Anosov diffeomorphisms are on solvmanifolds. In
particular Seifert and hyperbolic manifolds do not support suspensions of Anosov
diffeomorphisms, so Lemma 3.1 apply in the setting of Theorems B and C.

In order to prove Lemma 3.1, we first need a result about topologically weak-
mixing Anosov flows.

Lemma 3.2. Let ϕt : M → M be a topologically weak-mixing Anosov flow, then,
for every n > 0, the set of periodic orbits of ϕt that have period not a multiple of
1/n is dense in M

Proof. This is a simple consequence of the spatial equidistribution of orbits of pe-
riods between T and T + ε for weak-mixing Anosov flow.

We let P be the set of periodic orbits of ϕt. For any γ ∈ P , we let `(γ) be the
minimal period of γ. For any map K : M → R that is continuous along the orbits
of ϕt, and any ε > 0, we have, by [16, Proposition 7.3],∑

T<`(γ)≤T+ε

∫
γ
K∑

T<`(γ)≤T+ε `(γ)
→

∫
M

KdµBM , as T → +∞,

where µBM is the measure of maximal entropy of ϕt.
Let n > 0 be fixed and let P/∈ 1

nZ be the set of periodic orbits of period not

a multiple of 1/n. If P/∈ 1
nZ 6= M then there would exists an open set U that is

missed by the orbits in P/∈ 1
nZ. Taking K to be a smooth approximation of the

characteristic function of U and ε < 1/n, we would get that the left hand side of
the above equation is zero along a subsequence, while the right hand side is strictly
positive, as the measure of maximal entropy has full support. A contradiction.

Proof of Lemma 3.1. Let ϕt : M → M be the Anosov flow such that fk = ϕ1, we
will show that f itself commutes with ϕt for any t ∈ R which will prove the claim
(since Z(f) ⊂ Z(fk) and Z(fk) is virtually {ϕt | t ∈ R}).

Since fk = ϕ1, we have that, for any m ∈ Z and any x ∈M ,

f(ϕm(x)) = ϕm(f(x)).

Now consider a periodic orbit γ of ϕt.

Claim 3.3. Let l be the period of the orbit γ, then f(γ) is a periodic orbit of period
l.

Moreover, if l is irrational, then, for any x ∈ γ and any t ∈ R, we have

f(ϕt(x)) = ϕt(f(x)).

On the other hand if l is rational, say l = p/n, gcd(p, n) = 1, then, for any x ∈ γ
and any m ∈ Z, we have

f(ϕm/n(x)) = ϕm/n(f(x)).

Proof of Claim 3.3. Since f preserves the center foliation, f(γ) is also a periodic
orbit of ϕ.

Then, since fk = ϕ1, the diffeomorphism f restricts to a conjugacy between the
circle maps ϕ1|γ and ϕ1|f(γ) considered as diffeomorphisms of the circle. Since the

rotation number is a conjugacy invariant, we deduce that ϕ1|γ and ϕ1|f(γ) have the
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same rotation numbers, which implies (since ϕ1 is the time-1 map of a flow) that
the period of γ and f(γ) are both equal to l. So the first part of the claim is proven.

Now suppose that the period l is irrational. Then for any t ∈ R, and any point
y ∈ γ or y ∈ f(γ), the sequence ϕnk(y) converges to ϕt(y) if and only if the sequence
nk converges to t modulo l.

Pick a point x ∈ γ, t ∈ R and an integer sequence (nk) such that ϕnk(x) converges
to ϕt(x). Then, using continuity of f and the fact that f commutes with ϕ1, we
deduce that ϕnk(f(x)) = f(ϕnk(x)) converges to f(ϕt(x)).

Since by the above we also have that ϕnk(f(x)) converges to ϕt(f(x)), we deduce
that f(ϕt(x)) = ϕt(f(x)), as claimed.

If l = p/n is rational, then if an integer k is equal to m/n modulo l, we get

f(ϕm/n(x)) = f(ϕk(x)) = ϕk(f(x)) = ϕm/n(f(x)).

This completes the proof of the claim.

Now take any x ∈ M . We approximate x by a sequence yi → x, i → ∞, such
that each yi is periodic. Further we choose yi in such a way that the period of yi
are either irrational or rational of the form pi/qi, gcd(pi, qi) = 1, with qi > i. Such
choice is possible by Lemma 3.2. By the above discussion we have

f(ϕt(yi)) = ϕt(f(yi))

either for every t or for a 1/i-dense set of t’s. In either case for any t ∈ R we can
choose a sequence ti → t, i → ∞, such that f(ϕti(yi)) = ϕti(f(yi)). Passing to a
limit as i→∞ yields f(ϕt(x)) = ϕt(f(x)). Thus {ϕt | t ∈ R} ⊂ Z(f), which proves
the lemma.

Acknowledgments. The authors would like to thank the referee for very helpful
feedback.
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