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up similar features in predicting chondrogenesis capability. Our
study highlighted the potential of deep neural network models
used for early predictions of the functional properties of MSCs
in cell manufacturing.
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I. INTRODUCTION

Cell-based therapies have the potential to make significant
contributions toward regenerative medicine and immunother-
apies in cancer, infectious, and autoimmune diseases [1]. The
current state-of-the-art in cell therapies involves small-scale
hospital-centric processing of cells, operated with minimal
characterization and little involvement of process engineering
and quality control, leading to wide variability and uncertainty
in clinical trials [2], [3]. Effective cell manufacturing is
essential to realizing the full potential of cell-based therapies
but faces a multitude of challenges, such as cell characteriza-
tion, process standardization, quality control, cryopreservation,
transportation, and logistics [4].

One of the significant challenges is the identification of
critical quality attributes (CQAs), especially ones that enable
early predictions of functional properties of the final products.
The primary reason for such a challenge is that the products

Abstract—Effective cell manufacturing is essential to realizing
the full potential of cell-based therapies but faces a multitude
of challenges. One of the major challenges is the identification
of critical quality attributes (CQAs), especially ones that enable
early predictions of functional properties of the final products.
The main goal of this study is to develop machine learning
models for early predictions of the functional properties of
mesenchymal stromal/stem cells(MSCs) in cell manufacturing.
Deep learning models are trained and tested for image-based
prediction of functional property—Collagen II expression after
chondrogenic differentiation—of MSCs cells. During the MSC
expansion, images of culturing wells were collected daily in the
first six days, and the Collagen II level was assayed at the end of
differentiation, following expansion. For each day, a deep learning
model was trained with images from a specific experimental
condition, and each model was tested with images from the
same condition and also from other conditions. The trained
neural network models showed 70-90 percent accuracy. Most
of the models across different days and conditions show high
consistency, especially models trained with images past day 2 of
cell culture. Such consistency suggests that models are picking
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in cell manufacturing are living entities whose properties can
be affected by many factors in the manufacturing process [4].
Predictive CQAs and models can significantly contribute to
the optimization, standardization, and quality control in cell
manufacturing.

Mesenchymal stromal/stem cells (MSCs) are multipotent
stromal cells that are capable of differentiating into a variety of
mesenchymal lineages such as bones, cartilages, muscles, and
adipose tissues. For their self-renewal capacity, many studies
have investigated the potential of using MSCs for cell-based
therapies [5]. The process by which cartilage is developed
through the mesenchymal cell is called chondrogenesis, and
research on MSC-based therapy for cartilage regeneration is
highly popular due to the proliferative and potent chondrogenic
differentiation potential of MSCs [6].

The main goal of this study is to develop machine learning
models for early predictions of the functional properties of
MSCs in cell manufacturing. The predictions can be made
based on various choices of cell characteristics. One popular
choice is the cell surface markers. For example, mesenchymal
stromal/stem cells can be identified using surface markers.
However, existing data indicate that those surface markers are
insufficient for predicting functional quality [7]. More sophis-
ticated characteristics need to be considered. One promising
choice is image-based characteristics of cell morphologies,
which have been shown to correlate with drug mechanisms
of action [8], immunosuppressive capacity [9], and stem
cell differentiation [10]. Several known chondrogenesis-related
parameters can be measured. Among the parameters, Collagen
II gene expression level is known to highly correlate with
how functional MSCs are [11]. Several studies suggest that
high expression of Collagen II leads to better regeneration
efficacy, hence acknowledge Collagen II as a major player
in chondrogenesis capability [12], [13]. For these reasons,
we assume Collagen II as a functional property of MSCs,
where high expression of it indicates strong chondrogenesis
capability, and low indicates weak capability in this study.

Developing computational models for image-based predic-
tion requires powerful machine learning models because of
the complex nature of the data and the problem needs to be
solved. Recent advancements in the field of deep learning open
up novel ways to solve tasks that were once considered too
complicated. Specifically, the field of computer vision was a
major beneficiary of such drastic development. Deep learning,
more specifically Convolutional Neural Networks (CNNs),
show state-of-the-art accuracy in tasks related to images, such
as image classification, segmentation. For this study, we aim to
develop CNN models for image-based prediction of functional
property—Collagen II—of MSCs.

II. METHODS

A. Experiments and Conditions

MSCs purchased from two vendors (Lonza and Rooster
Bio) were expanded in each growth medium, creating four
experimental conditions. The four conditions corresponded
to all possible combinations of the two cell sources and

Fig. 1. Experimental Design Schematic. (A) MSCs cultures were put into 24
plates where each plate holds 6 wells. For the first 6 days, 60 images were
taken per well. After 21 days, Collagen II level for each well is measured, and
each well’s chondrogenesis capability is evaluated. Using the images taken at
early days along with the chondrogenesis capability measures, nerual network
is trained to predict functional property. (B) Location of 60 images taken in
a well. (C) Each original image is divided into 6 patch images.

two culturing media. Twenty four 6-well plates (Corning)
were seeded with all four conditions in a random order to
reduce batch effects. This resulted in 36 replicate wells of
each condition. Lonza cells, at passage 4, were seeded at
5000 cells

cm2 while Rooster Bio cells, at passage 4, were seeded
at 4000 cells

cm2 . Lonza media was exchanged every 2-3 days and
Rooster Bio media was changed once on day 4.

60 phase contrast images per well (Fig. 1) were taken once
per day at 4x magnification using the Cytation 5 Cell Imaging
Multi-Mode Reader (BioTek), coupled with the BioSpa 8
Automated Incubator (BioTek), starting with day 1, until
confluence at day 6. The images were collected for only the
first six days to meet the goal of early prediction, and the
day-specific models could suggest to how early our models
could predict correctly. Fig. 1 summarizes the details of the
experiment. There was a total of 2,160 images per condition
for each day. Once the cells had grown to be confluent, they
were washed with PBS, trypsinized, and formed into pellets
[14]. Each cell pellet was 250,000 cells. Cells were plated
onto 96 well nonadherent round bottom plates in chondrogenic
media containing 1 percent penicillin/streptomyocin, 10nM
Dexamethosone, 40 μg/mL l-proline, 5 percent ITS+, 50
μg/mL ascorbic acid –2- phosphate, and 10ng/mL TGF-β3 in
alpha minimum essential medium solution and centrifuged at
300xg for 5 minutes. They were allowed to form for 24 hours
prior to the first media exchange. Media was exchanged every
2-3 days for 21 days. After 21 days of differentiation, the gene
expression of Collagen II was measured using quantitative
reverse transcription polymerase chain reaction (qRT-PCR).
RNA was isolated from individual pellets using the QuickRNA
MicroKit (Zymo). RNA purity was confirmed and cDNA
was synthesized from the RNA using between 500-1000 ng
of RNA per sample. This was done using the SuperScript
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Fig. 2. Histograms of the Collagen II Levels of the Samples(Left) and
Frequencies of Condition-specific Positive and Negative Labels(Right). The
left histogram shows clear bimodal distribution. Only condition 2 and 4 shows
the bimodality.

III First-Strand Synthesis System for qRT-PCR using the
oligo(dT)20 primer. PCR was performed using primers for
collagen II and beta actin, as a housekeeping gene, expression
using the SYBR Green Master Mix (Qiagen) on a StepOnePlus
machine.

B. Image Processing

For each day, images from 126 wells were collected, and
each of these wells corresponds to one condition. As men-
tioned above, 60 images were taken per well. Each image was
further cropped into smaller image patches. For each original
image with a resolution of 1224 by 904, we divided the image
into six patches, each with 408 by 452 (Fig. 1). Thus for each
well, 360 (60 * 6) images could be used to train/validate/test
our models. Excluding images from wells that we do not have
relevant Collagen II expression information, there are a total
of approximately 10,000 images per day per condition.

C. Binarization of Collagen II Activity

For each well, its Collagen II level was assayed at the end of
the expansion process. When the Collagen II expression values
were applied with the log-transformation, a histogram of the
measured Collagen II level shows clear bi-modality, which
indicates that the samples fall into two distinct phenotypes
(Fig. 2A). Since the high Collagen II level is associated
with strong chondrogenesis capability, we infer that the group
with a high Collagen II level are the cultures that have
strong chondrogenesis capability. Consequently, samples with
low Collagen levels are cultures with weak chondrogenesis
capability. The threshold used for the binarization was 1, and
according to the threshold, the samples were grouped into two
different labels: Collagen II positive samples and Collagen
II negative samples. Once we visualize the distribution of
positive and negative, we found that positives and negatives
are almost equally distributed in Condition 2, and 4, whereas
Condition 1 and 3 show all most all positives. The condition 1
and 3 correspond to a culturing media from the same company,
and the fact that the vast majority of the cultured cells are
positive suggests that our proposed predictive model would
not be much needed. However, in the other conditions, i.e.,

conditions 2 and 4, which corresponds to another culturing
media, with a similar distribution of Collagen II positive and
negative, our predictive model could have value. Hence, we
decided to use images from conditions 2 and 4 only. Such
choice not only suits the biological motivation but also the
balanced samples with positive and negative facilitate the
training of the models with the overarching goal of our study:
differentiating positive samples from negative samples.

D. The Architecture of Convolutional Neural Network Models

Our deep learning model’s architecture is based on the
VGGNet architecture [15], which is considered as one of the-
state-of-art architecture in image classification problems. The
network consisted of a combination of 7*7 and 3*3 convo-
lutional layers with ReLU activation, and 2*2 max-pooling
layers, followed by fully connected layers of 128 nodes with
ReLU activation, and a softmax layer for classification. The
implementation of the above architecture is done through
TensorFlow and Keras, and NVIDIA TITAN XPs were used
to train the deep neural network models. Please find the
supplement information for the details of the architecture used.

E. Training and Validation of Models

Based on the image patches and the measured Collagen II
endpoint, we built deep learning neural networks to identify
and correlate image features in the patches with the corre-
sponding Collagen II measurement. Since we built one deep
learning model for each condition and each day separately, we
were able to evaluate the predictive power of data on different
days, and hence address the question of how early we can
make robust and credible predictions. We trained a total of 12
models in this study. For each day, a model was trained using
images from condition 2, and another model was trained using
images from condition 4. For each trained model, it was tested
using unseen images from the same condition and also using
images from the other condition (i.e., condition 4 images if the
model were trained on condition 2, and vice versa). 60 percent
of images were used for training, 20 percent for validation, and
the rest 20 percent for the testing. For this study, images were
randomly split for training/validation/testing.

F. Average-based Prediction

Our models predict between Col II positive and negative at
the patch level, because input to the model are patch-level
images. Predictions at the patch-level images of the same
sample should be integrated for accurate predictions at the
sample level. Hence, we devised an average-based prediction.
For each well, we have a maximum of 360 patch-level images.
Each image would receive a score from the model. The score
is a quantification of how the trained model thinks the Col II
level of the image. For the well-level prediction, we decided
to take an average of all images belong to a specific well, and
use the mean as a statistic for classification of the well.
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Fig. 3. Comparison of Patch-level Predictions and Sample-level Predictions.
Sample-level prediction accuracy is noticeably higher than patch-level predic-
tion

G. Consistency of Models

Because we trained and tested 12 different models, consis-
tency among all these models is imperative. Such consistency
may indicate that models are learning similar features regard-
less of different images under different conditions. To check
consistency, we randomly sample 600 patch-level images
across all days. Those chosen images were fed to the models
so that each model (total of 12) outputs 600 scores for the
images. Pairwise correlations for the scores are calculated for
every possible pair of models to evaluate the consistency of
the models.

III. RESULTS

A. Deep Learning Models can predict Collagen II level

Collagen II prediction accuracies across the models are
summarized in Table 1. The above panel contains the ac-
curacy of models trained with condition 2, and the bottom,
condition 4. Well-level prediction accuracies are consistently
above 80percent for most of the models when tested with the
same-condition images. For a couple of models trained with
condition 2— day 5 and day 4 models— the accuracies were
100percent. Even when the models were tested with images
from different conditions, although the overall accuracy de-
creases, the accuracies still remain above 70percent for most
of the models. Since images from the different conditions were
never used for the training and validation, there is a higher
number of wells to predict (27 - 32) for this setting.

B. Average-based prediction improves overall accuracy

One interesting pattern found is that well-level prediction
is remarkably better than the patch-level prediction. While
most of the well-level accuracies hover above 70percent, the
patch-level prediction accuracies are around 60percent. From
the difference, we may assume that the average-based voting
significantly improves accuracy at well-level. (Fig. 3)

C. Models Consistent Starting Day 3

As mentioned in the above method section, pairwise corre-
lations are calculated for all models. A high correlation would
mean that output scores for given images are similar for the
two selected models. It turns out that models trained at earlier

Fig. 4. Correlations Among Outputs of All Models. Pairwise correlation was
evaluated for all models. Starting day 3, predictions of models become more
correlated suggesting the consistency of the models.

days have relatively low correlation suggesting the models are
not that consistent. However, starting day 3, we can clearly
see those correlations among the models are remarkably high,
as seen in the Fig. 4. Such finding suggests that models are
learning similar features from images regardless of conditions
or possible batch effects. Also, clearly elevated correlation
starting day 3 suggests that three days of cell expansion should
be used as minimum days needed so that our computational
models could faithfully predict. We could also hypothesize
some critical image features, generated by functional features,
might arise past day 2.

D. Feature Extraction through Visualization

One way to understand how and what the models learn is by
checking images that scored high and those with low scores
from the models. For models shown high correlation with other
models, we checked images that receive exceptionally high
scores and images with exceptionally low scores, shown in
Fig. 5. Not only the images that receive similar extreme scores
are consistent but also there exists a feature that was readily
noticeable via visual inspection. It seems that the crowdedness
of cells is negatively correlated with the scores given. Most of
the images that received high scores tend to have less crowded
cells in the images, while the low score ones are noticeably
more crowded than the high score ones.

E. Generalizability of the Models

We prepared another set of data to assess generalizability
of our trained models. All of the newly attained samples,
however, were measured to have all strong Collagen II expres-
sion levels, the scenario where our models are not trained to
classify. Yet, we hypothesize that our models could 1) correctly
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Fig. 5. Images Received Exceptionally High / Low Scores from the Models. Crowdedness of cells in an image seems to be negatively correlated with scores.

predict them as positive and 2) differentiate between the ex-
tremely high Collagen II samples from ordinary high samples.
The newly acquired dataset contains four different conditions,
each with a unique donor. Images from the new dataset were
fed to models trained with condition 2 from the original data.
The results are summarized in the Fig. 6. All of the 288 wells
were measured to have strong Collagen II expression level,
and our models predicted 269 out of 288 (94.4 per cent) to be
positive, when 0.5 was used as a threshold. For the samples
from donor A, positive regression lines for all days suggest
that our models were able to differentiate a wide spectrum of
the collagen II expression levels. The samples from donor B
shows positive trends starting a model from the fourth day.
The samples from donor C show positive trends starting day
2 to day 4, yet the trend is lost starting day 5. The samples
from donor D show positive trends for all days except for the
second day. Such findings above demonstrate that our models

possess generalizability to some extent, yet they are not robust
enough to be universal classifiers shown by the samples from
donor C.

IV. DISCUSSION

Our study highlighted the potential of deep neural network
models used for early predictions of the functional prop-
erties of MSCs in cell manufacturing. The trained neural
network models showed above 70-80percent well-level accu-
racy boosted by average-based prediction. Dividing original
images into patch level small images not only boosts prediction
accuracy but also is more suitable because otherwise, the
deep neural network would require too much memory for the
input images. The trained models show a high level of con-
sistency, especially past day 2. Such consistency is important
because it might mean, although separately trained, models
are picking up similar features in predicting chondrogenesis
capability. The fact that correlations are more clearly elevated

Cond2 Images Cond4 Images
Cond2-trained model Patch-level Sample-level Patch-level Sample-level
Day 1 1994/3240 (62%) 8/9 (89%) 6323/10440 (61%) 24/29 (83%)
Day 2 1952/3240 (60%) 8/9 (89%) 6144/10440 (59%) 22/29 (76%)
Day 3 2071/3240 (64%) 8/9 (89%) 5895/9720 (61%) 24/27 (89%)
Day 4 2124/3240 (66%) 9/9 (100%) 6138/10440 (59%) 24/29 (83%)
Day 5 2125/3240 (66%) 9/9 (100%) 6529/10440 (63%) 25/29 (86%)
Day 6 2210/3240 (68%) 8/9 (89%) 6379/10440 (61%) 24/29 (83%)

Cond4 Images Cond2 Images
Cond4-trained model Patch-level Sample-level Patch-level Sample-level
Day 1 1800/2880 (62%) 5/8 (62%) 6840/11520 (59%) 19/32 (59%)
Day 2 1877/2880 (65%) 7/8 (88%) 6873/11520 (60%) 25/32 (78%)
Day 3 1805/2880 (63%) 7/8 (88%) 6871/11520 (60%) 24/32 (75%)
Day 4 1808/2880 (63%) 7/8 (88%) 6841/11520 (59%) 25/32 (78%)
Day 5 1868/2880 (65%) 7/8 (88%) 6551/11160 (59%) 24/31 (77%)
Day 6 1841/2880 (64%) 7/8 (88%) 6890/11520 (60%) 25/32 (78%)

TABLE I
PREDICTION ACCURACIES OF MODELS ACROSS ALL 6 DAYS
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starting day 3 could be a piece of useful information for the
cell culturing perspective because it is only then the image
classifier could robustly predict. The consistency among the
models was confirmed when we manually check images that
models predicted to be chondrogenesis positive vs. images
that models predicted to be low chondrogenesis negative. It
should be noted, however, that the features that seem relevant
and apparent based on our visual inspection are inadvertently
biased and subjective. One feature seemed highly associated
with the chondrogenesis capability of the samples: crowded-
ness of cells. Some possible hypothesis on why crowdedness
might matter are 1) that extensive cell proliferation at an
early stage of cell culturing indicates those cells are of a
cell type that is not related to chondrogenesis or 2) that such
early proliferation leads to early depletion of limited resources.
Future studies could focus on answering how and why such
crowdedness of cells might be related to chondrogenesis. With
all the aforementioned findings, some limitations should also
be noted. First, our study does not provide a universal machine
learning classifier that can be used for any MSCs images.
Our models were trained and tested on images taken under a
very consistent procedure. Images generated from noticeably
different conditions, such as different donors, other functional
property measures, different data acquisition procedures, and
manufacturing protocols, could not produce results as robust
we presented. However, our study still highlighted the potential
of the machine learning approach being used for predicting
functional properties in cell manufacturing. Future studies
should aim to improve the generalizability of this approach,
possibly by trying to remove batch effects and training models
with more data collected through various procedures. Once
the generalizability is improved, a universal machine learning
classifier can be achieved to improve the efficiency and quality
control of cell manufacturing.

Fig. 6. Prediction of New Samples to the Trained Models. Although all
samples were positive, for many models, samples with higher Collagen II
level received higher score as seen by positive correlation of the scatter plots.
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