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Highlighting computational studies of jammed packings of

deformable particles by scientists from Yale University and
the City College of New York.

The structural, vibrational, and mechanical properties
of jammed packings of deformable particles in three
dimensions

We developed a novel deformable particle model in three
dimensions that enables explicit shape change of individual
particles. Our studies reveal key differences in the structural,
vibrational, and mechanical properties of jammed packings
of deformable particles compared to those for packings

of jammed, fixed-reference shape particles. These results
emphasize the important role of particle deformability in
determining the properties of jammed packings of soft
materials.
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The structural, vibrational, and mechanical
properties of jammed packings of deformable
particles in three dimensions
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We investigate the structural, vibrational, and mechanical properties of jammed packings of deformable
particles with shape degrees of freedom in three dimensions (3D). Each 3D deformable particle is
modeled as a surface-triangulated polyhedron, with spherical vertices whose positions are determined
by a shape-energy function with terms that constrain the particle surface area, volume, and curvature,
and prevent interparticle overlap. We show that jammed packings of deformable particles without
bending energy possess low-frequency, quartic vibrational modes, whose number decreases with
increasing asphericity and matches the number of missing contacts relative to the isostatic value.
In contrast, jammed packings of deformable particles with non-zero bending energy are isostatic in 3D,
with no quartic modes. We find that the contributions to the eigenmodes of the dynamical matrix from
the shape degrees of freedom are significant over the full range of frequency and shape parameters for
particles with zero bending energy. We further show that the ensemble-averaged shear modulus (G)
scales with pressure P as (G) ~ PP, with § ~ 0.75 for jammed packings of deformable particles with
zero bending energy. In contrast, f ~ 0.5 for packings of deformable particles with non-zero bending
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DOI: 10.1039/d1sm01228b energy, which matches the value for jammed packings of soft, spherical particles with fixed shape.
These studies underscore the importance of incorporating particle deformability and shape change

rsc.li/soft-matter-journal when modeling the properties of jammed soft materials.

materials fall into one of two classes: (1) “soft-particle’” models
for which the interparticle forces are generated by overlaps
between discrete particles of fixed shape*'™* and (2) vertex- or
Voronoi-based models®*>° that treat the system as space-filling

1 Introduction

Numerous physical systems are composed of discrete, soft particles
that can change shape under applied stress. Examples include

collections of emulsion droplets,"* colloids,® bubbles,* and hydrogel
particles.>® These systems display complex, spatio-temporal
response to applied deformations, including shear jamming,” ™
shear banding,">"* aging,"*™"” and memory formation.'®>°
Many of the physics-based, theoretical models that are used
to investigate the mechanical and vibrational response of soft
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polygons in two dimensions (2D) or polyhedra in 3D, with
interparticle forces determined by shape-energy functions
written in terms of the vertices of all polygons in 2D or
polyhedra in 3D.

Recently, we introduced the deformable particle (DP) model
in 2D that combines optimal features of both classes of models
for soft particles.*>** The DP model treats each particle as a
discrete object, and thus in contrast to vertex- or Voronoi-based
models, the DP model can be used to study systems over a wide
range of packing fractions—from isolated particles to confluent
systems. In addition, the DP model considers shape-energy
functions for each particle individually (through the shape
parameter .o/ = p*/4na, where p and a are the perimeter and
area of the particle, and the bending energy), and thus the DP
model provides control over the shape of each deformable
particle separately. In previous studies, we investigated the
mechanical and vibrational properties of jammed packings
of DP particles in 2D with and without bending energy.*?

Soft Matter, 2021,17, 9901-9915 | 9901
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We showed that packings of DP particles without bending
energy are hypostatic (with fewer contacts than the isostatic
value) over the full range of shape parameters, and that the
missing contacts are stabilized by low-frequency, quartic modes
of the dynamical matrix. When perturbing the system along
quartic modes with amplitude o, the energy of the system
increases as 0%, rather than &> as for non-quartic modes.
Particles with non-zero bending energy undergo a buckling
transition when .o/ > ./*, above which the minimal energy
shape is not a regular polygon and .«7* increases with the
bending stiffness. Packings of unbuckled particles with
of < .o/* are isostatic with no quartic modes. In contrast,
packings of buckled particles with .7 > o/* possess quartic
modes, but we showed that it is difficult to determine how
many degrees of freedom are associated with each buckled
particle.*® The shape degrees of freedom contribute significantly
to the vibrational response for packings of DP particles
without bending energy, which gives rise to power-law
scaling of the ensemble-averaged shear modulus with pressure
that differs from that for jammed packings of particles with
fixed shape.

In this article, we develop the DP model in 3D, which
considers particles as “bumpy” surface-triangulated polyhedra
with spherical vertices, and then use it to investigate the
structural, mechanical, and vibrational response of jammed
packings of deformable particles in 3D. The 3D DP model
allows us to determine whether the structural, vibrational,
and mechanical properties of jammed packings of deformable
particles in 3D are similar to those in 2D, which is important
for classifying the critical behavior*® of the jamming transition
for deformable particle packings. We will show that many of the
results for jammed packings of deformable particles are similar
in 2D and 3D. For example, packings of deformable particles
with no bending energy possess low-frequency, quartic modes,
whose number matches the number of missing contacts from
simple contact counting. Also, the pressure-dependent
mechanical response varies strongly with the particle deform-
ability; the ensemble-averaged shear modulus scales with pres-
sure as (G) ~ PP with § ~ 0.75 for truly deformable particles,
whereas f ~ 0.5 for particles with non-zero bending energy.
However, in contrast to the results for 2D, we show that for all
non-zero values of the bending energy (i.e. both unbuckled and
buckled particles), DP packings in 3D are isostatic at jamming
onset and do not possess quartic modes.

The remainder of the article is organized as follows.
In Section 2, we describe the shape-energy function for the
DP model in 3D and the computational methods used to
generate jammed packings of deformable particles in 3D and
to calculate the dynamical matrix, density of vibrational modes,
stress tensor, and shear modulus for these packings. In Section 3,
we discuss the results including calculations of the vibrational
modes for a single deformable particle (Section 3.1), and the
packing fraction and contact number at jamming onset
(Section 3.2), the density of vibrational modes (Section 3.3),
the contribution of the shape degrees of freedom to the
vibrational modes (Section 3.4), and the mechanical response
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(Section 3.5) of jammed packings of deformable particles in 3D.
In Section 4, we summarize the conclusions and provide
promising directions for future research. In addition, we
include four Appendices. In Appendix A, we describe the
method we employ to decompose the vibrational modes into
contributions from the translational, rotational, and shape
degrees of freedom of each particle. In Appendix B, we calculate
the shape parameter distribution for Voronoi tessellations of
jammed packings of frictionless spherical particles, as well two
types of point processes. In Appendices C and D, we show the
influence of adding thermal fluctuations to the compression
protocol for generating jammed packings of deformable
particles on the properties of jammed packings of deformable
particles in two and three dimensions.

2 Methods

We model deformable particles in 3D as surface-triangulated
polyhedra with N, vertices as shown in Fig. 1. The vertices are
connected via Delaunay triangulation, resulting in Ny triangles
and N, edges on the surface of each polyhedron. We characterize
the shape of 3D deformable particles using the non-dimensional
shape parameter (or asphericity) .« = s/2/(6+/nv), where s and v
are the total surface area and volume of the particle, respectively.
o/ =1 when the particle is a sphere, and 2/ > 1 for any non-
spherical shape.

(a)

(b)

Fig. 1 (a) An example jammed packing of DP particles with zero bending
energy, N = 16 particles, N, = 42 vertices, and normalized shape parameter
</ = 1.04. (b) Close-up of two particles in (a) to illustrate the definitions of
the surface triangle area a,, the bending angle 0,.., vertex diameter a,,;, and
the inter-vertex separation ry; ;. Several spherical vertices are omitted for
clarity.

This journal is © The Royal Society of Chemistry 2021
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The total potential energy U for a collection of N deformable
particles in 3D obeys the following:

where v, is the preferred volume for each particle and b, is the
preferred area for the fth triangle on the surface of particle n.
The bending angle 0,. is the angle between the two unit
normals to the triangles that share the eth edge on particle 7.
The three coefficients ¢,, &, and ¢, control fluctuations in the
particle volume, surface triangle area, and curvature, respectively.
To prevent overlap between deformable particles, we include the
purely repulsive, linear spring interaction potential between over-
lapping spherical vertices on neighboring particles:
Ny N

N N y 2
. &, Vi i Vi i
Umt — § § 2 : C 1 _ Ty @ 1 _ Ininy )
— 2 ( O ni,mj O ni.mj ’ ( )

n=1m=>n i=1 j=1

where 7, is the distance between the centers of spherical
vertices 7 and j on separate particles n and m and 6y = (0, +
0ny)/2 is the average diameter of the two vertices. The Heaviside
step function O(-) enforces that the pairs of vertices only interact
when they overlap.

We focus on studies of jammed packings of monodisperse
deformable particles in 3D and have verified that they do not
possess structural order. To ensure that the particles do not
inter-penetrate, we need to have a sufficient number and
uniform coverage of the spherical vertices on the surface of each
deformable particle. To achieve this, we consider a geodesic
polyhedron with N, = 42, i.e. the 2nd frequency subdivision of an
icosahedron with shape parameter .o/, = 1.024. For this geodesic
polyhedron, there are Ny = 80 triangular faces: 20 of the faces
have larger area ah, = a;, 60 have smaller area @}, = as, and
a/as ~ 1.19. This geodesic polyhedron also has N, = 120 edges,
half with larger edge length /;, half with smaller edge length I,
and length ratio /Iy ~ 1.13. We choose o,; = ¢ = [; as the
diameter for the spherical vertices. When providing values of the
shape parameter for systems with ¢, > 0, we provide .« obtained
after minimizing the shape-energy function for an individual
particle, not .« defined from v, and e (For ¢, = 0, o/ = y.)
Further, we normalize the shape parameter such that o =
o/ /. Since o/, is the shape parameter value for the most
spherical polyhedron with a given N,, we only study cases with
of > of,, namely </ >1.To generate a deformable particle with

/> 1 and ¢, = 0, we start from the geodesic polyhedron and
perturb each vertex randomly by 1% of /. To achieve a given .oZ,
we keep b, fixed and reduce v, accordingly. We then minimize
U by changing the positions of the vertices, while maintaining
the topology of the geodesic polyhedron. For deformable parti-
cles with ¢, > 0, we first measure ./ after potential energy
minimization for all .«/;, and then select .o/, to achieve a
given .o/,

This journal is © The Royal Society of Chemistry 2021
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We consider three important parameter regimes for the DP
model in 3D (eqn (1)): (1) completely deformable particles with
&, = 0; (2) partially deformable particles with ¢, > 0, and (3)
“Rigid” particles for which the relative vertex positions within
each particle are fixed (i.e. ¢, &4, and ¢, — o0). For cases (1) and
(2), we choose &, ~ eoolas® ~ edol/(ass) ~ 1 to achieve
comparable area, volume, and vertex-vertex overlap forces near
jamming onset. For case (2), we study two values of ¢/¢, for all
/: 107% and 1072, but the results described below are similar
for other values of ¢/e,. For cases (1) and (2) with shape
parameters .« ~ 1, we find that the inter-particle force scales
as F ~ A for small values of the particle area strain 4. However,
we can tune the shape parameter and forms of the volume and
surface area terms in eqn (1) to model the interactions between
specific particle types used in a given experiment.

To generate jammed packings, we start with a dilute system
with packing fraction ¢ = 10, random particle positions in a
cubic box with length L, and periodic boundary conditions in
the x-, y-, and z-directions. We isotropically compress the
system by increasing the equilibrium lengths, areas, and
volumes of the particles (eqn (1)) in small steps at fixed box
length and fixed equilibrium shape parameter. We start
with As/o = 1073, Aa; ~ 2Ac/o, and Av, ~ 3Ac/o, which
corresponds to increases in packing fraction of A¢/¢ ~ 107>
After each compression step, we use the FIRE algorithm®® to
minimize the total potential energy U. If the pressure of the
energy-minimized packing satisfies P < P, we compress the
system again, followed by energy minimization. If P > P,, we
return to the configuration before the most recent compression
step and decrease Ag/g by a factor of 2. We continue this
process until 1 < P/P, < 1.1, where P, = 4 x 10~°, which
yields packings of deformable particles at jamming onset with
packing fraction ¢, (7).

We calculate the virial stress tensor using

N, N,

1 N N )
Z = FZ Z Z antmj,urnimj,y, (3)

nv n=1m>n i=1 j=1

where u,v = x, y, 2, fuimj,. is the uth component of the force from
vertex j on particle m on vertex i on particle 7, 7y, is vth
component of the separation vector from vertex j on particle
m to vertex i on particle n. The pressure is defined as P = (2, +
Xy + 25)/3.

To study the vibrational response of jammed packings of
deformable particles, we calculate the dynamical matrix:

O?*U
Myi i = Doy (4)

where 7y = (Xn1,YninZn) gives the position of the ith vertex on
particle n. To obtain the elements of the dynamical matrix, we

first evaluate —ﬁ,i = QU/0F,; analytically and then numerically

calculate fafm-/a?ni using a finite-difference method on a cubic
grid with uniform spacing 10~ °L, which is chosen to minimize
the magnitudes of the three trivial zero modes relating to
global translations in periodic boundary conditions. We then

Soft Matter, 2021,17, 9901-9915 | 9903
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diagonalize M,;,, to obtain the ./"= 3NN, -3 non-trivial
eigenvalues /; and corresponding eigenvectors Vy, with ¥ -
171(/ :5kk’ and k = 1,...
Wi = \/W7 where all of the vertices have mass m; = m.

We also measure the packing fraction ¢; and coordination
number Z; of packings of deformable particles at jamming
onset. The packing fraction of a collection of deformable

,/". The eigenfrequencies are given by

N
particles is defined as ¢ = 3" ¥7,/L*, where 7", is the volume
n=1

of the nth particle. We determine ¥", = v, + nN,03/6 — P —
7° by adding the volume v, of the underlying polyhedron,
adding the volume of the spherical vertices, subtracting the
volume 775" of the spherical vertices that is enclosed by the
polyhedron, and subtracting the volume ¥ ',‘jl of the overlapping
regions between neighboring spherical vertices but outside of
the polyhedron. The volume of the spherical vertices inside the

Ny
polyhedron is given by 7" = Y Q,,07/24, where Q,; is the
i=1

solid angle defined by the overlap between the polyhedron and
spherical vertex i on particle 7.>® The volume of the overlapped

regions between spherical vertices and outside of the polyhedron is

N,
given by 7% =3 n(l = 0,/21))(20 + L) (6 — 1e)?O (1 —

e=1

lne/0)/12, where [, is the length of the eth edge on the nth
particle. We also measure the contact number Z = 2N./N of
jammed packings of deformable particles, where N, is the total
number of contacts between distinct pairs of deformable
particles. Note that for two particles n and m, multiple vertices
on n may overlap multiple vertices on m. However, these are
only counted as one contact between particles n and m.

To characterize the mechanical response of jammed
packings of deformable particles, we measure the static shear
modulus G by applying successive simple shear strains and
calculating the resulting shear stress. To generate affine simple
shear strain, we shift the y-positions of all particle vertices
based on their z-positions, i.e. the new y-positions are given by
y; = y; + 8yz; with 8y = 5 x 10~ 8, we fix their x- and z-positions,
and apply Lees-Edwards boundary conditions. After each shear
strain step, we minimize the total potential energy U using FIRE
and measure the shear stress X = —X,. The shear modulus is
given by G = 0X/0y. Finally, note that the length, energy,
frequency, and stress scales are provided in units of L = N3,
e, \Ve/m/L and e/L?, respectively. To assess system-size
effects, we study jammed packings with N = 16, 64, and 128.

3 Results

In this section, we describe the results from the simulations of
jammed packings of deformable particles in 3D. We first study
the vibrational response for individual deformable particles
with ¢ = 0 and ¢, > 0. As expected, we find that single
deformable particles with zero bending energy can change
their shape without energy cost, whereas changes in particle
shape cost energy for ¢, > 0. We then investigate the collective
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structural, vibrational, and mechanical properties in jammed
packings of deformable particles. The packing fraction ¢; and
coordination number Z; at jamming onset increase dramatically
with the shape parameter .o/ for completely deformable particles
with ¢, = 0. However, ¢; and Z; do not increase significantly
from the values at ./ — 1 for packings with nonzero e, which
is consistent with prior results for packings of frictional, non-
spherical particles with rigid shapes. We also show that packings
of completely deformable particles possess a large number of
low-frequency, quartic eigenmodes of the dynamical matrix, and
their number matches the number of missing contacts relative
to the isostatic value. In contrast, packings with ¢, > 0 and rigid-
shaped particles are isostatic with no low-frequency, quartic
modes. We then decompose the eigenmodes of the dynamical
matrix into contributions from the translational, rotational, and
shape degrees of freedom of the system. The vibrational
response has significant contributions from the shape degrees
of freedom over the full range of frequencies for packings of
completely deformable particles, whereas there are only large
contributions from the shape degrees of freedom at large
frequencies for packings with nonzero &, We also show that
the ensemble-averaged shear modulus displays power-law
scaling with pressure, (G) ~ P’ for packings of deformable
particles, and that the scaling exponent f ~ 0.75 is larger for
packings of completely deformable particles than the value f ~
0.5 for packings of particles with non-zero ¢, and rigid, bumpy
particles.

3.1 Single-particle vibrational response

For a single deformable particle with N, vertices, there are 3N,
eigenvalues of the dynamical matrix (eqn (4)). In Fig. 2(a), we
show the sorted eigenvalue spectrum (from smallest to largest)
for a deformable particle with ¢, = 0 and three shape parameters
/. For all o/, we expect 3N, — Ny — 1 = 45 zero modes, where
Ny gives the number of area constraints for the triangular faces
and —1 represents the volume constraint. In Fig. 2(a), we show
that A, < 107 '° for 45 of the eigenvalues, and the remaining 81
eigenvalues are non-zero with 4; 2 10~°. Deformable particles
with ¢, = 0 can change their shape by moving along eigenvectors
associated with these zero eigenvalues. Representative shapes for
several .o/ are shown in the inset to Fig. 2(a); note that they can
possess dimples in their surfaces since ¢, = 0.

When ¢, > 0, we add N, constraints, so that the number of
constraints is larger than the number of degrees of freedom. In
this case, only rigid translations and rotations of individual
particles cost zero energy. As shown in Fig. 2(b), deformable
particles with ¢, > 0 possess only 6 ‘“zero” eigenvalues /; <
107", corresponding to the three rigid translations and
rotations, for all .«/. The remaining eigenvalues are non-zero
with 1, = 10* Thus, deformable particles with &, > 0 can
change their shape, but it costs energy. Example minimum
energy shapes with ¢, > 0 are shown in the inset to Fig. 2(b).
Note that the shapes at a given ./ and & > 0 are more
elongated and smooth relative to those at the same .o/ and
ep = 0.

This journal is © The Royal Society of Chemistry 2021
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Fig. 2 Sorted eigenvalue spectrum 1, (from smallest to largest) for
individual deformable particles with (a) &, = 0 and (b) & = 107>, and three
shape parameters: <7 = 1 (blue circles), 1.1 (red crosses), and 1.2 (green
triangles). The insets show examples for the particle shapes associated

with each value of ¢, and .7, with .« increasing from left to right. The
dashed vertical lines correspond to (a) k = 45 and (b) 6.

3.2 Packing fraction and coordination number at jamming
onset

In this section, we describe the results for the structural
properties (i.e. the packing fraction ¢; and coordination num-
ber Z;) for jammed packings of deformable particles at jam-
ming onset. In Fig. 3(a), we show ¢y versus o/ for packings with
eple, = 0, 107%, and 107>, as well as particles with completely
rigid shapes. For completely deformable particles, ¢, (. — 1) ~
0.50 and it increases rapidly with .o/, reaching a maximum
packing fraction, ¢; ~ 0.76 near, but above ./ » /' ~ 1.16.
Note that disordered, jammmed packings of monodisperse,
frictional spherical particles have ¢; ~ 0.55°7 in the large-
friction limit using the Cundall-Strack model for friction.*®
Thus, the physical roughness of the deformable particles gives
rise to more dilute jammed packings in the large-friction limit
than those obtained from the Cundall-Strack model.

The maximum jammed packing fraction is less than 1
because of the finite size of the spherical vertices. We have
shown that the maximum jammed packing fraction increases
as the surfaces of the deformable particles become smoother.
The shape parameter at which ¢; reaches its maximum value
is similar to the peak value (/' ~ 1.16) in the probability
distribution of shape parameters of the polyhedra generated
by Voronoi tessellating jammed, monodisperse frictionless
sphere packings as shown in Appendix B. In Appendices C
and D, we show that ¢; reaches its maximum value at shape
parameters closer to .«/" when the packings are generated by
protocols that include thermal fluctuations.

For any ¢, > 0, there is a single minimal energy shape at
each ./ and deviations from this shape cost energy. For this

This journal is © The Royal Society of Chemistry 2021
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Fig. 3 Average (a) packing fraction ¢3 and (b) coordination number Z; at
jamming onset for jammed packings of deformable particles with N = 16, ¢, =
0 (circles); N = 64, ¢, = 0 (diamonds); N = 128, ¢, = O (asterisks); N = 64, ¢, =
1073 (leftward triangles); N = 64, ¢, = 10~ (rightward triangles); and N = 64,
rigid shape (squares). The data points are obtained by averaging over 500
jammed packings and the errors bars are given by the standard deviation.

reason, the structural properties (e.g. ¢,(</)) for jammed
packings of deformable particles with any ¢, > 0 will differ
from those for ¢, = 0. Further, the structural properties for
jammed packings of deformable particles with any nonzero
value of ¢, will be similar to those for particles with completely
rigid shapes. In particular, in Fig. 3(a), we show that ¢,(.«/) is
similar for jammed packings with ¢y/e, = 107* and 10> and
with rigid shapes. ¢,(«/ — 1) = 0.50, ¢,(</) increases by a
small amount (~2%), reaching a peak near ./ ~ 1.08, and then
decreases to ~0.50 at .o/ ~ 1.2. The value at.o/ — 1 is lower than
that found in simulations of frictional, monodisperse spheres
using the Cundall-Strack model®” in the infinite-friction limit,
but similar to values for random loose packing found in experi-
ments of sequentially deposited rough spheres.*®

The packing fraction at jamming onset for packings of
frictionless non-spherical particles typically has a peak near
</ ~ 1.1 that is greater than 22% above the value in the .o/ — 1
limit.*>*' Previous studies of packings of frictional ellipsoids
have shown that friction reduces the peak in packing fraction
that occurs for small, but finite values of ./ — 1.*> These prior
results are consistent with our observation of a small peak in

¢,(=/) for deformable particle packings with nonzero ¢ For
both zero and nonzero ¢, ¢, (/) does not depend strongly on
system size as shown in Fig. 3(a).

The coordination number Z; = 6 at jamming onset for

disordered packings of frictionless spheres.”>** In contrast,
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4 < Z; < 6 for jammed frictional sphere packings, where the
lower value corresponds to the large-friction limit.*” Fig. 3(b)
shows results of Z; for jammed DP packings. We find that Z; ~
5.5 for .o/ — 1, which corresponds to the value for packings of
frictional spheres with ¢ =~ 0.1. For completely deformable
particles with ¢, = 0, Z; increases strongly with .o/, reaching
values above 12 since they can squeeze through the gaps between
closely packed particles. Z; becomes independent of system size
for N > 128. For g,/e,=10"*,107> and completely rigid particles,
Z; ~ 6 and it does not increase significantly with .«/.

3.3 Vibrational response

We investigate the vibrational response of jammed packings of
deformable particles by calculating the eigenvalues A; of the
dynamical matrix, where & = 1,...,3N,N, and the corresponding
vibrational frequencies w;. We first show the eigenvalue spectrum
for jammed packings of completely deformable particles with
&y, = 0. In Fig. 4(a), we plot 4; (sorted from smallest to largest) for
N = 16, N, = 42, and 7 = 1.06. Apart from the three “zero”
eigenvalues (with /; < 10~ °) from the periodic boundary conditions,
we find two distinct bands in the eigenvalue spectrum: one with 215
eigenvalues that satisfy 1077 < A4 < 10~* and the other with 1798
eigenvalues that satisfy 107" </ < 10% To better understand the
low-frequency band, we investigate the pressure dependence of /; as
the jammed packings are isotropically compressed above jamming
onset. The higher-frequency eigenvalues are nearly independent of
pressure P, whereas the low-frequency eigenvalues increase linearly
with P, as shown in Fig. 4(b). Thus, these low-frequency eigenvalues
of the dynamical matrix tend to zero in the P — 0 limit.

The observation of pressure-dependent eigenvalues of
the dynamical matrix for packings of completely deformable
particles raises the question of whether these packings are
mechanically stable in the zero-pressure limit. To address this
question, we perturb the packings by an amplitude ¢ in the
direction of each eigenmode V:

R=Ro+ 7 5)
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where R represents the positions of all vertices on all particles
in the perturbed packing and R, represents those in the original
packing. In Fig. 4(c), we show that the change in the total
potential energy AU = U(R) — U(R,) increases quadratically with
¢ for perturbations along eigenmodes in the higher-frequency
band. However, for perturbations along the low-frequency
eigenmodes, AU ~ §* for small § and AU ~ §* for large 6.
Based on the results in Fig. 4(b), the crossover, 6%, that
separates the * and 6” scaling regimes decreases as /P. Thus,
in the P — 0 limit, the potential energy increases quartically,
not quadratically, with the perturbation amplitude in these
directions. These ‘“quartic” eigenmodes of the dynamical
matrix have also been observed in jammed packings of rigid
non-spherical particles.?**44¢

We further investigate the existence of quartic eigenmodes of
the dynamical matrix for packings of completely deformable
particles by decomposing the dynamical matrix into contributions
from the stiffness and stress matrices, M = H — S.**%%%> The total
potential energy for completely deformable particles has three
terms, U = U’ + U* + U™ defined in eqn (1) and (2), and thus the
stiffness and stress matrices have three terms, H = H’ + H* + H™
and S = 8" + 8% + S™, The stiffness matrices for each of the three
terms are given by:

O*U" Ov, Ov,

ifn=m
, R
nimj = vy Oryi OFy ) (6)
0, otherwise
Ny 82 U da,r da, s
2 _flf —:1 f7 lf}‘l =m

H::i,m/ = /=1 8“/;/ Oy 6;/-'". 7 (7)

9 otherwise

and

e OPU™ Oriny Ornim (8)

nignj 9, 2 @t
v a’ni,nn/z OFyi a’m/’

(©

102 10° 106 10° 10  10° 102

P o

Fig. 4 (a) Eigenvalues of the dynamical (4, circles) and stiffness (A, crosses) matrices for a jammed packing of N = 16 deformable particles with N, =

42,6, = 0, and .7 = 1.06, sorted from smallest to largest. This packing has three “zero” eigenmodes (with 4, < 107°, also shown as the first three blue
circles), 215 low-frequency, quartic eigenmodes (with 1077 < 4, < 1074, and 1798 quadratic eigenmodes for a total of 3N,N = 2016 eigenmodes. For
quartic modes and quadratic modes, every 30 modes are also shown with circles (1) and crosses (444). (b) The eigenvalues /, of the dynamical matrix
plotted as a function of pressure P during isotropic compression for the same packing in (a). The dashed line has a slope of 1. (c) Change in the total
potential energy AU plotted versus the amplitude 6 of the perturbation when the packing in (a) at P = 4 x 10~% is perturbed along each eigenmode of the
dynamical matrix. The dashed (dot-dashed) line has a slope of 4 (2). The blue (red) color of the solid lines in all three panels indicates the quartic
(quadratic) modes of the dynamical matrix highlighted by circles in (a).
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The stress matrices for each of the three terms are given by:

U’ v, e m
_ e, —
S;i,mj = v, OF niarnj , (9)
0, otherwise
Nopue 82anf .
- ——— ifn=m
)‘zlf.m/' = f=1 8(1,1,( OF 0 nj ) (10)
0, otherwise
and
Sim _ anm 62 rni,m/ (11)
e 6rni,m[ 6}'_';,[617,71/'

The number of non-zero eigenvalues /g, for the stiffness
matrix H provides the number of degrees of freedom that are
linearly constrained (i.e. “quadratic modes”), while the number
of non-zero eigenvalues /; for the dynamical matrix M provides
the total number of constrained degrees of freedom (i.e. both
“quadratic” and “quartic modes”). For jammed packings of
completely deformable particles, we find that the number of
“zero” eigenvalues of the stiffness matrix (with Az, < 10°'%)
matches the number of quartic eigenvalues of the dynamical
matrix plus the three trivial zero modes for periodic boundary
conditions, as shown in Fig. 4(a). (Calculating the zero eigen-
values of the stiffness matrix provides a straightforward
method for independently identifying the quartic eigenmodes
of the dynamical matrix.) We find that the number of missing
contacts relative to the isostatic value, m = N*° — N, = Ng with
Ni° = 3N,N — 2, matches the number of quartic modes Nyg.
This relationship holds for jammed packings of completely
deformable particles over the full range in .« studied, as shown
in Fig. 5(a). From Fig. 3(b), we know that N, increases with .7,
and thus the number of missing contacts decreases with .7,
reaching zero for ./ = 1.16 as shown in the inset to Fig. 5(a).

Jammed packings of deformable particles with nonzero ¢,
possess only a single band of quadratic eigenmodes, and are
isostatic with m ~ 0 for all shape parameters studied, as shown
in Fig. 5(b) for the specific case of N = 16 packings with /e, =
10, Similar results are found for packings of rigid bumpy
particles with the same N, and .. The fact that 3D jammed
packings of rigid bumpy particles are isostatic is consistent
with prior studies of jammed packings of rigid bumpy particles
in 2D.* In contrast, we showed previously that jammed
packings of “buckled” deformable particles with ¢, > 0 in 2D
are hypostatic with m = Ny quartic eigenmodes of the dynamical
matrix.>> These results emphasize an important distinction
between jammed packings of deformable particles in 2D
versus 3D.

In Fig. 6(a), we display the density of vibrational frequencies
D(wy) for jammed packings of deformable particles with ¢, = 0
over a wide range of /. We find several key features in D(wy):
(1) there is a large gap that separates the quartic and quadratic
frequency bands; (2) the quartic band shifts to lower
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Fig.5 (a) Average number of missing contacts per partice m/N
(relative to the isostatic value) plotted versus the number of quartic modes
per particle Ng/N for N = 64 packings of deformable particles with ¢, = 0.
The colors of the symbols indicate the value of the shape parameter from

</ =1 (blue) to 1.2 (red). The dashed line indicates m/N = Ng/N. The inset
shows m/N versus </ for the same data in the main plot. (b) The number of

missing contacts m/N plotted versus .o/ for N = 64 jammed packings of
deformable particles with e,/e, = 107> (blue circles) and rigid bumpy
particles (red crosses) with same values of N, and .. In both panels, the
data were obtained by averaging over 500 packings.

frequencies with increasing .o/; and (3) the high-frequency
part of the quadratic band is insensitive to ./, while the
low-frequency part forms a plateau that extends to lower
frequencies with increasing .«Z. In the inset of Fig. 6(a), we plot
the average quartic mode frequency w, as a function of .o/.
We find that wy ~ («/ — 1)~'/3 displays power-law scaling with
a scaling exponent, —1/3, that is similar to that observed for 2D
packings of deformable particles with &, = 0.*> However, the
scaling exponent is different (even the opposite sign) from the
value (1/2) that has been observed for quartic modes in jammed
packings of rigid non-spherical particles.*>*®

We display D(w) for jammed packings of deformable particles
with non-zero ¢, over a range of .« in Fig. 6(b). The .«/-dependence
is weak. In addition, D(wy) for packings of deformable particles
with non-zero ¢, is continuous with no large frequency gaps,
as has been found for jammed packings of rigid, frictionless
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Fig. 6 Density of vibrational frequencies D(wy) for N = 64 jammed packings of deformable particles with (a) &,/&, = 0 and (b) 10~ over a range of ./ from
1 (blue) to 1.2 (red). Curves in (a) and (b) are shifted vertically by 0.5 in the logarithmic scale for each consecutive value of <. Black dots in (a) indicate the

average quartic eigenmode frequency wo, which is also shown in the inset to (a) as a function of ./ — 1. The dashed line has slope —1/3 in the inset to (a).
The participation ratio p(w,) is shown for N = 64 jammed packings of deformable particles with (c) &,/e, = 0 and (d) 10~ over the same range of .«Z. In all

panels, the data are averaged over 500 packings.

non-spherical particles.*>** The lack of a frequency band gap in

D(wy) is likely caused by the coupling of the translational, rota-
tional, and shape degrees of freedom generated by the effective
friction of the spherical vertices on each particle.

We next examine the contribution of the motion of each
particle to each eigenmode of the dynamical matrix at
frequency w; by calculating the participation ratio:>

2

N
Z ewkn ) ewkn
plog) = " (12)
N z e(/)kn : eu)kn’

n=1

where V, = {€0,15 - ~€w} 18 the k-th unit eigenvector corres-
ponding to eigenvalue A, and €., is the contribution to f/k
from the nth particle. Small values of p(w;) indicate localized
eigenmodes, whereas large values indicate spatially-extended
eigenmodes. For jammed packings of deformable particles with
&p = 0, p(wy) is complex; for a single value of </, it increases and
decreases multiple times as the frequency increases and it
depends strongly on 7. (See Fig. 6(c).) Interestingly, for quartic
modes, p(w;) at the lowest frequency increases from ~0 to
~0.8 as .o/ increases from 1 to 1.2. This result suggests that
the lowest frequency quartic modes become increasingly
de-localized as jammed packings of completely deformable

9908 | Soft Matter, 2021,17, 9901-9915

particles approach confluence. In contrast, for jammed
packings of deformable particles with non-zero bending energy,
p(wy) does not depend on .o/ as shown in Fig. 6(d). In this case,
p(wy) is small at both small and large wy, suggesting localized
eigenmodes occur at these frequencies, and p(w;) reaches a
peak value of ~0.7 at w; ~ 10~ ". This behavior for p(wy) is
similar to that found for jammed packings of frictionless disks
and spheres,’”! even though the degrees of freedom are
different in these two cases.

3.4 Contribution of shape degrees of freedom to vibrational
modes

To understand the role of particle deformability in the vibrational
response, we decompose each eigenmode k (with frequency ;) of
the dynamical matrix into contributions from the translational
T(wy), rotational R(wy), and shape S(wy) degrees of freedom, such
that M(wz) + R(wy) + S(wr) = 1. Details about how to calculate
the eigenmode projections can be found in Appendix A. Each
projection T(wy), R(wy), and S(wy) varies from 0 to 1, with 0
indicating no contribution of the translational, rotational, or
shape degrees of freedom to the eigenmode and 1 indicating that
only translation, rotation, or shape change contributes to a given
eigenmode.

In Fig. 7(a), we show that for jammed packings of deformable
particles with ¢, = 0 the shape contribution S(w) is non-zero over
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the full range of w; for all shape parameters 1 <./ < 1.2,
This result suggests that particle shape deformability plays an
important role in the vibrational response for jammed packings
of deformable particles. We also find that S(w;) increases with ./
for the lowest frequencies. The jammed packings become
“confluent” for ./ = 1.16, and in this regime particle translations
and rotations cost more energy than shape changes at low
frequencies. In Fig. 7(a), we also show that S(w;) = 0.6 at
intermediate frequencies above the quartic mode frequencies.
This result clearly distinguishes these intermediate frequency
modes from those in jammed packings of frictionless, rigid
non-spherical particles mainly associated with rotational degrees
of freedom.”® In contrast, for jammed packings of deformable
particles with nonzero ¢, S(wi) ~ 0 at low wy, as shown
in Fig. 7(b). S(wy) only becomes appreciable for w; = 10 .
In addition, S(wy) does not vary significantly with ./ for packings
of deformable particles with nonzero &;.

We now investigate how to take the rigid-particle limit for
jammed packings of deformable particles to recover eigen-
modes that only contain contributions from particle rotations
and translations, not particle shape changes. To address this
question, we study jammed packings of deformable particles
with non-zero bending energy as a function of decreasing ¢./¢,
and fixed e/e, = 107>, In Fig. 8(a), we show the eigenvalue
spectrum of the dynamical matrix sorted from smallest to
largest for N = 16 jammed packings with .o/ = 1.06. As &/e,
decreases, a band gap emerges that separates 6N — 3 small
eigenvalues from the larger band of high-frequency eigenvalues.
(Note that the smallest three eigenvalues correspond to rigid
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Fig. 7 Contribution S(w) of the shape degrees of freedom to the kth
eigenmode of the dynamical matrix (with frequency wy) for N = 64 jammed
packings of deformable particles with (a) eu/e, = 0 and (b) 10~ over a range
of o/ from 1 (blue) to 1.2 (red).
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Fig. 8 (a) Eigenvalues of the dynamical matrix 4, sorted from smallest to
largest, for N = 16 jammed packings of deformable particles with ¢y/¢, =

1073, o/ = 1.06, and several values of ¢/e,: 1 (blue circles), 107! (red
crosses), 1072 (green triangles), 10~ (yellow squares), and 10~* (black
asterisks). (b) Magnitude of the projection of the shape degrees of freedom
onto the kth eigenmode of the dynamical matrix S, for the same data in (a).

translations of the system.) In Fig. 8(b), we show that the
contribution to the eigenmodes from the shape degrees of
freedom, S; = 0, for the first 6N eigenmodes for ¢/e, 2 107>
(We index the eigenmodes by the integer k instead of wy, so that
it is easy to identify the first 6N eigenmodes.) Thus, the first 6N
eigenmodes are composed of only particle translations and
rotations, similar to the eigenmodes of jammed packings of
rigid bumpy particles.

3.5 Ensemble-averaged shear modulus

In this section, we examine the effects of particle deformability
on the mechanical properties of jammed packings of deformable
particles. In particular, we isotropically compress the packings
and calculate the ensemble-averaged shear modulus (G) as a
function of pressure P for particles with ¢,/e, = 0 and 10~ and
rigid bumpy particles. We find that (G(P)) can be fit by the
following functional form:

aP*

(G(P)) = Gy +W’

(13)
where a and ¢ are constants, and o and f are the power-law
scaling exponents at small and large pressures, respectively.>>
Go ~ N ' gives the value of the shear modulus in the zero-
pressure limit. Prior studies of jammed packings of frictionless
and frictional disks in 2D and spheres in 3D have found that
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Fig. 9 Ensemble-averaged shear modulus (G) plotted versus pressure P for N = 128 jammed packings of deformable particles with (a) ¢p/e, =
0 and (b) 103, and of (c) rigid bumpy particles, for several shape parameters: .7 = 1.02 (blue circles), 1.06 (red crosses), 1.1 (green triangles), 1.14
(magenta squares), and 1.18 (black asterisks). The dashed lines in (a) and (c) indicate fits to egn (13) and the power-law scaling exponents, «
(blue circles) and f (red triangles), are shown in the insets. The dashed line in (b) has a slope of 0.5. The data is obtained by averaging over 500

configurations.

« ~ 1and f ~ 0.5.*>>°* In Fig. 9(a), we show that (G) obeys
eqn (13) for all .«/ for jammed packings of deformable particles
with ¢, = 0. We find that G, decreases as </ approaches unity
(because of the decrease in z; as ./ — 1), but the power-law
scaling exponents « ~ 1 and § ~ 0.75 (shown in the insets) are
insensitive to .«/. Note that the power-law scaling exponent f is
different for jammed packings of completely deformable
particles compared to that for rigid spherical frictionless and
frictional particles (f ~ 0.5), as well as rigid, frictionless ellipse-
(1.0)>* and circulo-line-shaped particles (0.8-0.9).>> The larger
values of f§ > 0.5 is correlated with the presence of quartic
eigenmodes of the dynamical matrix.

For jammed packings of deformable particles with nonzero
& (and no quartic eigenmodes), we do not observe a low-
pressure plateau in (G) (due to the relatively small value of ¢/e,),
and (G) ~ P*® over the full range of pressure studied and for all .«7.
(See Fig. 9(b).) As a comparison, we show (G(P)) for jammed
packings of rigid bumpy particles over the same range of ./ in
Fig. 9(c). Similar to jammed packings of deformable particles with
non-zero bending energy, the power-law scaling exponent f ~ 0.5
and (G(P)) is insensitive to .o7.

4 Conclusions and future directions

In this article, we performed computational studies of the
structural, vibrational, and mechanical properties of jammed
packings of deformable particles in three dimensions (3D).
We have found several significant differences in these properties
for jammed packings described using the soft, fixed-reference
shape model versus the deformable particle model that includes
shape degrees of freedom. We first considered the vibrational
response of single deformable particles with no bending energy
and showed that they possess numerous unconstrained degrees
of freedom. Adding a bending energy term for each edge
between triangular faces on the polyhedral surface of the particle
constrains all of the remaining degrees of freedom. We then

9910 | Soft Matter, 2021,17, 9901-9915

show that jammed packings of completely deformable particles
with zero bending energy are hypostatic and possess N, quartic
eigenmodes of the dynamical matrix, where N, matches the
number of missing contacts relative to the isostatic value.
In contrast, jammed packings of deformable particles with non-
zero bending energy are isostatic with no quartic eigenmodes.
This result in 3D is significantly different than that in 2D. Jammed
packings of deformable particles with non-zero bending energy in
2D can be hypostatic or isostatic depending on whether the
particles are buckled or not.

The density of vibrational modes D(wy) for packings of
completely deformable particles in 3D possesses a frequency
band gap between the quartic and higher frequency modes. The
average quartic eigenmode frequency scales as wg ~ (.o/ — 1)~'/3,
which is different than the scaling behavior of the quartic modes
in jammed packings of rigid, frictionless non-spherical particles
(wo ~ (o/ —1)'2). D(wy) does not depend on the shape
parameter ./ for jammed packings of deformable particles with
nonzero bending energy. In this case, D(wy) is similar to that for
jammed packings of rigid, spherical particles with a plateau that
extends to lower frequencies with decreasing pressure. We also
investigate the effect of particle deformability on the mechanical
properties of jammed packings of deformable particles.
Specifically, we calculate the ensemble-averaged shear modulus
(G) as a function of pressure P as we isotropically compress the
system above jamming onset. We find that for particles with non-
zero bending energy (G(P)) scales as a power-law in pressure,
(G) ~ PPwith  ~ 0.5, which is similar to the results for jammed
packings of rigid, frictionless and frictional spherical particles.
The scaling behavior of the ensemble-averaged shear modulus is
different for jammed packings of completely deformable particles
with ¢, = 0. In this case, the power-law scaling exponent  ~ 0.75.
Moreover, in all cases studied for which jammed particle packings
(with repulsive linear spring interactions) possess quartic
eigenmodes of the dynamical matrix, the power-law scaling
exponent f > 0.5. For example, f =~ 0.75 for 2D and 3D jammed
packings of completely deformable particles,*® f ~ 1.0 for 2D
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jammed packings of ellipse-shaped particles, and ff ~ 0.8-0.9 for
2D jammed packings of circulo-lines.”> We encourage future
studies to understand the link between quartic eigenmodes of
the dynamical matrix and the non-trivial power-law scaling
of (G(P)).

In summary, we have shown that particle shape deform-
ability has a significant impact on the structural, vibrational,
and mechanical properties of jammed particle packings.
The deformable particle model can be used to describe the
jamming behavior observed in experiments on a variety of soft
particle systems, e.g., bubbles and emulsions (¢, = 0), and
vesicles and elastic shells (¢, > 0). In the current studies, we
used spherical vertices on the particle surfaces, i.e. the rough
surface model, to implement the particle-particle interactions.
In future studies, we will investigate the smooth surface model,
where deformable particles are modelled as sphero-polyhedra,
and inter-particle distances are determined by the separations
between points, lines, and planes that form the particle sur-
faces. It will be interesting to determine whether any of the
properties of jammed packings of deformable particles depend
on the surface roughness. In addition, the current studies have
determined the properties of jammed packings of deformable
particles at zero temperature. An important topic of future
research is to understand how the structural, vibrational, and
mechanical properties depend on temperature, and how the
glass transition temperature that determines long-time particle
diffusion depends on the shape parameter and bending
rigidity.® In addition, it is straightforward to add inter-
particle attractions to the deformable particle model and
study how the vibrational and mechanical properties of
jammed packings of attractive deformable particles differ from
those without attractive interactions.
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Appendix A

In this Appendix, we describe how to decompose the eigen-
modes of the dynamical matrix into contributions from
the translational, rotational, and shape degrees of freedom.
We consider a packing of N deformable particles, where each

N, .
particle n’s center of mass is located at ¢, = N, > Fin. Let Ve
i=1

be the kth eigenvector of the dynamical matrix M in Cartesian
coordinates. Components from the (3N,(n — 1) + 1)th to the
(3N,n)th position in ¥’ correspond to the nth deformable
particle, among which the first, second, and third N, compo-
nents are the N,, x-, y-, and z-coordinates, respectively. We can
define six unit vectors to describe translation (@, ., Oy, )
and rotation ({1, @, ,,3) about the center of mass of the
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nth particle as follows:
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1to (n—1) nthparticle x
(14)
0,...,0 ,0,...,0),
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Uy == Uny :(07"'707 07"'70117~'~717
| n,y ~—— N——
1to (n—1) nthparticle x nthparticle y
(15)
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. Un:
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1to (n—1) nthparticle x
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nth particle y
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——
nth particle z (n+1)toN
17)
—y
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Lto (n—1) nth particle x nth particle y
Xin — Cnxy- - 7xan — Cnyx,s 0> cee 70)7
——
nth particle z (n+1)toN
(18)
and
-
U,z = (07 ceey Oa 7()}171 - Cﬂ,y)7 ey 7(}’an - Cn,y)a
1to (n—1) n~-th particle x
(19)
Xln = Cnxy -+ oy XNyn — Cnyxs 07 R 70 107 R 70)
—— —

n-th particle y n-thparticlez (n+1)to N

Note that these six vectors do not form an orthogonal basis due
to non-zero off-diagonal components in the moment of inertia
matrix with respect to the center of mass. To construct six
orthogonal unit vectors, we apply the Gram-Schmidt process
(Q,,%, ,y, G, and i, ,; are already orthogonal to each other):

. _y A — -
i _ Une2 i _ L_IJ _ Uprp  Unx _ Up o~ u"v}’ﬁ
- A~ - ~
unJ'Z LT un,r2 : un,rlﬁ
- U, - — n,rl
90 I A
(20)
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Fig. 10 Magnitude of the contributions of the translational T (blue circles),
rotational R (red crosses), and shape S (black triangles) degrees of freedom
to each eigenmode of the dynamical matrix with frequency wy for N = 16
jammed packings of deformable particles with ¢, = 0 and .o/ = 1.06.
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By defining the following coefficients,
p)];,x = Vk'ﬁn,x (22)
Dhy = Vi, (23)
pr.=Vha,, (24)
picz,rl = I}k’ﬁn,rl (25)
Pﬁ,rz = Vk'ﬁn,rz (26)
Pﬁ,rs = f/k’ﬁn,rS; (27)

we can rewrite the eigenvector V* as
N N N N
7k Z ks Z koo koo koG
Ve o= Dy xUn,x + pn,yu’h)‘ + an}zu”i + ang‘lu"»"l
n=1 n=1 n=1 n=1

N N
§ ko~ § : ko~ 7k
+ prjg‘Zu”:’Q + pn,r3unﬂ'3 + VS(7

n=1 n=1

(28)

where V¥ is the vector that remains after projecting the particle
translations and rotations out of V*. By applying this decom-
position, we can express each eigenmode as the sum of particle
translations, rotations, and shape deformations.

With these coefficients, we can define the contributions of
the translational 7% and rotational R¥ degrees of freedom to the
kth eigenmode of the dynamical matrix as:
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6= ()2 + (k)7 + (k)] (29)
RE=S [0+ o) + o] 30)

§*=1 — 7 — RF gives the contribution of the shape degrees
of freedom to the kth eigenmode. As an example, we show 7%,
R, and S* for an N = 16 jammed packing of deformable

particles with ¢,/e, = 0 with shape parameter .« =1.06 in
Fig. 10 as a function of frequency wy.

Appendix B

In this Appendix, we provide insight into the value of the shape
parameter at which jammed packings of deformable particles
with zero bending energy become confluent. In particular, we
show results for the probability distribution of the shape
parameters obtained from Voronoi tessellation of random
points and of the sphere centers in jamed packings of mono-
disperse, frictionless spheres, as well as the shape parameters
of the polyhedra generated from Lloyd’s algorithm.>” In all
three cases, we consider N, = 64 points and periodic boundary
conditions in the x-, y-, and z-directions. For the jammed
sphere packings, we use the same packing-generation process
described in Section 2. For Lloyd’s algorithm, we start with a set
of random points and apply Voronoi tessellation. We then use
the centroids of the tessellated polyhedra as the new set of
points and apply Voronoi tessellation again. We repeat this
process 10* times after which the distribution of the polyhedra
shape parameters, 2(.«/), reaches a stationary distribution.

In Fig. 11, we show 2(</) for the three point processes
described above. The distributions 2(/) from jammed

30 " . . -

P

B XXXXXXXxxxxxxyww
1 1.2 1.4 1.6 1.8 2
A

Fig. 11 The probability distribution 2(</) of the polyhedra generated
from Voronoi-tessellating the centers of spheres in jammed monodisperse
sphere packings (blue circles) and random points (red crosses), as well as
the polyhedra generated from Lloyd's algorithm (black triangles). In all
cases, the number of points is N, = 64 with periodic boundary conditions
in the x-, y-, and z-directions. The vertical dashed line is located at
o =1.18.
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frictionless sphere packings and Lloyd’s algorithm are narrow
with peaks near ./ ~ 1.185 = 1.157.¢, and ~ 1.176 = 1.148.</,,
respectively. As discussed in Section 2, .o/, =1.024 is the
smallest shape parameter for the N, = 42 polyhedral deformable
particles that we consider in the main text. Thus, the most
probable shape parameters for these two types of Voronoi
tessellations are similar to the value of .« = .o//.o/, ~ 1.16
above which the packing fraction at jamming onset ¢; reaches
a plateau for deformable particles with ¢, = 0. This value of .¢7 is
also similar to the critical shape parameter at which a fluid-to-
solid transition occurs in the 3D vertex model for confluent
tissues.® In contrast, Voronoi tessellations obtained from sets
of random points yield a wide distribution 2(.«/) with the most
probable .7 ~ 1.316 = 1.285.¢/,, which is much larger than the
most probable values from the other two types of Voronoi
tessellations.

Appendix C

In this Appendix, we describe the effects on the packing
fraction at jamming onset ¢; in 2D from packing-generation
protocols that include thermal fluctuations. In previous
studies,’® we found that ¢; increases with shape parameter
for o/ < .o/' ~ 1.16. Above /!, ¢; reaches a plateau and the
particle shapes begin to buckle inward. As the polygons of
Voronoi tessellations of jammed disk packings possess typical
shape parameter of .«/' =~ 1.16, we hypothesized that the pla-
teau in ¢; for </ % /! indicates a confluence transition, where
deformable particles completely fill their Voronoi cells as .o/ — .o/1.
For .o/ > .o/1, the particles cannot further expand in area to increase
their perimeter, so they invaginate instead.

We show in Fig. 12 that the confluence transition is sensitive
to the packing-generation protocol. We prepare jammed
packings of N = 64 2D deformable particles with ¢, = 0 in
square, periodic boundaries with side length L. To include
thermal fluctuations in the packing-generation protocol, we
run constant N, constant boundary area L?, and constant
temperature T dynamics for a time 50t, where 1 = \/ay/s., ao
is the preferred area of the particle, and thermal energy kgT is
given in units of ¢.. We then rapidly quench the system to T=0
using FIRE, take a small compression step, and then re-
minimize the total potential energy to achieve force balance.
We repeat this thermalization, compression, and energy
minimization process until reaching jamming onset with a
pressure that satisfies 1077 < P < 2 x 10”7 when the system
is in force balance. (A similar protocol has been implemented
to generate jammed packings of 3D rigid bumpy particles.>®)
We studied a range of temperatures from 7 = 107° to 107>,
Constant temperature was enforced using a Langevin
thermostat.>

We measure packing fraction both globally and locally; the
global packing fraction ¢ = L2 a,,, where a,, is the total

I

area of particle y, i.e. the area of the underlying polygon a, plus
the area of the exposed bumpy vertices ay,. For a particle with
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Fig. 12 Local (symbols) and global (lines) packing fraction 1 — ¢ versus
particle shape parameter ./ —1 for jammed packings of deformable
particles in 2D prepared using a packing-generation protocol that includes
thermal fluctuations at temperatures T = 107° (blue), 10~* (cyan), 1073
(yellow), and 1072 (red). Error bars give the standard deviations obtained by
averaging over configurations (lines) or both particles and configurations
(symbols). The vertical dashed line is drawn at ./ ~ 1.16. Example particles
with .o/ ~ 1.16 for their surface-Voronoi cells are drawn in the inset, sorted
by increasing temperature from top to bottom. Arrows indicate excess free
area in each cell. Surface-Voronoi cells are drawn with black solid lines,
while total particle areas are shaded in blue, and the underlying polygons
of the deformable particles are indicated with white dashed lines.

n, circular vertices of radius r,, the exposed bump area

apy = (’12—” — 1)7%2. The local packing fraction for particle y is

defined as ¢, = a,/a,,, where a,, is the area of the surrounding
surface-Voronoi cell of the 2D deformable particle.®® Surface-
Voronoi diagrams are generated by distributing fifteen points
along the segments joining adjacent circular vertices on each
particle, computing the Voronoi tessellation of all of the points,
and taking the union of the Voronoi cells associated with each
deformable particle.

In Fig. 12, we find that there is a well-defined confluence
transition in both the global and local packing fractions for 2D
deformable particle packings generated with large thermal
fluctuations. When T > 10, both measures of the packing
fraction possess maxima near ./ ~ 1.16. When T < 10>, the
packing fraction at jamming onset is generally smaller and
continues to change for ./ > /1. In the inset of Fig. 12, we
include examples of single deformable particles with .o/ ~ 1.16
and their associated surface-Voronoi cells. At lower temperatures,
we find small regions of excess free area near the cell boundaries,
but at higher temperatures these regions disappear. This result
indicates that lower local (and therefore, global) packing at lower
temperatures is caused by surface friction from the circular
vertices.

Appendix D

In this Appendix, we show that the packing fraction at jamming
onset ¢; also depends on the protocol used to generate jammed
packings of 3D deformable particles with ¢, = 0. In addition to
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Fig. 13 Packing fraction at jamming onset 1 — ¢; plotted as a function of
shape parameter ./ — 1 for jammed packings of N = 16 deformable

particles with ¢, = 0 in 3D, generated using the protocol with thermal
fluctuations at temperature T = 0 (blue circles), 10~* (cyan squares), 10~*
(yellow triangles), and 1072 (red diamonds). The dashed vertical line is
located at .7 ~ 1.16. Note that the confluence transition in 3D sharpens for
packings with increasing T, but it is still smoother than that for packings of
deformable particles in 2D as shown in Fig. 12.

the packing-generation protocol described in Section 2, we
employ the protocol®® with thermal fluctuations described in
Appendix C. As in 2D, we find that ¢; increases with T, as shown
in Fig. 13. For small T (T < 10°), ¢; smoothly approaches
a maximum value of packing fraction that occurs for
o/ > o/T =~ 1.16. For T=10"2, we find a sharper transition near
o/ = /' for the maximum ¢, likely from reducing the surface
friction between particles via thermal fluctuations. However,
the confluence transition in 3D still appears to be less sharp
than that in 2D.
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