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Abstract

This paper reports the theoretical development and at-sea field evaluation of a
novel combined underwater acoustic communication and navigation system, known
as cooperative acoustic navigation (CAN), for underwater vehicles (UVs) utilizing a
second-order dynamic plant model of the submerged UVs. The present state-of-the-
art in CAN is to utilize one-way travel-time acoustic modem telemetry together with
purely kinematic, constant-velocity plant process models. We term this approach
CAN-KIN. At present, CAN-KIN is utilized with an on-board bottom-lock Doppler
velocity log (DVL) providing frequent, high-accuracy velocity corrections. However,
DVLs are relatively expensive, have significant power requirements, can be physi-
cally large, and have limited acoustic bottom-lock range, which restricts their use to
a maximum of 25-420 m above the sea floor. In this study, we investigate the utility
of a second-order dynamic UV plant process model in CAN of UVs equipped with an
acoustic modem, attitude, and depth sensors, but lacking a DVL, and a surface ship
equipped with an acoustic modem and global positioning system. We term CAN
utilizing a dynamic model CAN-DYN. This paper reports results from at-sea field
trials conducted in the Chesapeake Bay with the Johns Hopkins University Iver3
UV. These experimental results indicate the submerged UV position estimate from
CAN-KIN is poor and even unstable in the absence of DVL velocity observations.
These field experimental results also show that CAN-DYN performs well without a
DVL. Our results suggest CAN-DYN without a DVL does not exhibit instability as
does CAN-KIN without a DVL, performs similarly to CAN-KIN with a DVL, and
outperforms DVL-based dead reckoning. Additionally, we report an experimental
evaluation of the effect of adding (relative) velocity corrections in the form of
acoustic range-rate observations to CAN utilizing a dynamic model without a DVL.
We conclude that the addition of infrequent velocity observations, such as those
provided by acoustic range rate, does not appear to improve the performance of
CAN-DYN without a DVL.
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1 | INTRODUCTION

This paper addresses a cooperative acoustic navigation (CAN) pro-
blem arising in underwater vehicles (UVs) equipped with an acoustic
modem, attitude, and depth sensors, but lacking a Doppler velocity
log (DVL), and a surface ship equipped with an acoustic modem and
global positioning system (GPS).

The case of UV navigation without a DVL sensor is relevant to
low-cost UVs for which the cost, physical size, or power draw of a
DVL may be prohibitive, and for missions in which the UV's altitude
above the sea floor (or depth beneath overhead ice) exceeds the
Doppler sonar's acoustic bottom-lock range—the most commonly
used DVLs operate at frequencies of 300-1200 kHz with maximum
bottom-lock acoustic range in sea water of approximately 25-420 m,
respectively.

Navigation methods for UVs utilizing velocity signals (e.g., dead
reckoning (DR) navigation or Doppler sonar navigation) or accel-
eration signals (e.g., inertial navigation) accumulate errors that grow
unbounded with time or distance traveled and require independent
observations of absolute position or velocity to correct the drift
accumulated in the navigation estimate.

For land and air vehicle navigation, GPS provides an ideal in-
dependent source of position corrections for acceleration and
velocity-based navigation systems (Chatfield, 1997), but GPS is un-
available to submerged UVs. Pressure depth sensor measurements
are an excellent correction source for the depth (only) of velocity-
based and acceleration-based position estimates. For submerged
UVs (for which GPS is unavailable), few methods currently exist for
absolute XY position corrections. The most common XY position
correction methods are time-of-flight acoustic navigation systems,
such as long-baseline (LBL) and ultra-short baseline (USBL) acoustic
navigation (Hunt et al., 1974; Kinsey et al., 2006; Milne, 1983).

In this paper we address range-based one-way travel-time
(OWTT) CAN in which a surface ship, equipped with a GPS and an
underwater acoustic modem, transmits an acoustic data packet that
encodes the precise time-of-launch (TOL) of the acoustic data packet
(using a precision clock synchronized to GPS time) as well as the
geodetic location and depth of the ships transducer at the TOL.
When a submerged vehicle equipped with an underwater acoustic
modem receives this data packet it timestamps the packet's time-of-
arrival (TOA) (using an on-board precision clock synchronized to GPS
time), and thus can compute the data packet's OWTT time-of-flight
and, using the measured sound velocity of the water column, can
compute the range from the ship transducer's location at TOL to the
vehicle's transducer location at TOA. This range observation, to-
gether with signals from other sensors on-board the submerged
vehicle such as a DVL, attitude and heading reference sensor (AHRS),
and depth sensor, can be utilized to estimate the vehicle's geodetic
position and velocity.

Range-only OWTT CAN uses ranges estimated from the acoustic
time-of-flight between subsea nodes, for example, between two ve-
hicles, or between a client vehicle and a server reference beacon of

known (fixed or moving) location such as a surface ship. This method

provides both bounded-error position estimates and long range
capabilities with reduced need for multiple costly fixed beacons, as is
the case with most LBL systems. Unlike traditional two-way travel-
time (TWTT) ranging, in which a single TWTT range can serve only
one client, OWTT ranging offers the advantage that a single OWTT
range can serve many clients. This method of combined acoustic
navigation and communication is commonly called synchronous-
clock CAN. For the duration of this paper, we define two important
variants of the CAN state estimator: CAN utilizing a purely kinematic
plant process model is called CAN-KIN, while CAN utilizing a dy-
namic plant process model is called CAN-DYN. Note that the process
model for the CAN state estimator is independent of the sensor
suite: both CAN-KIN and CAN-DYN can be utilized with or without
a DVL.

To the best of our knowledge, this paper is the first detailed
study of CAN utilizing a dynamic process model without a DVL, in-
cluding an extensive at-sea field experimental evaluation and also
the first reported evaluation of experimental acoustic range-rate
data with the CAN-DYN state estimator. The present study com-
plements and extends our previous studies on CAN (Harris &
Whitcomb, 2015, 2016, 2018a, 2018b).

The remainder of this paper is organized as follows:

1. Section 2 reviews previously reported literature on range-based
acoustic navigation of UVs.

2. Section 3 reports the methodology behind the CAN state esti-
mator, including the kinematic process model and the dynamic
process model, and the observation models utilized by this
algorithm.

3. Section 4 briefly reviews the results of previously reported si-
mulation results in the context of the CAN approaches reported
herein.

4. Section 5 compares CAN-DYN without a DVL to CAN-KIN with
and without a DVL on data obtained in at-sea experimental trials.
a. Section 5.1 describes the field experimental setup and

procedures.

b. Section 5.2 reports a comparative performance analysis of

CAN-DYN without a DVL and CAN-KIN with and without a

DVL using acoustic range-only observations from three ex-

perimental autonomous underwater vehicle (AUV) dives.

i. Section 5.2.1 reports a comparison of the performance of
CAN-DYN to CAN-KIN, both without a DVL.

ii. Section 5.2.2 reports a comparison of the performance of
cooperative acoustic navigation utilizing a dynamic model
(CAN-DYN) without a DVL to the “gold standard” of co-
operative acoustic navigation utilizing a kinematic model
(CAN-KIN) with a DVL.

iii. Section 5.2.3 reports an investigation of the repeatability of
CAN-DYN without a DVL by comparing the navigation re-
sults for two different dives that utilized identical mission
plans.

iv. Section 5.2.4 reports an investigation of the generalizability
of CAN-DYN without a DVL by comparing the navigation
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results for two different dives that utilized very different
mission plans.

v. Section 5.2.5 reports a comparison of XY position error
magnitude of CAN-DYN without DVL navigation for three
dives in comparison to conventional DR navigation, using
the CAN-KIN with DVL as ground truth. Also reported is a
comparison of the XY velocity error for the CAN-DYN
state estimator without a DVL, computed as the differ-
ence between the CAN-DYN velocity estimate and the
Iver3's RDI Explorer 600 kHz DVL.

c. Section 5.3 reports result from Dive 55 comparing CAN-DYN
utilizing acoustic range observations to CAN-DYN utilizing
acoustic range-rate observations in addition to acoustic range
observations.

5. Section 6 provides a summary and conclusion.

2 | LITERATURE REVIEW: UV
NAVIGATION

Few techniques presently exist for reliable three-dimensional posi-
tion sensing for UVs. Depth, altitude, heading, and roll/pitch attitude
can all be instrumented with high bandwidth “strapdown” sensors
mounted on the vehicle itself. XY position, in contrast, remains dif-
ficult to instrument and is normally measured acoustically. GPS
cannot be used by submerged vehicles. Conventional long baseline
(LBL) fixed
transponders—that is, fixed or moored on the sea floor (Hunt et al.,
1974; Whitcomb et al., 1998), on the hull of a surface ship (Milne,
1983), or on sea-ice (Bellingham et al., 1994). With a maximum

acoustic navigation systems require multiple

acoustic range of 5-10 km, fixed LBL networks can cover only limited
mission areas. USBL navigation employs an array of transducers on a
surface ship, and a transponder on a UV to compute the vehicle's 3-D
position relative to the ship. The prevalence of LBL and USBL sys-
tems within the oceanographic community is due to a lacuna of other
means for obtaining bounded-error XY position. Compact inertial
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navigation systems (INSs) have recently become commercially
available (Gaiffe, 2002; Larsen, 2000a). INSs require additional po-
sition and velocity navigation sources to correct for accumulated
errors. For a more exhaustive review of underwater navigation, see
Kinsey et al. (2006).

Simultaneous localization and mapping (SLAM) seeks to exploit
sensing capabilities of robots to correct for accumulated odometry
error by localizing the robot with respect to landmarks in the en-
vironment (Moutarlier & Chatila, 1989; Smith et al., 1990). One
SLAM methodology that has seen recent success in the near-sea-
floor underwater realm is to apply a view-based scan-matching ap-
proach, for example, (2005); Eustice, Singh,
& Leonard (2006); Eustice, Singh, Leonard, & Walter (2006);
Fleischer (2000); Garcia et al. (2001); Roman (2005).

The development of underwater acoustic modems, however, has

Eustice et al.

enabled underwater data telemetry at maximum ranges up to hun-
dreds of kilometers (Catipovic & Freitag, 1990; Kilfoyls & Baggeroer,
2000; Partan et al., 2007; Singh et al., 1996; Webster et al., 2015).
Maximum achievable acoustic telemetry range is strongly dependent
on the carrier frequency, size, and mass of acoustic transducer and
associated power electronics, and on the ambient acoustic conditions
of the water column. Most smaller AUVs, such as the lver3 AUV
(L3 OceanServer), shown in Figure 1, utilize carrier frequencies in the
10-25 kHz ranges with maximum data telemetry range of 1-10 km.
The propagation speed of acoustic telemetry in sea water about
1500 m/s, varying with temperature, salinity, and depth (Fofonoff &
Millard, 1983). Acoustic data throughput varies widely with range,
carrier frequency, acoustic bandwidth, encoding, and modulation

method.
2.1 | Literature review of range-based underwater
navigation

To the best of our knowledge, the earliest reported comprehensive
study of underwater-vehicle navigation using acoustic ranging was

FIGURE 1 The Iver3 AUV is an underactuated AUV whose control authority is provided by the commanded rotational speed of its ducted
propeller and commanded angles for the four red/yellow tail fins, all located at the stern of the vehicle. The 100 m depth-rated Iver3 AUV is one
of several commercially available small AUVs designed for oceanographic survey operations including biological, physical-oceanographic, and
bathymetric survey missions. (a) lver3 general diagram (Image Credit: L3 OceanServer); (b) JHU Iver3-3026 is deployed from a small boat.
AUV, autonomous underwater vehicle [Color figure can be viewed at wileyonlinelibrary.com]
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reported by Hunt et al. (1974) in which they reported at-sea experi-
mental evaluation of an acoustic approach to underwater-vehicle na-
vigation in which a single UV could detect range from a set of fixed
acoustic navigation transponders whose location was known a priori—
a method that has since been widely practiced and is now commonly
known as LBL acoustic navigation. In Kinsey and Whitcomb (2004),
the performance of bottom-lock Doppler navigation is evaluated with
respect to LBL. In her 2006 MS thesis, LaPointe (2006) reports a
single-beacon navigation approach in the form of a “virtual” LBL
system (VLBL). The UV position is determined by advancing
multiple ranges from a single transponder along the UV's DR track.
The UV position is then triangulated using these successive ranges in a
manner analogous to a “running fix” in surface ship navigation.
Simulation results for the Woods Hole Autonomous Benthic
Explorer (ABE) AUV are presented. Recent results on LBL have been
reported, including Batista (2015), Batista et al. (2014), Jakuba
et al. (2008).

Previous results by the authors and others (Bahr et al., 2009;
Paull et al., 2014; Walls & Eustice, 2014; Webster et al., 2012, 2013)
have shown the effectiveness of position corrections for Doppler and
inertial navigation with range-only OWTT underwater navigation
using ranges estimated from the acoustic time-of-flight of acoustic
data packets between subsea nodes, for example, between two ve-
hicles or between a vehicle and a reference beacon of known (fixed
or moving) location.

Webster et al. report a system and at-sea evaluation for me-
soscale cooperative navigation utilizing a 900 Hz carrier frequency to
obtain OWTT acoustic ranges of up to 450 km. They report extensive
field evaluation in which 11 acoustic beacons and four Seagliders
AUVs were deployed in the Beaufort and northern Chukchi Seas
(Webster et al., 2015).

Rypkema et al. report an inverted OWTT USBL system in which
an AUV is equipped with an array transceiver that can receive
acoustic transmissions from fixed acoustic beacon and calculate the
azimuth, elevation, and range (in instrument coordinates) to the
beacon which, together with vehicle attitude measurement from an
inertial measurement unit (IMU), enables the calculation of vehicle
position relative to the beacon with a single OWTT acoustic trans-
mission (Rypkema et al., 2017).

Studies by the authors and others report the development and
at-sea experimental evaluation of OWTT systems (including hard-
ware and software) for the navigation of UVs using maximum-
likelihood estimation (Eustice et al., 2011; Eustice, Whitcomb, Singh,
& Grund, 2006), the extended Kalman filter (EKF) (Webster et al.,
2012), and the extended information filter (EIF) (Webster et al.,
2013, 2010).

Gallimore at al. report the development and at-sea evaluation of
an OWTT system which the receiver performs carrier-phase tracking
of a phase-shift keyed (PSK) acoustic signal to create fine-scale
pseud-orange estimates in addition to, or in the absence of, OWTT
TOAs (Gallimore et al., 2019).

Crasta et al. (2018) report a study of approaches to range-based
CAN that support single or multiple UVs and single or multiple
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beacon-equipped surface vehicles. Hung et al. (2020) report a study
of range-based target navigation and pursuit employing a Bayesian
estimation approach and model predictive control (MPC) approach
for optimal control of “pursuit” vehicles in pursuit of moving “target”
vehicles.

Several authors have reported least-squares methods for single-
beacon range-only navigation (Hartsfield, 2005; LaPointe, 2006;
McPhail & Pebody, 2009; Scherbatyuk, 1995). Range-only target
tracking has been addressed using EKFs and maximum-likelihood
estimators (MLE) (Alleyne, 2000; Ristic et al., 2002; Song, 1999). The
use of EKFs for homing and single-beacon navigation is reported in
Baccou and Jouvencel (2002, 2003), Larsen (2000a, 2000b, 2002),
Vaganay et al. (2000).

Recently, Claus et al. (2017) reported the comparison of a par-
ticle filter (PF) and centralized extended Kalman filter (CEKF) for
OWTT navigation in post-processing on real-world data. The authors
compare model-aided odometry, in the form of a water-velocity bias
estimator, to DVL-aided odometry and conclude the PF slightly
outperforms the CEKF. In both cases, a kinematic process model
was used.

Most recently, Kepper et al. (2019) reported experimental re-
sults with OWTT acoustic navigation with a MEMS IMU and no DVL.
The EKF utilizes a constant-acceleration process model with an
accelerometer-bias model. The authors conclude the accuracy their
approach is comparable to existing methods. We reported a pre-
liminary numerical simulation study and pilot experimental evalua-
tion with the lver3 AUV for utilizing a dynamic UV plant model for
CAN (Harris & Whitcomb, 2018a). The encouraging results of this
preliminary paper are substantially extended herein.

Most previously approaches to UV navigation employ kinematic
process models. One exception is Hegrenas et al. which reports the
development and experimental evaluation of dynamic process
model-aided INS for UVs (Hegrenas et al., 2008).

A number of studies have directly addressed the simultaneous
estimation of UV state and ambient water current velocity (Claus
et al, 2017; Crasta et al, 2013, 2014; Gadre & Stilwell, 20053,
2005b; Gallimore et al., 2019; Hegrenas et al., 2008; Webster et al.,
2015). Because the addition of estimation of ambient water current
velocity is well understood, for simplifying of exposition in the pre-
sent study we adopt the common approach that ambient water
current is negligible, for example, Bahr et al. (2009), Moreno-Salinas
et al. (2019), Rypkema et al. (2017).

2.1.1 | Literature review of observability of single-
beacon range-based UV navigation

The observability of single-beacon range-based UV navigation has
been studied extensively. Generally, previously reported studies
have shown that the state of the submerged UV is observable pro-
vided there is sufficient richness and variability in the geometry of
the slant ranges between the UV and a single (fixed or moving)
acoustic beacon.
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Scherbatyuk reported UV positioning method in the context of
LBL acoustic positioning systems with on-board attitude sensor and
velocity sensor based on least squares. Monte Carlo simulation re-
sults are presented to corroborate the analysis (Scherbatyuk, 1995).

Song reported necessary and sufficient conditions for local ob-
servability in the context of two-dimensional maneuvering with
range measurements from a single beacon (Song, 1999). The ap-
proach taken in this paper utilizes the Fisher information matrix
developed from the analytical treatment of system dynamics and
noisy measurement equations established in a modified polar co-
ordinate system. Numerical simulation results are presented to
corroborate the analytical results.

Ristic et al. (2002) address the problem of target motion tracking
from the range and range-rate measurements. A theoretical
Cramer-Rao bound for the performance of an unbiased range-only
tracking algorithm is derived, and three algorithms for target motion
analysis are developed and compared to the theoretical performance
bound. The three algorithms are the MLE, the EKF, and the reg-
ularized PF. Experimental validation of the theory is also presented.

Several studies addressed the observability of single-beacon
range-only navigation with EKF estimation approaches (Gadre, 2007;
Gadre & Stilwell, 2004, 2005a, 2005b; Lee et al., 2008). In Ross and
Jouffroy (2005), the authors report a nonlinear observability analy-
sis, identifying conditions under which the system is locally weakly
observable. In Jouffroy and Reger (2006), the authors report em-
ploying nonlinear differential algebraic methods to derive conditions
for observability.

Batista et al. (2010) address the observability for UVs navigation
based on the range to a single beacon where the vehicle is equipped
with an IMU and range measurements to a single source, in addition
to angular velocity readings. The paper develops the necessary and
sufficient conditions for observability for use in motion planning and
control for an UV equipped with an IMU providing angular position
and velocity measurements and range measurements to a single
transducer. A Kalman filter (KF) is applied for body-frame state es-
timation, and simulation results are reported. In Batista et al. (2011),
the authors extend their previous study (Batista et al., 2010), to
address the necessary and sufficient conditions for observability of
an mobile agent based on the based on the range to a single source,
in addition to relative velocity readings (range-rate observations).

Crasta et al. (2013) address observability of an UV moving in
two dimensions using acoustic range to a single beacon at a known
location with a nonlinear, kinematic model. In the presence of known
ocean currents, the system is found to be globally observable in the
sense of Hermann and Krener (1977) for a constant relative course
and constant (nonzero) relative course rate inputs. On the other
hand, with unknown ocean currents the system fails to be locally
weakly observable with constant relative course but the authors
characterize the set of indistinguishable states from a given initial
position and ocean current configuration and note that observability
can be achieved with constant (nonzero) relative course rate in the
presence of unknown, constant ocean currents. In Crasta
et al. (2014), the authors extend the results of Crasta et al. (2013) to

address observability of an UV moving in three dimensions in the
presence of ocean currents, under the assumption that the vehicle
can only measure its acoustic range to a fixed transponder. A non-
linear, kinematic model is used and the UV can undergo any man-
euvers that are completely parameterized by the body velocity, a
constant flight path angle, and a constant yaw rate. In the presence
of known, constant ocean currents, the 3D kinematic model of the
AUV that corresponds to trajectories with nonzero flight path angle
and yaw rate is observable. When the latter conditions fail, the au-
thors give a complete characterization of the sets of states that are
indistinguishable from a given initial state. In the case of unknown
constant ocean currents, the model is shown to be locally weakly
observable for nonzero yaw rate.

Quenzer and Morgansen (2014) explored control approaches to
improve navigation performance of UVs deployed in survey missions.
The authors propose methods for local observability measures to
determine the immediate action (control) for a UV. Simulation stu-
dies show that one of the proposed methods has comparable or
better performance than an existing maximum information gain
method in a lawn mower style survey mission.

Arrichiello et al. (2013) address observability of single and
multiple UVs navigation using acoustic range measurements with on-
board sensors, including depth, velocity, and acceleration sensors.
The paper examines the cases of a single UV ranging off a single
transponder and multiple UV using inter-vehicle ranges. The paper
shows that both the problems of absolute navigation of a single
vehicle and the relative navigation of multiple vehicles may be
treated using the same mathematical framework. Tailoring concepts
of observability derived for nonlinear systems, the authors analyze
how the performance in navigation depends on the types of motion
imparted to the UV. They propose a well-defined observability me-
tric and report simulation and experimental validation with an EKF
state observer. They conclude that performance depends on the
UV's motion.

Parlangeli and Indiveri (2014) address observability for single-
beacon ranges with a kinematic UV model. Their paper extends
previous results building on an augmented state technique allowing
to reformulate the nonlinear observability problem in terms of a
linear time varying (LTV) one. Globally unobservable motions are
characterized in terms of initial conditions and commanded velocity
signals. An underactuated model is considered, and a numerical si-
mulation study is presented to demonstrate certain cases where the
system is unobservable.

De Palma et al. (2017) address observability for the single bea-
con navigation problem of an UV using a nonlinear, kinematic
“double integrator” model with acceleration as the model input and
range to a stationary beacon as the output. The observability analysis
addresses two complementary issues: the local weak observability
for the
Indiveri (2014), the global observability for a LTV representation of

nonlinear system, and, similar to Parlangeli and

the system derived through a state augmentation method. The pro-
posed methods for observability analysis are discussed in different

case studies (e.g., 2D/3D, absence/presence of current, and presence
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of additional sensors like a DVL and a depth sensor). A numerical
simulation study is presented to corroborate the analytical ob-
servability results.

Moreno-Salinas et al. (2019) report an exhaustive study of ap-
proaches to range-based CAN that support single or multiple UVs
and single or multiple beacon-equipped surface vehicles, including
addressing issues including observability and optimal sensor
placement.

Additionally, several authors have addressed OWTT navigation
of surface and UVs in a SLAM framework using distributed estima-
tors (Bahr, 2009; Bahr & Leonard, 2006; Bahr et al., 2009; Bailey
et al., 2011; Fallon et al., 2010).

2.2 | Literature review of UV navigation with
acoustic range and range rate

To the best of our knowledge, the earliest study of underwater-
vehicle navigation employing acoustic detection of both range and
range rate was the 1978 study by Spindell et al. (1976), which ex-
tended the approach reported in Hunt et al. (1974) by reporting an
experimental evaluation of an approach to underwater-vehicle na-
vigation in which a single UV could detect both range and range rate
from a set of fixed navigation whose location was known a priori.

Larsen studied employing acoustic range rate in addition to
acoustic range for LBL navigation but did not report specific navi-
gation algorithms for employing range rate nor any experimental
evaluation (Larsen, 2000c, 2006). In Green and Scussel (2007), the
authors report the notion of an underwater acoustic modem esti-
mating and compensating for the Doppler shift of a received acoustic
data packet transmission but do not address how a Doppler estimate
might be used for navigation.

Ristic et al. (2002) and Batista et al. also investigated the use of
range and range-rate for vehicle navigation, as described in
Section 2.1.1.

In Bourgeois (2007), the author reported the experimental
evaluation of algorithms for acoustically determining the relative
position of two marine vehicles by employing measurement of
acoustic range and acoustic range rate with specific focus on esti-
mating relative positioning conditions, such as the closest-point-of-
approach (CPA) of two vessels for the purpose of collision-avoidance.

In Harris and Whitcomb (2015), we investigated the effect of
adding of acoustic range-rate measurements to acoustic range
measurements in CAN using a kinematic model when the UV was
equipped with a DVL. Using data obtained in numerical simulation,
we concluded the addition of range-rate observations had minimal
impact on the performance of CAN with a kinematic model when the
UV was equipped with a DVL.

In Harris and Whitcomb (2016), we investigated the effect of
adding of acoustic range-rate measurements to acoustic range
measurements in CAN using a using a kinematic model when the UV
not equipped with a DVL and was equipped with either (a) a high-
accuracy fiber-optic gyroscope (FOG) IMU typically available on
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high-end AUVs or (b) a low-end flux-gate compass and attitude
sensor typically available on low-end AUVs. We concluded two
things: First, for a UV equipped with a high-end fiber optic gyro-
compass (FOG) attitude sensor, which is exceptionally accurate,
acoustic range-rate observations in addition to acoustic range ob-
servations may offer modest improvements in the steady-state re-
sponse and a significantly smaller error in the transient response of
CEKF in CAN without a DVL compared to range-only navigation,
especially in the situation when the acoustic range measurements
are poor but the acoustic range-rate measurements are still valid.
Second, a UV equipped with a low-end attitude sensor, which is ty-
pical on small, low-cost UVs such as the Iver3 AUV, we observed
poor performance and instability of the CAN state estimator utilizing
the kinematic model without a DVL when the UV was equipped with
a low-cost attitude sensor such as the one available on the JHU
Iver3 AUV.

3 | CAN: METHODOLOGY

This section details the approach to OWTT CAN utilized to achieve
the simulation and experimental results reported in Section 4 and
Section 5, respectively.

Two formulations of CAN state estimators are presented in this

section:

1. Cooperative coustic navigation utilizing a kinematic model (CAN-
KIN), described in Section 3.4, utilizes a nonlinear, kinematic
model of the UV's motion with or without a DVL.

2. Cooperative acoustic navigation utilizing a dynamic model (CAN-

DYN), described in Section 3.5, utilizes a nonlinear, second-order
dynamic model of the UV motion in place of velocity observations
from a DVL.

3.1 | CAN formulation and implementation
We formulate the CAN state estimator as a discrete-time, delayed-
state CEKF that uses a discrete process model to fuse depth and
gyrocompass observations for the vehicle, GPS observations for the
ship, and OWTT range and acoustic range-rate observations be-
tween the vehicle and the ship. Delayed states are required for
causal processing of range measurements. The extended Kalman
filter is an extension of the Kalman filter to nonlinear plants and
observations by linearizing about the time-varying estimated state.
For a full derivation and formulation of the EKF, see Bar-Shalom
et al. (2001) and Thrun et al. (2005). The CEKF formulation of CAN
assumes access to vehicle and ship sensor data simultaneously.
Previous results have shown that the CEKF approach can be ex-
tended exactly to the decentralized extended information filter
(DEIF) formulation of cooperative navigation (Webster et al., 2013).
The process model for the vehicle is linearized and discretized
for use in the EKF using standard methods (Bar-Shalom et al., 2001).
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Additionally, the reader is referred to Webster et al. (2012) for the
subtleties of the modified process prediction, which occurs when the
state augmentation is performed in concert with the process-

prediction step.

3.2 | CAN state description

As is typical in CAN (Walls & Eustice, 2011; Webster et al., 2009,
2012), we define the state vector, x, as the composite of the current
vehicle state, current ship state, and n delayed states. As mentioned
above, delayed states are required for causal processing because the
range measurement occurs between the ship at TOL and the vehicle
at TOA. The state vector used in the CEKF for both CAN-KIN and
CAN-DYN is

.
Sl T T T T T
x={x xI x_1 x4 . x_, xs_,,|, (1)

where the current ship state x; € R* is a 4-degree-of-freedom (DOF)

vector containing the XY -position and respective velocity in world frame
x=|xy x vyl 2)

and the current vehicle state x, € R is a 12-DOF vector containing
the local-level pose and body-frame velocities

xv=‘sT o VT W i (3)
X ¢ u p
s=1|Yy p=16 v=1|v w=|q|, (4)
z ) w r

where s € R® is the vehicle position and ¢ € R is the vehicle atti-
tude (in Euler angles) of the vehicle body-frame with respect to a
local North-East-Down (NED) inertial frame of reference, v € R3 is
the body-frame linear velocity, and w € R? is the body-frame angular

velocity. For convenience, we also define
T T
7)=’5T ¢T‘v=|VTwT|, (5)

where 7 € R® is the world NED-frame UV position and velocity
vector and v € Ré is the UV body-frame velocity vector.

3.3 | CAN ship process model
Because the ship has access to GPS position, we utilize a purely
kinematic model for the ship in both CAN-KIN and CAN-DYN,

o _Jo1 0
Xs = [0 O]Xs + [H]Ws’ (6)

where w;~N(0, Q;) € R? is the zero-mean Gaussian process noise
with variance Q. Note that ship positions and velocities are re-
presented in world-coordinates. In practice, we utilized process noise
with a standard deviation of 0.1 m/s in x and y translation velocity

and 1 degree/s in yaw rate.

3.4 | CAN-KIN: Kinematic UV process model
In CAN-KIN, we utilize a nonlinear, constant-velocity kinematic
process model of the submerged UV, identical to the one reported in
Webster et al. (2012).

The vehicle kinematics are

7 = Klp)v, (7)
where
R(@) ©
K(p) = 8
(®) [ N L((p)] (8)

is the kinematics matrix. R(p) is the transformation between inertial
and body-frame linear velocities, and L (¢) is the transformation be-

tween inertial and body-frame angular velocities. Explicitly,

R(¢) = Rz (zl))TRy (e)TRx (¢)T; (9)

where

cos() sin() O cos(@) 0 —sin(8)
R, () = | —sin(y) cos(p) O RO =] 0 1 0
1

0 0 sin(6) 0 cos(6)
1 0 0
R(#) = |0 cos(@) sin(g) |, (10)
0 —sin(¢) cos(¢)
and
® = erd + Re(¢p)eb + R (PR, (0)0 (11)
1 0 —sin(6)
=|0 cos(®) sin(g)cos(6) |g, (12)
0 —sin(¢) cos(¢)cos(6)
Lipt
where e =]100TeR%e,=]010 €R® and e3=

|001[ €R3. Thus,

1 sin(¢)tan(6) cos(gp)tan(6)
Lig)=|0  cos(gp) —sin(p) | (13)
0 sin(¢)sec(6) cos(p)sec(d)

We re-write (7) in state-space representation with the full 12
DOF vehicle state for use in the CEKF

0 0R( O 00

%=[00 O Ll 100, (14)
00 0O O Io
00 0 O 01

where w, ~N(0, Q,) € R12 s a vector of zero-mean Gaussian process
noise with Q, as the variance. UV positions are represented in in-
ertial world coordinates, and UV velocities are represented in UV
body coordinates. Empirically tuning the process-noise variance is a
generally accepted practice for EKFs, and our best, most consistent
results were achieved utilizing process noise with a standard devia-
tion of 0.05 m/s? in translation velocity and 5 degrees/s? in angular

rate. To ensure consistency when comparing results from the two
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different process models, we used the same values for process noise
in both CAN-KIN and CAN-DYN.

3.5 | CAN-DYN: Dynamic UV process model
CAN-DYN utilizes the second-order, nonlinear UV dynamics as the
process model, as opposed to CAN-KIN which assumes a constant-
velocity kinematic process model. The form of the second-order,
nonlinear dynamics for an UV is well understood and has been since
the 1950s (Society of Naval Architects and Marine Engineers (U.S.),
Technical & Research Committee, & Hydrodynamics Subcommittee,
1950). Several sources develop the equations from first principles,
including (Fossen, 1994; Paine, 2018) as

MV + C(v)v + D(V)v + Glp) = T(v, £), (15)

whose variables are defined in Section 3.2. We combine the kine-
matics (7) and the dynamics (15) to form the state-space process

model for use in the CEKF as

. _|o K(p) " +‘ 0
“Tlo =M 1DW) +cw) | | M v, ) — Glo)

0

+ ’ 1 ‘ Wy, (16)

where

o K(p):R® - R6*6 s the kinematics matrix, as defined in
Section 3.4,

o M e R®*¢ js the positive-definite symmetric (PDS) inertia matrix,

e D(v):Ré = R6%¢ is the negative-definite symmetric (NDS) hy-
drodynamic drag matrix,

e C(v): R — R s the centripetal and Coriolis matrix,

o (v, &) : Ré x Rk+ — RS s the vector control forces and moments
described in Section 3.5.1,

o Glp): R® = RS is a vector of restoring forces and moments, and

e w,~N(0,Q,) € R1Z is the zero-mean Gaussian process noise.

In practice, we achieved the best results with CAN-DYN
when utilizing process noise with a standard deviation of 5cm/s?
for the translation velocity and 5 degrees/s? for the angular rate.
The standard deviation in translation velocity is a full order of
magnitude lower with the dynamic model than the kinematic model
because, when the EKF does not have access to a DVL, the dynamic
model is the main source of velocity information.

The inertia matrix, M, is a PDS matrix composed of the sum of
the rigid-body inertia and added inertia, with scalar mass elements
m;. It is convenient to write in block-matrix form, with block ele-
ments denoted M; € R¥3, because we use the block form to con-
struct the Coriolis matrix.

M1 Mip
M= Mg + My = 17
ke + Mg [Mu My, (17)
=diag([ma1, ma2, M3z, Mag, Mss, Meg)). (18)
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The drag matrix, D(v), is a negative-definite symmetric (NDS)
matrix composed of the product of the quadratic hydrodynamic drag

coefficients and their respective velocities

D(v) = diag(|v|) diag([d11, d22, d33, daa, dss, dgel). (19)

In constructing this drag matrix, we assume that there is no coupling
between DOFs, that the vehicle is symmetric about the x,y, and z
axes, and that linear drag terms have a small effect compared with
their quadratic counterparts, which is discussed in Martin (2008).
Note that the drag matrix inherently captures the effects of what
many authors refer to as body lift. The diagonal terms dy; and ds3
correspond to a body lift force in the y and z directions, respectively.

We parameterize the Coriolis matrix C(v) from M in (17) as

Clv) = 0 —J (M11V + Mlza)) (20)
—J(M11v + Mppw) —J(Ma1v + Mopw)
where J() is the skew-symmetric operator.
The buoyancy vector, G(g), is defined as
R (p)e
6lp) = 716388 (21)
—J(b)R (p)pV3gL,

whereez=|0 0 1| € R3 g. € R is the gravitational acceleration
scalar with units of m/s?,8.3 = (m — pV) € R® is the net buoyant
force in Newtons, and b € R3 is the vector from the center of

buoyancy to the center of gravity in meters.

3.5.1 | Dynamic UV process model control inputs
The CAN state estimator described and utilized herein requires the
value of the control input signals, &, but it is completely agnostic to
the specific control law utilized by the UV.

This section defines the nonlinear function,
(v, &) : R x Rk — R® to map the UV's control inputs, &, into a
force-moment vector acting on the vehicle. We assume the vehicle is
actuated with a combination of hydrodynamic control surfaces (e.g.,
fins) and propellers.

We define the following coordinate frames for each fin:

e V—Vehicle coordinate frame, centered at the UV's center of
pressure (CP).

e F—Fin coordinate frame, centered at the fin CP when the fin is at
commanded fin angle, §, with the x-axis along the chord line of the
fin and the y-axis pointing away from the center line of the
vehicle.

e Fo—Fin coordinate frame at § = 0.

o W—Flow coordinate frame, corresponding to the flow of water
across the fin.

Note that the commanded fin angle, &, is not the fin angle of
attack to incident flow, a, so the F and W frames are generally not
coincident. The position of the CP of the it fin in the vehicle frame is
p,-v € R3 is the vector from the vehicle's center of gravity (CG) to the
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CP of the ith fin, and ¢'.V € R is the angular position of the ith fin in
the vehicle frame. We define the transformations between co-

ordinate frames of each fin as

RY = RY R € RS, (22)
RYy = RYRE, € R3x3, (23)

where RY is the transformation from the fin frame to the vehicle
frame and R}, is the transformation from the flow frame to the

vehicle frame. The individual transformations are defined as

Rity = Ri() (24)
Rfo = R, (5), (25)
Riy = Ry (at), (26)

where (24) is assumed because, for the vehicle used in the experi-
mental results presented in this paper (Sections 4 and 5) and many
other UVs, the x-axis of the fin frame aligns with the x-axis of the
vehicle frame. The velocity of the ith fin through the water at the fin
CP in vehicle coordinates is

By =v+ Jw) p, (27)

and, thus, the velocity of the ith fin in the fin frame F is

of = RTY 5. (28)

Assuming flow along the span of the airfoil does not affect the lift or

drag, we use a projection matrix to find the flow along the x and

100
b, =|0 o ol (29)

001

Z axes

from which we can find the angle of attack, a, as
o = atanZ(f)Z_, pg) (30)

where atan2 is the four-quadrant arc-tangent function. The lift and
drag coefficients, C («;) and Cp (a;), respectively, are a function of the
angle of attack. We then compute the hydrodynamic lift and drag
force

1 F |12
L) = 2pACo(a) || 85, | (31)

2

D(a) = 5pACo ) , (32)

Pl
where A is the surface area of the fin. The force vector in the flow

frame, W, is f% = —|D 0 L. Thus, the force vector from the

ith fin in the vehicle frame is

f'= Ri " (33)
and the force and moment vector from is

v

The total force and moment vector on the vehicle with a total of N

control surfaces is thus

N
T
= 2n+ | Bwf0us | (35)
where g, is the propeller thrust coefficient such that

is the axial thrust of the propeller. This simplified thruster model is a
reasonable assumption because we are modeling a ducted propeller

with a high jet velocity compared to the advance velocity of the vehicle.

3.6 | CAN observation models

The range and range-rate observation models are nonlinear func-
tions of the vehicle state at TOA and the ship state at TOL. Ob-
servation models of the additional sensors, including the DVL, GPS,

depth sensor, and gyrocompass, are detailed in Webster (2010).

3.6.1 | CAN range observation model

As reported in (Webster et al., 2012), the range observation model

can be written in matrix notation as
Zmg = (xTATAx)§ + Ving, (37)
where Vg ~N(0, Ripg) € R is zero-mean Gaussian noise and
A=]|-J, 0.0 J 0.0, (38)
with J, and J; defined such that
Jxy=1xy z[, (39)

Jxs=|X y O \T. (40)

The measurement covariance, Ry, is the variance of the range
measurement. Table 1 shows the standard deviation of the range
measurement gathered from experimental data.

The Jacobian of the range measurement with respect to the full

state, X, is
Hk _ 0 z‘;ng (X)
X
X=Hi | k-1 (41)
T -1 T
= -t A Aty k) 2o ATA
3.6.2 | CAN range-rate observation model

As reported in Harris and Whitcomb (2016), the range-rate ob-
servation model is the time derivative of (37). Explicitly,

1 R
Zr = (XATAX) 2XTATAX + iy, (42)
where v, ~N(0, R,;) € R is zero-mean Gaussian noise and

A=|-j, 0.0 o.of. (43)



HARRIS ano WHITCOMB

Measurement Measurement update rate

State source or update period
Range WHOI Micromodem  5-15s
Range-rate WHOI Micromodem 5-15s
Depth OceanServer 4 Hz
Heading, OceanServer 4 Hz

pitch, roll
Translation 600 kHz RDI DVL 5Hz (when used)

Velocity
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TABLE 1 L3 OceanServer Iver3 AUV
Measurement SD measurement sources and noise statistics
im
0.1m/s
10cm

1

1.4 cm/s (when used)

Note: These noise characteristics were determined from static tests of the sensors conducted by the
authors, with the exception of the RDI DVL, which we obtained by interpolating data provided by the

manufacturer for the UV's commanded speed in these experiments (1.3 m/s).

Abbreviations: AUV, autonomous underwater vehicle; DVL, Doppler velocity log.

with J, and J; defined such that
L R@x =%y 2 (44)
Joxs=1% v OT. (45)
The measurement covariance, Ry, is the variance of the range-
rate measurement. Table 1 shows the standard deviation of the
range-rate measurement gathered from experimental data.
The Jacobian of (42) with respect to the full state, X, is

— 9 7y (x)

H
« dx

X=pi| k-1

_3 (46)
B _(ﬂ"T'kflATA“k‘kfi) 2(/“‘kT|k—1ATA)(/"kT|k71ATA#k|k71
1
2 Ao AT
i A AR ] 21 ATA + ATA),

where 4 is the estimated mean of the world-frame position.

4 | SIMULATION RESULTS: CAN WITH A
DYNAMIC UV PROCESS MODEL UTILIZING
ACOUSTIC RANGE ONLY OBSERVATIONS

A challenging aspect of experimental field evaluation of UV navigation

methods is that it is often difficult or impossible to know the “true”

vehicle state (position and velocity), and thus it is difficult or impossible
to quantify precisely the “true error” of a proposed navigation method.
In Section 5, we report at-sea field experimental trials, in which we
necessarily use indirect methods to evaluate navigation performance. In
numerical simulation studies, however, it is always possible to know the
“true” vehicle state, and thus possible to quantify precisely the “true
error” of a proposed navigation method. We reported a simulation
study in our previous work (Harris & Whitcomb, 2018a), in which we
concluded that CAN-DYN without a DVL vastly outperformed CAN-
KIN without a DVL and performed approximately as well as CAN-KIN
with a DVL. In that preliminary study, we also reported that the si-
mulation results corroborated the results from a preliminary pilot field
experiment conducted in the Chesapeake Bay. Indeed, the simulation
results are quite similar to the results from field experiments and show
that the navigation error for both CAN-DYN without a DVL and CAN-
KIN with a DVL is on the order of meters. Our main concern, however,
with the simulation study is that the dynamic model used to compute
the “true” state was the same as the dynamic model used as the process
model. In reality, a UV operating in the real world will experience
exogenous forces unmodeled dynamics not perfectly modeled by 15.
Thus, in the present study, we seek to corroborate our previous si-
mulation results with experimental results from at-sea field testing in
Section 5 below.

TABLE 2 Acoustic modem time division multiple access (TDMA) cycle

Time Action Comment Packet type
00s Begin of TDMA cycle

00s OWTT data packet + range uplink AUV status packet to Ship AUV status uplink. Not used for CAN 64 byte, PSK
05s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK
10s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK
15s OWTT data packet + range downlink of CAN data packet from Ship to AUV Used for CAN 64 byte, PSK
20s TWTT range ping AUV to Ship, with Ship to AUV reply TWTT range. Not used for CAN 32 bit, PSK
25s Reserved for commands sent to AUV from Ship

30s End of TDMA cycle Begin next TDMA cycle

Abbreviations: AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; OWTT, one-way travel-time; TWTT, two-way travel time.
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TABLE 3 Sensors used for comparative experimental evaluations

Sections  Comparision Range
521 CAN-DYN without DVL to CAN-KIN without DVL ~ KIN DYN
522 CAN-DYN without DVL to CAN-KIN with DVL KIN DYN
523 CAN-DYN without DVL repeatability DYN
524 CAN-DYN without DVL generalizability DYN
525 CAN-DYN without DVL vs. DR DYN DR
5.3 CAN-DYN, no DVL, with and without range-rate DYN

DVL Range-rate Depth AHRS Ship GPS
KINDYN  KIN DYN  KIN DYN
KIN KIN DYN  KIN DYN  KIN DYN
DYN DYN DYN
DYN DYN DYN
DYNDR DYNDR DYNDR
DYN with and without =~ DYN DYN DYN

Abbreviations: AHRS, attitude and heading reference sensor; CAN, cooperative acoustic navigation; DVL, Doppler velocity log; GPS, global positioning

system.

5 | EXPERIMENTAL RESULTS: CAN WITH
A DYNAMIC UV PROCESS MODEL

This section reports the results of three at-sea field trials to conduct
a comparative experimental evaluation of the reported CAN state
estimators on experimental data obtained with JHU's Iver3 AUV
(L3 OceanServer), shown in Figure 1, in the Chesapeake Bay. Data
are reported for three dives with the Iver3 AUV described in
Section 5.1.1: Dive 55, 57, and 60. This section is organized as
follows:

1. Section 5.1 describes the field experimental setup and
procedures.

2. Section 5.2 reports a comparative performance analysis of CAN-
DYN without a DVL and CAN-KIN with and without a DVL using
acoustic range-only observations from three experimental AUV
dives.

a. Section 5.2.1 reports a comparison of the performance of
CAN-DYN to CAN-KIN, both without a DVL.

b. Section 5.2.2 reports a comparison of the performance of
CAN-DYN without a DVL to the “gold standard” of CAN-KIN
with a DVL.

c. Section 5.2.3 reports an investigation of the repeatability of
CAN-DYN without a DVL by comparing the navigation results
for two different dives that utilized identical mission plans.

d. Section 5.2.4 reports an investigation of the generalizability of
CAN-DYN without a DVL by comparing the navigation results
for two different dives that utilized very different mission
plans.

e. Section 5.2.5 reports a comparison of XY position error
magnitude of CAN-DYN without DVL navigation for three
dives in comparison to conventional DR navigation, using the
CAN-KIN with DVL as ground truth. Also reported is a com-
parison of the XY velocity error for the CAN-DYN state es-
timator without a DVL, computed as the difference between
the CAN-DYN velocity estimate and the Iver3's RDI Explorer
600 kHz DVL.

3. Section 5.3 reports results from Dive 55 comparing CAN-DYN
utilizing acoustic range observations to CAN-DYN utilizing

acoustic range-rate observations in addition to acoustic range

observations.

5.1 | CAN experimental setup and procedure

We conducted field trials with a surface ship and JHU's lver3 AUV
(L3-Harris OceanServer) (L3 OceanServer, 2016) in the Chesapeake
Bay, MD, USA. The AUV is an under-actuated AUV equipped with a
600 kHz Phased Array RDI Explorer DVL (Teledyne RD Instru-
ments) (Teledyne, 2017), and an OceanServer OS5000 digital com-
pass (L3-Harris OceanServer) which measures magnetic heading,
pitch, roll, and pressure depth (L3 OceanServer, 2015). Figure 1
shows JHU lver3 AUV during the vehicle tests. Table 1 lists the noise
characteristics of the sensors on board the JHU Iver3 AUV. These
noise characteristics were determined from static tests of the sen-
sors conducted by the authors, with the exception of the RDI DVL,
which we obtained by interpolating data provided by the manu-
facturer for the UV's commanded speed in these experiments
(1.3 m/s). While submerged on these dives the DVL experienced
bottom-lock beam ranges of between 2 and 8 m with a typical DVL
update period of 0.2s or less.

The real-time geodetic location of the surface ship's modem
transducer was instrumented with a GPS unit located vertically
above the acoustic modem's transducer. This GPS unit was a Navisys
GR-701W u-blox-7 (NaviSys Technology Corp.), which reported fixes
at 1s intervals with a reported horizontal dilution of precision
(HDOP) values with a mean just under 1.0.

For the control inputs of propeller speed and fin angle to the
model described in Section 3.5.1, we utilized the values commanded
and logged by the lver3's control system, provided by the vehicle
manufacturer.

The surface ship and the lver3 AUV were each equipped with 25
kHz WHOI Micromodem lls (Gallimore et al., 2010; Singh et al.,
2006), each equipped with precision Microsemi Quantum chip-scale
atomic clocks (Microsemi Corporation) and precision-timing GPS
units to synchronize the clocks to GPS UTC time. The acoustic
modems on the lver3 and the ship were programmed to repeat the

30-second time-division multiple access (TDMA) acoustic telemetry
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cycle listed in Table 2. The TDMA cycle given in Table 2 started
precisely at the top and the bottom of every UTC minute to co-
ordinate when the AUV or ship modem transmitted. The Micro-
modem s were configured for synchronous navigation (parameter
SNV = 1), precision TOA reporting (parameter TOA = 1), and Doppler
range-rate reporting (parameter DOP = 1) which reports range-rate
averaged over the data packet. Both ship and AUV modems had their
TDMA cycles controlled by a modem driver process running on a
host Linux CPU. The ship and AUV host CPUs and modems were all
provided with precision-clock signals to synchronize their clocks to
GPS UTC time (even when submerged, in the case of the AUV).

The senors employed for the comparative experimental CAN
evaluations are given in Table 3.

For CAN data packets with data transmission and simultaneous
OWTT ranging, we employed the WHOI Micromodem Il configured
for Band 2 (25kHz carrier frequency) and single-frame 64-byte
phase-shift keying (PSK) data packets (Packet type=1), no ac-
knowledgment minipackets (ACK=0), MST parameter set to
(MST = 1), with a data packet duration of 1.9 s. We had good acoustic
conditions and the packet transmission success was excellent. Each
CAN OWTT downlink packet was encoded with the geodetic co-
ordinates of the ship's modem transducer at the TOL of the OWTT
downlink transmission, the exact TOL of the OWTT downlink
transmission, and status information on the precision clock status of
the ship's modem. When the AUV modem received a downlink
packet it timestamped the TOA of the OWTT downlink transmission,
and with the data encoded in the packet can compute time-of-flight
with sub-millisecond accuracy.

In addition to the CAN OWTT downlink packets, each TDMA
cycle contained one uplink data packet from AUV to ship containing
vehicle status information, and one conventional TWTT ranging ping
initiated by the AUV.

5.1.1 | Dive mission plans
Herein we report results from three dives with the Iver3 AUV on

December 11, 2017 with the following mission plans:

e |n Dive 55 and 60, the lver3 AUV was programmed to run iden-
tical rectangular survey pattern with six 300 m legs spaced 50 m
apart at a constant depth of 2.5 m traveling at an advance velocity
of 1.3 m/s. This constant-depth mission is typical for multi-beam
sonar bathymetric survey missions.

e In Dive 57, the lver3 AUV was programmed to run a rectangular
survey pattern with four 300 m legs spaced 50 m apart at an ad-
vance velocity of 1.3 m/s while undulating from 1 to 5 m depth at
with a maximum pitch angle of 20 degrees. This undulating-depth
mission is typical for physical oceanographic conductivity, tem-
perature, and depth (CTD) surveys, and for biological oceano-
graphic plankton surveys. We include Dive 57 to evaluate
whether the results from constant-depth Dives 55 and 60 gen-
eralize to missions with highly time-varying depth.
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5.1.2 | CAN state estimator initialization

During these experiments, the UV position in the CAN state was
initialized to the last valid GPS fix of the Iver3 AUV before it
submerged, and the UV surge velocity was initialized to the DVL
reading at that same time or, in the case of no DVL, the Iver3
commanded forward speed. The sway and heave velocities were

initialized to zero.

5.1.3 | Real-time vehicle control setup

This paper focuses purely on the navigation problem. In these
experiments, the JHU lver3 AUV ran pre-programmed missions,
detailed in Section 5.1.1, in the Chesapeake Bay utilizing the
Iver3's waypoint-based mission planner, navigation system (likely
DR), and control system all supplied by the manufacturer. The data
collected on each dive were post-processed utilizing the CAN al-
gorithm variants: CAN-DYN, CAN-KIN without a DVL, and the
previous “gold standard” of CAN-KIN with a DVL. Thus, the lver3
AUV did not utilize the output of the various CAN state estimates
as an input to the lver3's control system in real time. For this
reason, the position estimate from any of the CAN state estima-
tors may diverge from the desired trackline as the DR error grows,
and the distance from the Iver's desired waypoint trackline shown
in the figures below is not the navigation error.

We address the feasibility of combined control and navigation
without a DVL using CAN-DYN in a previously reported simulation
study (Harris & Whitcomb, 2018b), in which we report that closed-
loop navigation and navigation is feasible and stable with CAN-DYN
without a DVL using an linear quadratic regulator (LQR) controller
and the CEKF described above.

514 |
errors

Estimation of experimental navigation

Because this is a field experiment with a submerged UV (GPS does
not work when the UV is submerged), we do not have access to the
true vehicle positions and are therefore unable to compare the na-
vigation error—that is, the difference between the true XY position
of the vehicle and the state estimate—of CAN-KIN to CAN-DYN.
Instead we utilize the previous “gold standard” of CAN-KIN with a
DVL as the true vehicle position.

Comparing CAN-DYN without a DVL to CAN-KIN with a DVL
is really a comparison of the velocity estimate from the dynamic
model to the velocity measured by the DVL. Because it is unlikely
the dynamic model could estimate the UV's velocity more accu-
rately than it would be measured by a DVL, we have no ex-
pectation that CAN-DYN would outperform CAN-KIN with a
DVL, except in cases where the DVL fails, for example, when the
range to the sea floor is beyond the bottom-lock range of
the DVL.
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A discussion on the navigational accuracy of CAN-KIN with a
DVL, including comparisons with other methods of acoustic naviga-
tion, such as LBL, may be found in Webster et al. (2012).

The magnitude of the difference in the XY position estimate of
CAN-DYN and CAN-KIN with a DVL is shown in Section 5.2.5 for all
three dives. For the remainder of this paper, this difference will be

referred to as the “navigation error.”

5.1.5 | Dynamic model parameters

The parameters for the dynamic model were empirically tuned to
match the translation velocity predicted by the model to the
translation velocities reported by the DVL in surge and sway. A
principled method for estimating plant-model parameters and
control-actuator parameters for torpedo-shaped, underactuated
UVs is the subject of ongoing and future research; a preliminary
approach was reported by the authors in Harris et al. (2018). In
this paper, the model parameters were empirically tuned for Dive
55, and the results reported for Dive 60 and Dive 57 utilize the
same dynamic plant-model parameters that were tuned for
Dive 55.

5.2 | Experimental results: CAN-DYN utilizing
acoustic range only observations

This section reports experimental results for CAN comparing the

navigation performance of the CAN-DYN state estimator without
a DVL to the CAN-KIN state estimator with and without a DVL.
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521 Experimental results: Comparison of CAN-
DYN without a DVL to CAN-KIN without a DVL

This section reports a comparison of the performance of CAN-DYN
to CAN-KIN, both without a DVL, utilizing experimental data col-
lected from Iver3 Dive 55.

Figure 2 shows the mean of the CAN-estimated UV and ship XY
position estimates for Ilver3 Dive 55. Figure 2a shows the CAN-KIN
state estimate without a DVL and Figure 2b shows the CAN-DYN
state estimate without a DVL. The dashed blue line is the CAN po-
sition estimate of the lver3 AUV, the black dots are the CAN position
estimate of the surface ship, and the red triangle is the first GPS fix
after the UV surfaced. The EKF solution for the ship position is si-
milar to the GPS track of the ship position, with minimal smoothing
dependent on the ship process noise. The pink ellipses in
Figure 2b are 3o ellipses from the CAN-DYN state estimator plotted
at every acoustic update. 3o ellipses for CAN-KIN without a DVL are
omitted from Figure 2a because the position covariance from the
CAN-KIN state estimator without a DVL is so large that the plot is
unreadable. As noted in Section 5.1.3, the Iver3 AUV did not use the
position estimate from the CAN state estimator as the position input
to the control system during these experiments, and the distance
from the trackline is likely the difference between the DR and CAN
navigation solutions rather than the CAN navigational error.

Figure 2a shows the UV position estimate from CAN-KIN
without a DVL is extremely poor and quickly exhibits instability, and
Figure 2b illustrates that the CAN-DYN state estimator performs
well and offers a stable solution without a DVL. We spent a con-
siderable amount of time tuning the process noise for CAN-KIN to

achieve better results, and these results are representative of the
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FIGURE 2 Ship and vehicle XY position estimate using (a) CAN-KIN without a DVL and (b) CAN-DYN without a DVL on experimental data
collected with the JHU Iver3 AUV in the Chesapeake Bay. The dotted black line is the CAN ship position estimate, and the dashed blue
line is the CAN UV position estimate, computed in post-processing. The first valid GPS fix upon surfacing is plotted as a red triangle.

The pink ellipses are 3o ellipses from the CAN state estimator plotted at every acoustic update. This figure shows that for a UV

equipped with sensors typical of low-cost UVs, such as the JHU Iver3 AUV, CAN-DYN without a DVL offers a stable position estimate,

in contrast to CAN-KIN without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation;

DVL, Doppler velocity log; GPS, global positioning system [Color figure can be viewed at wileyonlinelibrary.com]
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best we were able to achieve with the sensor characteristics detailed
in Table 1.

The magnitude of the difference in the position estimate of CAN-
DYN and CAN-KIN with a DVL is shown in Figure 12 in Section 5.2.5
for all three dives.

Because CAN provides infrequent position corrections in the form of
an acoustic time-of-flight (TOF), which is converted into a range using the
speed of sound in water, it is vitally important that the state estimator
accurately estimate the submerged UV's velocity between acoustic po-
sition corrections. This velocity estimate is integrated continuously to
propagate the position estimate between acoustic position corrections.
The velocity estimates from CAN-DYN and CAN-KIN without a DVL
provides additional insight into the performance gap between the two
state estimators in the absence of velocity measurements from a DVL.

Figure 3 shows the velocity estimate from CAN-DYN (without a
DVL) for Dive 55, and Figure 4 shows the velocity estimate from
CAN-KIN without a DVL for Dive 55. We did not include the velocity
plots for CAN-KIN with a DVL because the velocity estimate tracks
the DVL measurements exactly, with some amount of smoothing
dependent on the process noise. In both figures, the red dots are the
Iver3 AUV 600 kHz RDI DVL measurements, and the dashed blue
line is the mean of the CAN state estimator's velocity estimate. Note
that the scale of the vertical axis is significantly larger on Figure 4
than Figure 3, and the red dots of the DVL measurements are the
same signal on both plots. The velocity transient spikes occur when
the vehicle is turning: the surge velocity drops because the high fin
angle of the Iver3's vertical fins increases the overall drag on the
Iver3; the sway velocity increases when the Iver3 experiences

sideslip during turns because, although the Iver3 is underactuated, it
is not a nonholonomic system.

As shown in Figure 3, the velocity estimate from the CAN-DYN
state estimator is quite accurate in both surge and sway, even in
turns when the UV experiences a drop in surge velocity from fin drag
and an increase in sway velocity. This figure illustrates the perfor-
mance of CAN-DYN at modeling the UV's velocity. Accurate velocity
estimation is crucial to accurate position estimation because CAN
provides infrequent position updates; in the absence of DVL mea-
surements, the velocity estimate depends entirely on the model.

In contrast, Figure 4 shows the constant-velocity kinematic
model typically used in CAN fails dramatically in the absence of a
DVL. A constant-velocity assumption is reasonable when the vehicle
has access to frequent, high-accuracy velocity observations, such as
when the vehicle is equipped with a DVL, because the velocity es-
timate experiences minimal drift between velocity corrections.
However, the velocity estimate from a constant-velocity model with
infrequent position corrections and no velocity corrections can drift
substantially between position corrections.

We did not include velocity plots for the heave (Z) DOF because
the lver3 AUV is equipped with a pressure depth sensor, as noted in
Table 1, which provides depth measurements at 4 Hz with a standard
deviation of 10 cm.

Given the infrequency of position updates, we believe the per-
formance of the position estimate is driven primarily by the ability of
the CAN state estimator to estimate the UV's motion. Thus, we
conclude that the poor performance and instability of the position
estimate from CAN-KIN without a DVL is caused by the inability of a
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FIGURE 3 CAN-DYN without a DVL velocity estimation, Dive 55. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN-DYN state estimator's velocity estimate without DVL observations. The spikes occur when the
Iver3 is turning: the surge velocity drops because the high fin angle of the lver3's vertical fins during turns causes increased drag;

the sway velocity increases when the lver3 experiences sideslip during turns. This figure shows the ability of CAN-DYN to estimate the Iver3's
velocity without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log

[Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 CAN-KIN without a DVL velocity estimation, Dive 55. The red dots are the lver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN-KIN state estimator's velocity estimate. This figure shows that CAN-KIN velocity estimate
performs quite poorly in both surge and sway in the absence of DVL corrections. We did not include CAN-KIN with a DVL because in that case,
the CAN-KIN velocity estimate tracks the DVL measurements nearly exactly. AUV, autonomous underwater vehicle;

CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

kinematic model to predict the UV's motion in the absence of fre-
quent velocity observations, as seen in Figure 4. Because the position
estimates from both CAN-KIN with a DVL and CAN-DYN without a
DVL are stable, we do not believe the poor performance and in-
stability of the state estimate from CAN-KIN without a DVL is
caused by observability issues that arise when the relative trajec-
tories of the surface ship and UV are not sufficiently rich and varied.
However, we also note that accurate velocity estimation has little
impact on the position estimate when frequent, accurate position
measurements are available. A kinematic process model can provide
a stable position estimate in the absence of velocity observations if
frequent, high-accuracy position corrections are available. For ex-
ample, Figure 2 shows the CAN-estimated ship position is stable with
a purely kinematic ship process model and GPS measurements, with
the navigation accuracy dependent on the sensor accuracy.

Section summary: This section reported a study comparing the
performance of CAN-DYN without a DVL to CAN-KIN without a
DVL, both in terms of navigation and velocity estimation. We con-
clude that CAN-DYN without a DVL performs well, while CAN-KIN
without a DVL exhibits poor performance and quickly goes unstable

in the absence of DVL observations.

5.2.2 | Experimental results: Comparison of CAN-
DYN without a DVL to CAN-KIN with a DVL

This section reports a comparison of the performance of CAN-DYN
without a DVL to the “gold standard” of CAN-KIN with a DVL uti-
lizing experimental data from Dive 55.

Figure 5a shows the estimated vehicle and ship position for the
“gold standard” case of CAN-KIN when the UV has access to DVL
measurements for Dive 55. Figure 5b shows the position estimate
from CAN-DYN without a DVL. As above, the solid black line is
the waypoint trackline the vehicle attempted to follow, the dashed
blue line is the CAN position estimate of the Iver3 AUV, the black
dots are the CAN position estimate of the surface ship, and the red
triangle is the first GPS fix after the UV surfaced. The pink ellipses
are 30 ellipses from the CAN state estimator plotted at every
acoustic update.

Here again, the Iver3 AUV did not utilize the output of the
various CAN state estimates as an input to the control system during
the field trials, and the distance from the Iver's desired waypoint
trackline is the difference between the DR track and the CAN esti-
mate, rather than the navigation error. Indeed, the position estimates
from both CAN-DYN without a DVL and CAN-KIN with a DVL di-
verge from the Iver3's commanded waypoint trackline. We believe
this divergence occurs because the Iver3's true position diverges
from the trackline, as evidenced by the position of the CAN position
estimate being coincident with the first valid GPS fix obtained when
the lver3 surfaced at the end of the dive. The mission time in
Figure 5 was extended until the UV surfaced, allowing the reader to
observe visually that the CAN position estimate is coincident with
the first valid GPS fix.

These figures show that the CAN-DYN state estimator without a
DVL not only offers a stable navigation estimate, unlike CAN-KIN
without a DVL, CAN-DYN without a DVL appears to perform simi-
larly to CAN-KIN with a DVL, at least in the case of a low-cost UV,
such as the Iver3 AUV operating in an area where the magnitude of
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FIGURE 5 Ship and vehicle XY position estimate from experimental data from Dive 55 with the JHU Iver3 AUV in the Chesapeake Bay using
(a) CAN-KIN with a DVL and (b) CAN-DYN without a DVL. The pink ellipses are 3o ellipses from the CAN state estimator plotted at

every acoustic update. As stated in Section 5.1.3, the Iver3 AUV attempted to follow the waypoint track using the manufacturer-provided
navigation system (likely DR) and closed-loop control system. This figure shows that for a typical, low-cost UV like the Iver3 AUV, CAN-DYN
without a DVL offers a stable position estimate that is very similar to CAN-KIN with a DVL. AUV, autonomous underwater vehicle; CAN,
cooperative acoustic navigation; DR, dead reckoning; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

the water-current velocity is small. This result makes sense given
how well the dynamic model accurately models the submerged UV's
velocity, as shown above in Figure 3.

We note that when the DVL measurements are available to both
the CAN-KIN and CAN-DYN estimators, the performance is essen-
tially identical—as one would expect because the DVL bottom track
velocity observations exhibit very low measurement noise and high-
update rate. In this case, the DVL observation innovations dominate
the estimated velocity of both approaches.

Section Summary: This section reported a study comparing the
performance of CAN-DYN without a DVL to the “gold standard” of
CAN-KIN with a DVL. We conclude that CAN-DYN without a DVL
performs on par with CAN-KIN with a DVL.

5.2.3 | Experimental results: CAN-DYN without a
DVL repeatability

This section reports an investigation of the repeatability of CAN-
DYN without a DVL by comparing the navigation results for two
different dives that utilized identical mission plans.

The programmed mission for Dive 60 is identical to that of Dive
55 reported above: the Iver3 AUV was programmed to run a rec-
tangular survey pattern with six 300 m legs spaced 50 m at a 2.5m
depth traveling at an advance velocity of 1.3 m/s.

Figure 6 shows the mean of the CAN-estimated UV and ship XY
position estimates for Iver3 Dive 60. Figure 6a shows the CAN-KIN
state estimate without a DVL. Figure 6b and éd are the same plot
and shows the CAN-DYN state estimate without a DVL.
Figure 6¢ shows the CAN-KIN state estimate with a DVL. For these
plots, as above, the solid black line is the waypoint trackline the

vehicle attempted to follow, the dashed blue line is the CAN position
estimate of the Iver3 AUV, the black dots are the CAN position
estimate of the surface ship, and the red triangle is the first valid GPS
fix after the vehicle surfaced. The pink ellipses on Figure 6b-d are
30 ellipses plotted at every acoustic update. The 3o ellipses are
omitted from the CAN-KIN without a DVL estimate, Figure 6a,
because the 3o ellipses from the CAN-KIN state estimator without a
DVL are so large the plot is unreadable.

Figure 7 shows the velocity estimate from CAN-DYN for Dive
60, and Figure 8 shows the velocity estimate from CAN-KIN without
a DVL for Dive 60. As before, the red dots are the Iver3 AUV
600 kHz RDI DVL measurements, the dashed blue line is the mean of
the CAN state estimator's velocity estimate, and the scale of the
vertical axis is significantly larger in Figure 8 than Figure 7.

Figure 7 shows the CAN-DYN state estimator performs quite
well in both surge and sway, even during turns when the UV ex-
periences a drop in surge velocity from fin drag and an increase in
sway velocity, and Figure 8 shows the constant-velocity kinematic
model typically used in CAN performs poorly in the absence of
a DVL.

Figures 6-8 confirm that the results reported in Sections 5.2.1
and 5.2.2 are repeatable: the CAN-KIN position estimate is poor and
quickly goes unstable without velocity observations from a DVL; in
contrast, the CAN-DYN state estimator does not exhibit instability
and in fact, performs nearly as well as CAN-KIN with a DVL. The
results from Dive 55 and Dive 60 are remarkably similar with the
obvious exception of the position of the surface ship, which was
piloted by a human operator and did not follow a programmed
mission track. Further, these data demonstrate that a single set of
model parameters can perform well across dives with the same

programmed mission.
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FIGURE 6 Ship and vehicle XY position estimate for Dive 60 using (a) CAN-KIN without a DVL, and (b) and (d) CAN-DYN, (c) CAN-KIN
without a DVL on experimental data collected with the JHU Iver3 AUV in the Chesapeake Bay. The dotted black line is the CAN ship
position estimate, and the dashed blue line is the CAN UV position estimate in post-processing, and the pink are the 3o ellipses of the estimated
position plotted at each acoustic update. As noted in Section 5.1.3, the position estimate from the various CAN state estimators will

differ from the waypoint trackline if the UV position diverges from the waypoint trackline. This figure shows that the results from

Sections 5.2.1 and 5.2.2 are repeatable. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation;

DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

Section Summary: This section reported an investigation of the
repeatability of CAN-DYN without a DVL by comparing the naviga-
tion results for two different dives that utilized identical mission
plans. XY position and velocity plots were presented, and we con-
clude that the CAN-DYN results are repeatable across dives with
identical mission plans.

5.24 | Experimental results: CAN-DYN without a
DVL generalizability

This section reports an investigation of the generalizability (or ro-
bustness) of CAN-DYN without a DVL by comparing the navigation
results for two different dives that utilized different mission plans. In
Dive 57, the vehicle ran four 300 m tracklines spaced 50 m apart
while undulating from 1 to 5m depth at a maximum vehicle pitch
angle of 20 degrees. This type of undulating survey mission is very

commonly employed for conducting three-dimensional AUV surveys
of water quality, in which the vehicle may be equipped with sensors
for water-column properties such as conductivity, temperature,
pressure, oxygen, nitrates, Ph, optical backscatter, turbidity, and
fluorescence.

Figure 9 shows the mean of the CAN-estimated UV and ship XY
position estimates for Dive 57. Figure 9a shows the CAN-KIN state
estimate without a DVL. As in Dive 55 and Dive 60, CAN-KIN per-
forms very poorly and exhibits instability in the absence of DVL
velocity observations.

Figure 10 shows the velocity estimate from CAN-DYN without a
DVL for Dive 57, and Figure 11 shows the velocity estimate from
CAN-KIN without a DVL for Dive 57. The red dots are the lver3 AUV
600 kHz RDI DVL measurements, and the dashed blue line is the
mean of the CAN state estimator's velocity estimate. The vertical
scale is considerably larger in Figure 11 than in Figure 10. The Iver3
AUV is equipped with a depth sensor; thus, the accuracy of the
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FIGURE 7 CAN-DYN without a DVL velocity estimation, Dive 60. The red dots are the Iver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN-DYN state estimator's velocity estimate. This figure demonstrates that the performance of
CAN-DYN for accurate velocity estimation is repeatable across dives with the same mission. AUV, autonomous underwater vehicle; CAN,
cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

heave-velocity estimate has little influence on the accuracy of the
depth estimate. In Dive 57, the horizontal fins are actuated sig-
nificantly more than in Dives 55 and 60 because the programmed
trajectory has the Ilver3 AUV constantly pitching at an angle of +20
degrees. The increased fin actuation increases the fin drag, which

results in an increased number of dips in surge velocity, all of which
increases the modeling difficulty.

The results presented here demonstrate that it is feasible to use
a single set of model parameters in the dynamic model of a low-cost,
torpedo-shaped UV without a DVL to achieve excellent navigation
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FIGURE 8 CAN-KIN without a DVL velocity estimation, Dive 60. The red dots are the lver3 AUV 600 kHz RDI DVL measurements, and the
dashed blue line is the mean of the CAN-KIN state estimator's velocity estimate. This figure shows that the poor performance of

CAN-KIN without a DVL is repeatable across dives with the same mission. AUV, autonomous underwater vehicle;

CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Ship and vehicle XY position estimate for Dive 57 using (a) CAN-KIN without DVL, (b) and (d) CAN-DYN (same plot), and (c) CAN-
KIN with DVL on experimental data collected with the JHU Iver3 AUV in the Chesapeake Bay. The pink ellipses are 3o ellipses from the
CAN state estimator plotted at every acoustic update. In Dive 57, the lver3 was programmed to undulate between 1 and 5 m depth

at a pitch angle of 20 degrees. This figure includes only the portion of the mission before the Iver3 began its ascent to the surface near the end
of the dive. This figure shows that CAN-DYN offers a stable position estimate even with an undulating depth profile, in contrast to
CAN-KIN without a DVL. AUV, autonomous underwater vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log

[Color figure can be viewed at wileyonlinelibrary.com]

results that generalize beyond the mission for which the parameters
were tuned. As noted in Section 5.1.5, Dive 57 is as a cross-validation
of the dynamic-model parameters, which were tuned for (constant
depth) Dive 55. It is possible that tuning the parameters for a dive
with some excitation in all DOF would result in a better velocity
estimation, and consequently, better navigational accuracy. How-
ever, a detailed treatment of parameter estimation for dynamic UV
models is beyond the scope of this paper. The purpose of this paper
is to evaluate the feasibility of CAN-DYN for DVL-denied navigation
of low-cost UVs. While we do not consider this to be an exhaustive
result, it is strongly suggestive that the CAN algorithm parameters
reported herein are not “overtuned” for one particular mission pro-
file and perform poorly on differing mission profiles.

Section Summary: This section reported an investigation of
whether CAN-DYN generalizes beyond constant-depth rectangular
survey missions by comparing the navigation results for two differ-
ent dives that utilized very different mission plans. XY position and

velocity plots are presented, and we conclude that the CAN-DYN
without a DVL results generalize to rectangular survey missions

conducted at nonconstant depth.

525 |
plots

Experimental results: CAN range-only error

This section reports a comparison of XY position error magnitude of
CAN-DYN navigation for three dives in comparison to conventional
DR navigation.

As discussed in Section 5.1.4, CAN-KIN with a DVL is the best
source of ground truth for these experiments, and we call the mag-
nitude of the difference of the XY position between CAN-KIN with a
DVL and other state estimates as the “navigation error.”

Figure 12 shows navigation error of CAN-DYN, as well as the na-
vigation error of the DR track. We omit the navigation error between
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FIGURE 10 CAN-DYN without a DVL Velocity Estimation, Dive 57. In Dive 57, the Iver3 was programmed to undulate between 1 m and 5 m
depth at a pitch angle of 20 degrees. This figure shows that it is feasible to use CAN-DYN for velocity estimation across multiple mission
types without a DVL, even when the dynamic model parameters are not tuned for the specific mission type. AUV, autonomous underwater
vehicle; CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]

CAN-KIN without a DVL for reasons of figure scale and readability. The
mission length of each dive is different: Dive 55 is approximately 2400's;
Dive 60 is approximately 2300s; and Dive 57 is approximately 1150s.

Figure 12 shows that the CAN-DYN position estimate stays
within 8 m of the position estimate from CAN-KIN with a DVL for all

Figure 12 also illustrates the advantage of bounded-error posi-
tion estimation from CAN-DYN compared with DR for low-cost UVs.
The DR track is the lIver3's onboard position estimate using the
manufacturer-supplied DR algorithm, which fuses the lver3 compass
data and the RDI Explorer 600 kHz DVL. Previously reported results

three dives. have shown that DVL-based DR performs well when the UV is
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FIGURE 11 CAN-KIN without a DVL velocity estimation, Dive 57. As was the case with Dive 55 and Dive 60, CAN-KIN without a DVL
provides a poor estimate of transitional velocity in surge and sway. AUV, autonomous underwater vehicle; CAN, cooperative acoustic

navigation; DVL, Doppler velocity log [Color figure can be viewed at wileyonlinelibrary.com]
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equipped with a high-end INS (Kinsey & Whitcomb, 2004), but the
accuracy of DR is highly dependent on the accuracy of the INS;
however, a high-end INS is typically far too large and far too ex-
pensive to be installed on a small, low-cost UV like the Iver3 AUV.
However, as shown in Figure 12, these results may not hold for low-
cost UVs equipped with a low-end compass.

The cost of an underwater acoustic modem system to enable UV
CAN is less than the cost of a DVL, and the modem also provides a
means for real-time acoustic telemetry to and from the UV. Before
the CAN-DYN approach, low-cost UVs were often equipped a DVL
instead of a CAN system if the user could not afford both sensors.
There was no other choice: DR provides a stable position estimate
while CAN-KIN without a DVL performs very poorly. However,
Figure 12 illustrates that CAN-DYN outperforms DR for approxi-
mately the same cost and offers bounded-error position estimation.

Figure 13 shows the translation velocity error in all three DOF
for the three lver3 dives, Dive 55, Dive 60, and Dive 57. The velocity
error is computed as the difference of the CAN-DYN-estimated and
true velocity measured by the Iver3's RDI Explorer 600 kHz DVL. As
is reported in Table 1, the RDI Explorer 600 kHz DVL measures
translations velocity at 5 Hz with a standard deviation of 1.4 cm/s.

Section Summary: This section reported a comparison of XY
position and velocity error of CAN-DYN without DVL for three dives
in comparison to conventional DR navigation, using the CAN-KIN
with DVL and the Iver3's onboard RDI Explorer 600 kHz DVL as
ground truth for position and velocity, respectively. We conclude
that CAN-DYN without a DVL outperforms conventional DR navi-
gation, and CAN-DYN offers bounded-error navigational for ap-
proximately the same cost as conventional DR.

16 — Dive 55: CAN-DYN, no DVL
= = Dive 60: CAN-DYN, no DVL
= Dive 57: CAN-DYN, no DVL

-~ Dive 55: DR

14 1 |.....coo. Dive 60: DR
Dive 57: DR

12~

10+

Error [m]

5.3 | Experimental results: CAN-DYN utilizing
acoustic range and acoustic range-rate observations

This section compares CAN-DYN without a DVL utilizing acoustic
range observations to CAN-DYN without a DVL utilizing acoustic
range-rate observations in addition to acoustic range observations.

In previously published results, we reported that the addition of
range-rate observations to acoustic range observations does not
significantly improve the accuracy of the CAN-KIN state estimator in
simulation, either with a DVL (Harris & Whitcomb, 2015) or without
a DVL (Harris & Whitcomb, 2016). Our continued interest in acoustic
range-rate observations, which are essentially observations of the
relative velocity between the ship and the submerged UV, is that the
range-rate is already computed by the WHOI Micromodem Il and not
currently utilized. In this section, we revisit the effect of adding
acoustic range-rate observations to acoustic range observations on
the performance of the CAN-DYN state estimator without a DVL on
experimental data gathered with the Iver3 AUV in the Chesa-
peake Bay.

As noted above in Section 5.1.4, we use CAN-KIN with a DVL as
the ground truth for these plots and all uses of the term “navigation
error” are as per this definition.

Figure 14 shows the navigation error of the CAN-DYN state
estimator (without a DVL) with and without the range-rate ob-
servations. The two plotted signals in Figure 14 are indistinguishable,
indicating the addition of acoustic range-rate observations to
acoustic range observations does not significantly improve the na-
vigation solution from the CAN-DYN state estimator without velo-
city observations from a DVL in the situation of accurate model

Time [s]

FIGURE 12 XY position error magnitude from CAN-KIN with a DVL. We do not have access to true position underwater, so we use CAN-
KIN with DVL as the truth. For scale and readability reasons, the unstable state estimate from the CAN-KIN without a DVL is omitted from the
figure. This figure shows that CAN-DYN without a DVL state estimate performs quite well and stays within 8 m of the CAN-KIN with a DVL
state estimate for all dives. The figure also illustrates the advantage of CAN-DYN state estimation in providing bounded-error position

estimates, even without a DVL, compared with dead reckoning. CAN, cooperative acoustic navigation; DVL, Doppler velocity log [Color figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 13 CAN-DYN velocity error from Iver3-mounted RDI 600 kHz DVL. This figure shows that the velocity estimate from CAN-DYN
without a DVL for all three dives stays below approximately 30 cm/s. The velocity error is computed as the difference of the CAN-DYN-
estimated and true velocity measured by the lver3's RDI Explorer 600 kHz DVL. As is reported in Table 1, the RDI Explorer 600 kHz DVL
measures transnational velocity at 5 Hz with a standard deviation of 1.4 cm/s. CAN, cooperative acoustic navigation; DVL, Doppler velocity log

[Color figure can be viewed at wileyonlinelibrary.com]

coefficients, low process noise, and minimal environmental dis-
turbances, such as water currents.

Similar results are achieved with an increase in the process noise
of the CAN-DYN state estimator. Figure 15 shows the navigation
error with the process noise doubled for both acoustic range and
acoustic range-rate observations and acoustic range-only observa-
tions. The two signals are indistinguishable, indicating the addition of
acoustic range-rate observations to acoustic range observations
does not significantly improve CAN-DYN performance using high
process-noise.

Additionally, we briefly investigated the performance of the
CAN-DYN state estimator utilizing acoustic range and acoustic
range-rate observations in the presence of modeling error of the
vehicle dynamics in the form of inaccuracies in the dynamic model
parameters. In our previous paper on parameter identification of
low-cost, torpedo-shaped vehicles with applications to CAN (Harris
et al.,, 2018), we showed that accurate model parameters are vital to
the accuracy of the CAN-DYN state estimate without a DVL on si-
mulated data utilizing range-only measurements. This result makes
intuitive sense because the CAN state estimator relies entirely on
the UV process model for velocity predictions in the absence of
external velocity corrections from a DVL. Figure 16 reports the error
with the mass and quadratic drag coefficients accurate to within 95%
of the original values. Again, the two signals are indistinguishable,
indicating the addition of acoustic range-rate observations to
acoustic range observations does not significantly improve the per-
formance of the CAN-DYN state estimator using degraded model
coefficients. Figure 16 shows that the accuracy of the CAN-DYN

state estimator with range and range-rate observations is also highly
dependent on the accuracy of dynamic model parameters.
We note the following two observations:

——— CEKF with range-only observations
7+ - CEKF with range and range-rate observations

Error [m]
S

0 . . . . . . . .
5 10 15 20 25 30 35 40 45

MINUTES

FIGURE 14 XY position error magnitude from the CAN-DYN
state estimator using experimental data collected with the Iver3
AUV. The purpose of this graph is to compare the performance of
CAN-DYN without a DVL using acoustic range and range-rate to that
of CAN-DYN without a DVL using acoustic range-only observations.
The two plotted signals are indistinguishable, indicating the addition
of acoustic range-rate observations to acoustic range observations
does not significantly improve the navigation solution from the CAN-
DYN state estimator without velocity observations from a DVL. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation; DVL, Doppler velocity log
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FIGURE 15 XY position error magnitude from CAN-DYN utilizing
high process noise and no DVL using experimental data collected with
the Iver3 AUV. The purpose of this graph is to compare the
performance of the CAN-DYN state estimator using acoustic range
and range-rate to CAN-DYN using acoustic range-only observations
in the context of high process noise in the CEKF. The two signals are
indistinguishable, indicating the addition of acoustic range-rate
observations to acoustic range observations does not significantly
improve CAN-DYN performance using high process-noise. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation; DVL, Doppler velocity log

First, the covariance of the ship velocity must be smaller than
the covariance of the UV's velocity; otherwise, the relative-velocity
correction is applied to the ship's velocity instead of the submerged
vehicle's velocity.

Second, the velocity covariance for a purely kinematic model will
grow unbounded with time without position or velocity corrections.
However, the velocity covariance of a second-order dynamic model
with quadratic drag (15) will converge to a steady-state value that
depends on the process noise. With a dynamic model, infrequent
velocity corrections, as are provided with acoustic range-rate ob-
servations, have little net effect on the velocity or velocity covar-
iance. If the variance of the velocity measurement is higher than the
variance of the estimated velocity, the measurement will have little
effect. If the variance of infrequent velocity measurements is lower
than the covariance of the CAN-DYN velocity estimate, the mea-
surement will decrease the velocity covariance at the instant the
measurement is applied. However, the velocity covariance will
quickly return to the steady-state value governed by the process
noise associated with the second-order dynamics.

We believe the above two observations explain why the addition
of acoustic range-rate observations to acoustic range does not sig-
nificantly improve the state estimate from CAN-DYN without a DVL.
We have no cause to believe the acoustic range rate velocity mea-
surements gathered in these experiments suffer from a lack of ob-
servability, and therefore, we do not believe the results would be
improved for different relative trajectories for the ship and UV.

Section Summary: This section reported a comparison of
CAN-DYN without a DVL utilizing acoustic range observations to

140

CEKF with range-only observations
CEKF with range and range-rate observations
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100 -
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FIGURE 16 XY position error magnitude from CAN-DYN with
model coefficients that have a random error with a standard deviation of
5% of the true model-parameter value using experimental data
collected with the Iver3 AUV. The purpose of this graph is to
compare the position estimate using acoustic range and range-rate
to the CAN-DYN state estimator using acoustic range-only
observations in the context of dynamic model inaccuracies. The two
signals are indistinguishable, indicating the addition of acoustic
range-rate observations to acoustic range observations does not
significantly improve the performance of the CAN-DYN state
estimator using degraded model coefficients. A second key point is
how poor the error is with minor model inaccuracies. AUV,
autonomous underwater vehicle; CAN, cooperative acoustic
navigation

CAN-DYN without a DVL utilizing acoustic range-rate observations in
addition to acoustic range observations with experimental data from
Dive 55. We conclude that the addition of acoustic range-rate ob-
servations to acoustic range does not significantly improve the CAN-
DYN without a DVL state estimate.

6 | CONCLUSION

This paper reports theory and experimental results for use of a
second-order nonlinear dynamic model of UVs in CAN. We utilize the
CEKF formulation of CAN with one UV client (equipped with
acoustic modem, attitude, and depth sensors) with one surface ve-
hicle server (equipped with GPS and an acoustic modem). We de-
velop a second-order nonlinear dynamical model of submerged UV
motion, including development of the nonlinear actuation function to
map the commanded fin angle and propeller speed to an overall
force-moment vector on the UV, for use in CAN-DYN.

The main contributions and conclusions from the paper are de-
tailed in Section 5 and are the following:

1. Section 5.2 reports a comparative performance analysis of CAN-
DYN and CAN-KIN using acoustic range-only observations from
three dives.

a. Section 5.2.1 reports a comparison of the performance of
CAN-DYN to CAN-KIN, both without a DVL. XY position and
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velocity plots are presented. We conclude that CAN-DYN
without a DVL performs well, while CAN-KIN without a DVL
exhibits poor performance and quickly goes unstable in the
absence of DVL observations.

b. Section 5.2.2 reports a comparison of the performance of
CAN-DYN without a DVL to the “gold standard” of CAN-KIN
with a DVL. We conclude that CAN-DYN without a DVL
performs on par with CAN-KIN with a DVL.

c. Section 5.2.3 reports an investigation of the repeatability of
CAN-DYN without a DVL by comparing the navigation results
for two different dives that utilized identical mission plans. XY
position and velocity plots are presented, and we conclude
that the CAN-DYN results are repeatable across dives with
identical mission plans.

d. Section 5.2.4 reports an investigation of the generalizability of
CAN-DYN by comparing the navigation results for two dif-
ferent dives that utilized very different mission plans. XY
position and velocity plots are presented, and we conclude
that the CAN-DYN results generalize to rectangular survey
missions conducted at nonconstant (undulating) depth.

e. Section 5.2.5 reports a comparison of XY position error mag-
nitude of CAN-DYN without DVL navigation for three dives in
comparison to conventional DR navigation, using the CAN-KIN
with DVL as ground truth. Also reported is a comparison of the
XY velocity error for the CAN-DYN state estimator without a
DVL, computed as the difference between the CAN-DYN velo-
city estimate and the Iver3's RDI Explorer 600 kHz DVL. We
conclude that CAN-DYN without a DVL outperforms conven-
tional DR navigation, and CAN-DYN offers bounded-error na-
vigational for approximately the same cost as conventional DR.

2. Section 5.3 reports results from Dive 55 comparing CAN-DYN
without a DVL utilizing acoustic range observations to CAN-DYN
without a DVL utilizing acoustic range-rate observations in addition
to acoustic range observations. We conclude that the addition of
acoustic range-rate observations to acoustic range does not sig-
nificantly improve the CAN-DYN without a DVL state estimate.

6.1 | Analysis

Unlike other positioning systems (e.g,, 1 Hz GPS position fixes for surface
and aerial vehicles), position corrections provided by OWTT CAN for
fully submerged vehicles are infrequent and nonunique. In the interval of
time between acoustic position corrections, the CAN state estimator
uses the estimated velocity to propagate the estimated position mean
and covariance, in accordance with the process model. Thus, accurate
velocity estimation is crucial to accurate position estimation. We con-
clude that the poor performance and instability of the position estimate
from CAN-KIN EKF without a DVL is caused by the inability of a kine-
matic model to predict the UV's motion in the absence of frequent
external position and velocity observation corrections. Because the po-
sition estimates from CAN-KIN with a DVL and CAN-DYN without a
DVL are both stable, we have no reason to believe the poor performance
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and instability of the state estimate from CAN-KIN without a DVL is
caused by observability issues arising from insufficiently rich and varied

relative trajectories of the surface ship and UV.

6.2 | Limitations of CAN-DYN

Although CAN-DYN appears to outperform CAN-KIN without a DVL,
we take care to note several limitations and considerations regarding
the CAN-DYN approach. A primary consideration is that the accu-
racy of the navigation solution of CAN-DYN without a DVL depends
nearly entirely on the accuracy of the parameters for the dynamic
model (Harris et al., 2018). Anecdotally, as evidenced by our pre-
viously reported simulation study on range-rate using CAN-KIN
without a DVL (Harris & Whitcomb, 2016), CAN-KIN may perform
significantly better for certain ship-vehicle geometries with a high-
end AHRS, at least in simulation. However, these preliminary simu-
lation results have not been validated with experimental data. Ad-
ditionally, low-cost UVs like the JHU Iver3 AUV are typically
equipped with a magnetic compass—it is rare to have access to a
high-end AHRS, such as FOG, on a low-cost UV.

6.3 | Future work

Although the focus of this paper is a comparison of kinematic and
dynamic process models, and the effect of range-rate, on CAN, the
reported approaches can be extended to include the simultaneous
estimation of UV state and ambient water-current velocity, as has
been studied extensively, for example, Claus et al. (2017), Crasta
et al. (2013, 2014), Gadre and Stilwell (2005a, 2005b), Gallimore
et al. (2019), Hegrenas et al. (2008), Webster et al. (2015).

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the National Science
Foundation under Awards 1319667 and 1909182, and the Office of
Naval Research under a National Defense Science and Engineering
Graduate Fellowship. Harris was with the Department of Mechanical
Engineering, Johns Hopkins University, Baltimore, Maryland, USA, and
is presently with the Charles Stark Draper Laboratory, Cambridge,
MA, USA. We gratefully acknowledge using and extending, with per-
mission, a centralized extended Kalman filter (CEKF) implementation
originally developed by our colleague Dr. Ryan Eustice at the
University of Michigan and subsequently extended by Dr. Sarah
Webster who is presently with the University of Washington Applied
Physics Laboratory. We are grateful to Mr. Rick and Ms. Valerie Smith,
owners of Smiths Marina, Crownsville, MD, for their gracious support
of the JHU Iver3 AUV field trials reported herein, and to Captain John
Sharp of the F/V Miss Molly of Stevensville, MD.

ORCID
Zachary J. Harris
Louis L. Whitcomb

https://orcid.org/0000-0002-5498-301X
https://orcid.org/0000-0003-2398-1000


https://orcid.org/0000-0002-5498-301X
https://orcid.org/0000-0003-2398-1000

HARRIS ano WHITCOMB

ﬂ‘—Wl LEY

REFERENCES

Alleyne, J. (2000). Position estimation from range only measurements (Master's
thesis). Naval Postgraduate School, Monterey, CA.

Arrichiello, F., Antonelli, G., Aguiar, A, & Pascoal, A. (2013). An
observability metric for underwater vehicle localization using
range measurements. Sensors, 13(12), 16191-16215.

Baccou, P., & Jouvencel, B. (2002). Homing and navigation using one
transponder for AUV, post-processing comparisons results with long
base-line navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation (Vol. 4, pp.
4004-4009). Institute of Electrical and Electronics Engineers (IEEE).

Baccou, P., & Jouvencel, B. (2003). Simulation results, post-processing
experimentations and comparisons results for navigation, homing
and multiple vehicles operations with a new positioning method
using on transponder. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (Vol. 1, pp. 811-817).
Institute of Electrical and Electronics Engineers (IEEE).

Bahr, A. (2009). Cooperative localization for autonomous underwater
vehicles (PhD thesis). Joint Program in Applied Ocean Science and
Engineering, Massachusetts Institute of Technology and the Woods
Hole Oceanographic Institution. Cambridge MA and Woods
Hole, MA.

Bahr, A, & Leonard, J. (2006). Cooperative localization for autonomous
underwater vehicles. In Proceedings of the 10th
International Symposium on Experimental Robotics (ISER) (pp. 387-395).
Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-540-
77457-0, https://www.springer.com/gp/book/9783540774563

Bahr, A, Leonard, J. J., & Fallon, M. F. (2009). Cooperative localization for
autonomous underwater vehicles. International Journal of Robotics
Research, 28(6), 714-728.

Bailey, T., Bryson, M., Mu, H., Vial, J., McCalman, L., & Durrant-Whyte, H.
(2011). Decentralised cooperative localisation for heterogeneous
teams of mobile robots. In Proceedings of IEEE International
Conference on Robotics and Automation (pp. 2859-2865). Institute
of Electrical and Electronics Engineers (IEEE).

Bar-Shalom, Y., Rong LiX. & Kirubarajan, T. (2001). Estimation with
applications to tracking and navigation, New York: John Wiley &
Sons, Inc.

Batista, P. (2015). Long baseline navigation with clock offset estimation
and discrete-time measurements. Control Engineering Practice, 35,
43-53.

Batista, P., Silvestre, C.,, & Oliveira, P. (2010). Single beacon navigation:
Observability analysis and filter design. In Proceedings of the 2010
American Control Conference (pp. 6191-6196). Institute of Electrical and
Electronics Engineers (IEEE).

Batista, P., Silvestre, C., & Oliveira, P. (2011). Single range aided
navigation and source localization: Observability and filter design.
Systems & Control Letters, 60(8), 665-673.

Batista, P., Silvestre, C., & Oliveira, P. (2014). Sensor-based long baseline
navigation: Observability analysis and filter design. Asian Journal of
Control, 16(4), 974-994.

Bellingham, J., Deffenbaugh, M., Leonard, J., & Catipovic, J. (1994). Arctic
under-ice survey operations. Unmanned Systems, 12, 24-29.

Bourgeois, B. S. (2007). Using range and range rate for relative
navigation (technical report). Stennis Space Center, MS: Naval
Research Laboratory, Mapping, Charting, Geodesy Branch, Marine
Geosciences Division.

Catipovic, J. A, & Freitag, L. E. (1990). High data rate acoustic telemetry for
moving ROVs in a fading multipath shallow water environment.
In Proceedings of the Symposium on Autonomous Underwater Vehicle
Technology (pp. 296-303). Institute of Electrical and Electronics
Engineers (IEEE).

Chatfield, A. (1997). Fundamentals of high accuracy inertial navigation
(Vol. 174). American Institute of Aeronautics & Astronautics (AIAA).

Claus, B., Kepper, J. H., Suman, S., & Kinsey, J. C. (2017). Closed-loop one-
way-travel-time navigation using low-grade odometry for autonomous
underwater vehicles. Journal of Field Robotics, 35(4), 421-434.

Crasta, N., Bayat, M., Aguiar, A. P., & Pascoal, A. M. (2013). Observability
analysis of 2D single beacon navigation in the presence of constant
currents for two classes of maneuvers. IFAC Proceedings Volumes,
46(33), 227-232.

Crasta, N., Bayat, M., Aguiar, A. P., & Pascoal, A. M. (2014). Observability
analysis of 3D AUV trimming trajectories in the presence of ocean
currents using single beacon navigation. IFAC Proceedings Volumes,
47(3), 4222-4227.

Crasta, N., Moreno-Salinas, D., Pascoal, A., & Aranda, J. (2018). Multiple
autonomous surface vehicle motion planning for cooperative range-
based underwater target localization. Annual Reviews in Control, 46,
326-342.

De Palma, D., Arrichiello, F., Parlangeli, G., & Indiveri, G. (2017).
Underwater localization using single beacon measurements:
Observability analysis for a double integrator system. Ocean
Engineering, 142, 650-665.

Eustice, R. M., Camilli, R., & Singh, H. (2005). Towards bathymetry-
optimized Doppler re-navigation for AUVs. In Proceedings of the
IEEE/MTS OCEANS Conference and Exhibition (pp. 1430-1436).
Institute of Electrical and Electronics Engineers (IEEE).

Eustice, R. M,, Singh, H., & Leonard, J. J. (2006). Exactly sparse delayed-
state filters for view-based SLAM. IEEE Transactions on Robotics,
22(6), 1100-1114.

Eustice, R. M., Singh, H., Leonard, J. J., & Walter, M. R. (2006). Visually
mapping the RMS Titanic: Conservative covariance estimates for
SLAM information filters. International Journal of Robotics Research,
25(12), 1223-1242.

Eustice, R. M., Singh, H., & Whitcomb, L. L. (2011). Synchronous-clock one-
way-travel-time acoustic navigation for underwater vehicles. Journal
of Field Robotics, Special Issue on State of the Art in Maritime
Autonomous Surface and Underwater Vehicles, 28(1), 121-136.

Eustice, R. M., Whitcomb, L. L., Singh, H., & Grund, M. (2006). Recent
advances in synchronous-clock one-way-travel-time acoustic
navigation. In Proceedings of the IEEE/MTS OCEANS Conference and
Exhibition (pp. 1-6). Institute of Electrical and Electronics
Engineers (IEEE).

Fallon, M. F., Papadopoulos, G., Leonard, J. J., & Patrikalakis, N. M. (2010).
Cooperative AUV navigation using a single maneuvering surface
craft. International Journal of Robotics Research, 29(12), 1461-1474.

Fleischer, S. (2000). Bounded-error vision-based navigation of autonomous
underwater vehicles (Ph.D. thesis). Stanford University, Stanford, CA.

Fofonoff, N., & Millard Jr., R. (1983). Algorithms for the computation of
fundamental properties of seawater (UNESCO Technical Papers in
Marine Sciences). Paris: UNESCO.

Fossen, T. . (1994). Guidance and control of ocean vehicles, New Jersey:
John Wiley and Sons.

Gadre, A. (2007). Observability analysis in navigation systems with an
underwater vehicle application (Ph.D. thesis). Virginia Polytechnic
Institute and State University, Blacksburg, VA.

Gadre, A., & Stilwell, D. (2004). Toward underwater navigation based on
range measurements from a single location. In Proceedings of the
IEEE International Conference on Robotics and Automation (Vol. 5, pp.
4472-4477). Institute of Electrical and Electronics Engineers (IEEE).

Gadre, A, & Stilwell, D. (2005a). A complete solution to underwater
navigation in the presence of unknown currents based on range
measurements from a single location. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (pp.
1420-1425). Institute of Electrical and Electronics Engineers (IEEE).

Gadre, A., & Stilwell, D. (2005b). Underwater navigation in the presence
of unknown currents based on range measurements from a single
location. Proc. Am. Control Conf. Vol. 1, 656-661. Institute of
Electrical and Electronics Engineers (IEEE).


https://doi.org/10.1007/978-3-540-77457-0
https://doi.org/10.1007/978-3-540-77457-0
https://www.springer.com/gp/book/9783540774563

HARRIS ano WHITCOMB

Gaiffe, T. (2002). U-Phins: A FOG-based inertial navigation system
developed specifically for AUV navigation and control. In
International Conference on Underwater Intervention. Institute of
Electrical and Electronics Engineers (IEEE).

Gallimore, E., Anderson, M., Freitag, L., & Terrill, E. (2019). Synthetic
baseline navigation using phase-coherent acoustic communication
signals. The Journal of the Acoustical Society of America, 146(6),
4831-4841.

Gallimore, E., Partan, J., Vaughn, 1., Singh, S., Shusta, J., & Freitag, L.
(2010). The WHOI micromodem-2: A scalable system for acoustic
communications and networking. In OCEANS 2010 MTS/IEEE
SEATTLE  (pp.  1-7).  Institute  of  Electrical  and
Electronics Engineers (IEEE).

Garcia, R., Batlle, J., Cufi, X., & Amat, J. (2001). Positioning an underwater
vehicle through image mosaicking. In Proceedings of the IEEE
International Conference on Robotics and Automation (Vol. 3, pp.
2779-2784). Institute of Electrical and Electronics Engineers (IEEE).

Green, M., & Scussel, K. (2007). Underwater data communication and
instrument release management system. US Patent 7,187,623.

Harris, Z. J., Paine, T. M., & Whitcomb, L. L. (2018). Preliminary evaluation
of null-space dynamic process model identification with application
to cooperative navigation of underwater vehicles. In 2018 [EEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (pp.
3453-3459). Institute of Electrical and Electronics Engineers (IEEE).

Harris, Z. J., & Whitcomb, L. L. (2015). Preliminary feasibility study of
cooperative navigation of underwater vehicles with range and
range-rate observations. In Proceedings of the IEEE/MTS OCEANS
Conference. Institute of Electrical and Electronics Engineers (IEEE).

Harris, Z. J., & Whitcomb, L. L. (2016). Preliminary study of cooperative
navigation of underwater vehicles without a DVL utilizing range and
range-rate observations. In Proceedings of IEEE International
Conference on Robotics and Automation. Institute of Electrical and
Electronics Engineers (IEEE).

Harris, Z. J., & Whitcomb, L. L. (2018a). Preliminary evaluation of
cooperative navigation of underwater vehicles without a DVL
utilizing a dynamic process model. In Proceedings of IEEE
International Conference on Robotics and Automation. Brisbane.
Institute of Electrical and Electronics Engineers (IEEE).

Harris, Z. J., & Whitcomb, L. L. (2018b). Preliminary simulation study of
combined control and cooperative navigation for underwater
vehicles. In Proceedings of the IEEE/MTS OCEANS Conference.
Institute of Electrical and Electronics Engineers (IEEE).

Hartsfield, J. C. (2005). Single transponder range only navigation geometry
(STRONG) applied to REMUS autonomous under water
vehicles (Master's thesis). Joint Program in Applied Ocean Science
and Engineering, Massachusetts Institute of Technology and the
Woods Hole Oceanographic Institution. Cambridge MA and Woods
Hole, MA.

Hegrenas, O., Berglund, E., & Hallingstad, O. (2008). Model-aided inertial
navigation for underwater vehicles. In 2008 IEEE International
Conference on Robotics and Automation (pp. 1069-1076).

Hermann, R., & Krener, A. (1977). Nonlinear controllability and observability.
IEEE Transactions on Automatic Control, 22(5), 728-740.

Hung, N. T, Crasta, N. Moreno-Salinas, D. Pascoal, A. M, &
Johansen, T. A. (2020). Range-based target localization and pursuit
with autonomous vehicles: An approach using posterior CRLB and
model predictive control. Robotics and Autonomous Systems, 132,
103608.

Hunt, M., Marquet, W., Moller, D., Peal, K., Smith, W., & Spindel, R. (1974).
An acoustic navigation system (Technical Report WHOI-74-6).
Woods Hole, MA: Woods Hole Oceanographic Institution.

Jakuba, M. V., Roman, C. N., Singh, H., Murphy, C., Kunz, C., Willis, C.,
Sato, T., & Sohn, R. A. (2008). Long-baseline acoustic navigation for
under-ice autonomous underwater vehicle operations. Journal of
Field Robotics, 25(11-12), 861-879.

725
Wi LEY—‘—

Jouffroy, J., & Reger, J. (2006). An algebraic perspective to single-
transponder underwater navigation. In Proceedings IEEE 2006 CCA/
CACSD/ISIC  (pp. 1789-1794). Institute of Electrical and
Electronics Engineers (IEEE).

Kepper, J. H., IV, Claus, B. C., & Kinsey, J. C. (2019). A navigation solution
using a MEMS IMU, model-based dead-reckoning, and one-way-travel-
time acoustic range measurements for autonomous underwater
vehicles. IEEE Journal of Oceanic Engineering, 44(3), 664-682.

Kilfoyls, D. B., & Baggeroer, A. B. (2000). The state of the art in
underwater acoustic telemetry. IEEE Journal of Oceanic Engineering,
25(1), 4-27. Institute of Electrical and Electronics Engineers (IEEE).

Kinsey, J. C. Eustice, R. M., & Whitcomb, L. L. (2006). A survey of
underwater vehicle navigation: Recent advances and new
challenges. In IFAC Conference of Manoeuvring and Control of
Marine Craft. International Federation of Automatic Control.

Kinsey, J. C., & Whitcomb, L. L. (2004). Preliminary field experience with
the DVLNAV integrated navigation system for oceanographic
submersibles. Control Engineering Practice, 12(12), 1541-1549.

L3 OceanServer. (2015). OceanServer. (2015). Digital Compass Users
Guide, OS5000 Series (Rev. 5.0 ed.). OceanServer.

L3 OceanServer. (2016). AUV Operating Guide (Rev. 5.0 ed.). OceanServer.

LaPointe, C. E. (2006). Virtual long baseline (VLBL) autonomous underwater
vehicle navigation using a single transponder (Master's thesis). Joint
Program in Applied Ocean Science and Engineering, Massachusetts
Institute of Technology and the Woods Hole Oceanographic
Institution. Cambridge MA and Woods Hole, MA.

Larsen, M. (2000a). High performance Doppler-inertial navigation-
experimental results. In Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition (Vol. 2, pp. 1449-1456). Institute of
Electrical and Electronics Engineers (IEEE).

Larsen, M. (2000b). Synthetic long baseline navigation of underwater
vehicles. In Proceedings of the IEEE/MTS OCEANS Conference and
Exhibition (Vol. 3, pp. 2043-2050). Institute of Electrical
and Electronics Engineers (IEEE).

Larsen, M. (2000c). Synthetic long baseline navigation of underwater
vehicles. In OCEANS 2000 MTS/IEEE Conference and Exhibition
(Vol. 3, pp. 2043-2050). Institute of Electrical and Electronics
Engineers (IEEE).

Larsen, M. (2002). High performance autonomous underwater navigation:
Experimental results. Hydro International, 6(1), 6-9.

Larsen, M. (2006). Methods and systems for navigating under water. US
Patent 7,139,647.

Lee, P.-M,, Jun, B.-H., & Lim, Y.-K. (2008). Review on underwater
navigation system based on range measurements from one
reference. In OCEANS 2008 - MTS/IEEE Kobe Techno-Ocean
(pp. 1-5). Institute of Electrical and Electronics Engineers (IEEE).

Martin, S. C. (2008). Advances in six-degree-of-freedom dynamics and
control of underwater vehicle (Ph.D. thesis). The Johns Hopkins
University, Baltimore, MD.

McPhail, S., & Pebody, M. (2009). Range-only positioning of a deep-diving
autonomous underwater vehicle from a surface ship. I[EEE
Journal of Oceanic Engineering, 34(4), 669-677.

Milne, P. H. (1983). Underwater acoustic positioning systems, Houston, TX:
Gulf Publishing.

Moreno-Salinas, D., Crasta, N., Pascoal, A. M., & Aranda, J. (2019). Range-
based navigation algorithms for marine applications. In C. Gao, G.
Zhao, & N. Konopka (Eds.), Cooperative localization and navigation:
Theory, research and practice (pp. 335-387). CRC Press.

Moutarlier, P., & Chatila, R. (1989). An experimental system for incremental
environment modeling by an autonomous mobile robot. In Proceedings of
the International Symposium on Experimental Robotics (pp. 327-346).
Springer-Verlag Berlin Heidelberg.

Paine, T. M. (2018). Robust model identification methods for nonlinear
second-order plant models for underwater vehicles (Master's thesis).
Baltimore, MD: Johns Hopkins University.



HARRIS ano WHITCOMB

i‘—Wl LEY

Parlangeli, G., & Indiveri, G. (2014). Single range observability for
cooperative underactuated underwater vehicles. IFAC Proceedings
Volumes, 47(3), 5127-5138.

Partan, J., Kurose, J., & Levine, B. N. (2007). A survey of practical issues in
underwater networks. ACM SIGMOBILE Mobile Computing and
Communications Review, 11(4), 23-33.

Paull, L, Seto, M., & Leonard, J. (2014). Decentralized cooperative trajectory
estimation for autonomous underwater vehicles. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2014)
(pp. 184-191). Institute of Electrical and Electronics Engineers (IEEE).

Quenzer, J. D., & Morgansen, K. A. (2014). Observability based control in
range-only underwater vehicle localization. In 2014 American
Control Conference (pp. 4702-4707). Institute of Electrical and
Electronics Engineers (IEEE).

Ristic, B., Arulampalam, S., & McCarthy, J. (2002). Target motion analysis
using range-only measurements: algorithms, performance and
application to ISAR data. Signal Processing, 82(2), 273-296.

Roman, C. N. (2005). Self consistent Bathymetric mapping from robotic
vehicles in the deep ocean (Ph.D. thesis). Joint Program in Applied
Ocean Science and Engineering, Massachusetts Institute of
Technology and the Woods Hole Oceanographic Institution.
Cambridge MA and Woods Hole, MA.

Ross, A., & Jouffroy, J. (2005). Remarks on the observability of single
beacon underwater navigation. In Proceedings of the International
Symposium on Unmanned Untethered Submersible Technology.
Institute of Electrical and Electronics Engineers (IEEE).

Rypkema, N. R,, Fischell, E. M., & Schmidt, H. (2017). One-way travel-time
inverted ultra-short baseline localization for low-cost autonomous
underwater vehicles. In 2017 [EEE International Conference on
Robotics and Automation (ICRA) (pp. 4920-4926). Institute of
Electrical and Electronics Engineers (IEEE).

Scherbatyuk, A. (1995). The AUV positioning using ranges from one
transponder LBL. In Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition (Vol. 3, pp. 1620-1623). Institute of
Electrical and Electronics Engineers (IEEE).

Singh, H., Catipovic, J., Eastwood, R, Freitag, L., Henriksen, H., Hover, F.
Yoerger, D., Bellingham, J., & Moran, B. (1996). An integrated approach
to multiple AUV communications, navigation and docking. In
Proceedings of the IEEE/MTS OCEANS Conference and Exhibition (Vol.
1, pp. 59-64). Institute of Electrical and Electronics Engineers (IEEE).

Singh, S., Grund, M., Bingham, B., Eustice, R,, Singh, H., & Freitag, L. (2006).
Underwater acoustic navigation with the WHOI micro-modem. In OCEANS
2006 (pp. 1-4). Institute of Electrical and Electronics Engineers (IEEE).

Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial
relationships in robotics. In I. Cox, & G. Wilfong (Eds.), Autonomous
robot vehicles (pp. 167-193). Springer-Verlag.

Society of Naval Architects and Marine Engineers (U.S.), Technical and Re-
search Committee, & Hydrodynamics Subcommittee. (1950).
Nomenclature for treating the motion of a submerged body through a
fluid: Report of the American Towing Tank Conference. Technical and
research bulletin. Society of Naval Architects and Marine Engineers.

Song, T. (1999). Observability of target tracking with range-only
measurements. IEEE Journal of Oceanic Engineering, 24(3), 383-387.

Spindel, R., Porter, R, Marquet, W., & Durham, J. (1976). A high-
resolution pulse-Doppler underwater acoustic navigation system.
IEEE Journal of Oceanic Engineering, 1(1), 6-13.

Teledyne RDI. (2017). Teledyne RD Instruments Explorer Doppler
Velocity Log (DVL) Datasheet.

Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics, Boston: MIT
Press.

Vaganay, J., Baccou, P., & Jouvencel, B. (2000). Homing by acoustic
ranging to a single beacon. In Proceedings of the IEEE/MTS OCEANS
Conference and Exhibition (Vol. 2, pp. 1457-1462).

Walls, J. M., & Eustice, R. M. (2011). Experimental comparison of
synchronous-clock cooperative acoustic navigation algorithms.
In Proceedings of the IEEE/MTS OCEANS Conference and Exhibition
(pp. 1-7). Institute of Electrical and Electronics Engineers (IEEE).

Walls, J. M., & Eustice, R. M. (2014). An origin state method for
communication  constrained cooperative localization  with
robustness to packet loss. The International Journal of Robotics
Research, 33(9), 1191-1208.

Webster, S. E. (2010). Decentralized single-beacon acoustic navigation:
Combined communication and navigation for underwater vehicles (Ph.
D. thesis). Johns Hopkins University, Baltimore, MD.

Webster, S. E., Eustice, R. M., Murphy, C., Singh, H., & Whitcomb, L. L.
(2009). Toward a platform-independent acoustic communications
and navigation system for underwater vehicles. In Proceedings of the
IEEE/MTS  OCEANS Conference and Exhibition (pp. 1-7).
Institute of Electrical and Electronics Engineers (IEEE).

Webster, S. E., Eustice, R. M., Singh, H., & Whitcomb, L. L. (2012).
Advances in single-beacon one-way-travel-time acoustic navigation
for underwater vehicles. The International Journal of Robotics
Research, 31(8), 935-950.

Webster, S. E., Freitag, L. E., Lee, C. M., & Gobat, J. I. (2015). Towards
real-time under-ice acoustic navigation at mesoscale ranges.
In 2015 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 537-544). Institute of Electrical and Electronics
Engineers (IEEE).

Webster, S. E., Walls, J. M., Whitcomb, L. L., & Eustice, R. M. (2013).
Decentralized extended information filter for single-beacon
cooperative acoustic navigation: Theory and experiments. IEEE
Transactions on Robotics, 29(4), 957-974.

Webster, S. E., Whitcomb, L. L., & Eustice, R. M. (2010). Preliminary
results in decentralized estimation for single-beacon acoustic
underwater navigation. In Proceedings of the Robotics: Science &
Systems  Conference. ISBN  978-0-9923747-4-7. http://www.
roboticsproceedings.org/rss14/p34.html

Whitcomb, L., Yoerger, D., & Singh, H. (1998). Towards precision robotic
maneuvering, survey and manipulation in unstructured undersea
environments. In Proceedings of the International Symposium on
Robotics Research. New York: Springer Verlag (pp. 45-54).

How to cite this article: Harris ZJ, Whitcomb LL. Cooperative
acoustic navigation of underwater vehicles without a DVL
utilizing a dynamic process model: Theory and field
evaluation. J Field Robotics. 2021;38:700-726.
https://doi.org/10.1002/rob.22008


http://www.roboticsproceedings.org/rss14/p34.html
http://www.roboticsproceedings.org/rss14/p34.html
https://doi.org/10.1002/rob.22008



