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Abstract

This paper reports the theoretical development and at‐sea field evaluation of a

novel combined underwater acoustic communication and navigation system, known

as cooperative acoustic navigation (CAN), for underwater vehicles (UVs) utilizing a

second‐order dynamic plant model of the submerged UVs. The present state‐of‐the‐
art in CAN is to utilize one‐way travel‐time acoustic modem telemetry together with

purely kinematic, constant‐velocity plant process models. We term this approach

CAN‐KIN. At present, CAN‐KIN is utilized with an on‐board bottom‐lock Doppler

velocity log (DVL) providing frequent, high‐accuracy velocity corrections. However,

DVLs are relatively expensive, have significant power requirements, can be physi-

cally large, and have limited acoustic bottom‐lock range, which restricts their use to

a maximum of 25–420m above the sea floor. In this study, we investigate the utility

of a second‐order dynamic UV plant process model in CAN of UVs equipped with an

acoustic modem, attitude, and depth sensors, but lacking a DVL, and a surface ship

equipped with an acoustic modem and global positioning system. We term CAN

utilizing a dynamic model CAN‐DYN. This paper reports results from at‐sea field

trials conducted in the Chesapeake Bay with the Johns Hopkins University Iver3

UV. These experimental results indicate the submerged UV position estimate from

CAN‐KIN is poor and even unstable in the absence of DVL velocity observations.

These field experimental results also show that CAN‐DYN performs well without a

DVL. Our results suggest CAN‐DYN without a DVL does not exhibit instability as

does CAN‐KIN without a DVL, performs similarly to CAN‐KIN with a DVL, and

outperforms DVL‐based dead reckoning. Additionally, we report an experimental

evaluation of the effect of adding (relative) velocity corrections in the form of

acoustic range‐rate observations to CAN utilizing a dynamic model without a DVL.

We conclude that the addition of infrequent velocity observations, such as those

provided by acoustic range rate, does not appear to improve the performance of

CAN‐DYN without a DVL.

K E YWORD S

cooperative acoustic navigation, dynamic process models for vehicle navigation, range‐based
navigation, underwater vehicle navigation

J Field Robotics. 2021;38:700–726.wileyonlinelibrary.com/journal/rob700 | © 2021 Wiley Periodicals LLC

https://orcid.org/0000-0002-5498-301X
https://orcid.org/0000-0003-2398-1000
mailto:llw@jhu.edu
http://crossmark.crossref.org/dialog/?doi=10.1002%2Frob.22008&domain=pdf&date_stamp=2021-01-08


1 | INTRODUCTION

This paper addresses a cooperative acoustic navigation (CAN) pro-

blem arising in underwater vehicles (UVs) equipped with an acoustic

modem, attitude, and depth sensors, but lacking a Doppler velocity

log (DVL), and a surface ship equipped with an acoustic modem and

global positioning system (GPS).

The case of UV navigation without a DVL sensor is relevant to

low‐cost UVs for which the cost, physical size, or power draw of a

DVL may be prohibitive, and for missions in which the UV's altitude

above the sea floor (or depth beneath overhead ice) exceeds the

Doppler sonar's acoustic bottom‐lock range—the most commonly

used DVLs operate at frequencies of 300–1200 kHz with maximum

bottom‐lock acoustic range in sea water of approximately 25–420m,

respectively.

Navigation methods for UVs utilizing velocity signals (e.g., dead

reckoning (DR) navigation or Doppler sonar navigation) or accel-

eration signals (e.g., inertial navigation) accumulate errors that grow

unbounded with time or distance traveled and require independent

observations of absolute position or velocity to correct the drift

accumulated in the navigation estimate.

For land and air vehicle navigation, GPS provides an ideal in-

dependent source of position corrections for acceleration and

velocity‐based navigation systems (Chatfield, 1997), but GPS is un-

available to submerged UVs. Pressure depth sensor measurements

are an excellent correction source for the depth (only) of velocity‐
based and acceleration‐based position estimates. For submerged

UVs (for which GPS is unavailable), few methods currently exist for

absolute XY position corrections. The most common XY position

correction methods are time‐of‐flight acoustic navigation systems,

such as long‐baseline (LBL) and ultra‐short baseline (USBL) acoustic

navigation (Hunt et al., 1974; Kinsey et al., 2006; Milne, 1983).

In this paper we address range‐based one‐way travel‐time

(OWTT) CAN in which a surface ship, equipped with a GPS and an

underwater acoustic modem, transmits an acoustic data packet that

encodes the precise time‐of‐launch (TOL) of the acoustic data packet

(using a precision clock synchronized to GPS time) as well as the

geodetic location and depth of the ships transducer at the TOL.

When a submerged vehicle equipped with an underwater acoustic

modem receives this data packet it timestamps the packet's time‐of‐
arrival (TOA) (using an on‐board precision clock synchronized to GPS

time), and thus can compute the data packet's OWTT time‐of‐flight
and, using the measured sound velocity of the water column, can

compute the range from the ship transducer's location at TOL to the

vehicle's transducer location at TOA. This range observation, to-

gether with signals from other sensors on‐board the submerged

vehicle such as a DVL, attitude and heading reference sensor (AHRS),

and depth sensor, can be utilized to estimate the vehicle's geodetic

position and velocity.

Range‐only OWTT CAN uses ranges estimated from the acoustic

time‐of‐flight between subsea nodes, for example, between two ve-

hicles, or between a client vehicle and a server reference beacon of

known (fixed or moving) location such as a surface ship. This method

provides both bounded‐error position estimates and long range

capabilities with reduced need for multiple costly fixed beacons, as is

the case with most LBL systems. Unlike traditional two‐way travel‐
time (TWTT) ranging, in which a single TWTT range can serve only

one client, OWTT ranging offers the advantage that a single OWTT

range can serve many clients. This method of combined acoustic

navigation and communication is commonly called synchronous‐
clock CAN. For the duration of this paper, we define two important

variants of the CAN state estimator: CAN utilizing a purely kinematic

plant process model is called CAN‐KIN, while CAN utilizing a dy-

namic plant process model is called CAN‐DYN. Note that the process

model for the CAN state estimator is independent of the sensor

suite: both CAN‐KIN and CAN‐DYN can be utilized with or without

a DVL.

To the best of our knowledge, this paper is the first detailed

study of CAN utilizing a dynamic process model without a DVL, in-

cluding an extensive at‐sea field experimental evaluation and also

the first reported evaluation of experimental acoustic range‐rate
data with the CAN‐DYN state estimator. The present study com-

plements and extends our previous studies on CAN (Harris &

Whitcomb, 2015, 2016, 2018a, 2018b).

The remainder of this paper is organized as follows:

1. Section 2 reviews previously reported literature on range‐based
acoustic navigation of UVs.

2. Section 3 reports the methodology behind the CAN state esti-

mator, including the kinematic process model and the dynamic

process model, and the observation models utilized by this

algorithm.

3. Section 4 briefly reviews the results of previously reported si-

mulation results in the context of the CAN approaches reported

herein.

4. Section 5 compares CAN‐DYN without a DVL to CAN‐KIN with

and without a DVL on data obtained in at‐sea experimental trials.

a. Section 5.1 describes the field experimental setup and

procedures.

b. Section 5.2 reports a comparative performance analysis of

CAN‐DYN without a DVL and CAN‐KIN with and without a

DVL using acoustic range‐only observations from three ex-

perimental autonomous underwater vehicle (AUV) dives.

i. Section 5.2.1 reports a comparison of the performance of

CAN‐DYN to CAN‐KIN, both without a DVL.

ii. Section 5.2.2 reports a comparison of the performance of

cooperative acoustic navigation utilizing a dynamic model

(CAN‐DYN) without a DVL to the “gold standard” of co-

operative acoustic navigation utilizing a kinematic model

(CAN‐KIN) with a DVL.

iii. Section 5.2.3 reports an investigation of the repeatability of

CAN‐DYN without a DVL by comparing the navigation re-

sults for two different dives that utilized identical mission

plans.

iv. Section 5.2.4 reports an investigation of the generalizability

of CAN‐DYN without a DVL by comparing the navigation
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results for two different dives that utilized very different

mission plans.

v. Section 5.2.5 reports a comparison of XY position error

magnitude of CAN‐DYN without DVL navigation for three

dives in comparison to conventional DR navigation, using

the CAN‐KIN with DVL as ground truth. Also reported is a

comparison of the XY velocity error for the CAN‐DYN

state estimator without a DVL, computed as the differ-

ence between the CAN‐DYN velocity estimate and the

Iver3's RDI Explorer 600 kHz DVL.

c. Section 5.3 reports result from Dive 55 comparing CAN‐DYN

utilizing acoustic range observations to CAN‐DYN utilizing

acoustic range‐rate observations in addition to acoustic range

observations.

5. Section 6 provides a summary and conclusion.

2 | LITERATURE REVIEW: UV
NAVIGATION

Few techniques presently exist for reliable three‐dimensional posi-

tion sensing for UVs. Depth, altitude, heading, and roll/pitch attitude

can all be instrumented with high bandwidth “strapdown” sensors

mounted on the vehicle itself. XY position, in contrast, remains dif-

ficult to instrument and is normally measured acoustically. GPS

cannot be used by submerged vehicles. Conventional long baseline

(LBL) acoustic navigation systems require multiple fixed

transponders—that is, fixed or moored on the sea floor (Hunt et al.,

1974; Whitcomb et al., 1998), on the hull of a surface ship (Milne,

1983), or on sea‐ice (Bellingham et al., 1994). With a maximum

acoustic range of 5–10 km, fixed LBL networks can cover only limited

mission areas. USBL navigation employs an array of transducers on a

surface ship, and a transponder on a UV to compute the vehicle's 3‐D
position relative to the ship. The prevalence of LBL and USBL sys-

tems within the oceanographic community is due to a lacuna of other

means for obtaining bounded‐error XY position. Compact inertial

navigation systems (INSs) have recently become commercially

available (Gaiffe, 2002; Larsen, 2000a). INSs require additional po-

sition and velocity navigation sources to correct for accumulated

errors. For a more exhaustive review of underwater navigation, see

Kinsey et al. (2006).

Simultaneous localization and mapping (SLAM) seeks to exploit

sensing capabilities of robots to correct for accumulated odometry

error by localizing the robot with respect to landmarks in the en-

vironment (Moutarlier & Chatila, 1989; Smith et al., 1990). One

SLAM methodology that has seen recent success in the near‐sea‐
floor underwater realm is to apply a view‐based scan‐matching ap-

proach, for example, Eustice et al. (2005); Eustice, Singh,

& Leonard (2006); Eustice, Singh, Leonard, & Walter (2006);

Fleischer (2000); Garcia et al. (2001); Roman (2005).

The development of underwater acoustic modems, however, has

enabled underwater data telemetry at maximum ranges up to hun-

dreds of kilometers (Catipovic & Freitag, 1990; Kilfoyls & Baggeroer,

2000; Partan et al., 2007; Singh et al., 1996; Webster et al., 2015).

Maximum achievable acoustic telemetry range is strongly dependent

on the carrier frequency, size, and mass of acoustic transducer and

associated power electronics, and on the ambient acoustic conditions

of the water column. Most smaller AUVs, such as the Iver3 AUV

(L3 OceanServer), shown in Figure 1, utilize carrier frequencies in the

10–25 kHz ranges with maximum data telemetry range of 1–10 km.

The propagation speed of acoustic telemetry in sea water about

1500m/s, varying with temperature, salinity, and depth (Fofonoff &

Millard, 1983). Acoustic data throughput varies widely with range,

carrier frequency, acoustic bandwidth, encoding, and modulation

method.

2.1 | Literature review of range‐based underwater
navigation

To the best of our knowledge, the earliest reported comprehensive

study of underwater‐vehicle navigation using acoustic ranging was

(a) (B)

F IGURE 1 The Iver3 AUV is an underactuated AUV whose control authority is provided by the commanded rotational speed of its ducted
propeller and commanded angles for the four red/yellow tail fins, all located at the stern of the vehicle. The 100m depth‐rated Iver3 AUV is one
of several commercially available small AUVs designed for oceanographic survey operations including biological, physical‐oceanographic, and
bathymetric survey missions. (a) Iver3 general diagram (Image Credit: L3 OceanServer); (b) JHU Iver3‐3026 is deployed from a small boat.
AUV, autonomous underwater vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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reported by Hunt et al. (1974) in which they reported at‐sea experi-

mental evaluation of an acoustic approach to underwater‐vehicle na-

vigation in which a single UV could detect range from a set of fixed

acoustic navigation transponders whose location was known a priori—

a method that has since been widely practiced and is now commonly

known as LBL acoustic navigation. In Kinsey and Whitcomb (2004),

the performance of bottom‐lock Doppler navigation is evaluated with

respect to LBL. In her 2006 MS thesis, LaPointe (2006) reports a

single‐beacon navigation approach in the form of a “virtual” LBL

system (VLBL). The UV position is determined by advancing

multiple ranges from a single transponder along the UV's DR track.

The UV position is then triangulated using these successive ranges in a

manner analogous to a “running fix” in surface ship navigation.

Simulation results for the Woods Hole Autonomous Benthic

Explorer (ABE) AUV are presented. Recent results on LBL have been

reported, including Batista (2015), Batista et al. (2014), Jakuba

et al. (2008).

Previous results by the authors and others (Bahr et al., 2009;

Paull et al., 2014; Walls & Eustice, 2014; Webster et al., 2012, 2013)

have shown the effectiveness of position corrections for Doppler and

inertial navigation with range‐only OWTT underwater navigation

using ranges estimated from the acoustic time‐of‐flight of acoustic

data packets between subsea nodes, for example, between two ve-

hicles or between a vehicle and a reference beacon of known (fixed

or moving) location.

Webster et al. report a system and at‐sea evaluation for me-

soscale cooperative navigation utilizing a 900 Hz carrier frequency to

obtain OWTT acoustic ranges of up to 450 km. They report extensive

field evaluation in which 11 acoustic beacons and four Seagliders

AUVs were deployed in the Beaufort and northern Chukchi Seas

(Webster et al., 2015).

Rypkema et al. report an inverted OWTT USBL system in which

an AUV is equipped with an array transceiver that can receive

acoustic transmissions from fixed acoustic beacon and calculate the

azimuth, elevation, and range (in instrument coordinates) to the

beacon which, together with vehicle attitude measurement from an

inertial measurement unit (IMU), enables the calculation of vehicle

position relative to the beacon with a single OWTT acoustic trans-

mission (Rypkema et al., 2017).

Studies by the authors and others report the development and

at‐sea experimental evaluation of OWTT systems (including hard-

ware and software) for the navigation of UVs using maximum‐
likelihood estimation (Eustice et al., 2011; Eustice, Whitcomb, Singh,

& Grund, 2006), the extended Kalman filter (EKF) (Webster et al.,

2012), and the extended information filter (EIF) (Webster et al.,

2013, 2010).

Gallimore at al. report the development and at‐sea evaluation of

an OWTT system which the receiver performs carrier‐phase tracking

of a phase‐shift keyed (PSK) acoustic signal to create fine‐scale
pseud‐orange estimates in addition to, or in the absence of, OWTT

TOAs (Gallimore et al., 2019).

Crasta et al. (2018) report a study of approaches to range‐based
CAN that support single or multiple UVs and single or multiple

beacon‐equipped surface vehicles. Hung et al. (2020) report a study

of range‐based target navigation and pursuit employing a Bayesian

estimation approach and model predictive control (MPC) approach

for optimal control of “pursuit” vehicles in pursuit of moving “target”

vehicles.

Several authors have reported least‐squares methods for single‐
beacon range‐only navigation (Hartsfield, 2005; LaPointe, 2006;

McPhail & Pebody, 2009; Scherbatyuk, 1995). Range‐only target

tracking has been addressed using EKFs and maximum‐likelihood
estimators (MLE) (Alleyne, 2000; Ristic et al., 2002; Song, 1999). The

use of EKFs for homing and single‐beacon navigation is reported in

Baccou and Jouvencel (2002, 2003), Larsen (2000a, 2000b, 2002),

Vaganay et al. (2000).

Recently, Claus et al. (2017) reported the comparison of a par-

ticle filter (PF) and centralized extended Kalman filter (CEKF) for

OWTT navigation in post‐processing on real‐world data. The authors

compare model‐aided odometry, in the form of a water‐velocity bias

estimator, to DVL‐aided odometry and conclude the PF slightly

outperforms the CEKF. In both cases, a kinematic process model

was used.

Most recently, Kepper et al. (2019) reported experimental re-

sults with OWTT acoustic navigation with a MEMS IMU and no DVL.

The EKF utilizes a constant‐acceleration process model with an

accelerometer‐bias model. The authors conclude the accuracy their

approach is comparable to existing methods. We reported a pre-

liminary numerical simulation study and pilot experimental evalua-

tion with the Iver3 AUV for utilizing a dynamic UV plant model for

CAN (Harris & Whitcomb, 2018a). The encouraging results of this

preliminary paper are substantially extended herein.

Most previously approaches to UV navigation employ kinematic

process models. One exception is Hegrenas et al. which reports the

development and experimental evaluation of dynamic process

model‐aided INS for UVs (Hegrenas et al., 2008).

A number of studies have directly addressed the simultaneous

estimation of UV state and ambient water current velocity (Claus

et al., 2017; Crasta et al., 2013, 2014; Gadre & Stilwell, 2005a,

2005b; Gallimore et al., 2019; Hegrenas et al., 2008; Webster et al.,

2015). Because the addition of estimation of ambient water current

velocity is well understood, for simplifying of exposition in the pre-

sent study we adopt the common approach that ambient water

current is negligible, for example, Bahr et al. (2009), Moreno‐Salinas
et al. (2019), Rypkema et al. (2017).

2.1.1 | Literature review of observability of single‐
beacon range‐based UV navigation

The observability of single‐beacon range‐based UV navigation has

been studied extensively. Generally, previously reported studies

have shown that the state of the submerged UV is observable pro-

vided there is sufficient richness and variability in the geometry of

the slant ranges between the UV and a single (fixed or moving)

acoustic beacon.
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Scherbatyuk reported UV positioning method in the context of

LBL acoustic positioning systems with on‐board attitude sensor and

velocity sensor based on least squares. Monte Carlo simulation re-

sults are presented to corroborate the analysis (Scherbatyuk, 1995).

Song reported necessary and sufficient conditions for local ob-

servability in the context of two‐dimensional maneuvering with

range measurements from a single beacon (Song, 1999). The ap-

proach taken in this paper utilizes the Fisher information matrix

developed from the analytical treatment of system dynamics and

noisy measurement equations established in a modified polar co-

ordinate system. Numerical simulation results are presented to

corroborate the analytical results.

Ristic et al. (2002) address the problem of target motion tracking

from the range and range‐rate measurements. A theoretical

Cramer–Rao bound for the performance of an unbiased range‐only
tracking algorithm is derived, and three algorithms for target motion

analysis are developed and compared to the theoretical performance

bound. The three algorithms are the MLE, the EKF, and the reg-

ularized PF. Experimental validation of the theory is also presented.

Several studies addressed the observability of single‐beacon
range‐only navigation with EKF estimation approaches (Gadre, 2007;

Gadre & Stilwell, 2004, 2005a, 2005b; Lee et al., 2008). In Ross and

Jouffroy (2005), the authors report a nonlinear observability analy-

sis, identifying conditions under which the system is locally weakly

observable. In Jouffroy and Reger (2006), the authors report em-

ploying nonlinear differential algebraic methods to derive conditions

for observability.

Batista et al. (2010) address the observability for UVs navigation

based on the range to a single beacon where the vehicle is equipped

with an IMU and range measurements to a single source, in addition

to angular velocity readings. The paper develops the necessary and

sufficient conditions for observability for use in motion planning and

control for an UV equipped with an IMU providing angular position

and velocity measurements and range measurements to a single

transducer. A Kalman filter (KF) is applied for body‐frame state es-

timation, and simulation results are reported. In Batista et al. (2011),

the authors extend their previous study (Batista et al., 2010), to

address the necessary and sufficient conditions for observability of

an mobile agent based on the based on the range to a single source,

in addition to relative velocity readings (range‐rate observations).

Crasta et al. (2013) address observability of an UV moving in

two dimensions using acoustic range to a single beacon at a known

location with a nonlinear, kinematic model. In the presence of known

ocean currents, the system is found to be globally observable in the

sense of Hermann and Krener (1977) for a constant relative course

and constant (nonzero) relative course rate inputs. On the other

hand, with unknown ocean currents the system fails to be locally

weakly observable with constant relative course but the authors

characterize the set of indistinguishable states from a given initial

position and ocean current configuration and note that observability

can be achieved with constant (nonzero) relative course rate in the

presence of unknown, constant ocean currents. In Crasta

et al. (2014), the authors extend the results of Crasta et al. (2013) to

address observability of an UV moving in three dimensions in the

presence of ocean currents, under the assumption that the vehicle

can only measure its acoustic range to a fixed transponder. A non-

linear, kinematic model is used and the UV can undergo any man-

euvers that are completely parameterized by the body velocity, a

constant flight path angle, and a constant yaw rate. In the presence

of known, constant ocean currents, the 3D kinematic model of the

AUV that corresponds to trajectories with nonzero flight path angle

and yaw rate is observable. When the latter conditions fail, the au-

thors give a complete characterization of the sets of states that are

indistinguishable from a given initial state. In the case of unknown

constant ocean currents, the model is shown to be locally weakly

observable for nonzero yaw rate.

Quenzer and Morgansen (2014) explored control approaches to

improve navigation performance of UVs deployed in survey missions.

The authors propose methods for local observability measures to

determine the immediate action (control) for a UV. Simulation stu-

dies show that one of the proposed methods has comparable or

better performance than an existing maximum information gain

method in a lawn mower style survey mission.

Arrichiello et al. (2013) address observability of single and

multiple UVs navigation using acoustic range measurements with on‐
board sensors, including depth, velocity, and acceleration sensors.

The paper examines the cases of a single UV ranging off a single

transponder and multiple UV using inter‐vehicle ranges. The paper

shows that both the problems of absolute navigation of a single

vehicle and the relative navigation of multiple vehicles may be

treated using the same mathematical framework. Tailoring concepts

of observability derived for nonlinear systems, the authors analyze

how the performance in navigation depends on the types of motion

imparted to the UV. They propose a well‐defined observability me-

tric and report simulation and experimental validation with an EKF

state observer. They conclude that performance depends on the

UV's motion.

Parlangeli and Indiveri (2014) address observability for single‐
beacon ranges with a kinematic UV model. Their paper extends

previous results building on an augmented state technique allowing

to reformulate the nonlinear observability problem in terms of a

linear time varying (LTV) one. Globally unobservable motions are

characterized in terms of initial conditions and commanded velocity

signals. An underactuated model is considered, and a numerical si-

mulation study is presented to demonstrate certain cases where the

system is unobservable.

De Palma et al. (2017) address observability for the single bea-

con navigation problem of an UV using a nonlinear, kinematic

“double integrator” model with acceleration as the model input and

range to a stationary beacon as the output. The observability analysis

addresses two complementary issues: the local weak observability

for the nonlinear system, and, similar to Parlangeli and

Indiveri (2014), the global observability for a LTV representation of

the system derived through a state augmentation method. The pro-

posed methods for observability analysis are discussed in different

case studies (e.g., 2D/3D, absence/presence of current, and presence
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of additional sensors like a DVL and a depth sensor). A numerical

simulation study is presented to corroborate the analytical ob-

servability results.

Moreno‐Salinas et al. (2019) report an exhaustive study of ap-

proaches to range‐based CAN that support single or multiple UVs

and single or multiple beacon‐equipped surface vehicles, including

addressing issues including observability and optimal sensor

placement.

Additionally, several authors have addressed OWTT navigation

of surface and UVs in a SLAM framework using distributed estima-

tors (Bahr, 2009; Bahr & Leonard, 2006; Bahr et al., 2009; Bailey

et al., 2011; Fallon et al., 2010).

2.2 | Literature review of UV navigation with
acoustic range and range rate

To the best of our knowledge, the earliest study of underwater‐
vehicle navigation employing acoustic detection of both range and

range rate was the 1978 study by Spindell et al. (1976), which ex-

tended the approach reported in Hunt et al. (1974) by reporting an

experimental evaluation of an approach to underwater‐vehicle na-

vigation in which a single UV could detect both range and range rate

from a set of fixed navigation whose location was known a priori.

Larsen studied employing acoustic range rate in addition to

acoustic range for LBL navigation but did not report specific navi-

gation algorithms for employing range rate nor any experimental

evaluation (Larsen, 2000c, 2006). In Green and Scussel (2007), the

authors report the notion of an underwater acoustic modem esti-

mating and compensating for the Doppler shift of a received acoustic

data packet transmission but do not address how a Doppler estimate

might be used for navigation.

Ristic et al. (2002) and Batista et al. also investigated the use of

range and range‐rate for vehicle navigation, as described in

Section 2.1.1.

In Bourgeois (2007), the author reported the experimental

evaluation of algorithms for acoustically determining the relative

position of two marine vehicles by employing measurement of

acoustic range and acoustic range rate with specific focus on esti-

mating relative positioning conditions, such as the closest‐point‐of‐
approach (CPA) of two vessels for the purpose of collision‐avoidance.

In Harris and Whitcomb (2015), we investigated the effect of

adding of acoustic range‐rate measurements to acoustic range

measurements in CAN using a kinematic model when the UV was

equipped with a DVL. Using data obtained in numerical simulation,

we concluded the addition of range‐rate observations had minimal

impact on the performance of CAN with a kinematic model when the

UV was equipped with a DVL.

In Harris and Whitcomb (2016), we investigated the effect of

adding of acoustic range‐rate measurements to acoustic range

measurements in CAN using a using a kinematic model when the UV

not equipped with a DVL and was equipped with either (a) a high‐
accuracy fiber‐optic gyroscope (FOG) IMU typically available on

high‐end AUVs or (b) a low‐end flux‐gate compass and attitude

sensor typically available on low‐end AUVs. We concluded two

things: First, for a UV equipped with a high‐end fiber optic gyro-

compass (FOG) attitude sensor, which is exceptionally accurate,

acoustic range‐rate observations in addition to acoustic range ob-

servations may offer modest improvements in the steady‐state re-

sponse and a significantly smaller error in the transient response of

CEKF in CAN without a DVL compared to range‐only navigation,

especially in the situation when the acoustic range measurements

are poor but the acoustic range‐rate measurements are still valid.

Second, a UV equipped with a low‐end attitude sensor, which is ty-

pical on small, low‐cost UVs such as the Iver3 AUV, we observed

poor performance and instability of the CAN state estimator utilizing

the kinematic model without a DVL when the UV was equipped with

a low‐cost attitude sensor such as the one available on the JHU

Iver3 AUV.

3 | CAN: METHODOLOGY

This section details the approach to OWTT CAN utilized to achieve

the simulation and experimental results reported in Section 4 and

Section 5, respectively.

Two formulations of CAN state estimators are presented in this

section:

1. Cooperative coustic navigation utilizing a kinematic model (CAN‐
KIN), described in Section 3.4, utilizes a nonlinear, kinematic

model of the UV's motion with or without a DVL.

2. Cooperative acoustic navigation utilizing a dynamic model (CAN‐
DYN), described in Section 3.5, utilizes a nonlinear, second‐order
dynamic model of the UV motion in place of velocity observations

from a DVL.

3.1 | CAN formulation and implementation

We formulate the CAN state estimator as a discrete‐time, delayed‐
state CEKF that uses a discrete process model to fuse depth and

gyrocompass observations for the vehicle, GPS observations for the

ship, and OWTT range and acoustic range‐rate observations be-

tween the vehicle and the ship. Delayed states are required for

causal processing of range measurements. The extended Kalman

filter is an extension of the Kalman filter to nonlinear plants and

observations by linearizing about the time‐varying estimated state.

For a full derivation and formulation of the EKF, see Bar‐Shalom
et al. (2001) and Thrun et al. (2005). The CEKF formulation of CAN

assumes access to vehicle and ship sensor data simultaneously.

Previous results have shown that the CEKF approach can be ex-

tended exactly to the decentralized extended information filter

(DEIF) formulation of cooperative navigation (Webster et al., 2013).

The process model for the vehicle is linearized and discretized

for use in the EKF using standard methods (Bar‐Shalom et al., 2001).
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Additionally, the reader is referred to Webster et al. (2012) for the

subtleties of the modified process prediction, which occurs when the

state augmentation is performed in concert with the process‐
prediction step.

3.2 | CAN state description

As is typical in CAN (Walls & Eustice, 2011; Webster et al., 2009,

2012), we define the state vector, x , as the composite of the current

vehicle state, current ship state, and n delayed states. As mentioned

above, delayed states are required for causal processing because the

range measurement occurs between the ship at TOL and the vehicle

at TOA. The state vector used in the CEKF for both CAN‐KIN and

CAN‐DYN is

= …− − − −x x x x x x x ,v
T

s
T

v
T

s
T

v n
T

s n
T T

1 1 (1)

where the current ship state ∈xs
4 is a 4‐degree‐of‐freedom (DOF)

vector containing the XY ‐position and respective velocity in world frame

=x x y x y˙ ˙ ,s
T (2)

and the current vehicle state ∈xv
12 is a 12‐DOF vector containing

the local‐level pose and body‐frame velocities

φ ν ω=x s ,v
T T T T T

(3)

φ

ϕ

θ
ψ

ν ω= = = =s
x
y
z

u
v
w

p
q
r

, (4)

where ∈s 3 is the vehicle position and φ ∈ 3 is the vehicle atti-

tude (in Euler angles) of the vehicle body‐frame with respect to a

local North‐East‐Down (NED) inertial frame of reference, ν ∈ 3 is

the body‐frame linear velocity, and ω ∈ 3 is the body‐frame angular

velocity. For convenience, we also define

η φ ν ω= =s v ,T T T
T T T (5)

where η ∈ 6 is the world NED‐frame UV position and velocity

vector and ∈v 6 is the UV body‐frame velocity vector.

3.3 | CAN ship process model

Because the ship has access to GPS position, we utilize a purely

kinematic model for the ship in both CAN‐KIN and CAN‐DYN,


= ⎡

⎣
⎤
⎦

+ ⎡

⎣
⎢
⎤

⎦
⎥

x x w˙ 0
0 0

0
,s s s (6)

where ∈w Q~ (0, )s s
2 is the zero‐mean Gaussian process noise

with variance Qs. Note that ship positions and velocities are re-

presented in world‐coordinates. In practice, we utilized process noise

with a standard deviation of 0.1 m/s in x and y translation velocity

and 1 degree/s in yaw rate.

3.4 | CAN‐KIN: Kinematic UV process model

In CAN‐KIN, we utilize a nonlinear, constant‐velocity kinematic

process model of the submerged UV, identical to the one reported in

Webster et al. (2012).

The vehicle kinematics are

η φ= K v˙ ( ) , (7)

where

φ
φ

φ
= ⎡

⎣
⎢

⎤

⎦
⎥

K
R

L
( )

( ) 0

0 ( )
(8)

is the kinematics matrix. φR ( ) is the transformation between inertial

and body‐frame linear velocities, and φL ( ) is the transformation be-

tween inertial and body‐frame angular velocities. Explicitly,

φ ψ θ ϕ=R R R R( ) ( ) ( ) ( ) ,z
T

y
T

x
T (9)

where

ψ

ψ ψ

ψ ψ θ

θ θ

θ θ

ϕ ϕ ϕ

ϕ ϕ

=
⎡

⎣

⎢
⎢
−

⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

− ⎤

⎦

⎥
⎥

=
⎡

⎣

⎢
⎢

−

⎤

⎦

⎥
⎥

R R

R

( )
cos( ) sin( ) 0

sin( ) cos( ) 0

0 0 1

( )
cos( ) 0 sin( )

0 1 0
sin( ) 0 cos( )

( )

1 0 0
0 cos( ) sin( )

0 sin( ) cos( )

,

z y

x (10)

and

ω ϕ ϕ θ ϕ θ ψ= + +e R e R R˙ ( ) ˙ ( ) ( ) ˙x x y1 2 (11)

θ

θ ϕ θ

ϕ ϕ θ
φ

φ

  

=

⎡

⎣

⎢
⎢
⎢

−

−

⎤

⎦

⎥
⎥
⎥

−

1 0 sin( )

0 cos( ) sin( )cos( )

0 sin( ) cos( )cos( )
˙ ,

L ( ) 1

(12)

where  = ∣ ∣ ∈ = ∣ ∣ ∈e e1 0 0 , 0 1 0T T
1

3
2

3, and =e3

∣ ∣ ∈0 0 1 T 3. Thus,

φ

ϕ θ ϕ θ

ϕ ϕ

ϕ θ ϕ θ

=
⎡

⎣

⎢
⎢

−
⎤

⎦

⎥
⎥

L ( )

1 sin( )tan( ) cos( )tan( )

0 cos( ) sin( )

0 sin( )sec( ) cos( )sec( )

. (13)

We re‐write (7) in state‐space representation with the full 12

DOF vehicle state for use in the CEKF

φ

φ



=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x

R

L x w˙

0 0 ( ) 0

0 0 0 ( )

0 0 0 0
0 0 0 0

0 0
0 0

0
0

v v v (14)

where ∈w Q~ (0, )v v
12 is a vector of zero‐mean Gaussian process

noise with Qv as the variance. UV positions are represented in in-

ertial world coordinates, and UV velocities are represented in UV

body coordinates. Empirically tuning the process‐noise variance is a

generally accepted practice for EKFs, and our best, most consistent

results were achieved utilizing process noise with a standard devia-

tion of ∕0.05 m s2 in translation velocity and 5 degrees/s2 in angular

rate. To ensure consistency when comparing results from the two
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different process models, we used the same values for process noise

in both CAN‐KIN and CAN‐DYN.

3.5 | CAN‐DYN: Dynamic UV process model

CAN‐DYN utilizes the second‐order, nonlinear UV dynamics as the

process model, as opposed to CAN‐KIN which assumes a constant‐
velocity kinematic process model. The form of the second‐order,
nonlinear dynamics for an UV is well understood and has been since

the 1950s (Society of Naval Architects and Marine Engineers (U.S.),

Technical & Research Committee, & Hydrodynamics Subcommittee,

1950). Several sources develop the equations from first principles,

including (Fossen, 1994; Paine, 2018) as

φ τ ξ+ + + =Mv C v v D v v v˙ ( ) ( ) ( ) ( , ), (15)

whose variables are defined in Section 3.2. We combine the kine-

matics (7) and the dynamics (15) to form the state‐space process

model for use in the CEKF as

φ

τ ξ φ



= ⎡

⎣
⎢ − +

⎤

⎦
⎥

+
−

+

− −x
K

M D v C v
x

M v

w

˙
0 ( )

0 ( ( ) ( ))

0
( ( , ) ( ))

0 ,

v v

v

1 1

(16)

where

• φ  → ×K ( ) : 3 6 6 is the kinematics matrix, as defined in

Section 3.4,

• ∈ ×M 6 6 is the positive‐definite symmetric (PDS) inertia matrix,

•  → ×D v( ) : 6 6 6 is the negative‐definite symmetric (NDS) hy-

drodynamic drag matrix,

•  → ×C v( ) : 6 6 6 is the centripetal and Coriolis matrix,

• τ ξ   × →+v( , ) : k i6 6 is the vector control forces and moments

described in Section 3.5.1,

• φ  →( ) : 3 6 is a vector of restoring forces and moments, and

• ∈w Q~ (0, )v v
12 is the zero‐mean Gaussian process noise.

In practice, we achieved the best results with CAN‐DYN

when utilizing process noise with a standard deviation of 5 cm/s2

for the translation velocity and 5 degrees/s2 for the angular rate.

The standard deviation in translation velocity is a full order of

magnitude lower with the dynamic model than the kinematic model

because, when the EKF does not have access to a DVL, the dynamic

model is the main source of velocity information.

The inertia matrix, M, is a PDS matrix composed of the sum of

the rigid‐body inertia and added inertia, with scalar mass elements

mii. It is convenient to write in block‐matrix form, with block ele-

ments denoted ∈Mij
x3 3, because we use the block form to con-

struct the Coriolis matrix.

= + = ⎡

⎣⎢
⎤

⎦⎥
M M M

M M
M MRB A

11 12

21 22
(17)

= m m m m m mdiag([ , , , , , ]).11 22 33 44 55 66 (18)

The drag matrix, D v( ), is a negative‐definite symmetric (NDS)

matrix composed of the product of the quadratic hydrodynamic drag

coefficients and their respective velocities

= ∣ ∣D v v d d d d d d( ) diag( ) diag([ , , , , , ]).11 22 33 44 55 66 (19)

In constructing this drag matrix, we assume that there is no coupling

between DOFs, that the vehicle is symmetric about the x y, , and z

axes, and that linear drag terms have a small effect compared with

their quadratic counterparts, which is discussed in Martin (2008).

Note that the drag matrix inherently captures the effects of what

many authors refer to as body lift. The diagonal terms d22 and d33

correspond to a body lift force in the y and z directions, respectively.

We parameterize the Coriolis matrix C v( ) from M in (17) as

ν ω

ν ω ν ω
= ⎡

⎣
⎢

− +

− + − +
⎤

⎦
⎥

C v
J M M

J M M J M M
( )

0 ( )

( ) ( )
11 12

11 12 21 22
(20)

where J () is the skew‐symmetric operator.

The buoyancy vector, φ( ), is defined as

φ
φ

φ ρ
=

− ∇

R e g g

J b R g
( )

( )

( ) ( ) ,

T
c

T
c

3
(21)

where  = ∈ ∈e g0 0 1 ,T
c3

3 is the gravitational acceleration

scalar with units of ρ ∕ = − ∇ ∈m s g g m, ( )c
2 3 is the net buoyant

force in Newtons, and ∈b 3 is the vector from the center of

buoyancy to the center of gravity in meters.

3.5.1 | Dynamic UV process model control inputs

The CAN state estimator described and utilized herein requires the

value of the control input signals, ξ , but it is completely agnostic to

the specific control law utilized by the UV.

This section defines the nonlinear function,

τ ξ   × →+v( , ) : k i6 6 to map the UV's control inputs, ξ , into a

force‐moment vector acting on the vehicle. We assume the vehicle is

actuated with a combination of hydrodynamic control surfaces (e.g.,

fins) and propellers.

We define the following coordinate frames for each fin:

• V—Vehicle coordinate frame, centered at the UV's center of

pressure (CP).

• F—Fin coordinate frame, centered at the fin CP when the fin is at

commanded fin angle, δ , with the x‐axis along the chord line of the

fin and the y‐axis pointing away from the center line of the

vehicle.

• F0—Fin coordinate frame at δ = 0.

• W—Flow coordinate frame, corresponding to the flow of water

across the fin.

Note that the commanded fin angle, δ , is not the fin angle of

attack to incident flow, α , so the F and W frames are generally not

coincident. The position of the CP of the ith fin in the vehicle frame is

∈pi
V 3 is the vector from the vehicle's center of gravity (CG) to the
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CP of the i th fin, and ϕ ∈i
V is the angular position of the ith fin in

the vehicle frame. We define the transformations between co-

ordinate frames of each fin as

= ∈ ×R R R ,iF
V

iF
V

iF
F 3 3

0
0 (22)

= ∈ ×R R R ,iW
V

iF
V

W
F 3 3 (23)

where RiF
V is the transformation from the fin frame to the vehicle

frame and RiW
V is the transformation from the flow frame to the

vehicle frame. The individual transformations are defined as

ϕ= ( )R R ,iF
V

x i
V

0
(24)

δ=R R ( ),iF
F

y i
0 (25)

α=R R ( ),iW
F

y
T

i (26)

where (24) is assumed because, for the vehicle used in the experi-

mental results presented in this paper (Sections 4 and 5) and many

other UVs, the x‐axis of the fin frame aligns with the x‐axis of the

vehicle frame. The velocity of the ith fin through the water at the fin

CP in vehicle coordinates is

ν ω= +p J p˙ ( ) ,i
V

i
V (27)

and, thus, the velocity of the i th fin in the fin frame F is

=p R p˙ ˙ .i
F

i
T

F
V

i
V (28)

Assuming flow along the span of the airfoil does not affect the lift or

drag, we use a projection matrix to find the flow along the x and

z axes

= [ ]p p˙
1 0 0
0 0 0
0 0 1

˙ ,xz
F

i
F

i
(29)

from which we can find the angle of attack, α , as

α = ( )p patan 2 ˙ , ˙ ,i z
F

x
F

i i
(30)

where atan2 is the four‐quadrant arc‐tangent function. The lift and

drag coefficients, αC ( )L i and αC ( )D i , respectively, are a function of the

angle of attack. We then compute the hydrodynamic lift and drag

force

α ρ α=L AC p( )
1

2
( ) ˙ ,i D i xz

F 2

i
(31)

α ρ α=D AC p( )
1

2
( ) ˙ ,i D i xz

F 2

i
(32)

where A is the surface area of the fin. The force vector in the flow

frame, W , is = −f D L0W T . Thus, the force vector from the

ith fin in the vehicle frame is

=f R f ,i
V

iW
V

i
W (33)

and the force and moment vector from is

τ =
( )

f

J r f
.i

i
V

i
V

i
V (34)

The total force and moment vector on the vehicle with a total of N

control surfaces is thus

τ τ β ω∑= + ×0 ,
i

N

i p p
T2

1 5 (35)

where βp is the propeller thrust coefficient such that

β ω=T p p
2 (36)

is the axial thrust of the propeller. This simplified thruster model is a

reasonable assumption because we are modeling a ducted propeller

with a high jet velocity compared to the advance velocity of the vehicle.

3.6 | CAN observation models

The range and range‐rate observation models are nonlinear func-

tions of the vehicle state at TOA and the ship state at TOL. Ob-

servation models of the additional sensors, including the DVL, GPS,

depth sensor, and gyrocompass, are detailed in Webster (2010).

3.6.1 | CAN range observation model

As reported in (Webster et al., 2012), the range observation model

can be written in matrix notation as

= +( )z x A Ax v ,rng
T T

rng
1
2 (37)

where ∈v R~ (0, )rng rng is zero‐mean Gaussian noise and

= − … …A J J0 0 0 0 ,v s
T (38)

with Jv and Js defined such that

=J x x y z ,v v
T (39)

=J x x y 0 .s s s s
T (40)

The measurement covariance, Rrng , is the variance of the range

measurement. Table 1 shows the standard deviation of the range

measurement gathered from experimental data.

The Jacobian of the range measurement with respect to the full

state, x , is

μ μ μ

μ

=
∂

∂

=

=

∣ − ∣ −

−

∣ −

∣ −

( )

H
z x

x

A A A A

( )

.

k
rng

x

k k
T T

k k k k
T T

1 1

1
2

1

k k 1
(41)

3.6.2 | CAN range‐rate observation model

As reported in Harris and Whitcomb (2016), the range‐rate ob-

servation model is the time derivative of (37). Explicitly,

= +−z x A Ax x A Ax v( ) ˆ ,rr
T T T T

rr
1
2 (42)

where ∈v R~ (0, )rr rr is zero‐mean Gaussian noise and

= − … …A J Jˆ ˆ 0 0 ˆ 0 0 ,v s
T

(43)
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with Ĵv and Ĵs defined such that

φ =J R x x y zˆ ( ) ˙ ˙ ˙v v
T (44)

=J x x yˆ ˙ ˙ 0 .s s s s
T (45)

The measurement covariance, Rrr , is the variance of the range‐
rate measurement. Table 1 shows the standard deviation of the

range‐rate measurement gathered from experimental data.

The Jacobian of (42) with respect to the full state, x , is

μ μ μ μ μ

μ μ μ

μ

=
∂

∂

=−

+ +

=

∣ − ∣ −

−

∣ − ∣ − ∣ −

∣ − ∣ −

−

∣ −

∣ −

( ) ( )( )

( )

H
z x

x

A A A A A A

A A A A A A

( )

ˆ

( ˆ ˆ ),

k
rr

x

k k
T T

k k k k
T T

k k
T T

k k

k k
T T

k k k k
T T T

1 1

3
2

1 1 1

1 1

1
2

1

k k 1
(46)

where μ ∣ −k k 1 is the estimated mean of the world‐frame position.

4 | SIMULATION RESULTS: CAN WITH A
DYNAMIC UV PROCESS MODEL UTILIZING
ACOUSTIC RANGE ONLY OBSERVATIONS

A challenging aspect of experimental field evaluation of UV navigation

methods is that it is often difficult or impossible to know the “true”

vehicle state (position and velocity), and thus it is difficult or impossible

to quantify precisely the “true error” of a proposed navigation method.

In Section 5, we report at‐sea field experimental trials, in which we

necessarily use indirect methods to evaluate navigation performance. In

numerical simulation studies, however, it is always possible to know the

“true” vehicle state, and thus possible to quantify precisely the “true

error” of a proposed navigation method. We reported a simulation

study in our previous work (Harris & Whitcomb, 2018a), in which we

concluded that CAN‐DYN without a DVL vastly outperformed CAN‐
KIN without a DVL and performed approximately as well as CAN‐KIN
with a DVL. In that preliminary study, we also reported that the si-

mulation results corroborated the results from a preliminary pilot field

experiment conducted in the Chesapeake Bay. Indeed, the simulation

results are quite similar to the results from field experiments and show

that the navigation error for both CAN‐DYN without a DVL and CAN‐
KIN with a DVL is on the order of meters. Our main concern, however,

with the simulation study is that the dynamic model used to compute

the “true” state was the same as the dynamic model used as the process

model. In reality, a UV operating in the real world will experience

exogenous forces unmodeled dynamics not perfectly modeled by 15.

Thus, in the present study, we seek to corroborate our previous si-

mulation results with experimental results from at‐sea field testing in

Section 5 below.

TABLE 1 L3 OceanServer Iver3 AUV
measurement sources and noise statistics

State

Measurement

source

Measurement update rate

or update period Measurement SD

Range WHOI Micromodem 5–15 s 1m

Range‐rate WHOI Micromodem 5–15 s 0.1 m/s

Depth OceanServer 4Hz 10 cm

Heading,

pitch, roll

OceanServer 4Hz ∘1

Translation

Velocity

600 kHz RDI DVL 5Hz (when used) 1.4 cm/s (when used)

Note: These noise characteristics were determined from static tests of the sensors conducted by the

authors, with the exception of the RDI DVL, which we obtained by interpolating data provided by the

manufacturer for the UV's commanded speed in these experiments (1.3 m/s).

Abbreviations: AUV, autonomous underwater vehicle; DVL, Doppler velocity log.

TABLE 2 Acoustic modem time division multiple access (TDMA) cycle

Time Action Comment Packet type

00 s Begin of TDMA cycle

00 s OWTT data packet + range uplink AUV status packet to Ship AUV status uplink. Not used for CAN 64 byte, PSK

05 s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK

10 s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK

15 s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK

20 s TWTT range ping AUV to Ship, with Ship to AUV reply TWTT range. Not used for CAN 32 bit, PSK

25 s Reserved for commands sent to AUV from Ship

30 s End of TDMA cycle Begin next TDMA cycle

Abbreviations: AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; OWTT, one‐way travel‐time; TWTT, two‐way travel time.
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5 | EXPERIMENTAL RESULTS: CAN WITH
A DYNAMIC UV PROCESS MODEL

This section reports the results of three at‐sea field trials to conduct

a comparative experimental evaluation of the reported CAN state

estimators on experimental data obtained with JHU's Iver3 AUV

(L3 OceanServer), shown in Figure 1, in the Chesapeake Bay. Data

are reported for three dives with the Iver3 AUV described in

Section 5.1.1: Dive 55, 57, and 60. This section is organized as

follows:

1. Section 5.1 describes the field experimental setup and

procedures.

2. Section 5.2 reports a comparative performance analysis of CAN‐
DYN without a DVL and CAN‐KIN with and without a DVL using

acoustic range‐only observations from three experimental AUV

dives.

a. Section 5.2.1 reports a comparison of the performance of

CAN‐DYN to CAN‐KIN, both without a DVL.

b. Section 5.2.2 reports a comparison of the performance of

CAN‐DYN without a DVL to the “gold standard” of CAN‐KIN
with a DVL.

c. Section 5.2.3 reports an investigation of the repeatability of

CAN‐DYN without a DVL by comparing the navigation results

for two different dives that utilized identical mission plans.

d. Section 5.2.4 reports an investigation of the generalizability of

CAN‐DYN without a DVL by comparing the navigation results

for two different dives that utilized very different mission

plans.

e. Section 5.2.5 reports a comparison of XY position error

magnitude of CAN‐DYN without DVL navigation for three

dives in comparison to conventional DR navigation, using the

CAN‐KIN with DVL as ground truth. Also reported is a com-

parison of the XY velocity error for the CAN‐DYN state es-

timator without a DVL, computed as the difference between

the CAN‐DYN velocity estimate and the Iver3's RDI Explorer

600 kHz DVL.

3. Section 5.3 reports results from Dive 55 comparing CAN‐DYN

utilizing acoustic range observations to CAN‐DYN utilizing

acoustic range‐rate observations in addition to acoustic range

observations.

5.1 | CAN experimental setup and procedure

We conducted field trials with a surface ship and JHU's Iver3 AUV

(L3‐Harris OceanServer) (L3 OceanServer, 2016) in the Chesapeake

Bay, MD, USA. The AUV is an under‐actuated AUV equipped with a

600 kHz Phased Array RDI Explorer DVL (Teledyne RD Instru-

ments) (Teledyne, 2017), and an OceanServer OS5000 digital com-

pass (L3‐Harris OceanServer) which measures magnetic heading,

pitch, roll, and pressure depth (L3 OceanServer, 2015). Figure 1

shows JHU Iver3 AUV during the vehicle tests. Table 1 lists the noise

characteristics of the sensors on board the JHU Iver3 AUV. These

noise characteristics were determined from static tests of the sen-

sors conducted by the authors, with the exception of the RDI DVL,

which we obtained by interpolating data provided by the manu-

facturer for the UV's commanded speed in these experiments

(1.3m/s). While submerged on these dives the DVL experienced

bottom‐lock beam ranges of between 2 and 8m with a typical DVL

update period of 0.2 s or less.

The real‐time geodetic location of the surface ship's modem

transducer was instrumented with a GPS unit located vertically

above the acoustic modem's transducer. This GPS unit was a Navisys

GR‐701W u‐blox‐7 (NaviSys Technology Corp.), which reported fixes

at 1 s intervals with a reported horizontal dilution of precision

(HDOP) values with a mean just under 1.0.

For the control inputs of propeller speed and fin angle to the

model described in Section 3.5.1, we utilized the values commanded

and logged by the Iver3's control system, provided by the vehicle

manufacturer.

The surface ship and the Iver3 AUV were each equipped with 25

kHz WHOI Micromodem IIs (Gallimore et al., 2010; Singh et al.,

2006), each equipped with precision Microsemi Quantum chip‐scale
atomic clocks (Microsemi Corporation) and precision‐timing GPS

units to synchronize the clocks to GPS UTC time. The acoustic

modems on the Iver3 and the ship were programmed to repeat the

30‐second time‐division multiple access (TDMA) acoustic telemetry

TABLE 3 Sensors used for comparative experimental evaluations

Sections Comparision Range DVL Range‐rate Depth AHRS Ship GPS

5.2.1 CAN‐DYN without DVL to CAN‐KIN without DVL KIN DYN KIN DYN KIN DYN KIN DYN

5.2.2 CAN‐DYN without DVL to CAN‐KIN with DVL KIN DYN KIN KIN DYN KIN DYN KIN DYN

5.2.3 CAN‐DYN without DVL repeatability DYN DYN DYN DYN

5.2.4 CAN‐DYN without DVL generalizability DYN DYN DYN DYN

5.2.5 CAN‐DYN without DVL vs. DR DYN DR DYN DR DYN DR DYN DR

5.3 CAN‐DYN, no DVL, with and without range‐rate DYN DYN with and without DYN DYN DYN

Abbreviations: AHRS, attitude and heading reference sensor; CAN, cooperative acoustic navigation; DVL, Doppler velocity log; GPS, global positioning

system.
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cycle listed in Table 2. The TDMA cycle given in Table 2 started

precisely at the top and the bottom of every UTC minute to co-

ordinate when the AUV or ship modem transmitted. The Micro-

modem IIs were configured for synchronous navigation (parameter

SNV = 1), precision TOA reporting (parameter TOA = 1), and Doppler

range‐rate reporting (parameter DOP = 1) which reports range‐rate
averaged over the data packet. Both ship and AUV modems had their

TDMA cycles controlled by a modem driver process running on a

host Linux CPU. The ship and AUV host CPUs and modems were all

provided with precision‐clock signals to synchronize their clocks to

GPS UTC time (even when submerged, in the case of the AUV).

The senors employed for the comparative experimental CAN

evaluations are given in Table 3.

For CAN data packets with data transmission and simultaneous

OWTT ranging, we employed the WHOI Micromodem II configured

for Band 2 (25 kHz carrier frequency) and single‐frame 64‐byte
phase‐shift keying (PSK) data packets (Packet type = 1), no ac-

knowledgment minipackets (ACK = 0), MST parameter set to

(MST = 1), with a data packet duration of 1.9 s. We had good acoustic

conditions and the packet transmission success was excellent. Each

CAN OWTT downlink packet was encoded with the geodetic co-

ordinates of the ship's modem transducer at the TOL of the OWTT

downlink transmission, the exact TOL of the OWTT downlink

transmission, and status information on the precision clock status of

the ship's modem. When the AUV modem received a downlink

packet it timestamped the TOA of the OWTT downlink transmission,

and with the data encoded in the packet can compute time‐of‐flight
with sub‐millisecond accuracy.

In addition to the CAN OWTT downlink packets, each TDMA

cycle contained one uplink data packet from AUV to ship containing

vehicle status information, and one conventional TWTT ranging ping

initiated by the AUV.

5.1.1 | Dive mission plans

Herein we report results from three dives with the Iver3 AUV on

December 11, 2017 with the following mission plans:

• In Dive 55 and 60, the Iver3 AUV was programmed to run iden-

tical rectangular survey pattern with six 300m legs spaced 50m

apart at a constant depth of 2.5 m traveling at an advance velocity

of 1.3 m/s. This constant‐depth mission is typical for multi‐beam
sonar bathymetric survey missions.

• In Dive 57, the Iver3 AUV was programmed to run a rectangular

survey pattern with four 300m legs spaced 50m apart at an ad-

vance velocity of 1.3 m/s while undulating from 1 to 5 m depth at

with a maximum pitch angle of 20 degrees. This undulating‐depth
mission is typical for physical oceanographic conductivity, tem-

perature, and depth (CTD) surveys, and for biological oceano-

graphic plankton surveys. We include Dive 57 to evaluate

whether the results from constant‐depth Dives 55 and 60 gen-

eralize to missions with highly time‐varying depth.

5.1.2 | CAN state estimator initialization

During these experiments, the UV position in the CAN state was

initialized to the last valid GPS fix of the Iver3 AUV before it

submerged, and the UV surge velocity was initialized to the DVL

reading at that same time or, in the case of no DVL, the Iver3

commanded forward speed. The sway and heave velocities were

initialized to zero.

5.1.3 | Real‐time vehicle control setup

This paper focuses purely on the navigation problem. In these

experiments, the JHU Iver3 AUV ran pre‐programmed missions,

detailed in Section 5.1.1, in the Chesapeake Bay utilizing the

Iver3's waypoint‐based mission planner, navigation system (likely

DR), and control system all supplied by the manufacturer. The data

collected on each dive were post‐processed utilizing the CAN al-

gorithm variants: CAN‐DYN, CAN‐KIN without a DVL, and the

previous “gold standard” of CAN‐KIN with a DVL. Thus, the Iver3

AUV did not utilize the output of the various CAN state estimates

as an input to the Iver3's control system in real time. For this

reason, the position estimate from any of the CAN state estima-

tors may diverge from the desired trackline as the DR error grows,

and the distance from the Iver's desired waypoint trackline shown

in the figures below is not the navigation error.

We address the feasibility of combined control and navigation

without a DVL using CAN‐DYN in a previously reported simulation

study (Harris & Whitcomb, 2018b), in which we report that closed‐
loop navigation and navigation is feasible and stable with CAN‐DYN

without a DVL using an linear quadratic regulator (LQR) controller

and the CEKF described above.

5.1.4 | Estimation of experimental navigation
errors

Because this is a field experiment with a submerged UV (GPS does

not work when the UV is submerged), we do not have access to the

true vehicle positions and are therefore unable to compare the na-

vigation error—that is, the difference between the true XY position

of the vehicle and the state estimate—of CAN‐KIN to CAN‐DYN.

Instead we utilize the previous “gold standard” of CAN‐KIN with a

DVL as the true vehicle position.

Comparing CAN‐DYN without a DVL to CAN‐KIN with a DVL

is really a comparison of the velocity estimate from the dynamic

model to the velocity measured by the DVL. Because it is unlikely

the dynamic model could estimate the UV's velocity more accu-

rately than it would be measured by a DVL, we have no ex-

pectation that CAN‐DYN would outperform CAN‐KIN with a

DVL, except in cases where the DVL fails, for example, when the

range to the sea floor is beyond the bottom‐lock range of

the DVL.
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A discussion on the navigational accuracy of CAN‐KIN with a

DVL, including comparisons with other methods of acoustic naviga-

tion, such as LBL, may be found in Webster et al. (2012).

The magnitude of the difference in the XY position estimate of

CAN‐DYN and CAN‐KIN with a DVL is shown in Section 5.2.5 for all

three dives. For the remainder of this paper, this difference will be

referred to as the “navigation error.”

5.1.5 | Dynamic model parameters

The parameters for the dynamic model were empirically tuned to

match the translation velocity predicted by the model to the

translation velocities reported by the DVL in surge and sway. A

principled method for estimating plant‐model parameters and

control‐actuator parameters for torpedo‐shaped, underactuated
UVs is the subject of ongoing and future research; a preliminary

approach was reported by the authors in Harris et al. (2018). In

this paper, the model parameters were empirically tuned for Dive

55, and the results reported for Dive 60 and Dive 57 utilize the

same dynamic plant‐model parameters that were tuned for

Dive 55.

5.2 | Experimental results: CAN‐DYN utilizing
acoustic range only observations

This section reports experimental results for CAN comparing the

navigation performance of the CAN‐DYN state estimator without

a DVL to the CAN‐KIN state estimator with and without a DVL.

5.2.1 | Experimental results: Comparison of CAN‐
DYN without a DVL to CAN‐KIN without a DVL

This section reports a comparison of the performance of CAN‐DYN

to CAN‐KIN, both without a DVL, utilizing experimental data col-

lected from Iver3 Dive 55.

Figure 2 shows the mean of the CAN‐estimated UV and ship XY

position estimates for Iver3 Dive 55. Figure 2a shows the CAN‐KIN
state estimate without a DVL and Figure 2b shows the CAN‐DYN

state estimate without a DVL. The dashed blue line is the CAN po-

sition estimate of the Iver3 AUV, the black dots are the CAN position

estimate of the surface ship, and the red triangle is the first GPS fix

after the UV surfaced. The EKF solution for the ship position is si-

milar to the GPS track of the ship position, with minimal smoothing

dependent on the ship process noise. The pink ellipses in

Figure 2b are 3σ ellipses from the CAN‐DYN state estimator plotted

at every acoustic update. 3σ ellipses for CAN‐KIN without a DVL are

omitted from Figure 2a because the position covariance from the

CAN‐KIN state estimator without a DVL is so large that the plot is

unreadable. As noted in Section 5.1.3, the Iver3 AUV did not use the

position estimate from the CAN state estimator as the position input

to the control system during these experiments, and the distance

from the trackline is likely the difference between the DR and CAN

navigation solutions rather than the CAN navigational error.

Figure 2a shows the UV position estimate from CAN‐KIN
without a DVL is extremely poor and quickly exhibits instability, and

Figure 2b illustrates that the CAN‐DYN state estimator performs

well and offers a stable solution without a DVL. We spent a con-

siderable amount of time tuning the process noise for CAN‐KIN to

achieve better results, and these results are representative of the

(a) (b)

F IGURE 2 Ship and vehicle XY position estimate using (a) CAN‐KIN without a DVL and (b) CAN‐DYN without a DVL on experimental data
collected with the JHU Iver3 AUV in the Chesapeake Bay. The dotted black line is the CAN ship position estimate, and the dashed blue
line is the CAN UV position estimate, computed in post‐processing. The first valid GPS fix upon surfacing is plotted as a red triangle.
The pink ellipses are 3σ ellipses from the CAN state estimator plotted at every acoustic update. This figure shows that for a UV
equipped with sensors typical of low‐cost UVs, such as the JHU Iver3 AUV, CAN‐DYN without a DVL offers a stable position estimate,
in contrast to CAN‐KIN without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation;
DVL, Doppler velocity log; GPS, global positioning system [Color figure can be viewed at wileyonlinelibrary.com]
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best we were able to achieve with the sensor characteristics detailed

in Table 1.

The magnitude of the difference in the position estimate of CAN‐
DYN and CAN‐KIN with a DVL is shown in Figure 12 in Section 5.2.5

for all three dives.

Because CAN provides infrequent position corrections in the form of

an acoustic time‐of‐flight (TOF), which is converted into a range using the

speed of sound in water, it is vitally important that the state estimator

accurately estimate the submerged UV's velocity between acoustic po-

sition corrections. This velocity estimate is integrated continuously to

propagate the position estimate between acoustic position corrections.

The velocity estimates from CAN‐DYN and CAN‐KIN without a DVL

provides additional insight into the performance gap between the two

state estimators in the absence of velocity measurements from a DVL.

Figure 3 shows the velocity estimate from CAN‐DYN (without a

DVL) for Dive 55, and Figure 4 shows the velocity estimate from

CAN‐KIN without a DVL for Dive 55. We did not include the velocity

plots for CAN‐KIN with a DVL because the velocity estimate tracks

the DVL measurements exactly, with some amount of smoothing

dependent on the process noise. In both figures, the red dots are the

Iver3 AUV 600 kHz RDI DVL measurements, and the dashed blue

line is the mean of the CAN state estimator's velocity estimate. Note

that the scale of the vertical axis is significantly larger on Figure 4

than Figure 3, and the red dots of the DVL measurements are the

same signal on both plots. The velocity transient spikes occur when

the vehicle is turning: the surge velocity drops because the high fin

angle of the Iver3's vertical fins increases the overall drag on the

Iver3; the sway velocity increases when the Iver3 experiences

sideslip during turns because, although the Iver3 is underactuated, it

is not a nonholonomic system.

As shown in Figure 3, the velocity estimate from the CAN‐DYN

state estimator is quite accurate in both surge and sway, even in

turns when the UV experiences a drop in surge velocity from fin drag

and an increase in sway velocity. This figure illustrates the perfor-

mance of CAN‐DYN at modeling the UV's velocity. Accurate velocity

estimation is crucial to accurate position estimation because CAN

provides infrequent position updates; in the absence of DVL mea-

surements, the velocity estimate depends entirely on the model.

In contrast, Figure 4 shows the constant‐velocity kinematic

model typically used in CAN fails dramatically in the absence of a

DVL. A constant‐velocity assumption is reasonable when the vehicle

has access to frequent, high‐accuracy velocity observations, such as

when the vehicle is equipped with a DVL, because the velocity es-

timate experiences minimal drift between velocity corrections.

However, the velocity estimate from a constant‐velocity model with

infrequent position corrections and no velocity corrections can drift

substantially between position corrections.

We did not include velocity plots for the heave (Z) DOF because

the Iver3 AUV is equipped with a pressure depth sensor, as noted in

Table 1, which provides depth measurements at 4 Hz with a standard

deviation of 10 cm.

Given the infrequency of position updates, we believe the per-

formance of the position estimate is driven primarily by the ability of

the CAN state estimator to estimate the UV's motion. Thus, we

conclude that the poor performance and instability of the position

estimate from CAN‐KIN without a DVL is caused by the inability of a

F IGURE 3 CAN‐DYN without a DVL velocity estimation, Dive 55. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN‐DYN state estimator's velocity estimate without DVL observations. The spikes occur when the
Iver3 is turning: the surge velocity drops because the high fin angle of the Iver3's vertical fins during turns causes increased drag;
the sway velocity increases when the Iver3 experiences sideslip during turns. This figure shows the ability of CAN‐DYN to estimate the Iver3's
velocity without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log
[Color figure can be viewed at wileyonlinelibrary.com]
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kinematic model to predict the UV's motion in the absence of fre-

quent velocity observations, as seen in Figure 4. Because the position

estimates from both CAN‐KIN with a DVL and CAN‐DYN without a

DVL are stable, we do not believe the poor performance and in-

stability of the state estimate from CAN‐KIN without a DVL is

caused by observability issues that arise when the relative trajec-

tories of the surface ship and UV are not sufficiently rich and varied.

However, we also note that accurate velocity estimation has little

impact on the position estimate when frequent, accurate position

measurements are available. A kinematic process model can provide

a stable position estimate in the absence of velocity observations if

frequent, high‐accuracy position corrections are available. For ex-

ample, Figure 2 shows the CAN‐estimated ship position is stable with

a purely kinematic ship process model and GPS measurements, with

the navigation accuracy dependent on the sensor accuracy.

Section summary: This section reported a study comparing the

performance of CAN‐DYN without a DVL to CAN‐KIN without a

DVL, both in terms of navigation and velocity estimation. We con-

clude that CAN‐DYN without a DVL performs well, while CAN‐KIN
without a DVL exhibits poor performance and quickly goes unstable

in the absence of DVL observations.

5.2.2 | Experimental results: Comparison of CAN‐
DYN without a DVL to CAN‐KIN with a DVL

This section reports a comparison of the performance of CAN‐DYN

without a DVL to the “gold standard” of CAN‐KIN with a DVL uti-

lizing experimental data from Dive 55.

Figure 5a shows the estimated vehicle and ship position for the

“gold standard” case of CAN‐KIN when the UV has access to DVL

measurements for Dive 55. Figure 5b shows the position estimate

from CAN‐DYN without a DVL. As above, the solid black line is

the waypoint trackline the vehicle attempted to follow, the dashed

blue line is the CAN position estimate of the Iver3 AUV, the black

dots are the CAN position estimate of the surface ship, and the red

triangle is the first GPS fix after the UV surfaced. The pink ellipses

are 3σ ellipses from the CAN state estimator plotted at every

acoustic update.

Here again, the Iver3 AUV did not utilize the output of the

various CAN state estimates as an input to the control system during

the field trials, and the distance from the Iver's desired waypoint

trackline is the difference between the DR track and the CAN esti-

mate, rather than the navigation error. Indeed, the position estimates

from both CAN‐DYN without a DVL and CAN‐KIN with a DVL di-

verge from the Iver3's commanded waypoint trackline. We believe

this divergence occurs because the Iver3's true position diverges

from the trackline, as evidenced by the position of the CAN position

estimate being coincident with the first valid GPS fix obtained when

the Iver3 surfaced at the end of the dive. The mission time in

Figure 5 was extended until the UV surfaced, allowing the reader to

observe visually that the CAN position estimate is coincident with

the first valid GPS fix.

These figures show that the CAN‐DYN state estimator without a

DVL not only offers a stable navigation estimate, unlike CAN‐KIN
without a DVL, CAN‐DYN without a DVL appears to perform simi-

larly to CAN‐KIN with a DVL, at least in the case of a low‐cost UV,
such as the Iver3 AUV operating in an area where the magnitude of

F IGURE 4 CAN‐KIN without a DVL velocity estimation, Dive 55. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN‐KIN state estimator's velocity estimate. This figure shows that CAN‐KIN velocity estimate
performs quite poorly in both surge and sway in the absence of DVL corrections. We did not include CAN‐KIN with a DVL because in that case,

the CAN‐KIN velocity estimate tracks the DVL measurements nearly exactly. AUV, autonomous underwater vehicle;
CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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the water‐current velocity is small. This result makes sense given

how well the dynamic model accurately models the submerged UV's

velocity, as shown above in Figure 3.

We note that when the DVL measurements are available to both

the CAN‐KIN and CAN‐DYN estimators, the performance is essen-

tially identical—as one would expect because the DVL bottom track

velocity observations exhibit very low measurement noise and high‐
update rate. In this case, the DVL observation innovations dominate

the estimated velocity of both approaches.

Section Summary: This section reported a study comparing the

performance of CAN‐DYN without a DVL to the “gold standard” of

CAN‐KIN with a DVL. We conclude that CAN‐DYN without a DVL

performs on par with CAN‐KIN with a DVL.

5.2.3 | Experimental results: CAN‐DYN without a
DVL repeatability

This section reports an investigation of the repeatability of CAN‐
DYN without a DVL by comparing the navigation results for two

different dives that utilized identical mission plans.

The programmed mission for Dive 60 is identical to that of Dive

55 reported above: the Iver3 AUV was programmed to run a rec-

tangular survey pattern with six 300m legs spaced 50m at a 2.5 m

depth traveling at an advance velocity of 1.3 m/s.

Figure 6 shows the mean of the CAN‐estimated UV and ship XY

position estimates for Iver3 Dive 60. Figure 6a shows the CAN‐KIN
state estimate without a DVL. Figure 6b and 6d are the same plot

and shows the CAN‐DYN state estimate without a DVL.

Figure 6c shows the CAN‐KIN state estimate with a DVL. For these

plots, as above, the solid black line is the waypoint trackline the

vehicle attempted to follow, the dashed blue line is the CAN position

estimate of the Iver3 AUV, the black dots are the CAN position

estimate of the surface ship, and the red triangle is the first valid GPS

fix after the vehicle surfaced. The pink ellipses on Figure 6b‐d are

3σ ellipses plotted at every acoustic update. The 3σ ellipses are

omitted from the CAN‐KIN without a DVL estimate, Figure 6a,

because the 3σ ellipses from the CAN‐KIN state estimator without a

DVL are so large the plot is unreadable.

Figure 7 shows the velocity estimate from CAN‐DYN for Dive

60, and Figure 8 shows the velocity estimate from CAN‐KIN without

a DVL for Dive 60. As before, the red dots are the Iver3 AUV

600 kHz RDI DVL measurements, the dashed blue line is the mean of

the CAN state estimator's velocity estimate, and the scale of the

vertical axis is significantly larger in Figure 8 than Figure 7.

Figure 7 shows the CAN‐DYN state estimator performs quite

well in both surge and sway, even during turns when the UV ex-

periences a drop in surge velocity from fin drag and an increase in

sway velocity, and Figure 8 shows the constant‐velocity kinematic

model typically used in CAN performs poorly in the absence of

a DVL.

Figures 6‐8 confirm that the results reported in Sections 5.2.1

and 5.2.2 are repeatable: the CAN‐KIN position estimate is poor and

quickly goes unstable without velocity observations from a DVL; in

contrast, the CAN‐DYN state estimator does not exhibit instability

and in fact, performs nearly as well as CAN‐KIN with a DVL. The

results from Dive 55 and Dive 60 are remarkably similar with the

obvious exception of the position of the surface ship, which was

piloted by a human operator and did not follow a programmed

mission track. Further, these data demonstrate that a single set of

model parameters can perform well across dives with the same

programmed mission.

(a) (b)

F IGURE 5 Ship and vehicle XY position estimate from experimental data from Dive 55 with the JHU Iver3 AUV in the Chesapeake Bay using
(a) CAN‐KIN with a DVL and (b) CAN‐DYN without a DVL. The pink ellipses are 3σ ellipses from the CAN state estimator plotted at
every acoustic update. As stated in Section 5.1.3, the Iver3 AUV attempted to follow the waypoint track using the manufacturer‐provided
navigation system (likely DR) and closed‐loop control system. This figure shows that for a typical, low‐cost UV like the Iver3 AUV, CAN‐DYN
without a DVL offers a stable position estimate that is very similar to CAN‐KIN with a DVL. AUV, autonomous underwater vehicle; CAN,
cooperative acoustic navigation; DR, dead reckoning; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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Section Summary: This section reported an investigation of the

repeatability of CAN‐DYN without a DVL by comparing the naviga-

tion results for two different dives that utilized identical mission

plans. XY position and velocity plots were presented, and we con-

clude that the CAN‐DYN results are repeatable across dives with

identical mission plans.

5.2.4 | Experimental results: CAN‐DYN without a
DVL generalizability

This section reports an investigation of the generalizability (or ro-

bustness) of CAN‐DYN without a DVL by comparing the navigation

results for two different dives that utilized different mission plans. In

Dive 57, the vehicle ran four 300 m tracklines spaced 50 m apart

while undulating from 1 to 5m depth at a maximum vehicle pitch

angle of 20 degrees. This type of undulating survey mission is very

commonly employed for conducting three‐dimensional AUV surveys

of water quality, in which the vehicle may be equipped with sensors

for water‐column properties such as conductivity, temperature,

pressure, oxygen, nitrates, Ph, optical backscatter, turbidity, and

fluorescence.

Figure 9 shows the mean of the CAN‐estimated UV and ship XY

position estimates for Dive 57. Figure 9a shows the CAN‐KIN state

estimate without a DVL. As in Dive 55 and Dive 60, CAN‐KIN per-

forms very poorly and exhibits instability in the absence of DVL

velocity observations.

Figure 10 shows the velocity estimate from CAN‐DYN without a

DVL for Dive 57, and Figure 11 shows the velocity estimate from

CAN‐KIN without a DVL for Dive 57. The red dots are the Iver3 AUV

600 kHz RDI DVL measurements, and the dashed blue line is the

mean of the CAN state estimator's velocity estimate. The vertical

scale is considerably larger in Figure 11 than in Figure 10. The Iver3

AUV is equipped with a depth sensor; thus, the accuracy of the

F IGURE 6 Ship and vehicle XY position estimate for Dive 60 using (a) CAN‐KIN without a DVL, and (b) and (d) CAN‐DYN, (c) CAN‐KIN
without a DVL on experimental data collected with the JHU Iver3 AUV in the Chesapeake Bay. The dotted black line is the CAN ship
position estimate, and the dashed blue line is the CAN UV position estimate in post‐processing, and the pink are the 3σ ellipses of the estimated
position plotted at each acoustic update. As noted in Section 5.1.3, the position estimate from the various CAN state estimators will
differ from the waypoint trackline if the UV position diverges from the waypoint trackline. This figure shows that the results from
Sections 5.2.1 and 5.2.2 are repeatable. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation;
DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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heave‐velocity estimate has little influence on the accuracy of the

depth estimate. In Dive 57, the horizontal fins are actuated sig-

nificantly more than in Dives 55 and 60 because the programmed

trajectory has the Iver3 AUV constantly pitching at an angle of ±20

degrees. The increased fin actuation increases the fin drag, which

results in an increased number of dips in surge velocity, all of which

increases the modeling difficulty.

The results presented here demonstrate that it is feasible to use

a single set of model parameters in the dynamic model of a low‐cost,
torpedo‐shaped UV without a DVL to achieve excellent navigation

F IGURE 7 CAN‐DYN without a DVL velocity estimation, Dive 60. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN‐DYN state estimator's velocity estimate. This figure demonstrates that the performance of
CAN‐DYN for accurate velocity estimation is repeatable across dives with the same mission. AUV, autonomous underwater vehicle; CAN,
cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 8 CAN‐KIN without a DVL velocity estimation, Dive 60. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN‐KIN state estimator's velocity estimate. This figure shows that the poor performance of

CAN‐KIN without a DVL is repeatable across dives with the same mission. AUV, autonomous underwater vehicle;
CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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results that generalize beyond the mission for which the parameters

were tuned. As noted in Section 5.1.5, Dive 57 is as a cross‐validation
of the dynamic‐model parameters, which were tuned for (constant

depth) Dive 55. It is possible that tuning the parameters for a dive

with some excitation in all DOF would result in a better velocity

estimation, and consequently, better navigational accuracy. How-

ever, a detailed treatment of parameter estimation for dynamic UV

models is beyond the scope of this paper. The purpose of this paper

is to evaluate the feasibility of CAN‐DYN for DVL‐denied navigation

of low‐cost UVs. While we do not consider this to be an exhaustive

result, it is strongly suggestive that the CAN algorithm parameters

reported herein are not “overtuned” for one particular mission pro-

file and perform poorly on differing mission profiles.

Section Summary: This section reported an investigation of

whether CAN‐DYN generalizes beyond constant‐depth rectangular

survey missions by comparing the navigation results for two differ-

ent dives that utilized very different mission plans. XY position and

velocity plots are presented, and we conclude that the CAN‐DYN

without a DVL results generalize to rectangular survey missions

conducted at nonconstant depth.

5.2.5 | Experimental results: CAN range‐only error
plots

This section reports a comparison of XY position error magnitude of

CAN‐DYN navigation for three dives in comparison to conventional

DR navigation.

As discussed in Section 5.1.4, CAN‐KIN with a DVL is the best

source of ground truth for these experiments, and we call the mag-

nitude of the difference of the XY position between CAN‐KIN with a

DVL and other state estimates as the “navigation error.”

Figure 12 shows navigation error of CAN‐DYN, as well as the na-

vigation error of the DR track. We omit the navigation error between

F IGURE 9 Ship and vehicle XY position estimate for Dive 57 using (a) CAN‐KIN without DVL, (b) and (d) CAN‐DYN (same plot), and (c) CAN‐
KIN with DVL on experimental data collected with the JHU Iver3 AUV in the Chesapeake Bay. The pink ellipses are 3σ ellipses from the
CAN state estimator plotted at every acoustic update. In Dive 57, the Iver3 was programmed to undulate between 1 and 5m depth
at a pitch angle of 20 degrees. This figure includes only the portion of the mission before the Iver3 began its ascent to the surface near the end
of the dive. This figure shows that CAN‐DYN offers a stable position estimate even with an undulating depth profile, in contrast to
CAN‐KIN without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log
[Color figure can be viewed at wileyonlinelibrary.com]
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CAN‐KIN without a DVL for reasons of figure scale and readability. The

mission length of each dive is different: Dive 55 is approximately 2400 s;

Dive 60 is approximately 2300 s; and Dive 57 is approximately 1150 s.

Figure 12 shows that the CAN‐DYN position estimate stays

within 8m of the position estimate from CAN‐KIN with a DVL for all

three dives.

Figure 12 also illustrates the advantage of bounded‐error posi-

tion estimation from CAN‐DYN compared with DR for low‐cost UVs.
The DR track is the Iver3's onboard position estimate using the

manufacturer‐supplied DR algorithm, which fuses the Iver3 compass

data and the RDI Explorer 600 kHz DVL. Previously reported results

have shown that DVL‐based DR performs well when the UV is

F IGURE 10 CAN‐DYN without a DVL Velocity Estimation, Dive 57. In Dive 57, the Iver3 was programmed to undulate between 1 m and 5 m
depth at a pitch angle of 20 degrees. This figure shows that it is feasible to use CAN‐DYN for velocity estimation across multiple mission
types without a DVL, even when the dynamic model parameters are not tuned for the specific mission type. AUV, autonomous underwater
vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 11 CAN‐KIN without a DVL velocity estimation, Dive 57. As was the case with Dive 55 and Dive 60, CAN‐KIN without a DVL
provides a poor estimate of transitional velocity in surge and sway. AUV, autonomous underwater vehicle; CAN, cooperative acoustic
navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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equipped with a high‐end INS (Kinsey & Whitcomb, 2004), but the

accuracy of DR is highly dependent on the accuracy of the INS;

however, a high‐end INS is typically far too large and far too ex-

pensive to be installed on a small, low‐cost UV like the Iver3 AUV.

However, as shown in Figure 12, these results may not hold for low‐
cost UVs equipped with a low‐end compass.

The cost of an underwater acoustic modem system to enable UV

CAN is less than the cost of a DVL, and the modem also provides a

means for real‐time acoustic telemetry to and from the UV. Before

the CAN‐DYN approach, low‐cost UVs were often equipped a DVL

instead of a CAN system if the user could not afford both sensors.

There was no other choice: DR provides a stable position estimate

while CAN‐KIN without a DVL performs very poorly. However,

Figure 12 illustrates that CAN‐DYN outperforms DR for approxi-

mately the same cost and offers bounded‐error position estimation.

Figure 13 shows the translation velocity error in all three DOF

for the three Iver3 dives, Dive 55, Dive 60, and Dive 57. The velocity

error is computed as the difference of the CAN‐DYN‐estimated and

true velocity measured by the Iver3's RDI Explorer 600 kHz DVL. As

is reported in Table 1, the RDI Explorer 600 kHz DVL measures

translations velocity at 5 Hz with a standard deviation of 1.4 cm/s.

Section Summary: This section reported a comparison of XY

position and velocity error of CAN‐DYN without DVL for three dives

in comparison to conventional DR navigation, using the CAN‐KIN
with DVL and the Iver3's onboard RDI Explorer 600 kHz DVL as

ground truth for position and velocity, respectively. We conclude

that CAN‐DYN without a DVL outperforms conventional DR navi-

gation, and CAN‐DYN offers bounded‐error navigational for ap-

proximately the same cost as conventional DR.

5.3 | Experimental results: CAN‐DYN utilizing
acoustic range and acoustic range‐rate observations

This section compares CAN‐DYN without a DVL utilizing acoustic

range observations to CAN‐DYN without a DVL utilizing acoustic

range‐rate observations in addition to acoustic range observations.

In previously published results, we reported that the addition of

range‐rate observations to acoustic range observations does not

significantly improve the accuracy of the CAN‐KIN state estimator in

simulation, either with a DVL (Harris & Whitcomb, 2015) or without

a DVL (Harris & Whitcomb, 2016). Our continued interest in acoustic

range‐rate observations, which are essentially observations of the

relative velocity between the ship and the submerged UV, is that the

range‐rate is already computed by the WHOI Micromodem II and not

currently utilized. In this section, we revisit the effect of adding

acoustic range‐rate observations to acoustic range observations on

the performance of the CAN‐DYN state estimator without a DVL on

experimental data gathered with the Iver3 AUV in the Chesa-

peake Bay.

As noted above in Section 5.1.4, we use CAN‐KIN with a DVL as

the ground truth for these plots and all uses of the term “navigation

error” are as per this definition.

Figure 14 shows the navigation error of the CAN‐DYN state

estimator (without a DVL) with and without the range‐rate ob-

servations. The two plotted signals in Figure 14 are indistinguishable,

indicating the addition of acoustic range‐rate observations to

acoustic range observations does not significantly improve the na-

vigation solution from the CAN‐DYN state estimator without velo-

city observations from a DVL in the situation of accurate model

F IGURE 12 XY position error magnitude from CAN‐KIN with a DVL. We do not have access to true position underwater, so we use CAN‐
KIN with DVL as the truth. For scale and readability reasons, the unstable state estimate from the CAN‐KIN without a DVL is omitted from the
figure. This figure shows that CAN‐DYN without a DVL state estimate performs quite well and stays within 8m of the CAN‐KIN with a DVL
state estimate for all dives. The figure also illustrates the advantage of CAN‐DYN state estimation in providing bounded‐error position
estimates, even without a DVL, compared with dead reckoning. CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure
can be viewed at wileyonlinelibrary.com]
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coefficients, low process noise, and minimal environmental dis-

turbances, such as water currents.

Similar results are achieved with an increase in the process noise

of the CAN‐DYN state estimator. Figure 15 shows the navigation

error with the process noise doubled for both acoustic range and

acoustic range‐rate observations and acoustic range‐only observa-

tions. The two signals are indistinguishable, indicating the addition of

acoustic range‐rate observations to acoustic range observations

does not significantly improve CAN‐DYN performance using high

process‐noise.
Additionally, we briefly investigated the performance of the

CAN‐DYN state estimator utilizing acoustic range and acoustic

range‐rate observations in the presence of modeling error of the

vehicle dynamics in the form of inaccuracies in the dynamic model

parameters. In our previous paper on parameter identification of

low‐cost, torpedo‐shaped vehicles with applications to CAN (Harris

et al., 2018), we showed that accurate model parameters are vital to

the accuracy of the CAN‐DYN state estimate without a DVL on si-

mulated data utilizing range‐only measurements. This result makes

intuitive sense because the CAN state estimator relies entirely on

the UV process model for velocity predictions in the absence of

external velocity corrections from a DVL. Figure 16 reports the error

with the mass and quadratic drag coefficients accurate to within 95%

of the original values. Again, the two signals are indistinguishable,

indicating the addition of acoustic range‐rate observations to

acoustic range observations does not significantly improve the per-

formance of the CAN‐DYN state estimator using degraded model

coefficients. Figure 16 shows that the accuracy of the CAN‐DYN

state estimator with range and range‐rate observations is also highly

dependent on the accuracy of dynamic model parameters.

We note the following two observations:

F IGURE 13 CAN‐DYN velocity error from Iver3‐mounted RDI 600 kHz DVL. This figure shows that the velocity estimate from CAN‐DYN
without a DVL for all three dives stays below approximately 30 cm/s. The velocity error is computed as the difference of the CAN‐DYN‐
estimated and true velocity measured by the Iver3's RDI Explorer 600 kHz DVL. As is reported in Table 1, the RDI Explorer 600 kHz DVL
measures transnational velocity at 5 Hz with a standard deviation of 1.4 cm/s. CAN, cooperative acoustic navigation; DVL, Doppler velocity log

[Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 14 XY position error magnitude from the CAN‐DYN
state estimator using experimental data collected with the Iver3
AUV. The purpose of this graph is to compare the performance of
CAN‐DYN without a DVL using acoustic range and range‐rate to that
of CAN‐DYN without a DVL using acoustic range‐only observations.
The two plotted signals are indistinguishable, indicating the addition
of acoustic range‐rate observations to acoustic range observations
does not significantly improve the navigation solution from the CAN‐
DYN state estimator without velocity observations from a DVL. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation; DVL, Doppler velocity log
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First, the covariance of the ship velocity must be smaller than

the covariance of the UV's velocity; otherwise, the relative‐velocity
correction is applied to the ship's velocity instead of the submerged

vehicle's velocity.

Second, the velocity covariance for a purely kinematic model will

grow unbounded with time without position or velocity corrections.

However, the velocity covariance of a second‐order dynamic model

with quadratic drag (15) will converge to a steady‐state value that

depends on the process noise. With a dynamic model, infrequent

velocity corrections, as are provided with acoustic range‐rate ob-

servations, have little net effect on the velocity or velocity covar-

iance. If the variance of the velocity measurement is higher than the

variance of the estimated velocity, the measurement will have little

effect. If the variance of infrequent velocity measurements is lower

than the covariance of the CAN‐DYN velocity estimate, the mea-

surement will decrease the velocity covariance at the instant the

measurement is applied. However, the velocity covariance will

quickly return to the steady‐state value governed by the process

noise associated with the second‐order dynamics.

We believe the above two observations explain why the addition

of acoustic range‐rate observations to acoustic range does not sig-

nificantly improve the state estimate from CAN‐DYN without a DVL.

We have no cause to believe the acoustic range rate velocity mea-

surements gathered in these experiments suffer from a lack of ob-

servability, and therefore, we do not believe the results would be

improved for different relative trajectories for the ship and UV.

Section Summary: This section reported a comparison of

CAN‐DYN without a DVL utilizing acoustic range observations to

CAN‐DYN without a DVL utilizing acoustic range‐rate observations in

addition to acoustic range observations with experimental data from

Dive 55. We conclude that the addition of acoustic range‐rate ob-

servations to acoustic range does not significantly improve the CAN‐
DYN without a DVL state estimate.

6 | CONCLUSION

This paper reports theory and experimental results for use of a

second‐order nonlinear dynamic model of UVs in CAN. We utilize the

CEKF formulation of CAN with one UV client (equipped with

acoustic modem, attitude, and depth sensors) with one surface ve-

hicle server (equipped with GPS and an acoustic modem). We de-

velop a second‐order nonlinear dynamical model of submerged UV

motion, including development of the nonlinear actuation function to

map the commanded fin angle and propeller speed to an overall

force‐moment vector on the UV, for use in CAN‐DYN.

The main contributions and conclusions from the paper are de-

tailed in Section 5 and are the following:

1. Section 5.2 reports a comparative performance analysis of CAN‐
DYN and CAN‐KIN using acoustic range‐only observations from

three dives.

a. Section 5.2.1 reports a comparison of the performance of

CAN‐DYN to CAN‐KIN, both without a DVL. XY position and

F IGURE 15 XY position error magnitude from CAN‐DYN utilizing
high process noise and no DVL using experimental data collected with
the Iver3 AUV. The purpose of this graph is to compare the
performance of the CAN‐DYN state estimator using acoustic range
and range‐rate to CAN‐DYN using acoustic range‐only observations
in the context of high process noise in the CEKF. The two signals are
indistinguishable, indicating the addition of acoustic range‐rate
observations to acoustic range observations does not significantly
improve CAN‐DYN performance using high process‐noise. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation; DVL, Doppler velocity log

F IGURE 16 XY position error magnitude from CAN‐DYN with
model coefficients that have a random error with a standard deviation of
5% of the true model‐parameter value using experimental data
collected with the Iver3 AUV. The purpose of this graph is to
compare the position estimate using acoustic range and range‐rate
to the CAN‐DYN state estimator using acoustic range‐only
observations in the context of dynamic model inaccuracies. The two
signals are indistinguishable, indicating the addition of acoustic
range‐rate observations to acoustic range observations does not
significantly improve the performance of the CAN‐DYN state
estimator using degraded model coefficients. A second key point is
how poor the error is with minor model inaccuracies. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation
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velocity plots are presented. We conclude that CAN‐DYN

without a DVL performs well, while CAN‐KIN without a DVL

exhibits poor performance and quickly goes unstable in the

absence of DVL observations.

b. Section 5.2.2 reports a comparison of the performance of

CAN‐DYN without a DVL to the “gold standard” of CAN‐KIN
with a DVL. We conclude that CAN‐DYN without a DVL

performs on par with CAN‐KIN with a DVL.

c. Section 5.2.3 reports an investigation of the repeatability of

CAN‐DYN without a DVL by comparing the navigation results

for two different dives that utilized identical mission plans. XY

position and velocity plots are presented, and we conclude

that the CAN‐DYN results are repeatable across dives with

identical mission plans.

d. Section 5.2.4 reports an investigation of the generalizability of

CAN‐DYN by comparing the navigation results for two dif-

ferent dives that utilized very different mission plans. XY

position and velocity plots are presented, and we conclude

that the CAN‐DYN results generalize to rectangular survey

missions conducted at nonconstant (undulating) depth.

e. Section 5.2.5 reports a comparison of XY position error mag-

nitude of CAN‐DYN without DVL navigation for three dives in

comparison to conventional DR navigation, using the CAN‐KIN
with DVL as ground truth. Also reported is a comparison of the

XY velocity error for the CAN‐DYN state estimator without a

DVL, computed as the difference between the CAN‐DYN velo-

city estimate and the Iver3's RDI Explorer 600 kHz DVL. We

conclude that CAN‐DYN without a DVL outperforms conven-

tional DR navigation, and CAN‐DYN offers bounded‐error na-

vigational for approximately the same cost as conventional DR.

2. Section 5.3 reports results from Dive 55 comparing CAN‐DYN

without a DVL utilizing acoustic range observations to CAN‐DYN

without a DVL utilizing acoustic range‐rate observations in addition

to acoustic range observations. We conclude that the addition of

acoustic range‐rate observations to acoustic range does not sig-

nificantly improve the CAN‐DYN without a DVL state estimate.

6.1 | Analysis

Unlike other positioning systems (e.g., 1Hz GPS position fixes for surface

and aerial vehicles), position corrections provided by OWTT CAN for

fully submerged vehicles are infrequent and nonunique. In the interval of

time between acoustic position corrections, the CAN state estimator

uses the estimated velocity to propagate the estimated position mean

and covariance, in accordance with the process model. Thus, accurate

velocity estimation is crucial to accurate position estimation. We con-

clude that the poor performance and instability of the position estimate

from CAN‐KIN EKF without a DVL is caused by the inability of a kine-

matic model to predict the UV's motion in the absence of frequent

external position and velocity observation corrections. Because the po-

sition estimates from CAN‐KIN with a DVL and CAN‐DYN without a

DVL are both stable, we have no reason to believe the poor performance

and instability of the state estimate from CAN‐KIN without a DVL is

caused by observability issues arising from insufficiently rich and varied

relative trajectories of the surface ship and UV.

6.2 | Limitations of CAN‐DYN

Although CAN‐DYN appears to outperform CAN‐KIN without a DVL,

we take care to note several limitations and considerations regarding

the CAN‐DYN approach. A primary consideration is that the accu-

racy of the navigation solution of CAN‐DYN without a DVL depends

nearly entirely on the accuracy of the parameters for the dynamic

model (Harris et al., 2018). Anecdotally, as evidenced by our pre-

viously reported simulation study on range‐rate using CAN‐KIN
without a DVL (Harris & Whitcomb, 2016), CAN‐KIN may perform

significantly better for certain ship‐vehicle geometries with a high‐
end AHRS, at least in simulation. However, these preliminary simu-

lation results have not been validated with experimental data. Ad-

ditionally, low‐cost UVs like the JHU Iver3 AUV are typically

equipped with a magnetic compass—it is rare to have access to a

high‐end AHRS, such as FOG, on a low‐cost UV.

6.3 | Future work

Although the focus of this paper is a comparison of kinematic and

dynamic process models, and the effect of range‐rate, on CAN, the

reported approaches can be extended to include the simultaneous

estimation of UV state and ambient water‐current velocity, as has

been studied extensively, for example, Claus et al. (2017), Crasta

et al. (2013, 2014), Gadre and Stilwell (2005a, 2005b), Gallimore

et al. (2019), Hegrenas et al. (2008), Webster et al. (2015).
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