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ABSTRACT

Range functions are an important tool for interval computations,
and they can be employed for the problem of root isolation. In this
paper, we first introduce two new classes of range functions for
real functions. They are based on the remainder form by Cornelius
and Lohner [7] and provide different improvements for the remain-
der part of this form. On the one hand, we use centered Taylor
expansions to derive a generalization of the classical Taylor form
with higher than quadratic convergence. On the other hand, we
propose a recursive interpolation procedure, in particular based
on quadratic Lagrange interpolation, leading to recursive Lagrange
forms with cubic and quartic convergence. We then use these forms
for isolating the real roots of square-free polynomials with the al-
gorithm Eval, a relatively recent algorithm that has been shown to
be effective and practical. Finally, we compare the performance of
our new range functions against the standard Taylor form. Range
functions are often compared in isolation; in contrast, our holistic
comparison is based on their performance in an application. Specif-
ically, Eval can exploit features of our recursive Lagrange forms
which are not found in range functions based on Taylor expansion.
Experimentally, this yields at least a twofold speedup in Eval.
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1 INTRODUCTION

This paper addresses two related computational problems: (P1)
range functions and (P2) root isolation. Computing the range of
functions is arguably the most basic task in interval computa-
tion [11, 19, 23]. Root isolation is also a fundamental task in the
huge classical literature on root finding [17]. These two problems
are connected by the fact that root isolation can be reduced to eval-
uating range functions. To see this, the next two subsections review
the relevant literature on range functions and root isolation.

1.1 Range functions

We first consider problem (P1). Let 𝑓 : R → R be a real function.
For any 𝑆 ⊆ R, the range of 𝑓 on 𝑆 is the set 𝑓 (𝑆) := {𝑓 (𝑥) : 𝑥 ∈ 𝑆},
and we define the magnitude of 𝑆 as |𝑆 | := sup{|𝑠 | : 𝑠 ∈ 𝑆}. Let
R denote the set of closed bounded intervals. For any 𝐼 ∈ R

with 𝐼 = [𝑎, 𝑏], the width, radius, and midpoint of 𝐼 are given by
𝑤 (𝐼 ) := 𝑏 − 𝑎, 𝑟 (𝐼 ) := (𝑏 − 𝑎)/2, and𝑚(𝐼 ) := (𝑎 +𝑏)/2, respectively.
Note that |𝐼 | = max{|𝑎 |, |𝑏 |}. A range function (or inclusion function)
for 𝑓 is a function of the form

𝑓 : R→ R,

where 𝑓 (𝐼 ) ⊆ 𝑓 (𝐼 ) for all 𝐼 ∈ R. If 𝑓 (𝐼 ) = 𝑓 (𝐼 ) for all 𝐼 , we
call it the exact range function. Note that ‘ 𝑓 ’ is a generic name
for a range function of 𝑓 ; we use subscripts and/or superscripts
to identify particular range functions: e.g., 𝑔 𝑓 , 𝑇

2 𝑓 , or
𝐿
3 𝑓 . We

can compare range functions using a natural “tightness partial or-
der” on range functions of 𝑓 : we say that 1 𝑓 is as tight as 2 𝑓 ,
denoted 1 𝑓 ⪯ 2 𝑓 , if 1 𝑓 (𝐼 ) ⊆ 2 𝑓 (𝐼 ) for all 𝐼 . Generally, we
prefer range functions that are as tight as possible, ideally the exact
range function. But since tight range functions are inefficient (i.e.,
expensive to compute), we must choose a trade-off between tight-
ness and efficiency. Comparative studies of range functions based
on tightness or efficiency are often done in isolation, independent
of any application. For example, see [8, 9, 31]. In this paper, we
give a holistic or integrated comparison of range functions, namely
comparisons in the context of an application (see Sec. 5).

A more robust way to evaluate range functions is to look at
“asymptotic tightness”. We say that 𝑓 has order 𝑘 convergence (for
𝑘 ≥ 1) on 𝐼0 if there exists a constant𝐶0 > 0 that depends on 𝑓 and
𝐼0 but not on 𝐼 , such that

𝑞(𝑓 (𝐼 ), 𝑓 (𝐼 )) ≤ 𝐶0𝑤 (𝐼 )𝑘

for all 𝐼 ⊆ 𝐼0, where 𝑞( [𝑎, 𝑏], [𝑎′, 𝑏 ′]) := max{|𝑎 − 𝑎′ |, |𝑏 − 𝑏 ′ |}
is the Hausdorff distance on intervals. If 𝑓 has at least order 1
convergence, thenwe call 𝑓 convergent. Note that for any sequence
(𝐼𝑖 )𝑖≥1 of intervals that converges monotonically to a point 𝑝 ∈ 𝐼0,
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a convergent range function satisfies

𝑓 (𝑝) = lim
𝑖→∞

𝑓 (𝐼𝑖 ) .

Such a convergent range function is also called a box form of 𝑓 [31].
When 𝑘 = 2, we say that 𝑓 has quadratic convergence.

Cornelius and Lohner [7] were the first to introduce techniques
for higher than quadratic convergence. For any function 𝑔 : R→ R,
they consider range functions of 𝑓 of the form

𝑔 𝑓 (𝐼 ) := 𝑔(𝐼 ) + 𝑅𝑔 (𝐼 ), (1)

where 𝑅𝑔 := 𝑓 − 𝑔 is the remainder function. They call 𝑔 the exact
part of this range function because its range must be computed
exactly. This limits 𝑔 to polynomials of small degree 𝑑 (Cornelius
and Lohner suggest 𝑑 ≤ 5). The remainder part 𝑅𝑔 (𝐼 ) need not be
exact, but its width controls the overall Hausdorff distance, since [7,
Theorem 4]

𝑞(𝑓 (𝐼 ), 𝑔 𝑓 (𝐼 )) ≤ 𝑤 ( 𝑅𝑔 (𝐼 )).
It follows that the remainder form 𝑔 𝑓 (𝐼 ) has order 𝑘 convergence,
if𝑤 ( 𝑅𝑔 (𝐼 )) ≤ 𝐶0𝑤 (𝐼 )𝑘 .

Cornelius and Lohner show that this can be achieved by letting
the exact part 𝑔 be a Hermite interpolant of 𝑓 . In fact, if 𝑓 is 𝑘 times
continuously differentiable, 𝑥0, . . . , 𝑥ℓ ∈ 𝐼 are distinct interpolation
nodes, 𝑝0, . . . , 𝑝ℓ are positive integers with

∑ℓ
𝑖=0 𝑝𝑖 = 𝑘 , and 𝑔 is

the unique polynomial of degree at most 𝑘 − 1, such that

𝑔 ( 𝑗) (𝑥𝑖 ) = 𝑓 ( 𝑗) (𝑥𝑖 ), 𝑗 = 0, . . . , 𝑝𝑖 − 1, 𝑖 = 0, . . . , ℓ, (2)

then the remainder function can be expressed for any 𝑥 ∈ 𝐼 as

𝑅𝑔 (𝑥) =
1
𝑘!

𝑓 (𝑘) (𝜉𝑥 )
ℓ∏

𝑖=0
(𝑥 − 𝑥𝑖 )𝑝𝑖 , (3)

for some 𝜉𝑥 ∈ 𝐼 . We now define the remainder part as

𝑅𝑔 (𝐼 ) :=
1
𝑘!

𝑓 (𝑘) (𝐼 )
ℓ∏

𝑖=0
(𝐼 − 𝑥𝑖 )𝑝𝑖 , (4)

where 𝑓 (𝑘) (𝐼 ) is what Ratschek and Rokne [23, p. 23] call the
natural interval extension of 𝑓 (𝑘) (𝑥). For example, if 𝑓 (𝑘) (𝑥) is a
polynomial, we write it as an expression 𝐸 (𝑥) in the nested Horner
form and define 𝑓 (𝑘) (𝐼 ) := 𝐸 (𝐼 ). The remainder form 𝑔 𝑓 (𝐼 )
in (1) then has order 𝑘 convergence, because |𝐼 − 𝑥𝑖 | ≤ 𝑤 (𝐼 ) and
Lemma 1.6 in [23, p. 24] imply

𝑤 ( 𝑅𝑔 (𝐼 )) ≤ 2| 𝑅𝑔 (𝐼 ) | ≤ 2
| 𝑓 (𝑘) (𝐼 ) |

𝑘!
𝑤 (𝐼 )𝑘 ≤ 2

| 𝑓 (𝑘) (𝐼0) |
𝑘!

𝑤 (𝐼 )𝑘 .

The simplest example of this approach is the convergent mean
value form around 𝑥0,

𝑀𝑉
𝑥0 𝑓 (𝐼 ) := 𝑓 (𝑥0) + 𝑓 ′(𝐼 ) (𝐼 − 𝑥0),

which is obtained by letting ℓ = 0 and 𝑝0 = 𝑘 = 1, so that 𝑔 is
the constant interpolant of 𝑓 at 𝑥0. This form has even quadratic
convergence, if the range 𝑓 ′(𝐼 ) is approximated with a Lipschitz
range function [23].

Cornelius and Lohner further point out that it is also possible to
define the exact part as

𝑔(𝑥) := 𝑔(𝑥) + 𝑦

𝑘!

ℓ∏
𝑖=0

(𝑥 − 𝑥𝑖 )𝑝𝑖

for some 𝑦 ∈ 𝑓 (𝑘) (𝐼 ) ⊂ 𝑓 (𝑘) (𝐼 ) and the remainder part (cf. (4)) as

𝑅𝑔 (𝐼 ) :=
1
𝑘!

( 𝑓 (𝑘) (𝐼 ) − 𝑦)
ℓ∏

𝑖=0
(𝐼 − 𝑥𝑖 )𝑝𝑖 . (5)

If 𝑓 (𝑘) is Lipschitz continuous, then this gives one extra order of
convergence, because | 𝑓 (𝑘) (𝐼 ) − 𝑦 | ≤ 𝑤 ( 𝑓 (𝑘) (𝐼 )) ≤ 𝐶 ′

0𝑤 (𝐼 ) for
all 𝐼 ⊆ 𝐼0 and some constant 𝐶 ′

0 > 0 that depends on 𝑓 and 𝐼0
but not on 𝐼 [7, Theorem 2]. In this variant, 𝑔 is of degree 𝑘 and
the condition that distinguishes 𝑔 from 𝑔 is that 𝑔 (𝑘) = 𝑦, while
𝑔 (𝑘) = 0. Evaluating 𝑔(𝐼 ) exactly is of course more costly than
evaluating 𝑔(𝐼 ), because 𝑔 has a higher degree than 𝑔. Note that we
can also get this extra order of convergence by adding one Hermite
interpolation condition to the definition of 𝑔. The evaluation of the
exact part would then be as costly as the evaluation of 𝑔(𝐼 ), but the
remainder part would depend on 𝑓 (𝑘+1) , while the remainder part
in (5) depends on 𝑓 (𝑘) , a fact that we shall exploit in Sec. 3.2.

The Cornelius–Lohner framework appears to suggest that con-
vergence is limited by the exact part alone, without attaching much
interest to the remainder part. In this paper, we suggest the contrary:
for any function 𝑓 with exact part 𝑔, the remainder part 𝑅𝑔 (𝐼 )
in (1) can vary. Despite having the same order of convergence, their
actual performance in an application like root isolation can diverge
significantly.

We propose two new ideas for defining such improved remainder
parts. The first relies on expressing the remainder function (3) in
centered form (Sec. 2.1), the second approximates 𝑓 (𝑘) (𝐼 ) in (4)
using again the remainder form in (1), thus applying the idea of
Cornelius and Lohner recursively (Sec. 3).

1.2 Real root isolation and Eval

We next turn to (P2). Consider again a real function 𝑓 : R→ R. The
zero set of 𝑓 on 𝑆 ⊆ R is Zero𝑓 (𝑆) := {𝑥 ∈ 𝑆 : 𝑓 (𝑥) = 0}, and #𝑓 (𝑆)
denotes1 the cardinality of Zero𝑓 (𝑆). An isolator for 𝑓 is an interval
𝐼 such that #𝑓 (𝐼 ) = 1, and we say that 𝐼 isolates the unique zero of 𝑓
in 𝐼 . The root isolation problem can then be formalized as follows:
Given 𝑓 and an interval 𝐼0 ∈ R, compute a set 𝑍 of isolators for 𝑓 ,
such that each 𝜁 ∈ Zero𝑓 (𝐼0) is isolated by some 𝐼 ∈ 𝑍 . Assuming
𝑓 to be nice, in the sense that 𝑓 is continuously differentiable and
the zeros of 𝑓 in 𝐼0 are simple (i.e., 𝑓 (𝜁 ) = 0 implies 𝑓 ′(𝜁 ) ≠ 0), we
can reduce problem (P2) to (P1) using a procedure that we call Eval
(see Algo. 1).

Note that the numerical computation of Eval is reduced to evalu-
ating two range functions, one for 𝑓 (line 5) and one for its derivative
𝑓 ′ (line 6). Moreover, Eval uses two queues to hold intervals, an
active queue 𝑄 and an output queue 𝑍 . The intervals 𝐼 are bisected
until either 0 ∉ 𝑓 (𝐼 ) or 0 ∉ 𝑓 ′(𝐼 ) holds. We may call these two
conditions the exclusion and inclusion predicates.

Eval terminates and solves problem (P2), if we assume the two
range functions 𝑓 and 𝑓 ′ to be convergent on 𝐼0. It is then clear
that each 𝐼 ∈ 𝑍 represents a unique root 𝜁 ∈ Zero𝑓 (𝐼0), because 𝐼
is added to 𝑍 if and only if 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0 (line 9), which guarantees
the existence of a root by the intermediate value theorem, and if 𝑓 is

1Note that root multiplicity is not used in the definitions of Zero𝑓 (𝑆) and #𝑓 (𝑆) . In
particular, Zero𝑓 (𝑆) is a set, not a multiset.



Algorithm 1 Real root isolation with range functions
Input: 𝑓 : R→ R and 𝐼0 ∈ R

Output: 𝑍 containing isolators for each 𝜁 ∈ Zero𝑓 (𝐼0)
1: procedure Eval(𝑓 , 𝐼0)
2: initialize𝑄 := {𝐼0 } and 𝑍 := ∅
3: while𝑄 is non-empty do

4: 𝐼 := 𝑄.pop() , where 𝐼 = [𝑎,𝑏 ]
5: if 0 ∈ 𝑓 (𝐼 ) then ⊲ 𝐼 is implicitly discarded if 0 ∉ 𝑓 (𝐼 )
6: if 0 ∈ 𝑓 ′ (𝐼 ) then
7: 𝑄.pu h( [𝑎,𝑚], [𝑚,𝑏 ]) , where𝑚 =𝑚 (𝐼 )
8: else ⊲ 𝑓 is strictly monotonic
9: if 𝑓 (𝑎) 𝑓 (𝑏) ≤ 0 then ⊲ 0 ∈ 𝑓 (𝐼 )
10: 𝑍 .pu h(𝐼 )
11: return 𝑍

strictly monotonic on 𝐼 = [𝑎, 𝑏] (line 8), which assures the unique-
ness of that root. Moreover, each 𝜁 ∈ Zero𝑓 (𝐼0) is represented by
at most two isolators. In case two isolators 𝐼 , 𝐽 ∈ 𝑍 represent 𝜁 ,
then 𝜁 ∈ 𝐼 ∩ 𝐽 is a common endpoint of 𝐼 and 𝐽 . Such duplication is
easily detected and removed, or avoided upfront. For example, if 𝑓
is a polynomial with rational coefficients and rational arithmetic is
used in Eval, then we can replace the weak inequality in line 9 by
the strict inequality 𝑓 (𝑎) 𝑓 (𝑏) < 0 and instead test 𝑓 (𝑚) = 0 after
line 7, adding the point interval [𝑚,𝑚] to 𝑍 if the test holds.

Despite its simplicity, the subdivision tree size of Eval is optimal
when 𝑓 is an integer polynomial [3, 4, 28] and the box forms 𝑓

and 𝑓 ′ are the “maximal” centered Taylor forms 𝑇
2 (see Sec. 2).

In other words, it asymptotically matches the tree size achieved
by powerful tools like Sturm sequences or Descartes’ rule of signs!
However, Eval does not require 𝑓 to be a polynomial [32].

1.3 Some broader literature

Besides the book of Ratschek and Rokne [23] on range functions,
we refer to Neumaier [20, Chapter 2.4] and Stahl’s thesis [29] for
further investigations of the remainder forms of Cornelius and
Lohner [7], which are also referred to as interpolations forms.

To our knowledge, the first version of Eval is from Mitchell [18]
in the context of ray tracing in computer graphics. Its current formu-
lation as a root isolation algorithm, together with complexity anal-
ysis, began with [5]. Yap et al. introduced Eval as a 1-dimensional
analogue of the 2-dimensional algorithm of Plantinga and Veg-
ter for isotopic approximation of non-singular curves [14, 15, 22].
Besides Eval, Yap et al. also introduced CEval [25] for complex
roots and AEval [32] for analytic roots. The complexity analysis of
these algorithms can be captured under the elegant framework of
“continuous amortization” [3, 4, 28].

Root finding for polynomials is a highly classical problem [16, 17]
that has remained active to the present. The modern complexity-
theoretic approach to root finding was initiated by Schönhage in
1982 [26]. A basic quest is to construct “near-optimal” algorithms,
and in the last decade, significant progress has been made in this di-
rection; see Sagraloff and Mehlhorn [24] (for real roots) and Becker
et al. [1, 2] (for complex roots). The new near-optimal algorithms
are based on the subdivision paradigm; moreover, they were im-
plemented soon after their appearance [12, 13]. In contrast, the
original near-optimal algorithm [21] has never been implemented
(see [21, p. 703] for some challenges).

1.4 Overview of the paper

In Section 2, we introduce a family of range functions based on Tay-
lor expansions. Technically, these functions are not new, but within
the Cornelius–Lohner framework, we highlight their true role as
improvements on the remainder parts. In Section 3, we introduce
range functions based on recursive Lagrange interpolation. These
are new, but again, we can view them as improvements of the re-
mainder parts. In Secs. 4 and 5, we evaluate the deployment of eight
of these range functions in the Eval algorithm; here, the Lagrange
form begins to shine because of its “distributed evaluation” scheme
(see Sec. 4.1). We conclude in Sec. 6. Note that this version refers to
appendices (A.1–A.3), which are not in these proceedings, but may
be found here.

2 NEW RANGE FUNCTIONS BASED ON

CENTERED TAYLOR EXPANSIONS

A classic approach for designing a remainder form (1) with qua-
dratic convergence is to choose ℓ = 0 and 𝑝0 = 𝑘 = 2 in (2) and
letting 𝑥0 = 𝑚 := 𝑚(𝐼 ), so that the exact part is the linear Taylor
polynomial of 𝑓 about the midpoint of 𝐼 , that is,𝑔1 (𝑥) := 𝑓 (𝑚)+(𝑥−
𝑚) 𝑓 ′(𝑚). This gives the centered form 𝑔1 𝑓 (𝐼 ) := 𝑔1 (𝐼 ) + 𝑅𝑔1 (𝐼 ).
One option now is to follow Cornelius and Lohner and express the
remainder part as in (4),

𝑅𝑔1 (𝐼 ) =
1
2

𝑓 ′′(𝐼 ) (𝐼 −𝑚)2, (6)

where 𝑓 ′′(𝐼 ) is the natural interval extension of 𝑓 ′′(𝑥). We call the
resulting version of 𝑔1 𝑓 (𝐼 ) the minimal (centered) Taylor form.

This can be improved considerably, if 𝑓 is 𝑛 times continuously
differentiable for 𝑛 > 2, by using the (𝑛 − 1)-th order Taylor expan-
sion of 𝑓 about𝑚 to write the remainder function as

𝑅𝑔1 (𝑥) =
𝑛−1∑︁
𝑖=2

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 + 𝑓 (𝑛) (𝜉𝑥 )
𝑛!

(𝑥 −𝑚)𝑛, (7)

for some 𝜉𝑥 ∈ 𝐼 . We now define

𝑐𝑖 :=
𝑓 (𝑖) (𝑚)

𝑖!
, 𝑖 = 0, . . . , 𝑛 − 1, 𝑐𝑛 :=

| 𝑓 (𝑛) (𝐼 ) |
𝑛!

, (8)

where the magnitude of the natural interval extension 𝑓 (𝑛) (𝐼 ) can
be replaced by 𝑓 (𝑛) (𝑚) in the definition of 𝑐𝑛 , if 𝑓 (𝑛) is a constant,
for example, in the case of 𝑓 being a polynomial of degree 𝑑 ≤ 𝑛.
We then get the following improvement of (6):

𝑅𝑔1 (𝐼 ) :=
𝑛∑︁
𝑖=2

𝑐𝑖 (𝐼 −𝑚)𝑖 = 𝑟2 [−1, 1]𝑆2,𝑛, 𝑆2,𝑛 :=
𝑛∑︁
𝑖=2

|𝑐𝑖 |𝑟 𝑖−2,

(9)
where 𝑟 := 𝑟 (𝐼 ). Computing the 𝑐𝑖 ’s takes 𝑂 (𝑛 log𝑛) arithmetic
steps (or 𝑂 (𝑛2) in simple implementations, as in Sec. 5); for bit-
complexity, see [30]. In contrast, the natural interval extension (6)
requires 𝑂 (𝑛) steps. What do we get in return? Although this does
not change the quadratic convergence of the centered form 𝑔1 𝑓 (𝐼 ),
it may be much better than the remainder part in (6) of Cornelius
and Lohner, because successive terms of 𝑆2,𝑛 converge with higher
and higher order. This is dramatically illustrated below in Tables
2–4 (columns Ẽ𝑇2 and E𝑇2 ). Recalling that the exact range of 𝑔1 is
𝑔1 (𝐼 ) = 𝑐0 + 𝑟 [−1, 1]𝑐1 (see App. A.1), we realize that the resulting
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centered form
𝑇
2,𝑛 𝑓 (𝐼 ) := 𝑐0 + 𝑟 [−1, 1]𝑐1 + 𝑟2 [−1, 1]𝑆2,𝑛 (10)

is actually just the classical Taylor form of order 𝑛 (or “level 𝑛”
using our terminology below) [23, p. 77], with the range 𝑓 (𝑛) (𝐼 )
approximated by | 𝑓 (𝑛) (𝐼 ) | · [−1, 1].

2.1 Taylor forms with order k convergence

FollowingCornelius and Lohner, we can raise the convergence order
from quadratic to basically any order 𝑘 > 2, simply by replacing 𝑔1
with the (𝑘 − 1)-th order Taylor polynomial of 𝑓 about𝑚,

𝑔𝑘−1 (𝑥) :=
𝑘−1∑︁
𝑖=0

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 =
𝑘−1∑︁
𝑖=0

𝑐𝑖 (𝑥 −𝑚)𝑖 .

But instead of expressing the remainder function 𝑅𝑔𝑘 = 𝑓 − 𝑔𝑘 in
terms of the 𝑘-th derivative of 𝑓 as (cf. (3))

𝑅𝑔𝑘−1 (𝑥) =
1
𝑘!

𝑓 (𝑘) (𝜉𝑥 ) (𝑥 −𝑚)𝑘 ,

we continue the Taylor expansion of 𝑓 (𝑘) (𝑥) all the way to 𝑛−1 for
some 𝑛 ≥ 𝑘 (assuming that the derivatives exist), to obtain (cf. (7))

𝑅𝑔𝑘−1 (𝑥) =
𝑛−1∑︁
𝑖=𝑘

𝑓 (𝑖) (𝑚)
𝑖!

(𝑥 −𝑚)𝑖 + 𝑓 (𝑛) (𝜉𝑥 )
𝑛!

(𝑥 −𝑚)𝑛,

for some 𝜉𝑥 ∈ 𝐼 . As above (cf. (9) and (10)), we then get the general-
ized Taylor form of (convergence) order 𝑘 and level 𝑛:

𝑇
𝑘,𝑛

𝑓 (𝐼 ) := 𝑔𝑘−1 (𝐼 ) + 𝑟𝑘 [−1, 1]𝑆𝑘,𝑛, 𝑆𝑘,𝑛 :=
𝑛∑︁
𝑖=𝑘

|𝑐𝑖 |𝑟 𝑖−𝑘 ,

where the 𝑐𝑖 are defined as in (8). The level 𝑛 is minimal if 𝑛 = 𝑘 ,
and maximal if 𝑛 = ∞. The maximal level is only possible when
𝑓 is analytic and 𝑟 sufficiently small, so that 𝑆𝑘,∞ is convergent.
Clearly, if 𝑓 is a polynomial of degree 𝑑 , then 𝑆𝑘,∞ is a finite sum
and convergent for any 𝑟 . We call the corresponding range func-
tions minimal and maximal Taylor forms of order 𝑘 , denoted by˜𝑇
𝑘 𝑓 (𝐼 ) and 𝑇

𝑘
𝑓 (𝐼 ), respectively. This definition includes the mini-

mal Taylor form based on 𝑔1 (cf. (6)) as a special case for 𝑘 = 𝑛 = 2.
For 𝑘 = 3, computing the exact range of the quadratic Taylor

polynomial 𝑔2 is only marginally more costly (see App. A.2) than
computing 𝑔1 (𝐼 ) and the cubic convergence gives a noticeable per-
formance gain when used in Eval (see Sec. 5). But already for 𝑘 = 4
the computational overhead of determining the range 𝑔3 (𝐼 ) exactly
(see App. A.3)appears to outweigh the benefit of the better conver-
gence order, at least in the context of Eval, leaving only a slight
advantage in terms of running time. Note that there is a similar
phenomenon in Newton’s method where quadratic convergence is
the sweet spot despite the possibility of achieving cubic (Halley’s
method) or higher convergence.

3 NEW RANGE FUNCTIONS BASED ON

RECURSIVE INTERPOLATION

Another approach to improving the remainder part is by recursively
applying the idea of Cornelius and Lohner. To this end, let ℎ0 be the
Hermite interpolant of 𝑓 for a certain choice of interpolation nodes

𝑥𝑖 and multiplicities 𝑝𝑖 , and with degree at most 𝑘 − 1. According
to (3), the remainder part 𝑅ℎ0 = 𝑓 − ℎ0 can be written as

𝑅ℎ0 (𝑥) =
𝜔 (𝑥)
𝑘!

𝑓 (𝑘) (𝜉𝑥 ), 𝜔 (𝑥) :=
ℓ∏

𝑖=0
(𝑥 − 𝑥𝑖 )𝑝𝑖 ,

for some 𝜉𝑥 ∈ 𝐼 , and the magnitude of its (exact) range satisfies

|𝑅ℎ0 (𝐼 ) | ≤ Ω |𝑓 (𝑘) (𝐼 ) |, Ω :=
|𝜔 (𝐼 ) |
𝑘!

. (11)

Here we assume that the range 𝜔 (𝐼 ) can be computed exactly,
which is certainly true for small 𝑘 (as in Sec. 3.1 below), but it is
also possible to replace 𝜔 (𝐼 ) with some range estimate 𝜔 (𝐼 ). We
now split 𝑓 (𝑘) in (11) into the Hermite interpolant ℎ1 of 𝑓 (𝑘) (for
the same interpolation nodes and multiplicities) and a remainder
part 𝑅ℎ1 . Since |𝑅ℎ1 (𝐼 ) | ≤ Ω |𝑓 (2𝑘) (𝐼 ) |, we obtain

|𝑓 (𝑘) (𝐼 ) | ≤ |ℎ1 (𝐼 ) | + Ω |𝑓 (2𝑘) (𝐼 ) |.
If 𝑓 is 𝑛𝑘 times continuously differentiable for some 𝑛 ≥ 1, we may
repeat this procedure (always with the same interpolation nodes 𝑥𝑖
and multiplicities 𝑝𝑖 ) to obtain Hermite interpolants ℎ 𝑗 of 𝑓 ( 𝑗𝑘) for
𝑗 = 1, . . . , 𝑛. This gives a recursive remainder bound

|𝑅ℎ0 (𝐼 ) | ≤
𝑛−1∑︁
𝑗=1

|ℎ 𝑗 (𝐼 ) |Ω 𝑗 + Ω𝑛 | 𝑓 (𝑛𝑘) (𝐼 ) | =: 𝑇𝑘,𝑛 . (12)

Since 𝜔 (𝑥) scales with 𝑟𝑘 as 𝐼 varies, we have Ω ∈ 𝑂 (𝑟𝑘 ) and also
𝑇𝑘,𝑛 ∈ 𝑂 (𝑟𝑘 ). It follows that the recursive remainder form of order 𝑘
and level 𝑛,

𝑅
𝑘,𝑛

𝑓 (𝐼 ) := ℎ0 (𝐼 ) + [−1, 1]𝑇𝑘,𝑛, (13)

has indeed order 𝑘 convergence. Theminimal form 𝑅
𝑘,1 𝑓 (𝐼 ) for the

smallest level 𝑛 = 1 is essentially the remainder form of Cornelius
and Lohner (cf. (4)), if we replace𝜔 (𝐼 ) in (11) by 𝜔 (𝐼 ). As in Sec. 2,
the advantage of higher levels of 𝑛 is due to the fact that the terms
of𝑇𝑘,𝑛 converge with successively higher order. Again, the maximal
level 𝑛 = ∞ that induces the maximal recursive remainder form
𝑅
𝑘,∞ 𝑓 (𝐼 ), is only possible if 𝑇∞ is convergent, which is the case if

𝑓 is analytic and 𝑟 sufficiently small, or if 𝑓 is a polynomial. Note
that in the latter case, evaluating this form requires just a finite
number of point evaluations of 𝑓 and its derivatives, akin to the
evaluation of the maximal Taylor forms.

3.1 Recursive Lagrange form with cubic

convergence

One particular instance of the recursive remainder form (13) that
will prove beneficial for Eval is based on the endpoints and the
midpoint of 𝐼 = [𝑎, 𝑏] as simple interpolation nodes, that is, to use
ℓ = 2, 𝑥0 = 𝑎, 𝑥1 = 𝑚, 𝑥2 = 𝑏 in (2) and 𝑝0 = 𝑝1 = 𝑝2 = 1, so that
𝑘 = 3. In this setting, ℎ 𝑗 is the quadratic Lagrange interpolant of
𝑓 (3𝑗) at 𝑎,𝑚, and 𝑏, which can be expressed in centered form as

ℎ𝐿𝑗 (𝑥) := 𝑑 𝑗,0 + 𝑑 𝑗,1 (𝑥 −𝑚) + 𝑑 𝑗,2 (𝑥 −𝑚)2 (14)

with coefficients

𝑑 𝑗,0 := 𝑓 (3𝑗) (𝑚), 𝑑 𝑗,1 :=
𝑓 (3𝑗) (𝑏) − 𝑓 (3𝑗) (𝑎)

2𝑟
,

𝑑 𝑗,2 =
𝑓 (3𝑗) (𝑏) − 2𝑓 (3𝑗) (𝑚) + 𝑓 (3𝑗) (𝑎)

2𝑟2
,



where 𝑟 := 𝑟 (𝐼 ). A simple calculation shows that the exact range of

𝜔3 (𝑥) := (𝑥 − 𝑎) (𝑥 −𝑚) (𝑥 − 𝑏)

is 𝜔3 (𝐼 ) = 2
√
3

9 𝑟3 [−1, 1], so that Ω3 := 1
6 |𝜔3 (𝐼 ) | =

√
3

27 𝑟
3. We denote

the resulting recursive Lagrange form of level 𝑛 by
𝐿
3,𝑛 𝑓 (𝐼 ) := ℎ𝐿0 (𝐼 ) + [−1, 1]𝑇3,𝑛, (15)

where (cf. (12))

𝑇3,𝑛 :=
𝑛−1∑︁
𝑗=1

|ℎ𝐿𝑗 (𝐼 ) |Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼 ) | ∈ 𝑂 (𝑟3) . (16)

If 𝑓 is a polynomial of degree 𝑑 , then the maximal recursive La-
grange form 𝐿

3 𝑓 (𝐼 ) :=
𝐿
3,∞ 𝑓 (𝐼 ) depends on the 3(⌊𝑑/3⌋+1) values

𝑓 (3𝑗) (𝑎), 𝑓 (3𝑗) (𝑚), 𝑓 (3𝑗) (𝑏), 𝑗 = 0, . . . , ⌊𝑑/3⌋, which is comparable
to the 𝑑 + 1 values needed for the maximal Taylor forms 𝑇

𝑘
𝑓 (𝐼 ).

As the cubic convergence of 𝐿
3,𝑛 𝑓 (𝐼 ) is independent of how the

range of ℎ𝐿
𝑗
is estimated for 𝑗 ≥ 1 in (16), we can replace the exact

evaluation of ℎ𝐿
𝑗
(𝐼 ) by the cheaper centered form evaluation

𝑇
2 ℎ

𝐿
𝑗 (𝐼 ) = 𝑑 𝑗,0 + 𝑟 [−1, 1] |𝑑 𝑗,1 | + 𝑟2 [−1, 1] |𝑑 𝑗,2 |.

This yields a less tight range function (cf. (15))
𝐿′
3,𝑛 𝑓 (𝐼 ) := ℎ𝐿0 (𝐼 ) + [−1, 1]𝑇 ′

3,𝑛, (17)

where

𝑇 ′
3,𝑛 :=

𝑛−1∑︁
𝑗=1

(
|𝑑 𝑗,0 | + 𝑟 |𝑑 𝑗,1 | + 𝑟2 |𝑑 𝑗,2 |

)
Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼 ) | ∈ 𝑂 (𝑟3),

which depends on the same data values as 𝐿
3,𝑛 𝑓 (𝐼 ). In the context

of Eval, this increases the size of the subdivision tree slightly, but
seems to be more efficient in terms of running time (see Sec. 5).

3.2 Recursive Lagrange form with quartic

convergence

Another variant of the recursive Lagrange form can be obtained
by applying Cornelius and Lohner’s general trick to get one extra
order of convergence. To this end (cf. (14)), let

ℎ̂𝐿0 (𝑥) := ℎ𝐿0 (𝑥) +
𝑓 ′′′(𝑚)

6
𝜔3 (𝑥)

= 𝑑0,0 + 𝑑0,1 (𝑥 −𝑚) + 𝑑0,2 (𝑥 −𝑚)2 + 𝑑0,3 (𝑥 −𝑚)3,
(18)

where

𝑑0,1 := 𝑑0,1 − 𝑟2
𝑓 ′′′(𝑚)

6
, 𝑑0,3 :=

𝑓 ′′′(𝑚)
6

,

be the (unique) cubic polynomial that interpolates 𝑓 at 𝑎,𝑚, and 𝑏,
like ℎ𝐿0 , and also matches the third derivative of 𝑓 at𝑚, in the sense
that

(
ℎ̂𝐿0

) ′′′(𝑚) = 𝑓 ′′′(𝑚). Similarly as above, we then have

|𝑅
ℎ̂𝐿0

(𝐼 ) | ≤ Ω3 |𝑓 ′′′(𝐼 ) − 𝑓 ′′′(𝑚) | = Ω3 |𝑓3 (𝐼 ) |,

where 𝑓3 (𝑥) := 𝑓 ′′′(𝑥) − 𝑓 ′′′(𝑚). We now split 𝑓3 into the Lagrange
interpolant

ℎ̂𝐿1 (𝑥) := ℎ𝐿1 (𝑥) − 𝑓 ′′′(𝑚) = (𝑑1,1 + 𝑑1,2 (𝑥 −𝑚)) (𝑥 −𝑚) (19)

of 𝑓3 at 𝑎,𝑚, and 𝑏 and the remainder 𝑅
ℎ̂𝐿1
, which satisfies

|𝑅
ℎ̂𝐿1

(𝐼 ) | ≤ Ω3 |𝑓 ′′′3 (𝐼 ) | = Ω3 |𝑓 (6) (𝐼 ) |,

hence |𝑓3 (𝐼 ) | ≤ |ℎ̂𝐿1 (𝐼 ) | + Ω3 |𝑓 (6) (𝐼 ) |. From here on, we repeat the
splitting procedure as in the construction of 𝐿

3,𝑛 𝑓 (𝐼 ) and finally
arrive at the recursive Lagrange form of level 𝑛,

𝐿
4,𝑛 𝑓 (𝐼 ) := ℎ̂𝐿0 (𝐼 ) + [−1, 1]𝑇4,𝑛, (20)

where (cf. (16))

𝑇4,𝑛 := |ℎ̂𝐿1 (𝐼 ) |Ω3 +
𝑛−1∑︁
𝑗=2

|ℎ𝐿𝑗 (𝐼 ) |Ω
𝑗

3 + Ω𝑛
3 | 𝑓 (3𝑛) (𝐼 ) |.

The advantage of 𝐿
4,𝑛 𝑓 (𝐼 ) in (20) over 𝐿

3,𝑛 𝑓 (𝐼 ) in (15) is that
|ℎ̂𝐿1 (𝐼 ) | ∈ 𝑂 (𝑟 ), which follows from (19), so that 𝑇4,𝑛 ∈ 𝑂 (𝑟4).
This implies that 𝐿

4,𝑛 𝑓 (𝐼 ) has quartic convergence, at the cost of
requiring the evaluation of the exact range of the cubic polynomial
ℎ̂𝐿0 in (18).

Note that 𝐿
4,𝑛 𝑓 (𝐼 ) depends on the same data as 𝐿

3,𝑛 𝑓 (𝐼 ), and
analogous to (17), we can replace the exact evaluation of ℎ̂𝐿1 (𝐼 ) and
ℎ𝐿
𝑗
(𝐼 ) for 𝑗 ≥ 2 by centered form evaluations to get the cheaper,

but less tight range function
𝐿′
4,𝑛 𝑓 (𝐼 ) := ℎ̂𝐿0 (𝐼 ) + [−1, 1]𝑇 ′

4,𝑛,

where 𝑇 ′
4,𝑛 := 𝑇 ′

3,𝑛 − |𝑑1,0 |Ω3, without compromising the quartic
convergence order, because also 𝑇 ′

4,𝑛 ∈ 𝑂 (𝑟4).
A valid question at this point is: why did we not consider ap-

plying Cornelius and Lohner’s trick for increasing the conver-
gence order to the generalized Taylor forms in Sec. 2.1? The an-
swer is surprisingly simple: because it does not give anything
new! In fact, if we modify the exact part 𝑔𝑘−1 (𝑥) of the Taylor
form 𝑇

𝑘,𝑛
𝑓 (𝐼 ) accordingly and consider the alternative exact part

𝑔𝑘−1 (𝑥) := 𝑔𝑘−1 (𝑥) +
𝑓 (𝑘 ) (𝑚)

𝑘! (𝑥 −𝑚)𝑘 , then we eventually get the
Taylor form 𝑇

𝑘+1,𝑛 𝑓 (𝐼 ), because 𝑔𝑘−1 = 𝑔𝑘 .

4 REAL ROOT ISOLATIONWITH EVAL AND

THE NEW RANGE FUNCTIONS

4.1 Advantage of the Lagrange form in Eval

What is to recommend the generalized Taylor form or the recursive
Lagrange form? We give the intuition for the advantages of the
Lagrange form in the context of root isolation with Eval for polyno-
mials. Recall that computing the maximal Taylor form 𝑇

𝑘
𝑓 (𝐼 ) for

a polynomial of degree 𝑑 requires us to evaluate 𝑓 (𝑖) at𝑚 =𝑚(𝐼 )
for 𝑖 = 0, . . . , 𝑑 . To compute the maximal recursive Lagrange form
𝐿
3 𝑓 (𝐼 ), we must evaluate 𝑓 (3𝑗) at 𝑎, 𝑚, 𝑏, where 𝐼 = [𝑎, 𝑏] for

𝑗 = 0, . . . , ⌊𝑑/3⌋. Considered in isolation, the two forms are compa-
rable in computational complexity, since they each need about 𝑑
function or derivative evaluations. But in the context of the Eval
algorithm, the Lagrange form begins to shine: after estimating the
range of 𝑓 over [𝑎, 𝑏], we would typically need to further estimate
the ranges over [𝑎,𝑚] and [𝑚,𝑏]. For the Lagrange form, estimating
the range over [𝑎,𝑚] needs only ⌊𝑑/3⌋ + 1 additional evaluations
of 𝑓 (3𝑗) at (𝑎 + 𝑚)/2, since we already computed 𝑓 (3𝑗) (𝑎) and
𝑓 (3𝑗) (𝑚). In contrast, the Taylor form must still make 𝑑 + 1 evalua-
tions of 𝑓 and its derivatives at (𝑎 +𝑚)/2. A similar remark holds
for [𝑚,𝑏]. Therefore, we may expect a roughly 3-fold speed up of
Evalwhen using the Lagrange instead of the Taylor form, although



Table 1: Combinations of range functions for 𝑓 and 𝑓 ′ used
by Eval in our experiments.

Taylor forms recursive Lagrange forms

Ẽ𝑇2 E𝑇2 E𝑇3 E𝑇4 E𝐿3 E𝐿′3 E𝐿4 E𝐿′4

range of 𝑓 ˜𝑇

2
𝑇
2

𝑇
3

𝑇
4

𝐿
3

𝐿′
3

𝐿
4

𝐿′
4

range of 𝑓 ′ ˜𝑇

2
𝑇
2

𝑇
3

𝑇
4

𝐿
2

𝐿′
2

𝐿
2

𝐿′
2

we should keep in mind that the performance is also influenced by
other factors. For example, the tightness of the two forms is not
identical and the Lagrange form requires a more elaborate memory
management so that some of the data needed for processing [𝑎,𝑚]
and [𝑚,𝑏] can be inherited from the data computed for [𝑎, 𝑏].

4.2 Range functions for derivatives

Before presenting the results of our numerical experiments, there
is one more issue that needs to be dealt with: Eval not only needs
to estimate the range of 𝑓 over 𝐼 , but also the range of 𝑓 ′.

For the generalized Taylor form, a simple calculation shows that
the generalized Taylor form (of level 𝑛 − 1) applied to 𝑓 ′ is

𝑇
𝑘,𝑛−1 𝑓

′(𝐼 ) = 𝑔′
𝑘
(𝐼 ) + 𝑟𝑘 [−1, 1]𝑆 ′

𝑘,𝑛−1, 𝑆 ′
𝑘,𝑛−1 :=

𝑛∑︁
𝑖=𝑘+1

𝑖 |𝑐𝑖 |𝑟 𝑖−𝑘−1,

where 𝑔𝑘 is the 𝑘-th order Taylor polynomial of 𝑓 about𝑚, that
is, 𝑔′

𝑘
(𝑥) =

∑𝑘
𝑖=1 𝑖 𝑐𝑖 (𝑥 −𝑚)𝑖−1, and the 𝑐𝑖 are defined as in (8).

Therefore, 𝑇
𝑘,𝑛

𝑓 (𝐼 ) and 𝑇
𝑘,𝑛−1 𝑓

′(𝐼 ) both have order𝑘 convergence
and depend on the same data.

For the Lagrange form, it is more complicated, since 𝐿
3,𝑛 𝑓

′(𝐼 )
depends on the evaluation of 𝑓 (3𝑗+1) at 𝑎, 𝑚, and 𝑏 and would
thus double the computational cost. To re-use the data needed
for computing 𝐿

3,𝑛 𝑓 (𝐼 ), we recall a result by Shadrin [27], which
asserts that the error between the 𝑘-th derivative of 𝑓 and the 𝑘-th
derivative of the Lagrange polynomial ℎ(𝑥) that interpolates 𝑓 at
the ℓ + 1 nodes 𝑥0, . . . , 𝑥ℓ ∈ 𝐼 satisfies

|𝑓 (𝑘) (𝑥) − ℎ (𝑘) (𝑥) | ≤ |𝜔 (𝑘) (𝐼 ) | |𝑓
(ℓ+1) (𝐼 ) |
(ℓ + 1)! , 𝑥 ∈ 𝐼 ,

for 𝑘 = 0, . . . , ℓ and 𝜔 (𝑥) =
∏ℓ

𝑖=0 (𝑥 − 𝑥𝑖 ). In the context of 𝐿
3,𝑛 ,

this implies

|𝑓 ′(𝑥) −
(
ℎ𝐿0

) ′(𝑥) | ≤ |𝜔 ′
3 (𝐼 ) |

|𝑓 ′′′(𝐼 ) |
6

, 𝑥 ∈ 𝐼 .

Since 𝜔 ′
3 (𝐼 ) = 𝑟2 [−1, 2] and Ω3 |𝑓 ′′′(𝐼 ) | ≤ 𝑇3,𝑛 , we conclude that

𝑓 ′(𝐼 ) can be estimated by the recursive Lagrange forms

𝐿
2,𝑛 𝑓

′(𝐼 ) :=
(
ℎ𝐿0

) ′(𝐼 ) + 3
√
3

𝑟
[−1, 1]𝑇3,𝑛,

and
𝐿′
2,𝑛 𝑓

′(𝐼 ) :=
(
ℎ𝐿0

) ′(𝐼 ) + 3
√
3

𝑟
[−1, 1]𝑇 ′

3,𝑛,

which have only quadratic convergence, but depend on the same
data as 𝐿

3,𝑛 𝑓 (𝐼 ) and
𝐿′
3,𝑛 𝑓 (𝐼 ). Note that we cannot derive a similar

range function for 𝑓 ′ with cubic convergence from 𝐿
4,𝑛 , because ℎ̂

𝐿
0

is not a Lagrange interpolant and Shadrin’s result does not apply.

Table 2: Size of the Eval subdivision tree.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4
𝑇20 931 319 211 239 243 195 227 231
𝑇40 183115 663 439 471 479 423 455 463
𝑇80 [−10, 10] — 1379 931 983 1007 863 931 955
𝑇160 — 2751 1859 1943 1979 1723 1875 1899
𝑇320 — 5611 3795 3875 4003 3467 3735 3851
𝐻20 491 259 179 195 195 151 191 191
𝐻40 18039 443 319 359 363 303 347 351
𝐻80 [−25, 25] — 851 639 683 695 547 671 683
𝐻160 — 1319 1063 1123 1131 1011 1111 1119
𝐻320 — 2251 1967 1975 2063 1527 1939 1987
𝑀21 3873 169 97 113 113 91 109 109
𝑀41 — 339 181 215 215 181 213 213
𝑀81 [−1, 1] — 683 367 445 445 359 423 423
𝑀161 — 1379 757 905 905 721 857 857
𝑀321 — 2771 1513 1801 1801 1459 1711 1711
𝑆100 629 973 521 633 633 509 609 609
𝑆200 1251 1941 1045 1281 1281 1019 1221 1221
𝑆400

[−10, 10] 2503 3887 2083 2555 2555 2035 2435 2435
𝑆800 5005 7753 4161 5103 5103 4053 4875 4875

5 NUMERICAL EXPERIMENTS

We implemented a general version of the Eval procedure (see
Algo. 1) in C++ and derived from it eight versions (see Table 1)
that differ by the concrete range functions used for estimating the
ranges of 𝑓 and 𝑓 ′ in lines 5 and 6. The first version Ẽ𝑇2 estimates
both ranges with the minimal Taylor form (cf. (6) in Sec. 2). The
next three versions E𝑇

𝑘
for 𝑘 = 2, 3, 4 employ the order-𝑘 conver-

gent Taylor form for both ranges (see Sec. 2.1). The remaining four
versions use recursive Lagrange forms with cubic or quartic con-
vergence (see Secs. 3.1 and 3.2) to estimate the range of 𝑓 and the
recursive Lagrange form with quadratic convergence (see Sec. 4.2)
for 𝑓 ′. Note that the version E𝑇2 represents the state-of-the-art of
Eval [5] and serves as the “baseline” for performance. Except for˜𝑇2 , all these Taylor and Lagrange forms are the maximal versions.

The input data for our experiments come from four represen-
tative families of integer polynomials: dense with all roots real
(Chebyshev,𝑇𝑛 and Hermite, 𝐻𝑛), dense with only 2 real roots in 𝐼0
(Mignotte cluster,𝑀2𝑘+1 = 𝑥2𝑘+1−2(4𝑥2−1)𝑘 , from [12]) and sparse
without real roots (𝑆𝑛 (𝑥) = 1 + 𝑥 +∑log2

𝑛
100

𝑖=0 𝑥2
𝑖100). Note that these

polynomials do not have multiple roots, a prerequisite for Eval’s
halting. Our implementation, including these data and experiments,
may be downloaded from the Core Library webpage [6, 33].

We summarize the results of our experiments in three tables,
with columns grouped by convergence order. Table 2 reports the
size of the Eval subdivision tree for the various polynomials. It
is a good measure of the tightness of the various range functions,
since the size of the recursion tree is inversely proportional to the
tightness of the range functions used. In each row, we underscore
the smallest tree size, which is always achieved by E𝑇4 . In general,
we observe that the tree size decreases as the convergence order of
the range functions increases and that the “cheaper” variants of the
recursive Lagrange forms lead to (slightly) larger subdivision trees.
The difference between the tree sizes for the Taylor and Lagrange



Table 3: Average running time of the Eval algorithm with 1024-bit floating point arithmetic in seconds.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4 𝜎

𝑇20 0.1242 0.02161 0.01526 0.01457 0.01200 0.01459 0.01496 0.01208 1.80
𝑇40 69.96 0.1470 0.0996 0.0677 0.0549 0.0987 0.0689 0.0555 2.68
𝑇80 [−10, 10] — 1.173 0.775 0.379 0.328 0.725 0.365 0.315 3.58
𝑇160 — 9.43 6.39 2.48 2.29 5.80 2.42 2.22 4.12
𝑇320 — 77.2 52.5 17.7 17.3 48.4 17.0 16.7 4.46
𝐻20 0.06296 0.01762 0.01283 0.01214 0.01022 0.01167 0.01271 0.01014 1.72
𝐻40 6.263 0.0945 0.0685 0.0499 0.0403 0.0679 0.0505 0.0412 2.34
𝐻80 [−25, 25] — 0.706 0.528 0.258 0.223 0.450 0.259 0.222 3.17
𝐻160 — 4.40 3.54 1.46 1.31 3.40 1.41 1.28 3.36
𝐻320 — 31.5 27.0 8.9 8.8 21.1 8.8 8.5 3.58
𝑀21 0.5314 0.01389 0.007585 0.007525 0.005753 0.006891 0.007448 0.005920 2.41
𝑀41 — 0.07723 0.04097 0.03071 0.02430 0.04075 0.03071 0.02376 3.18
𝑀81 [−1, 1] — 0.5599 0.3020 0.1681 0.1409 0.2940 0.1624 0.1376 3.97
𝑀161 — 4.620 2.507 1.152 1.049 2.403 1.094 0.9977 4.41
𝑀321 — 38.52 21.08 8.247 7.842 20.47 7.883 7.449 4.91
𝑆100 0.8973 1.080 0.582 0.346 0.301 0.572 0.336 0.292 3.59
𝑆200 6.124 8.54 4.62 2.27 2.09 4.50 2.19 2.00 4.09
𝑆400

[−10, 10] 47.22 66.9 36.3 16.2 15.4 35.2 15.4 14.7 4.34
𝑆800 368.3 527 281 120 117 273 113 112 4.50

Table 4: Average running time of the Eval algorithm with multi-precision rational arithmetic in seconds.

𝑓 𝐼0 Ẽ𝑇2 E𝑇2 E𝑇3 E𝐿3 E𝐿′3 E𝑇4 E𝐿4 E𝐿′4 𝜎

𝑇20 0.2005 0.02917 0.01966 0.02115 0.01656 0.02004 0.02255 0.01758 1.76
𝑇40 123.1 0.1928 0.1305 0.1083 0.0837 0.1320 0.1127 0.0868 2.30
𝑇80 [−10, 10] — 1.520 1.026 0.659 0.534 0.964 0.643 0.519 2.85
𝑇160 — 13.28 8.86 4.74 3.95 8.27 4.65 3.88 3.36
𝑇320 — 159.8 104.8 52.4 45.7 94.9 50.7 44.1 3.50
𝐻20 0.1024 0.02337 0.01716 0.01779 0.01378 0.01639 0.01968 0.01521 1.70
𝐻40 10.37 0.1364 0.1010 0.0871 0.0660 0.1018 0.0897 0.0683 2.07
𝐻80 [−25, 25] — 0.977 0.725 0.484 0.379 0.632 0.494 0.389 2.58
𝐻160 — 6.80 5.44 3.02 2.37 5.19 3.06 2.39 2.87
𝐻320 — 71.7 61.8 31.9 25.9 47.6 31.9 25.1 2.77
𝑀21 0.9342 0.01787 0.009825 0.01176 0.008525 0.009681 0.01172 0.009060 2.10
𝑀41 — 0.1047 0.05708 0.05195 0.03939 0.05636 0.05217 0.04041 2.66
𝑀81 [−1, 1] — 0.7824 0.4081 0.3086 0.2459 0.4023 0.3012 0.2349 3.18
𝑀161 — 6.937 3.707 2.258 1.887 3.630 2.184 1.786 3.68
𝑀321 — 85.82 43.78 25.58 21.94 42.03 24.49 20.65 3.91
𝑆100 1.039 1.180 0.615 0.509 0.404 0.596 0.500 0.393 2.92
𝑆200 8.019 11.17 5.70 3.87 3.24 5.52 3.72 3.09 3.45
𝑆400

[−10, 10] 103.4 154.0 76.2 45.8 41.1 73.8 43.6 39.7 3.75
𝑆800 1556 2322 1160 636 589 1123 569 561 3.94

versions of Eval with the same convergence order is mainly due to
the inferior recursive Lagrange form with only quadratic conver-
gence that is used for 𝑓 ′. In fact, if we use 𝑇

3 instead of 𝐿
2 for the

range of 𝑓 ′ in E𝐿3 , then the tree sizes are almost identical to those
of E𝑇3 , and likewise for E𝐿4 versus E𝑇4 . However, the price of larger
subdivision trees seems to be well compensated for when it comes
to the actual performance of the different Eval variants.

Our experimental platform is a Windows 10 laptop with 1.8
GHz Intel Core i7-8565U processor and 16 GB RAM. The average
running times (over 1600/𝑛 runs for 𝑇𝑛 , 𝐻𝑛 , 800/𝑘 runs for𝑀2𝑘+1,
and 4000/𝑛 runs for 𝑆𝑛) of our eight versions of Eval on our list
of 19 polynomials are obtained by using two kinds of computer

arithmetic: 1024-bit floating point arithmetic (Table 3) and multi-
precision rational arithmetic (Table 4). No times (and tree sizes in
Table 2) are reported, if an Eval version did not terminate within 1
hour. Both arithmetic variants come from the multiple-precision
arithmetic library GMP [10]. For rational arithmetic, we replaced
the constant

√
3 in the definitions of Ω3, 𝐿

2 , and
𝐿′
2 with the

slightly larger rational number 17320508075688773/1016, so that
the validity of the bounds is not altered. Moreover, we temporarily
switch to 1024-bit floating point arithmetic for computing square
roots. The latter is unavoidable when computing the exact ranges
of cubic polynomials (see Sec. A.3) and thus needed by the range
functions with quartic convergence.



We draw several conclusions from the tables: 1) The Eval version
Ẽ𝑇2 based onminimal formsmay be utterly non-competitivewith the
maximal form E𝑇2 (the former timed out after 1 hour for degrees 𝑛 >

40 for the first 3 sets of polynomials).We expect the same conclusion
for other minimal forms. 2) The Eval versions based on recursive
Lagrange forms outperform the ones based on Taylor forms with
the same convergence order, despite the larger subdivision trees.We
attribute this to the fewer number (about one-third) of derivative
values that are computed. 3) It does not pay to use range functions
with quartic convergence order, because the overhead of computing
exact ranges of cubic instead of quadratic polynomials seems to
cancel the advantage of smaller tree sizes. 4) Based on speed and
implementation simplicity, we declare the Eval variant E𝐿

′
3 as the

winner in this comparison. 5) Viewing E𝑇2 as the state-of-art, we see
that E𝐿

′
3 is at least twice as fast but asymptotically 3 to 5 times faster:

this is seen in the speedup 𝜎 , defined as the ratio of the timings
E𝑇2 : E𝐿

′
3 , in the last column of Tables 3 and 4.

6 CONCLUSIONS

Bounding the range of a function is an important problem in many
scientific disciplines, but most range functions have only quadratic
convergence order. Higher convergence orders and other improve-
ments are particularly important for generic root finding applica-
tions (of which root isolation is only one aspect). This is because
root finding is a demanding application, in part because its long
history and literature has produced some very good algorithms
which any new algorithm must contend with. The upshot is that
tight and efficient range functions are in demand.

In this paper, we use the framework of Cornelius and Lohner [7]
to investigate range functions of any order convergence 𝑘 . For a
fixed 𝑘 , we explore the two formulations of the remainder form:
Taylor expansion and Lagrange interpolation. We see that this re-
mainder form can be refined to any “level” 𝑛 (𝑛 ≥ 𝑘); the remainder
form is minimal if 𝑛 = 𝑘 and maximal when 𝑛 = ∞. Experimentally,
we show that the minimal form may be far inferior to the maximal
form. This phenomenon should be investigated theoretically.

We then proceed to a holistic comparison of the resulting recur-
sive Lagrange forms and the generalized Taylor forms with cubic
and quartic convergence in the context of the Eval root isolation
procedure. Our empirical study suggests that both forms behave
similarly and that the recursive Lagrange form with cubic con-
vergence is particularly well-suited for Eval, giving a significant
speed-up, compared to the state of the art.

One limitation of our empirical work is that the floating point
version of Eval has not accounted for round-off errors. But we
verified experimentally that our floating point version agrees with
that of the rational arithmetic version in twoways: (a) they generate
subdivision trees of the same size (that explains why there is only
one Table 2) and (b) they both count the same number of isolator
intervals. To address the issues of implementation including errors
from rounding in machine arithmetic, it is possible to apply the
3-levels “AIE methodology” in [31] to our algorithms.
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