
Data Mining and Knowledge Discovery (2021) 35:1369–1392
https://doi.org/10.1007/s10618-021-00755-7

A deepmultimodal model for bug localization

Ziye Zhu1 · Yun Li1,2 · Yu Wang1 · Yaojing Wang2 · Hanghang Tong3

Received: 19 October 2019 / Accepted: 19 April 2021 / Published online: 28 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2021

Abstract
Bug localization utilizes the collected bug reports to locate the buggy source files.
The state of the art falls short in handling the following three aspects, including (L1)
the subtle difference between natural language and programming language, (L2) the
noise in the bug reports and (L3) the multi-grained nature of programming language.
To overcome these limitations, we propose a novel deep multimodal model named
DeMoB for bug localization. It embraces three key features, each of which is tailored
to address each of the three limitations. To be specific, the proposedDeMoB generates
the multimodal coordinated representations for both bug reports and source files for
addressing L1. It further incorporates the AttL encoder to process bug reports for
addressing L2, and the MDCL encoder to process source files for addressing L3.
Extensive experiments on four large-scale real-world data sets demonstrate that the
proposed DeMoB significantly outperforms existing techniques.

Responsible editor: Johannes Fürnkranz

B Yun Li
liyun@njupt.edu.cn

Ziye Zhu
2016070251@njupt.edu.cn

Yu Wang
2017070114@njupt.edu.cn

Yaojing Wang
wyj@smail.nju.edu.cn

Hanghang Tong
htong@illinois.edu

1 Jiangsu Key Lab. of Big Data Security and Intelligent Processing, Nanjing University of Posts
and Telecommunications, Nanjing, People’s Republic of China

2 State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, People’s Republic
of China

3 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana-Champaign,
IL, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10618-021-00755-7&domain=pdf
http://orcid.org/0000-0002-2079-9484

1370 Z. Zhu et al.

Keywords Bug localization · Bug report · Multimodal learning · Attention
mechanism · Multi-grained features

1 Introduction

A software system contains bugs, regardless of how much effort is spent on devel-
oping (Wong and Debroy 2009). According to the IEEE standard, bugs are the
manifestations and results of errors during the program coding (DeMillo et al. 1997).
To debug, programmers must first be able to locate the buggy source files (or methods,
classes, etc.) (Li and Li 2012), and then fix them. The process of locating the buggy
source files is known as bug localization. Furthermore, the effectiveness of manual
bug localization depends on the developers’ experience and the understanding of the
program (Wong and Debroy 2009). Therefore, the bug localization task has histori-
cally been regarded as a time-consuming and labor-intensive task, especially for the
complex, large-scale software systems (Wang et al. 2015a). The limitations have moti-
vated extensive investigations into partially or fully automated bug localization. To
date, these automated approaches are mainly based on program analysis (Sterling and
Olsson 2007; Zhang et al. 2005; Wong and Qi 2006) and bug report (Zhou et al. 2012;
Kim et al. 2013; Lam et al. 2017). The former approach locates the buggy source code
by static or dynamic source code analysis. The latter approach predicts the related
buggy source files concerning the bug report (i.e., the users’ feedback). This paper
focuses on the latter, referred to as bug report-based bug localization task.

In general, a bug report records program defects or failures submitted by program-
mers, testers, or end-users during software development and maintenance. Figure 1
shows a simplified bug report from SWT project recorded in online Bugzilla system,1

where the description item in it details the reproduction of an unexpected problem
encountered by the reporter. In this case, the bug report records a security issue
related to the password field. Recently, various bug report-based bug localization
approaches (Zhou et al. 2012; Kim et al. 2013; Lam et al. 2017) have been proposed,
mainly focusing on estimating the relevance between the bug report and source file.

Despite great achievements, the state of the art falls short in handling the following
three aspects. (L1) The subtle difference between natural language and programming
language. Existing bug report-based methods ignore different language properties and
directly fuse two language representations by a simple neural network. The localization
performance might be limited without narrowing the gap between the two representa-
tion spaces. (L2) The noise in the bug reports, especially in non-professional ones. The
main content of the bug report belongs to the informal document (i.e., user-generated
text). Intuitively, the noise in bug reports will lead to a negative effect on localization
performance. (L3) The multi-grained nature of programming language. That is, the
information carrier of the programming language is multi-grained (e.g., code token,
code statement, code function). Recently, a few approaches can extract structural fea-

1 A bug tracking system for both free and open-source software, proprietary projects, and products. https://
www.bugzilla.org.

123

https://www.bugzilla.org
https://www.bugzilla.org

A deep multimodal model for bug localization 1371

Fig. 1 Take an SWT bug report #243012 for example, the key information is displayed in red, and the noise
in black (Color figure online)

tures in statements, but ignore the multi-grained structural features in the program.
We will discuss these limitations in more detail in Sect. 2.2—Limitations and Ideas.

To address these limitations, we propose a novel deep multimodal model named
DeMoB (Deep Multimodal model for Bug localization) for the bug report-based bug
localization task. Inspired by multimodal machine learning (Mroueh et al. 2015),
which is capable of processing and correlating information from multiple sources,
we treat the bug report (i.e., natural language) and source file (i.e., programming
language) as two modalities, and then narrow the gap between the two languages to
address L1. For addressing L2, we propose the AttL encoder to automatically focus on
valuable information andfilter bug-irrelevant part of the bug report, thereby reducing or
eliminating the interference caused bynoise. For addressingL3,wefirst split the source
file according to the code token, code statement and code function, and then theMDCL
encoder extracts the multi-grained features of the source file. Furthermore, the MDCL
encoder can process variable-length source files by leveraging dynamic Convolutional
Neural Network (DCNN) (Kalchbrenner et al. 2014). Extensive experiments on large-
scale real-world data sets reveal that our model significantly outperforms several state-
of-the-art techniques on the bug localization task.

The contribution of our work is threefold,

– We propose a novel multimodal model called DeMoB for bug report-based bug
localization task. The proposed DeMoB ameliorates the difference between the
bug report and source file by mapping their individual representations into a coor-
dinated multimodal space.

– We propose the AttL encoder to extract key information from bug reports while
filtering noise.

– We design the MDCL encoder to well capture the multi-grained programming
language features, including token-level, statement-level, and function-level.

123

1372 Z. Zhu et al.

Table 1 Notations

Symbol Description

B = {b1, . . . , bM } Collection of bug reports

S = {s1, . . . , sN } Collection of source files

M Number of bug reports

N Number of source files

W B-S relevance indicator matrix

bnew A new bug report

S+ Collection of buggy source files to b

s+ s is a buggy source file to b

S− Collection of clean source files to b

s− s is a clean source file to b

The rest of this paper is organized as follows. Section 2 describes the problem
definition and key ideas. Section 3 presents the proposed DeMoB. Section 4 presents
the experimental results and analysis. Section 5 briefly reviews the related work, and
Sect. 6 concludes.

2 Problem statement

In this section, we first present the bug report-based bug localization problem and then
analyze the limitations of existing methods.

2.1 Problem definition

The goal of the bug report-based bug localization task is to find buggy source files that
lead to inappropriate defects described in bug reports.We denote B = {b1, b2, . . . bM }
as a set of bug reports, and S = {s1, s2 . . . , sN } as a set of source files, where M , N
are the number of the bug reports and source files in the project. Besides, an indicator
matrix W ∈ R

M×N is used to indicate whether a source file is the buggy file of a bug
report. For example, Wi, j = 1 indicates that source file s j is the buggy file of the bug
report bi and Wi, j = 0 indicates not. The main symbols in this paper are shown in
Table 1. Based on the above notations, we define the bug report-based bug localization
problem as follows.

Problem 1 bug report-based Bug Localization

Given: (1) a collection of bug reports B containing M bug reports, (2) a collection of
source files S containing N source files, (3) an indicator matrix W , (4) a new bug
report bnew /∈ B;

Find: the buggy file s̃ associated with bnew, where s̃ ∈ S.

To solve this problem, we instantiate the bug localization as a structured learning
task, and propose a two-stage solution containing a training stage and a prediction

123

A deep multimodal model for bug localization 1373

Fig. 2 The two-stage framework contains a training stage and a prediction stage. The training stage aims
to learn an evaluation function to estimate the relevance degree of a (b, s) pair, where (b, s+) and (b, s−)
denote the related pairs and irrelated pairs, respectively. The prediction stage is to find the source file s̃
which is most likely to contain the error described in bug report b

stage, as shown in Fig. 2. The framework of our proposed DeMoB is denoted as

F : B × S → R ⇒ f (bnew) = s̃ = argmin
s∈S F(bnew, s). (1)

In detail, the training stage aims to learn an evaluation function F : B × S → R to
estimate the relevance between the source file s and the bug report b. The prediction
stage is to find the source file s̃ which is most likely to contain the error described in
bug report bnew. The localization is made by s̃ = argmins∈S F(bnew, s), where F(., .)

is the evaluation function learned in the training stage.

2.2 Limitations and ideas

Before we present the details of ourDeMoB, we summarize the limitations of the state
of the art in handling the following three aspects, and the key ideas of the proposed
DeMoB to address them.

L1: Subtle difference between natural language and programming language The
main subjects in the bug report are written in natural language (e.g., English, Chinese),
and the source file is a sequence of programming language statements (e.g., C, Java).
Although there are numerous syntactic correspondences between them (Mihalcea et al.
2006), the corresponding representation space of each language is individual due to the
different properties of the two languages. Existing bug report-based methods ignore
the properties of different languages and directly fuse two language representations by
using a simple neural network. For example, Huo et al. (2016) employed two CNNs to
learn the feature representations of bug reports and source files respectively, and then
directly fused them through a fully-connect neural network. However, inferring the

123

1374 Z. Zhu et al.

relevance between the bug report and the source file without narrowing the distance
between the two representation spaces might limit the final localization performance.

Key idea inDeMoB for addressing L1: Narrowing the gap by coordinated rep-
resentation module Currently, multimodal representation learning (Baltrušaitis et al.
2019) has gained much attention due to its powerful ability to learn a representation of
data using information from multiple modalities, such as text and video (Silberer and
Lapata 2014), text and image (Frome et al. 2013). In particular, coordinated represen-
tation learning, the main category of multimodal representation learning, processes
unimodal data separately, but can enforce certain constraints on them to bring them
into a coordinated space. Considering the properties of natural language and program-
ming language in our task, we treat the bug report and source file as two modalities.
In the existing methods, the individual representations of the bug report and source
file can be well learned by neural networks of different structures. However, their
individual representations could be further projected into a coordinated space based
on coordinated representation learning. To be specific, the coordinated representation
module in our model is responsible for coordinating the individual representations of
the bug report and source file into a coordinated space through a constraint (i.e., rele-
vance distance). We encourage the representation of related source file to be as close
as possible to the representation of the given bug report by minimizing the relevance
distance between them in the coordinated space.

L2: The noise in the bug reports, especially in non-professional ones The main
content of the bug report belongs to the informal document (i.e., user-generated text).
According to the statistical analysis (Rahman and Roy 2018), apart from some reports
submitted by professionals that contain localization hints (e.g., program elements,
stack traces), most non-professional reports generally contain bug-irrelevant content.
From the bug report #243012 shown in Fig. 1, we can see some bug-irrelevant con-
tent displayed in black (e.g., 1. Start Eclipse, 2. Open Eclipse→Preferences). This is
because users desired to be as specific as possible when describing the issue, which
leads to redundant information. In our task, such information might harm the localiza-
tion performance (referred to as ‘noise’ in our paper). Recently, existingmethods (Huo
et al. 2016; Huo and Li 2017) adopt the CNN, which can effectively learn local fea-
tures, to make the influence of noise on the model relatively small. However, these
methods cannot perform well in learning the sequential features of bug reports.

Key idea inDeMoB for addressing L2: The AttL encoder for encoding bug reports
Based on this observation, we desire our model to learn sequential features while
mitigating the effects of noise in bug reports. Armed with this, we propose the AttL
encoder, a Bidirectional Long Short-Term Memory Networks (BiLSTM) (Hochreiter
and Schmidhuber 1997) with attention mechanism (Bahdanau et al. 2014), to capture
the semantic information in bug reports and automatically focus on a set ofwordswhere
themost bug-relevant content is concentrated. At present, the attentionmechanism has
been widely used in many tasks, such as machine translation (Bahdanau et al. 2014),
network embedding (Liu et al. 2019). It affords the model a remarkable capacity to
selectively learn information by assigning different weights to each part of the input.
For our task, soft attention (a popular attention-based network) is employed to consider
all words in a bug report, and then assignwords that have a decisive effect on our task to
a higher weight, and words that are useless to a lower weight. The final representation

123

A deep multimodal model for bug localization 1375

of the bug report is computed as a weighted sum of all word-level representations
generated by BiLSTM. In this way, the AttL encoder allows our model to concentrate
on key information and filter noise in learning bug report representations.

L3: The multi-grained nature of programming language The information carrier of
the programming language is multi-grained (e.g., code token, code statement, code
function). Abundant multi-grained structural features can be obtained by analyzing
source files at different granularities. Such multi-grained features are essential for
understanding the functionality performed by complex source files. Unfortunately,
most existing methods do not fully exploit the multi-grained nature of programming
language. For example, DNNLoc (Lam et al. 2017) only considered the features of
tokens, but ignored the more abstract features, such as the structural features provided
by statements. Recently, LS-CNN (Huo and Li 2017) explored the structural nature
within statements and the sequential nature among statements. However, this method
ignored the function-level features.

Key idea inDeMoB for addressing L3: The MDCL encoder for encoding source
files In order to extract abundant multi-grained structural features of source files, we
design a particular network MDCL containing multiple DCNNs (Kalchbrenner et al.
2014) and a BiLSTM as the source file encoder in our model. To be specific, we first
split the input source file according to different granularities, including token, state-
ment, and function. Subsequently, multiple DCNN layers learn information within
the code function, including structural information in the statement and code block
(consisting of multiple statements). Then, we utilize BiLSTM to learn the dependen-
cies between functions. The final source file representation obtained by the MDCL
encoder incorporates multi-grained features (including token, statement, and func-
tion). It is worth to be mentioned that we employ DCNN instead of traditional CNN
in feature extraction, and the inputs of BiLSTM are the function-level representations.
Accordingly, the MDCL encoder is endowed with the ability to handle over-length
source files effectively.

3 The proposedmodel

In this section, we present the proposedDeMoB for the bug report-based bug localiza-
tion task. As illustrated in Fig. 3, there are three integral parts in our model, including
a bug report processing module Mb : b → vb, a source file processing module
Ms : s → vs , and a coordinated representation module C(vb, vs), where vb and
vs are the representations obtained from the bug report and source file processing
modules respectively.

3.1 Bug report processingmodule

We first introduce the bug report processing module designed to extract semantic
information about the bugs described in the bug report. It contains an embedding layer
and a bug report encoder, as illustrated in Fig. 3.

123

1376 Z. Zhu et al.

Fig. 3 Overall framework of DeMoB. It consists of (1) bug report processing module Mb , (2) source file
processing module Ms , and (3) coordinated representation module C(vb, vs)

3.1.1 Embedding layer

Given a bug report b, we consider all content from the summary and description items,
which are the main part of the bug report, and treat them as a sequence of m words
{w1, w2, . . . , wm}. Then, we use pre-trained ELMo (Peters et al. 2018) to initialize
each word, which can generate a dynamic context-dependent representation for each
word depending on the entire context. Specifically, the contextualized word represen-
tations are embedded from a deep bidirectional Language Model (biLM). Through
the embedding layer, the bug report b is represented as a word embedding sequence
{w1,w2, . . . ,wm}, where wi is the word embedding of wi . The word embedding
sequence is then passed to the subsequent bug report encoder.

3.1.2 Bug report encoder

In order to encode the input bug report b while mitigating the effects of noise in it, we
design the network AttL as the bug report encoder. The structure of AttL is shown in
Fig. 4. To be specific, the BiLSTM can efficiently learn the sequential features in the
bug report (Hochreiter and Schmidhuber 1997; Schuster and Paliwal 1997).We denote

a BiLSTM and concatenate the forward hidden state
−→
h b

i and a backward hidden state←−
h b

i into a new vector hbi as follows,

−→
h b

i = LSTMb
forward(wi ,

−→
h b

i−1), (2)
←−
h b

i = LSTMb
backward(wi ,

←−
h b

i+1), (3)

123

A deep multimodal model for bug localization 1377

Fig. 4 The overall structure of the AttL encoder. Take an SWT bug report for example, the key information
is displayed in red, and the noise in black (Color figure online)

hbi = −→
h b

i ⊕ ←−
h b

i , (4)

where thewi is the input of the BiLSTM in the time step i , and the⊕ is the concatenate
operation. The obtained hbi contains information about the whole input sequence with
a strong focus on the parts surrounding the i th word wi of the input sequence. For the
input bug report b, BiLSTM generates a hidden state sequence {hb1, hb2, . . . , hbm}.

In addition, for filtering the bug-irrelevant noise in the bug report b, we employ soft
attention, a popular attention-based network, to consider the influence of all words in
the bug report. We calculate the final bug report representation vb as a weighted sum
of these hidden states {hb1, hb2, . . . , hbm} by Eq. 5:

vb =
m∑

i=1

αi · hbi , (5)

where αi denotes the weight of each hidden state hbi indicating the importance of wi

in the input bug report b. That is, words that carry key information are given higher
weights, andwords that are useless to our task are assigned lowerweights. Specifically,
αi is generated by

αi = exp(g · hbi)∑m
j=1 exp(g · hbj)

, (6)

where g is the global feature from a multilayer perception (MLP) network, denoted
as:

g = MLP(
−→
h b

m ⊕ ←−
h b

1). (7)

Thanks to the attention mechanism, we relieve the bug report encoder from the
burden of encoding all sequential features in the bug report into a vector, by selectively
retrieving the information distributed throughout the hidden state sequence. At this
point, we obtain a final bug report representation vb from the AttL encoder that will
be input to the coordinated representation module for relevance prediction.

123

1378 Z. Zhu et al.

Fig. 5 The overall structure of the MDCL encoder. The input source file is related to the bug report shown
in Fig. 4

3.2 Source file processingmodule

In terms of source files, we employ an embedding layer and a source file encoder to
fully extract the multi-grained information. The structure of the source file processing
module is shown in Fig. 3.

3.2.1 Embedding layer

Given a source file s, the embedding layer in the source file processing module is
responsible for mapping all tokens in it into their corresponding embedding represen-
tations. Due to the difference between natural language and programming language,
we pre-train another ELMo-based embedding layer, which has the same structure
as the embedding layer in the bug report processing module, but no parameters are
shared between them. For the source file s, we treat it as a sequence of n code tokens
{x1, x2, . . . , xn}. The embedding layer converts the tokens into a sequence of embed-
dings {x1, x2, . . . , xn}, where xi is the token embedding of xi . The token embedding
sequence is then passed to the source file encoder.

3.2.2 Source file encoder

After embedding the given source file to a token representation sequence, we split
it according to multiple granularities, including code token, code statement, and
code function. Then, a particular network MDCL composed of multiple DCNN lay-
ers (Kalchbrenner et al. 2014) and a BiLSTM layer is set as the source file encoder to
learn multi-grained information and generate a file representation. The overall struc-
ture of the MDCL encoder is shown in Fig. 5.

To be specific, we select all token representations belonging to a function as the
input ofmultipleDCNN layers. ThefirstDCNN layer is used to represent the semantics
of a statement based on the tokens within the statement. The subsequent DCNN layer

123

A deep multimodal model for bug localization 1379

is used to learn the semantics conveyed by multiple statements while preserving the
integrity of statements. The dynamic k-max pooling operations can process the varying
length code functions, where the k is a set of dynamic values depending on the token
number of the input function and the depth of the network. Following the work of
Kalchbrenner et al. (2014), the pooling parameter is calculated as follow,

kl = max

(
ktop,

⌈
L − l

L
s

⌉)
, (8)

where l is the number of the current convolutional layer of the applied pooling, L is the
total number of convolutional layers in the network, and ktop is the pooling parameter
of the topmost convolutional layer with a default value. In this way, for the source
file s, multiple DCNN layers eventually generate a function representation sequence
{ f 1, f 2, . . . , f u},whereu is the number of functions in sourcefile s, and each function
representation contains the semantic information inside one code function.

Then, the function representation sequence is input to the BiLSTM layer to learn
the dependency among functions. For simplicity, we denote the function dependency
extraction as the following equations,

−→
h s

t = LSTMs
forward(f t ,

−→
h s

t−1), (9)
←−
h s

t = LSTMs
backward(f t ,

←−
h s

t+1), (10)

hst = −→
h s

t ⊕ ←−
h s

t . (11)

Finally, we employ a pooling layer involving a mean pooling operation to fuse the hst
and obtain the source file representation vs of the source file s.

3.3 Coordinated representationmodule

At this moment, we obtain the bug report representation vb from bug report processing
module, and the source file representation vs by source file processing module. Due to
the properties of different languages, the obtained corresponding representations are
located in their individual embedding spaces. To coordinate the individual representa-
tions into a coordinated embedding space, the core coordinated representation module
is trained by means of a projection layer and a relevance prediction layer. Specifically,
the projection layer is a linear transformation derived from the bug report and source
file representations by

ṽb = T bvb, (12)

ṽs = T svs, (13)

where T b and T s are the transformation matrices; vb and vs are the representations
obtained from bug report processingmodule and source file processingmodule respec-
tively; the coordinated representations ṽb and ṽs have the equal dimensions. In order

123

1380 Z. Zhu et al.

to predict the relevance of the bug report and the source file, we calculate the distance
between their mappings in the embedding. The relevance distance is defined as

F(b, s) = ‖ṽb − ṽs‖22 = ‖T bvb − T svs‖22. (14)

We encourage the representation of the relevant buggy source file to be as close as
possible to the representation of the given bug report. Considering the distance of
relevant pairs (b, s+) should should be less than the distance of irrelevant pairs (b, s−),
where s+ ∈ S+ and s− ∈ S−, the pairwise ranking loss function for training DeMoB
is

L(�) =
∑

b,s−,s+
max(0, τ + F(b, s+) − F(b, s−)) + λ�‖�‖2, (15)

where F(., .) is computed by Eq. 14; � denotes all parameters of DeMoB and λ�

is the regularization hyperparameter; τ is a margin, forcing F(b, s+) to be smaller
than F(b, s−) by τ . In this way, we adapt Adaptive Moment Estimation (Adam)
method (Kingma and Ba 2014) to directly minimize the loss function L(�) in our
model.

4 Experimental results and analysis

This section introduces the data sets used for evaluation and then presents the experi-
mental setup and experimental results. Finally, we present the case study and analysis
of the experimental results.

4.1 Data sets

We use four well-known real-world projects (Lam et al. 2017) to evaluate our method.
The data sets are extracted from the bug tracking system Bugzilla and the version
control system Git, including the bug reports, source code links, buggy files, API
documentation, and the oracle of bug-to-file mappings. Some brief introductions of
these projects are as follows,

– AspectJ2: an aspect-oriented programming extension for Java programming lan-
guage.

– JDT3: a suite of Java development tools for Eclipse.
– SWT4: an open-source widget toolkit for Java.
– Eclipse Platform UI5: contains a set of frameworks and common services for
Eclipse.

Additionally, the statistics of each project are shown in Table 2.

2 https://www.eclipse.org/aspectj/.
3 https://www.eclipse.org/jdt/.
4 https://www.eclipse.org/swt/.
5 https://www.eclipse.org/eclipse/platform-ui/.

123

https://www.eclipse.org/aspectj/
https://www.eclipse.org/jdt/
https://www.eclipse.org/swt/
https://www.eclipse.org/eclipse/platform-ui/

A deep multimodal model for bug localization 1381

Table 2 Basic statistics of data sets

Data sets Time range No. bug report No. source file

AspectJ 03.13.2002–01.10.2014 574 4439

JDT 10.10.2001–01.14.2014 6211 8184

SWT 02.19.2002–01.17.2014 4018 2056

Platform UI 10.10.2001–01.17.2014 6455 3454

4.2 Experimental setup

We randomly divide the bug reports into ten folds for each data set, where each fold
has the equal size, and ten-fold cross-validation is used in the experiments. Of the
10 folds, the bug reports of a single fold are retained as the unfixed bug reports for
testing the model, and the remaining 9 folds are used as fixed bug reports for training
the model. The cross-validation process is then repeated 10 times, with each of the
10 folds used exactly once as the validation data for testing. The 10 results from 10
times are then averaged to produce a single estimation. The advantage of this method
is that all observations are used for both training and testing, and each observation is
used for testing exactly once. We evaluate the bug localization performance relied on
two metrics, i.e., Top-K and Mean Average Precision (MAP).

4.2.1 Evaluation metrics

Top-K The Top-K has been widely adopted in bug report-based bug localization meth-
ods (Zhou et al. 2012; Huo et al. 2016; Huo and Li 2017; Wang et al. 2018). For a
given bug report, if one of the buggy files is within the Top-K list of files, we count it
as a hit. Otherwise, we consider that as a miss. The Top-K accuracy is measured by
the percentage of hits over the total number of tested bug reports as follow,

TopK = 1

Mtest

Mtest∑

i

hi t (K)
i , (16)

where Mtest is number of tested bug reports, hit (K)
i ∈ {0, 1} indicates whether the

recommended Top-K source files of bug report bi contains as least one truly buggy
file (i.e., take a hit). As to the list size K, we choose K=1, 5, 10 for Top-K criteria.
MAP To consider the cases of a bug report with multiple buggy files, we adopt MAP,
which is also widely used for evaluating the cost-effectiveness of identifying buggy
source files (Huo et al. 2016; Huo and Li 2017; Xiao et al. 2018), and computed as
follows,

MAP = 1

Mtest

Mtest∑

i=1

N∑

j=1

Prec(j) ∗ t(j)

ni
, where Prec(j) = Q(j)

j
, (17)

123

1382 Z. Zhu et al.

where Mtest , N denote the number of tested bug reports and source files in S, respec-
tively; ni is the number of buggy files to bug report bi and t(j) is the vector indicates
whether source file in the rank position j is related to bi or not. Prec(j) is the pre-
cision at the given cut-off j and Q(j) is the number of buggy source files in top j
positions. That is, average precision calculates the precision at the position of every
related source file in the ranked results list. MAP is the mean of these average preci-
sions across all tested bug reports. This metric considers whether all of the relevant
source files tend to get ranked highly, which matches the need of our bug localization
task to show as many relevant source files as possible high up the recommended list.

4.2.2 Methods for comparison

In our experiments, we compare our proposed DeMoB with the following state-of-
the-art bug localization methods,

– BugLocator (Zhou et al. 2012): a well-cited Information Retrieval(IR)-based
method that ranks all files considering information about similar bugs that have
been fixed before.

– BLUiR (Saha et al. 2013): an IR-based model that takes advantage of structural
information such as class and method names in code.

– DNNLoc (Lam et al. 2017): a bug localization model combining rVSM (Zhou
et al. 2012) with Deep Neural Network (DNN) while considering the metadata of
the bug-fixing history and API elements.

– NP-CNN (Huo et al. 2016): a deep learning method based on CNN, which lever-
ages both lexical and program structural information from natural language and
programming language.

– LS-CNN (Huo and Li 2017): an improved model of NP-CNN, which employs a
CNN model for bug reports representation and a combination of CNN and LSTM
to process the source files.

Among these methods, BugLocator and BLUiR are IR-based methods; DNNLoc,
NP-CNN and LS-CNN are based on deep neural networks.

4.2.3 Implementation details

We assign the hyper-parameters using the default values based on the experience. In
the bug report encoder, the BiLSTM has a depth of 2 and a hidden size of 256, and
the MLP has a depth of 2 and a hidden size of 256. In the source file encoder, the total
number of convolutional layers of each DCNN layer is 3, and the BiLSTM layer has
a depth of 2 and a hidden size of 256. We apply Dropout (Srivastava et al. 2014) to
the output of the BiLSTM at the rates of 0.5. The initial learning rate is set to 0.008
and decreases as the training step increases. The batch size is set to 16. A fixed margin
τ = 0.2 is used in all experiments. We implement our model under PyTorch.6 All of
our experiments are performed on NVIDIA 1080ti GPU and Intel i7-8700K CPU. In
addition, a bug report is generally only related to one or a few source files. Therefore,

6 https://pytorch.org/.

123

https://pytorch.org/

A deep multimodal model for bug localization 1383

Table 3 The effectiveness results of all comparison methods for bug localization based on bug report

Project Model Top-1 Top-5 Top-10 MAP

AspectJ BugLocator 0.202 0.487 0.576 0.224

BLUiR 0.304 0.568 0.624 0.269

DNNLoc 0.431 0.694 0.803 0.295

NP-CNN 0.486 0.721 0.807 0.488

LS-CNN 0.515 0.763 0.834 0.542

DEMOB 0.592 0.822 0.895 0.578

JDT BugLocator 0.197 0.413 0.512 0.233

BLUiR 0.266 0.507 0.620 0.312

DNNLoc 0.401 0.648 0.737 0.336

NP-CNN 0.441 0.691 0.788 0.426

LS-CNN 0.479 0.723 0.796 0.430

DEMOB 0.547 0.749 0.824 0.498

SWT BugLocator 0.195 0.379 0.521 0.257

BLUiR 0.258 0.518 0.744 0.320

DNNLoc 0.345 0.675 0.794 0.365

NP-CNN 0.417 0.711 0.829 0.522

LS-CNN 0.483 0.732 0.848 0.538

DEMOB 0.596 0.832 0.887 0.561

Platform UI BugLocator 0.261 0.449 0.575 0.302

BLUiR 0.342 0.523 0.748 0.309

DNNLoc 0.446 0.664 0.801 0.316

NP-CNN 0.448 0.714 0.819 0.478

LS-CNN 0.463 0.753 0.833 0.525

DEMOB 0.583 0.807 0.903 0.554

The DeMoB’s result is significantly better than all compared methods, with p-value < 0.05 according to
the t-test

it is a struggle to use all irrelevant source files for training due to the fact that the
number of source files in a project is large. To address this problem, we only select
part of irrelevant files as the negative samples (Lam et al. 2017) during the training
process. During the prediction process, we calculate and rank all the source files in
the project according to the relevance to the new bug report.

4.3 Main results

Table 3 shows the results of the accurate comparison for different approaches on
all the projects. As we can see, DeMoB outperforms all the compared methods on all
evaluation metrics. For the MAP value, DeMoB surpasses its best competitor (i.e.,
LS-CNN) by 6.8% on JDT, 3.6% on AspectJ, 2.3% on SWT, and 2.9% on Platform,
respectively. For the Top-K accuracy, we can observe that our DeMoB can achieve
significant improvements in all four projects, and it is more effective for Top-1. To

123

1384 Z. Zhu et al.

Fig. 6 The effectiveness results with different components in terms of Top-10 and MAP on four projects

be specific, our model achieves from 2.8 to 7.0% improvement overall compared
methods for Top-10 accuracy. Meanwhile, the improvement is from 6.8 to 12.0%
for Top-1 accuracy. Compared with the deep learning-based methods, our DeMoB
further explores the characteristic of our task and designs the advanced neural networks
based on the two languages (i.e., natural language and programming language). These
results corroborate the effectiveness of our DeMoB. Additionally, the experimental
results show that the performance of all deep learning-based methods significantly
outperforms the BugLocator and BLUiR. For example, on JDT data set, DNNLoc
achieves 22.5% and 11.7% relative improvements w.r.t. Top-10 over BugLocator and
BLUiR, respectively. On SWT data set, DNNLoc improves BugLocator and BLUiR
by 10.8% and 4.5% w.r.t. MAP. The results demonstrate that deep learning methods
can more effectively locate the bugs based on bug reports. Also, we find that our
DeMoB performs better than DNNLoc w.r.t. both Top-K and MAP on all data sets,
which indicates that DeMoB is better even if it does not consider the manual features
of the project.

4.4 Ablation study

In Sect. 2.2, we analyze the limitations of existing methods and present our model
DeMoB to address them. In order to prove the effectiveness of our proposed improve-
ments, we construct three sets of experiments to evaluate the impact of different
components of DeMoB on its performance, and related experimental results are shown
in Fig. 6.

4.4.1 Effectiveness of coordinated representation

Aswementioned in Sect. 2.2, each language has an individual representation space due
to different properties. Our proposedDeMoBwill narrow the gap between natural lan-
guage and programming language by learning coordinated representations. This set of

123

A deep multimodal model for bug localization 1385

experiments aims to investigate whether coordinated representation learning improves
the bug localization task performance. Accordingly, we present a variant of our model,
which simply removes the projection layer. That is, the individual representations of
the bug report and source file are directly fused through a fully-connected network to
make predictions. This revised model is denoted as DeMoB*.

The experimental results are shown in Fig. 6a. We can observe that our DeMoB
achieves better performance than DeMoB* on all the four projects. Compare to
DeMoB*, DeMoB significantly attains 4.2% relative improvements at MAP accu-
racy on AspectJ data set. On Platform UI data set, DeMoB achieves 2.1% relative
improvements onTop 10. These results validate that the properties of the two languages
greatly impact localization performance, and we should coordinate them before mea-
suring relevance. Additionally, we combine the results of this set of experiments with
LS-CNN and find that the model without the projection layer is still attained better
performance than this method. For example, DeMoB* attains 2.7%, 0.9%, 1.7% and
3.0% relative improvements on each project over LS-CNN in the terms of Top-10.
This finding also demonstrates the effectiveness of the bug report encoder and source
file encoder in our model.

4.4.2 Effectiveness of bug report encoder

For encoding bug reports, we design the AttL based on the BiLSTM and attention
network to capture the indicative information and filter the noise in bug reports. This
set of experiments are constructed to investigate the performance of different encoder
structures in reducing noise in bug reports and extracting indicative information from
bug reports. We choose CNN, LSTM, and BiLSTM structures instead of AttL to
encode bug reports, while the other components in DeMoB are fixed.

From Fig. 6b, we can first observe that DeMoB with AttL encoder achieves the
best average performance on all four projects. Compare with the suboptimal BiLSTM,
AttL still significantly achieves 3.7% and 2.5% relative improvements on Top 10 and
MAP on AspectJ data set, respectively. Similarly, on Platform UI data set, it achieves
3.9% and 1.5% relative improvements, respectively. DeMoB with the CNN encoder
produces better both Top-10 and MAP results than DeMoB with the LSTM on most
data sets, which indicates that CNN also can filter noise because it is more effective
in extracting local features. For example, on AspectJ project, CNN achieves 2.1%
and 1.0% relative improvements on Top-10 and MAP over LSTM. On SWT data set,
CNN improves LSTM by 1.3% on Top-10 and 0.7% on the MAP. Furthermore, the
performance of DeMoB with the BiLSTM is better than DeMoB with CNN on all
projects. We consider that both semantic and sequential information are essential for
learning bug reports.

4.4.3 Effectiveness of source file encoder

For encoding the source file, we propose a network MDCL composed of multiple
DCNN and BiLSTM to learn the multi-grained structure information from source
files. Moreover, the dynamic k-pooling method in CNN layers and the function-level
input improve the performance of our model dealing with the over-length source code

123

1386 Z. Zhu et al.

file. To investigate the effect ofMDCL encoder, we compare the performance of differ-
ent encoder structures in this set of experiments, and the results are shown in Fig. 6c.
We set CL (a combination of CNN and BiLSTM) as the baseline structure for com-
parison. Furthermore, we design the DCL (a combination of DCNN and BiLSTM) to
evaluate the importance of multi-grained feature extraction, and MCL (a combination
of multiple CNN and BiLSTM) to explore the effect of the dynamic k-poolingmethod.
In this set of experiments, other components in the DeMoB are also fixed.

As shown in Fig. 6c, experimental results on four data sets show that our MDCL
encoder is significantly superior to others. From the results,DeMoBwithDCL ismore
effective than DeMoB with CL. The main reason we consider is that CNN can effec-
tively extract structural information in programming languages. Simultaneously, the
dynamic pooling method also improves the learning capability for over-length source
code files. Moreover, we can see that DeMoB with MCL is effective than DeMoB
with DCL on all metrics. For example, on project SWT, DeMoB with MCL achieves
0.4% and 1.0% relative improvements w.r.t. Top 10 and MAP than it with DCL,
respectively. The results demonstrate that the multi-grained feature extraction indeed
plays an essential role in the source code file encoder. Furthermore, the DeMoB with
MDCL achieves significant improvements than it withMCL andDCL. For example, in
terms of Top-10, it improvesDeMoBwith MCL and DCL by 1.9% and 0.5% on JDT,
respectively. These results demonstrate that the MDCL proposed in this paper could
effectively learn the multi-grained structural information in the source files, including
over-length files.

4.5 Case study

To further illustrate the effectiveness of our proposed model, we take three fixed bug
reports from real-world projects listed in Table 4 for analysis.

The first example is bug report #185841 from Platform UI project. We estimate
that this report is likely to be submitted by an end-user since the submitter only pre-
sented a suggestion about the color of tags, not an unexpected failure during use.
The most important indicative information might be the word color. However, we can
find many similar source files for such bug reports. For example, in the Platform UI
project, there are at least dozens of files that deal with color and have this word in
their file names, such as ColorSelector.java, ColorCellEditor.java, FormColors.java,
TestColorFactory.java, and BackgroundColorDecorator.java. Furthermore, the bug
report has some other words, such as workbench, new and focus, which are contained
in more than one hundred files, such as Theme.java, ShowViewDialog.java and out-
put.java. Fortunately, DeMoB places LightColorFactory.java at 8-th position in the
Top-10 list. But the compared methods (e.g., LS-CNN) miss the relevant source file
in the Top-10 list. For bug reports containing a large amount of content unrelated to
bug localization, previous methods attempt to understand the semantics of the content.
However, DeMoB focuses on specific keywords (e.g., color, background, and new)
and reduces interference caused by unrelated content.

The second example is more challenging in locating the buggy source file. To
be specific, the bug report #97229 is about the dialogue operation. The submitter

123

A deep multimodal model for bug localization 1387

Table 4 Three fixed bug reports from real-world projects

Eclipse Platform UI Bug Report #185841

Summary Colour treatment of active non-focus tabs

Description We need a new color treatment for active non-focus tabs (the
one you get when another window other than the workbench has focus). This
goal is a better match with the active tabs, so the transition is less jarring.

Fixed Source File Pathname org/eclipse/ui/internal/themes/LightColorFactory.java

Eclipse Platform UI Bug Report #97229

Summary ListSelectionDialog should be resizable by default

Description Open several editor and leave some dirty. Close all. The ’Save
resources’ dialog is not not resizable. I think it is always better to make
dialogs resizable as this makes it easier for users with different font sizes or
using very long names. Make the ListSelectionDialog by default.

Fixed Source File Pathname bundles/org.eclipse.ui.workbench/
EclipseUI/org/eclipse/ui/dialogs/SelectionDialog.java

AspectJ Bug Report #29769

Summary Ajde does not support new AspectJ 1.1 compiler options

Description The org.aspectj.ajde.BuildOptionsAdapter interface does not
yet support the new. AspectJ 1.1 compiler options. These need to be added
to the interface, any old or renamed options deprecated, and then the cor-
rect processing needs to happen within Ajde to pass these options to the
compiler.This enhancement is needed by the various IDE projects for there
AspectJ 1.1 support.

Fixed Source File Pathname ajbrowser/src/org/aspectj/tools/ajbrowser/BrowserProperties.java

ajde/src/org/aspectj/ajde/BuildOptionsAdapter.java

ajde/src/org/aspectj/ajde/ProjectPropertiesAdapter.java

ajde/src/org/aspectj/ajde/internal/AspectJBuildManager.java

ajde/src/org/aspectj/ajde/internal/CompilerAdapter.java

ajde/src/org/aspectj/ajde/ui/internal/AjcBuildOptions.java

ajde/testdata/examples/figurescoverage/figures/Figure.java

...

org.aspectj.ajdt.core/src/org/aspectj/ajdt/internal/core/builder/AjBuildConfig.java

org.aspectj.ajdt.core/testsrc/org/aspectj/ajdt/ajc/BuildArgParserTestCase.java

also provided indicative information about the buggy source file in its summary (i.e.,
ListSelectionDialog.java). The name of the correct buggy source file is SelectionDia-
log.java, which has the same project path as the ListSelectionDialog.java. From this
example, one can observe is that the indicative information contained in the bug report
is incorrect. Although our DeMoB can locating the right source file in this example,
and places SelectionDialog.java at 10-position in the Top-10 list, it still cannot achieve
satisfactory results in locating such reports. We will investigate whether DeMoB can
distinguish the true indicative information from bug reports in future work.

123

1388 Z. Zhu et al.

The last example is the bug report #29769 associated with eighteen source files
from AspectJ project. This example shows a phenomenon in practice, that is, a bug
report might be associated with multiple source files. According to the experimental
results, we find that when processing such bug reports, all compared models fail to
locate all of related buggy source files. Generally, the functions of these source files
might be different. We consider that this functional inconsistency will confuse the bug
localization model during the training process. Compared with the existing methods,
the performance of our model on this type of bug report is slightly improved. We leave
as future work to explore how to address the bug report related to multiple source files.

5 Related work

5.1 Studies on bug report-based bug localization

To date, IR methods are widely used in bug report-based bug localization task by
extracting important features from the given bug reports and source files. These
IR-based methods consist of four steps (Jie et al. 2015): corpus creation, indexing,
query formulation, retrieval and ranking. Specifically, the retrieval models widely used
include Latent Semantic Indexing (LSI), Latent Dirichlet Allocation (LDA), and Vec-
tor Space Model (VSM). For example, Marcus et al. (2004) first used the information
retrieval method for concept location, where LSI is used to map concepts expressed
in natural language to the relevant parts of the source code. Lukins et al. (2008) first
found that LDA can be successfully applied for bug localization. Zhou et al. (2012)
proposed the BugLocator based on the revised VSM. Based on these, Wang et al.
(2018) further presented the STMLocator, which uses topic modeling to learn both
textual and semantic similarities between bug reports and source files. Hoang et al.
(2018) presented NetML, which uses multimodal information from both bug reports
and program spectra to localize bugs. Since most IR-based methods used extra fea-
tures in addition to IR similarity, Shi et al. (2018) conducted a brief survey of such
hybrid bug localization methods and explored the beneficial features for improving
bug localization performance.

Also, machine learning methods are widely used in bug report-based bug localiza-
tion. For example, Kim et al. (2013) treated the bug localization as a classification
problem and proposed a two-phase prediction model applying Naive Bayes. Ye et al.
(2014) used an adaptive ranking method for bug localization, where the features are
extracted from multiple sources, including source files, API description, bug-fixing,
and change history. Nevertheless, the lexical mismatch between natural language in
bug reports and programming language in source code is the key factor in limiting
these bug localization methods’ performance. With the development of deep learning,
it can effectively solve the aforementioned lexical mismatch problem. For example,
Lam et al. (2017) proposed the DNNLoc combining rVSM (Zhou et al. 2012) with
DNN for bug localization, where rVSM evaluated the textual similarity between bug
reports and source files, and DNN is learned to associate words in bug reports with
potentially different code token in the source files to overcome the lexical mismatch.
To address the training problem of DNNLoc (Lam et al. 2017) caused by multiple

123

A deep multimodal model for bug localization 1389

DNNs, Xiao et al. (2017) proposed DeepLocator model based on an enhanced CNN
and some extra features. Recently, Huo et al. (2016) presented a novel CNN-based
model that leveraged both lexical and program structure information to learn a unified
feature from natural language and programming language for automatically locating
the buggyfiles.Xiao et al. (2018) proposedCNN_Forest, involvingCNNand ensemble
of random forests, to process bug reports and source files in different ways. Further-
more, Huo and Li (2017) combined CNNwith LSTM networks to enhance the unified
feature extraction by exploiting the sequential nature of source code. Huo et al. (2018)
applied embeds code comments in generating semantic features from the source code
for software defect prediction. Zhang et al. (2019) proposed a feature learning frame-
work called UniEmbed for both natural and programming languages by extracting
three levels of information, including global, local, and sequential information.

5.2 Studies onmultimodal representation learning

Information in the real-world comes through various sources, such as seeing objects,
hearing sounds, feeling texture, smelling odors, and tasting flavors. In general terms,
modality is the way in which something happens or is experienced (Baltrušaitis et al.
2019). However, eachmodality (e.g., text, images, or audio) is characterized by unique
statistical properties thatmake it difficult to neglect the truth that they come fromdiffer-
ent sources (Srivastava and Salakhutdinov 2012). To process and correlate information
from multiple modalities, multimodal machine learning has received a great deal of
attention (Poria et al. 2016; Xu et al. 2018). Baltrušaitis et al. (2019) identified five
core technical challenges surrounding multimodal machine learning: representation
learning, translation, alignment, fusion, and co-learning. Here, we mainly introduce
multimodal representation learning.

Joint representations project the unimodal representations together into the same
representation space. As neural networks have become a prevalent method for uni-
modal data representation (Bengio et al. 2013), they can be used to construct a joint
multimodal representation. Mroueh et al. (2015) presented methods in deep multi-
modal learning for fusing speech and visual modalities for Audio-Visual Automatic
Speech Recognition. Silberer and Lapata (2014) introduced a new model that uses
stacked autoencoders to learn higher-level embeddings from textual and visual inputs.
Probabilistic graphical models are another popular way to construct representations by
using latent random variables (Bengio et al. 2013). For example, multimodal DBMs
learned joint representations from multiple modalities by combining multiple undi-
rected graphs (Srivastava andSalakhutdinov2012).Moreover, for representingvarying
length sequences, constructing a multimodal representation using RNNs comes from
work by Cosi et al. (1994) and Rajagopalan et al. (2016). As an alternative, coordi-
nated representations learn representations for each modality separately, but enforce
certain constraints on them to coordinate them to a coordinated space (Baltrušaitis
et al. 2019). According to the enforced constraints, similarity models minimize the
distance between modalities in the coordinated space. For example, DeViSE (Frome
et al. 2013) encouraged the gap between the representation of the word dog and an
image of a dog to be less than the distance from an image of a car.While the abovemod-

123

1390 Z. Zhu et al.

els enforced similarity between representations, structured coordinated space models
impose more structure on the resulting space, such as hashing, cross-modal retrieval,
and image captioning, based on the application (Cao et al. 2016; Vendrov et al. 2015;
Wang et al. 2015b).

6 Conclusions

Machine learning methods are widely used in bug report-based bug localization. In
this paper, we propose a deep multimodal model named DeMoB to automatically
locate bugs. The proposed DeMoB utilizes the AttL encoder and MDCL encoder
to improve the ability to learn the representation of natural language and program-
ming language. Moreover, the DeMoB is capable of merging these representations
through multimodal learning. The experimental results demonstrate the effectiveness
of the proposed DeMoB which achieves better results over existing bug localiza-
tion methods. Future work will explore other efficient algorithms for addressing bug
localization, such as cross-project and cross-language bug localization tasks.

Acknowledgements This researchwas supported byNatural Science Foundation of China (No. 61772284),
State Key Lab. for Novel Software Technology (KFKT2020B21), and Postgraduate Research and Practice
Innovation Program of Jiangsu Province (SJKY19_0763). Hanghang Tong is partially supported by NSF
(1947135 and 2003924).

References

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate.
arXiv preprint arXiv:1409.0473

Baltrušaitis T, Ahuja C, Morency LP (2019) Multimodal machine learning: a survey and taxonomy. IEEE
Trans Pattern Anal Mach Intell 41(2):423–443

Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives. IEEE
Trans Pattern Anal Mach Intell 35(8):1798–1828

Cao Y, Long M, Wang J, Yang Q, Yu PS (2016) Deep visual-semantic hashing for cross-modal retrieval.
In: Proceedings of ACM SIGKDD international conference on knowledge discovery and data mining
(pp 1445–1454). ACM

Cosi P, Caldognetto EM, Vagges K, Mian GA, Contolini M (1994) Bimodal recognition experiments with
recurrent neural networks. In: Proceedings of IEEE international conference on acoustics, speech and
signal processing (ICASSP) (vol 2, pp II–553). IEEE

DeMillo RA, Pan H, Spafford EH (1997) Failure and fault analysis for software debugging. In: Proceedings
of annual international computer software and applications conference (COMPSAC) (pp 515–521).
IEEE

Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Mikolov T et al (2013) Devise: a deep visual-semantic
embedding model. In: Advances in neural information processing systems, pp 2121–2129

Hoang T, Oentaryo RJ, Le TDB, Lo D (2018) Network-clustered multi-modal bug localization. IEEE Trans
Software Eng 45(10):1002–1023

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Huo X, Li M (2017) Enhancing the unified features to locate buggy files by exploiting the sequential nature

of source code. In: Proceedings of international joint conference on artificial intelligence (IJCAI), pp
1909–1915

Huo X, Li M, Zhou ZH (2016) Learning unified features from natural and programming languages for
locating buggy source code. In: Proceedings of international joint conference on artificial intelligence
(IJCAI), pp 1606–1612

123

http://arxiv.org/abs/1409.0473

A deep multimodal model for bug localization 1391

Huo X, Yang Y, Li M, Zhan DC (2018) Learning semantic features for software defect prediction by code
comments embedding. In: 2018 IEEE international conference on data mining (ICDM) (pp 1049–
1054). IEEE

Jie Z, Wang XY, Dan H, Bing X, Lu Z, Hong M (2015) A survey on bug-report analysis. Sci China Inf Sci
58(2):1–24

KalchbrennerN,Grefenstette E, BlunsomP (2014)A convolutional neural network formodelling sentences.
arXiv preprint arXiv:1404.2188

Kim D, Tao Y, Kim S, Zeller A (2013) Where should we fix this bug? A two-phase recommendation model.
IEEE Trans Softw Eng 39(11):1597–1610

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980
Lam AN, Nguyen AT, Nguyen HA, Nguyen TN (2017) Bug localization with combination of deep learning

and information retrieval. In: Proceedings of international conference on program comprehension
(ICPC), pp 218–229

Li W, Li N (2012) A formal semantics for program debugging. Sci China Inf Sci 55(1):133–148
Liu Z, ZhouD,He J (2019) Towards explainable representation of time-evolving graphs via spatial-temporal

graph attention networks. In: Proceedings of the 28th ACM international conference on information
and knowledge management, pp 2137–2140

Lukins SK, Kraft NA, Etzkorn LH (2008) Source code retrieval for bug localization using latent Dirichlet
allocation. In: Proceedings of working conference on reverse engineering (WCRE), pp 155–164

Marcus A, Sergeyev A, Rajlich V, Maletic JI (2004) An information retrieval approach to concept location
in source code. In: Proceedings of working conference on reverse engineering (WCRE), pp 214–223

Mihalcea R, Liu H, Lieberman H (2006) Nlp (natural language processing) for nlp (natural language
programming). In: Proceedings of international conference on intelligent text processing and compu-
tational linguistics (CICLing) (pp 319–330). Springer

Mroueh Y, Marcheret E, Goel V (2015) Deep multimodal learning for audio-visual speech recognition. In:
Proceedings of IEEE international conference on acoustics, speech and signal processing (ICASSP)
(pp 2130–2134). IEEE

Peters ME, Neumann M, Iyyer M, Gardner M, Clark C, Lee K, Zettlemoyer L (2018) Deep contextualized
word representations. arXiv preprint arXiv:1802.05365

Poria S, Chaturvedi I, Cambria E, Hussain A (2016) Convolutional mkl based multimodal emotion recog-
nition and sentiment analysis. In: Proceedings of international conference on data mining (ICDM) (pp
439–448). IEEE

Rahman MM, Roy C (2018) Poster: improving bug localization with report quality dynamics and query
reformulation. In: Proceedings of IEEE/ACM international conference on software engineering: com-
panion (ICSE-Companion) (pp 348–349). IEEE

Rajagopalan SS,Morency LP, Baltrusaitis T, Goecke R (2016) Extending long short-termmemory formulti-
view structured learning. In: Proceedings of European conference on computer vision (pp 338–353).
Springer

Saha RK, Lease M, Khurshid S, Perry DE (2013) Improving bug localization using structured information
retrieval. In: Proceedings of IEEE/ACM international conference on automated software engineering
(ASE), pp 345–355

Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process
45(11):2673–2681

Shi Z, Keung J, Bennin KE, Zhang X (2018) Comparing learning to rank techniques in hybrid bug local-
ization. Appl Soft Comput 62:636–648

Silberer C, Lapata M (2014) Learning grounded meaning representations with autoencoders. Proc Annu
Meet Assoc Comput Linguist 1:721–732

Srivastava N, Salakhutdinov RR (2012) Multimodal learning with deep Boltzmann machines. In: Proceed-
ings of advances in neural information processing systems, pp 2222–2230

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to
prevent neural networks from overfitting. J Mach Learn Res 15(1):1929–1958

Sterling CD, Olsson RA (2007) Automated bug isolation via program chipping. Softw Pract Exp
37(10):1061–1086

Vendrov I, Kiros R, Fidler S, Urtasun R (2015) Order-embeddings of images and language. arXiv preprint
arXiv:1511.06361

Wang Q, Parnin C, Orso A (2015a) Evaluating the usefulness of ir-based fault localization techniques. In:
Proceedings of international symposium on software testing and analysis (ISSTA) (pp 1–11). ACM

123

http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1511.06361

1392 Z. Zhu et al.

WangW,Arora R, LivescuK, Bilmes J (2015b)On deepmulti-view representation learning. In: Proceedings
of international conference on machine learning (ICML), pp 1083–1092

Wang Y, Yao Y, Tong H, Huo X, Li M, Xu F, Lu J (2018) Bug localization via supervised topic modeling.
In: 2018 IEEE international conference on data mining (ICDM) (pp 607–616). IEEE

Wong WE, Debroy V (2009) A survey of software fault localization. Department of Computer Science,
University of Texas at Dallas, Tech Rep UTDCS-45 9

WongWE, Qi Y (2006) Effective program debugging based on execution slices and inter-block data depen-
dency. J Syst Softw 79(7):891–903

Xiao Y, Keung J, Mi Q, Bennin KE (2017) Improving bug localization with an enhanced convolutional
neural network. In: 2017 24th Asia-Pacific software engineering conference (APSEC) (pp 338–347).
IEEE

Xiao Y, Keung J, Mi Q, Bennin KE (2018) Bug localization with semantic and structural features using
convolutional neural network and cascade forest. In: Proceedings of the 22nd international conference
on evaluation and assessment in software engineering 2018, pp 101–111

Xu Y, Biswal S, Deshpande SR, Maher KO, Sun J (2018) Raim: recurrent attentive and intensive model of
multimodal patient monitoring data. In: Proceedings of ACM SIGKDD international conference on
knowledge discovery and data mining (pp 2565–2573). ACM

Ye X, Bunescu R, Liu C (2014) Learning to rank relevant files for bug reports using domain knowledge.
In: Proceedings of ACM SIGSOFT international symposium on foundations of software engineering
(FSE), pp 689–699

ZhangX,HeH,GuptaN,Gupta R (2005) Experimental evaluation of using dynamic slices for fault location.
In: Proceedings of international symposium on automated analysis-driven debugging, pp 33–42

Zhang Y, ZhengW, LiM (2019) Learning uniform semantic features for natural language and programming
language globally, locally and sequentially. Proc AAAI Conf Artif Intell 33:5845–5852

Zhou J, Zhang H, Lo D (2012) Where should the bugs be fixed?-more accurate information retrieval-
based bug localization based on bug reports. In: Proceedings of international conference on software
engineering (ICSE), pp 14–24

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A deep multimodal model for bug localization
	Abstract
	1 Introduction
	2 Problem statement
	2.1 Problem definition
	2.2 Limitations and ideas

	3 The proposed model
	3.1 Bug report processing module
	3.1.1 Embedding layer
	3.1.2 Bug report encoder

	3.2 Source file processing module
	3.2.1 Embedding layer
	3.2.2 Source file encoder

	3.3 Coordinated representation module

	4 Experimental results and analysis
	4.1 Data sets
	4.2 Experimental setup
	4.2.1 Evaluation metrics
	4.2.2 Methods for comparison
	4.2.3 Implementation details

	4.3 Main results
	4.4 Ablation study
	4.4.1 Effectiveness of coordinated representation
	4.4.2 Effectiveness of bug report encoder
	4.4.3 Effectiveness of source file encoder

	4.5 Case study

	5 Related work
	5.1 Studies on bug report-based bug localization
	5.2 Studies on multimodal representation learning

	6 Conclusions
	Acknowledgements
	References

