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Abstract

Tick-borne diseases are a growing problem in many parts of the world, and their surveillance and control touch
on challenging issues in medical entomology, agricultural health, veterinary medicine, and biosecurity. Spatial
approaches can be used to synthesize the data generated by integrative One Health surveillance systems,
and help stakeholders, managers, and medical geographers understand the current and future distribution
of risk. Here, we performed a systematic review of over 8,000 studies and identified a total of 303 scientific
publications that map tick-borne diseases using data on vectors, pathogens, and hosts (including wildlife,
livestock, and human cases). We find that the field is growing rapidly, with the major Ixodes-borne diseases
(Lyme disease and tick-borne encephalitis in particular) giving way to monitoring efforts that encompass a
broader range of threats. We find a tremendous diversity of methods used to map tick-borne disease, but also
find major gaps: data on the enzootic cycle of tick-borne pathogens is severely underutilized, and mapping ef-
forts are mostly limited to Europe and North America. We suggest that future work can readily apply available
methods to track the distributions of tick-borne diseases in Africa and Asia, following a One Health approach
that combines medical and veterinary surveillance for maximum impact.
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Tick-borne diseases are increasingly recognized as a neglected
subset of emerging infections. The expansion of Lyme disease (Lyme
borreliosis) in the United States and Europe has brought attention
to the ecological dimensions of their emergence, and the broader
links between global change and the expansion and resurgence of
vector-borne disease. More recently, in the United States, the spread
of Powassan virus and spotted fever group rickettsioses have been
seen as evidence of an emerging trend: tick-borne pathogens are
proliferating, spreading to new areas, and emerging in human popu-
lations, at a comparable rate to other zoonotic threats (Woolhouse
et al. 2008, Smith et al. 2014). These perspectives, of course, focus
predominantly on Western countries, where zoonotic diseases have
a comparatively lower burden (Torgerson and Macpherson 2011,
Kuris 2012).

Worldwide, tick-borne diseases are a persistent example of prob-
lems at the One Health interface between humans, wildlife, and agri-
culture. Many, like Crimean-Congo hemorrhagic fever (CCHF) and
tick-borne encephalitis, are a particularly significant problem for im-
poverished livestock keepers in rural locations (Grace et al. 2017,
Espinaze et al. 2018). These conditions are severely neglected, often
receiving less clinical attention and dedicated public health funding
than directly-transmitted zoonotic viruses like influenza (Tick-Borne
Disease Working Group 2018). Ticks are usually prioritized below
mosquitoes by vector control programs, given the comparatively
lower global public health burden and often limited agency resources.
Vector control to reduce tick populations is further limited by the
availability of large-scale mitigation strategies and control technolo-
gies, where additional research may be required to develop effective
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control measures for ticks and wildlife hosts (White and Gaff 2018,
Rochlin et al. 2019, Eisen and Stafford 2020). Prevention and treat-
ment in clinical settings are similarly limited: despite their frequently
severe prognosis and high case fatality rate, few tick-borne pathogens
have available or widely used vaccines, and only one research labora-
tory in the world regularly works with tick-borne pathogens at BSL4
containment. Detection and diagnosis of many tick-borne infections
in humans are also challenging, given the broad clinical presentation
of many tick-borne diseases, the current availability of reliable diag-
nostic tests, and multi-tiered approaches needed to confirm patho-
gens (Fatmi et al. 2017, Bush and Vazquez-Pertejo 2018).

The relative neglect of tick-borne illnesses among vector-borne diseases
is also evident in basic disease surveillance data. Lyme surveillance is well
established, and several large clinical datasets have been curated and used
by researchers; and a handful of tick-borne zoonoses, such as CCHE, are
notifiable in systems like ProMed-mail and the WHO Disease Outbreak
News (ProMED 2021, WHO 2021). But on the whole, tick-borne patho-
gens are severely under surveilled, meaning many outbreaks likely go un-
reported, and the distributions and burdens of these diseases are likely
underestimated or entirely unknown (Schiffman et al. 2016, Eisen and
Paddock 2020). In no small part, this reflects the unique challenges of ac-
quiring and verifying data on tick-borne diseases for spatial analyses. The
vectors and within-vector pathogens may have distinct distributions, and
human case data may also differ in its distribution, as a function of en-
counter and exposure (Brown et al. 2005, Lippi et al. 2020). In addition,
vector and human case data require different methods of data collection,
each with logistical constraints that may dictate the geographic extent of
sampling. Given these challenges, tick distribution maps are often used as
a proxy for either transmission exposure risk, or to describe the human
disease distribution, but vector range is poorly characterized for most tick-
borne pathogens. Moreover, nearly all tick-borne infections of humans are
zoonotic, and many have wildlife hosts, where data on infection in each
layer of human, domesticated, and wildlife host, describe different com-
ponents of the transmission process (Brown et al. 2005). Data on animal
reservoirs are not always collected by existing health surveillance networks
and are rarely stored in the same geoinformatic systems.

Maps are a primary tool for visualizing spatial information regarding
pathogens and communicating the potential risk of exposure. Disease
maps have long been used in public health to describe the distribution
of vector-borne diseases, ranging in complexity from plotted cases (i.e.,
dot maps) to projected risk predictions modeled with machine learning
algorithms (Kitron 1998, Carlson 2020). Regardless of complexity,
mapped products rely on the availability of georeferenced datasets. Given

Table 1. Viruses included in the study

the challenges surrounding tick-borne disease research, we hypothesized
that most tick-borne diseases have not been comprehensively mapped.
To evaluate the state of the field, we performed a systematic literature
review and identified all studies of tick-borne pathogens that produced
spatial data, models, or other mapping analyses of the pathogens them-
selves, or used maps of the vectors as a proxy. We found that despite the
obvious threat posed to human and animal health by these diseases—and
their growing significance in a changing world—the vast majority are
undermapped, and many pathogens have not been mapped at all. Based
on our results, we identify trends in the field, including shifting priorities
for surveillance and methodological innovation, and discuss where sur-
veillance efforts may need to be supplemented in the coming years.

Methods

We compiled a list of twenty-seven tick-borne pathogens of med-
ical concern for inclusion in literature searches, using data from
(Dantas-Torres et al. 2012) and (Brackney and Armstrong 2016).
Four additional pathogens of recent public health interest were also
included for review: Borrelia mayonii (Pritt et al.; Spirocheatales:
Spirochaetaceae), B. miyamotoi (Fukunaga et al.; Spirocheatales:
Spirochaetaceae), Rickettsia parkeri (Lackman et al.; Rickettsiales:
Rickettsiaceae) (CDC 2018), and Panola mountain ehrlichiosis
(Ehbrlichia spp.) (Reeves et al. 2008). A final list of pathogens and
vectors included in the study is available in Tables 1 and 2.

We conducted literature searches following Preferred Reporting
Items for Systematic Reviews and Meta-analyses (PRISMA) state-
ment guidelines, a checklist of criteria to ensure transparency in
systematic reviews (Liberati et al. 2009, Moher 2009). Searches for
each pathogen, and named diseases they cause, were conducted in the
PubMed Central (PMC) and Google Scholar databases from January
to September 2020. The search queries used included combinations of
pathogen names and key terms used to describe mapping and spatial
analysis studies, taking the format: [species name] OR [disease name]
AND (“SaTScan” OR “MaxEnt” OR “spatial cluster*”OR “spatial
analysis” OR “geospatial” or “ecological niche model*” OR “map-
ping” OR “nearest neighbor” OR “spatial GLM*” OR “species dis-
tribution model*”). We did not place restrictions on the geographic
region of study or date of publication, and searches were limited to
English language results. Additional novel records for screening were
taken from cited literature in records identified via database searches.

Duplicate records were removed from search results, and
the remaining papers were screened for further review. Original,

Pathogen Family Vectors
African swine fever virus Asfarviridae Ornithodoros spp.
bourbon virus Orthomyxoviridae Amblyomma spp.
Colorado tick fever virus Reoviridae Not in literature
Crimean-Congo hemorrhagic fever virus Bunyaviridae Hyalomma spp.
Rhipicephalus spp.
Heartland virus Bunyaviridae Amblyomma spp.
Haemaphysalis spp.
Huaiyangshan banyangvirus Bunyaviridae Haemaphysalis spp.
Kyasanur forest disease virus Flaviviridae Haemaphysalis spp.
Louping Ill virus Flaviviridae Ixodes spp.
Nairobi sheep disease virus Bunyaviridae Haemaphysalis spp.
Omsk hemorrhagic fever virus Flaviviridae Not in literature
Powassan virus Flaviviridae Ixodes spp.
Sawgrass virus Rhabdoviridae Not in literature
Tick-borne encephalitis virus Flaviviridae Dermacentor spp.

Ixodes spp.
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peer-reviewed studies with a spatial component, and within the tax-
onomic scope of the review, were assessed for further screening. The
remaining full-text studies were reviewed for inclusion. Literature re-
views, expert commentaries, synthesis papers, conference abstracts,
and unpublished theses were excluded from results, as were studies
using serology not resolved to the taxonomic level of interest for a
given pathogen, and studies that focused on pathogens solely known
for their veterinary importance. We recorded the citation, DOI link,
geographic region, pathogens, vectors, data sources and sampling
methods for vectors, and data inputs for each study included in our
final dataset.

Mapping and spatial analysis methods were also recorded for
papers. In order to describe the types of maps in the studies, we cre-
ated a key, based on a previous study of helminth parasite mapping
(Schluth et al. 2020), and classified studies into eight types. Studies
could contain more than one type of map (Table 3).

Limitations
Limitations to this study include the potential for gaps in coverage
in certain geographic regions, reflecting limiting our searches to

Table 2. Bacteria and protozoan parasites included in the study

English-language publications. These gaps may be particularly evi-
dent in countries with long histories of vector-borne disease man-
agement, such as China and Russia, that have extensive bodies of
research not readily accessible due to language barriers in the lit-
erature (Ruzek et al. 2019, Zhang et al. 2019). While we included
many types of mapping approaches and attempted to describe the
range of those approaches, those that we perceived as not quantita-
tive were excluded, as was gray literature such as reports and con-
ference abstracts.

Results

Our initial database searches returned 12,482 records, which yielded
8,608 unique publications. An overview of the literature screening
process, following PRISMA guidelines, is shown in Fig. 1. The final
screened dataset comprised 303 studies on tick-borne pathogens
with a mapped spatial component published between 1995 and
2020. The full database of screened literature is accessible via github.
com/viralemergence/tickmaps. Four out of twenty-seven patho-
gens of interest did not have any associated mapping studies that
met our screening criteria: Omsk hemorrhagic fever virus, sawgrass

Pathogen Disease

Vectors

Anaplasma phagocytophilum
Babesia spp. Babesiosis
Borrelia burgdorferi
Borrelia mayonii
Borrelia miyamotoi
Borrelia spp.
Coxiella burnetii Q fever

Ebrlichia chaffeensis

Ebrlichia spp.

Francisella tularensis Tularemia

Rickettsia africae
Rickettsia conorii
Rickettsia parkeri
Rickettsia rickettsii

Human Granulocytic Anaplasmosis

Lyme borreliosis

Borrelia mayonii disease/Lyme borreliosis

Borrelia miyamotoi disease/hard tick relapsing fever
Tick relapsing fever

Human Monocytic Ehrlichiosis

Panola Mountain Ehrlichia

African tick bite fever
Mediterranean spotted fever
Tidewater spotted fever
Rocky mountain spotted fever

Amblyomma spp.
Ixodes spp.
Ixodes spp.
Ixodes spp.
Ixodes spp.
Ixodes spp.
Ornithodoros spp.
Dermacentor spp.
Hyalomma spp.
Amblyomma spp.
Dermacentor spp.
Ixodes spp.
Amblyomma spp.
Amblyomma spp.
Dermacentor spp.
Ixodes spp.

Not in literature
Rbhipicephalus spp.
Amblyomma spp.
Amblyomma spp.
Dermacentor spp.
Rhipicephalus spp.

Table 3. Eight types of study methodologies defined in this review

Type of study Definition (example)

Cluster analysis
e.g. (15).
Ecological niche modeling

Any type of cluster analysis was used, including SatScan cluster analysis, kernel density hotspot modeling, or similar,

A species distribution modeling (SDM) algorithm was applied to point data of occurrences of ticks or tick-borne dis-

ease, and the resulting map was a function of environmental drivers of geographic distributions.

Endemicity mapping

Mapping the extent of ticks or tick-borne disease occurrence, based on a systematic or manual review of historical or

published data and expert opinion, typically expressed with administrative boundaries or zones of suspected risk.

Genetic mapping
Point data

Maps which included locations of phylogenetic descriptions—e.g., a pie chart of strain type frequency at a given location.
Spatial data points of information (e.g., the incidence of human cases, presence or absence of vectors), presented on a

map in a format accessible for reuse through digitization.

Prevalence mapping
Prevalence modeling
Risk mapping

Maps of tick-borne disease prevalence, in humans or other hosts, visualized using raw (unaltered and unmodeled) data.
Maps are generated as predicted functions of prevalence through some sort of quantitative modeling.
Projection of a modeled output (such as linear regression model output) onto a continuous geographic area or region,

intended to communicate the geographic extent and intensity of transmission risk.
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virus, Colorado tick fever virus, and Rickettsia africae (Rickettsiales:
Rickettsiaceae). Only nine pathogens had more than ten associated
mapping studies: ASF virus, CCHF virus, tick-borne encephalitis
virus (TBEV), Borrelia burgdorferi (Johnson et al.; Spirocheatales:

Additional records identified
through other searches
(n=28)

Records identified through
database searching
(n=12,482)

Records after duplicates removed

(n=8,608)
Records excluded
(n=17,726)

Records screened
(n=882)

Full-text papers
assessed for eligibility
(n= 545)

Full-text papers
excluded, with
reasons

(n=340)

Studies included in
literature synthesis
(n=303)

Fig. 1. PRISMA flow diagram outlining the literature search and screening
process.

Spirochaetaceae), Anaplasma phagocytophilum (Dumler et al.; Foggie;
Rickettsiales: Anaplasmataceae), Coxiella burnetii ((Derrick); Philip;
Legionellales: Coxiellaceae), Ebrlichia chaffeensis (Anderson, Dawson
and Wilson; Rickettsiales: Anaplasmataceae), Francisella tularensis
(Dorofe'ev; McCoy and Chapin; Thiotrichales: Francisellaceae), and
Rickettsia rickettsii (Brumpt; Rickettsiales: Rickettsiaceae). While the
majority of studies focused on Lyme disease (40.26%) or tick-borne
encephalitis (15.51%), the overall number of published work with a
mapping component has increased dramatically across taxa in the past
decade (Fig. 2). Tick vectors from seven genera were represented in the
final dataset: Amblyomma, Dermacentor, Haemaphysalis, Hyalomma,
Ixodes, Ornithodoros, and Rhbipicephalus (Fig. 2). Studies with data
from Ixodes were the most prevalent, featured in 65.42% of studies
including information on the vector. These typically focused on three
species of medical concern: Ixodes scapularis (Say, Ixodida: Ixodidae),
Ixodes ricinus (L., Ixodida: Ixodida), Ixodes pacificus (Cooley &
Kohls, Ixodida: Ixodidae).

The eight mapping approaches (Table 3) used to classify studies
were all represented in the final dataset of screened papers (Fig. 3).
Mapping raw occurrence points of pathogens and vectors were the
most frequently used approach in communicating spatial infor-
mation and was used in nearly half (47.85%) of screened studies.
Risk mapping (31.02%) and endemicity mapping (29.70%) were
also commonly used to communicate the spatial distribution of
tick-borne pathogens or the risk of exposure to ticks. Ecological
niche modeling was used to estimate distributions, typically for
tick vectors, in 22.11% of studies, and the majority (76.11%) of
these studies produced niche models with the maximum entropy
(MaxEnt) method (Phillips et al. 2006). Cluster analysis was used in
18.48% of studies, where tests for spatial autocorrelation (7 = 15)
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Fig. 2. The cumulative number of studies that collected data about a given genus of tick vector (A) or tick-borne disease (B).
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. Real pathogen data . Tick data as proxy . Human case data . No human case data
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B widife data . No wildlife data

Fig. 4. The proportion of studies using different data sources to generate maps of tick-borne disease distribution, transmission, or risk. Many studies use (A)
pathogen data directly (75%) and (B) human case data (40%), while fewer use (C) livestock infection data (12%) or (D) wildlife infection data (10%).

and spatial scanning statistics implemented in SaTScan (7 = 31) were Data sources used to generate maps varied between studies,
frequently used for cluster detection. Prevalence modeling (8.58%) where 74.92% used pathogen records as inputs, and a quarter
and genetic mapping (4.62%) were the methods least used in the (25.08%) used tick vectors as proxies for the pathogens they

final dataset of screened literature. transmit (Fig. 4). Previously published datasets were used in
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Fig. 5. Proportion of studies with data on different wildlife (A) and livestock species (B).
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Fig. 6. Number of studies describing the geography of tick-borne disease by country, excluding a handful of explicitly continental studies (most notably 20 in
Europe, as well as four in Africa, two in the eastern Mediterranean, one in Asia, and four global mapping studies).

20.79% of studies, where resources including museum records,
online databases, and literature reviews were commonly leveraged
as data sources for spatial analyses. Human cases were used as
data inputs in 39.60% of mapping efforts, and data from other
vertebrate hosts such as domesticated livestock (11.88%) and
wildlife (9.57%) were less common (Fig. 4). The relative propor-
tions of domesticated and wildlife hosts sampled for pathogens
across studies are presented in Fig. 5. Livestock sampled for patho-
gens in the literature largely consisted of hoofstock (i.e., cattle,
sheep, and pigs) and domestic dogs; rodents, ungulates, and suids

were the groups most frequently sampled for pathogens in wildlife
serology studies.

The geographic foci and extent of studies included in the final
dataset varied considerably, ranging from highly localized areas to
mapped outputs with global extent. We found four global mapping
studies on tick-borne pathogens, and a number of explicitly conti-
nental studies focused on Europe (7 = 20), Africa (1 = 4), the eastern
Mediterranean (7 = 2), and Asia (7 = 1). Regionally, North American
locations were heavily represented in the literature, where 35.31%
of studies were conducted in the United States, 11.55% in Canada,
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and 2.64% in Mexico (Fig. 6). While global mapping efforts are
comparably low compared to North America, there are conspicuous
regional gaps in mapped tick-borne disease studies, notably in por-
tions of South America, Africa, the Middle East, Central Asia, and
Southeast Asia.

Discussion

In this study, we performed a systematic review of scientific litera-
ture that has mapped tick-borne diseases and quantified our find-
ings in terms of distribution among pathogens, vectors, methods,
geographic scope, and other attributes. Together, these provide a
reasonable approximation of the current literature’s coverage of
tick-borne diseases. Our review has demonstrated marked increases
in both the number and diversity of work with spatial foci. Still,
we have identified gaps in our geographic knowledge of tick-borne
diseases. In many instances, basic natural history research to charac-
terize pathogens and vectors will be important to improve the utility
of risk mapping for understudied transmission systems. Efforts to
expand surveillance of lesser-known pathogens, document sylvatic
cycles, and increase the capacity for tick-borne disease surveillance
in underrepresented regions will also help support future public
health work.

Why Tick-Borne Diseases Are Difficult to Map

Maps are commonly used to provide a tangible (and graphical) per-
spective on the “where” of disease risk and can be used as part of the
surveillance, prevention, and intervention toolbox in public health.
Maps of vector-borne diseases carry an additional layer of com-
plexity, as transmission risk is a combination of the abundance and
behavior of vectors, the presence of the disease, and the opportunity
for human infection. The data streams to describe vector and path-
ogen distributions often arise from data collection in historically
disparate fields (i.e., entomology and infectious disease epidemi-
ology, respectively). In some instances, key vectors for zoonoses also
remain unknown, as is the case for Crimean-Congo hemorrhagic
fever virus (Okely et al. 2020), which may have different principal
tick vectors by region. Resolving these data barriers and knowledge
gaps is one step towards better geospatial studies.

Tick-borne diseases also pose a unique problem, given that
nearly all tick-borne viruses are zoonotic, which necessitates a
view of their emergence and risk landscapes based on sylvatic and
enzootic cycles. For comparison, these transmission cycles are very
well researched for some mosquito-borne diseases, such as yellow
fever, and knowledge of pathogen-vector-host relationships can be
used to improve risk mapping efforts (Jentes et al. 2011). While
we have a firm understanding of sylvatic cycles for some tick-
borne diseases, namely Lyme disease, that operationalized view
of transmission does not exist for most tick-borne pathogens, and
vertebrate hosts were only considered in a fraction of studies in
our literature database. There are many instances where the full
components of tick-borne enzootic transmission cycles are either
poorly understood or completely unknown (Kemenesi and Banyai
2018, Orkun and Emir 2020). This presents a challenge in accu-
rately mapping distributions of tick-borne diseases, particularly
when tick vectors are widespread relative to the pathogens they
transmit (Lippi et al. 2020). In these instances, geographic trans-
mission risk and the potential for spillover events would perhaps
be better estimated with data on wildlife reservoirs and enzootic
transmission patterns. This is a challenging endeavor, however, as
establishing enzootic cycles for tick-borne pathogens typically re-
quires extensive data collection in the field and laboratory, often
calling for specialized expertise in wildlife sampling that is not

typically incorporated into traditional public health surveillance
systems (Hamer et al. 2012). Data gaps are again characterized by
disciplinary divides, as wildlife disease surveillance usually occurs
separately from acarological collections, within-vector pathogen
surveillance collection, and human public health records col-
lections. Gaps in our knowledge regarding transmission cycles,
therefore, present a major obstacle to quantifying and mapping
the risk of exposure.

HowTick-Borne Diseases Are Mapped

Although we recorded a tremendous diversity of approaches, we
found that simple occurrence maps (i.e., displaying raw data points
for either pathogens or their vectors) were the most common form of
spatial data visualization. Dot maps of disease cases have long been
used in epidemiology to communicate basic spatial information, and
they remain a frequently used mapping approach that may comple-
ment more advanced quantitative methods (Smith et al. 2015). We
also found that approximately one-quarter of the studies in this re-
view relied on tick presence as a proxy for pathogen presence and
transmission risk. This is an intuitive way to formalize knowledge
about the geographic range of risk when pathogen distributions are
poorly sampled or unknown. However, maps derived solely from
vector data underscore a clear need to refine perceptions of geo-
graphic risk through sampling efforts that focus on pathogens.

Mapping studies that employed more analytical approaches for
spatial statistics or modeling (such as interpolated risk mapping,
ecological niche models, and cluster analysis) have become more
common especially in the past five years, likely due to advances in
the diversity of modeling algorithms, availability of open-source
software, and increasing adoption of these methods in disease
ecology. Perhaps most of all, we observed that these approaches re-
lied on the existence of an ecosystem of open, accessible raw data
describing the occurrence of ticks, pathogens, and clinical and vet-
erinary cases. This secondary use of data was perhaps most evident
in ecological niche modeling studies, where species presence data
are commonly used as input for modeling algorithms (Elith and
Leathwick 2009). This practice, while pragmatic, comes with the
caveat that much work on establishing the spatial risk of tick-borne
diseases is hinged on a relatively small pool of existing data. This
problem is exacerbated when diseases are rare events under cur-
rent surveillance practices, or when tick vectors are challenging to
sample, such as soft ticks in the genus Ornithodoros (Donaldson
et al. 2016). We, therefore, recommend an emphasis on novel data
collections, when possible, in future research.

Finally, we noted that despite substantial interest in the expan-
sion of tick-borne diseases over time, there was fairly limited work
that conclusively established this pattern. We encountered hundreds
of examples of something akin to risk maps for tick-borne diseases,
but most are so different in input and mapping technique as to be
incomparable across studies, a lack of intercomparability that can
stymie attempts to describe change over time. This can be addressed
by direct work using a combination of modeling and endemicity
mapping to update historical or baseline distributions, and project
future areas of vulnerability; like other work, we note that this kind
of work is heavily reliant on detailed, real-time primary data.

Which Tick-Borne Diseases Are Mapped

A small number of tick-borne diseases have been exceptionally well-
studied and well-mapped. We found a preponderance of studies with
information about Lyme disease and its vectors. Lyme disease has be-
come the most frequently reported vector-borne disease in the United
States, Canada, and Europe, a trend which underlies the geographic
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distribution of the research identified in this study (Lindgren and
Jaenson 2006, Shapiro 2014, Lindsay 2016). The prevalence of Lyme
disease mapping studies in the literature is unsurprising, as Lyme di-
sease has been previously identified as a major research target, both
in disease ecology and public health efforts (Han and Ostfeld 2019,
Mac et al. 2019). Similarly, TBEV is also prioritized, likely due to
its relative prevalence in humans, long history of its presence as a
livestock-related issue, and the intensity of research on this partic-
ular disease in Russia (National Academies of Sciences, Engineering,
and Medicine et al. 2016, Ruzek et al. 2019, Bojkiewicz et al. 2020).
The wealth of existing data for Lyme disease and TBEV, combined
with ongoing surveillance efforts, translate into transmission systems
that are extensively mapped across spatial and temporal scales, com-
pared to other tick-borne diseases.

With these few exceptions, the majority of tick-borne patho-
gens are undermapped. Expanded pathogen diversity in mapping
studies is mostly relegated to the past decade, a period which co-
incides with gains in the knowledge of tick-borne pathogen tax-
onomy, increased awareness of burden, and heightened public health
interest (Vayssier-Taussat et al. 2013, Eisen and Eisen 2018, Pollet
et al. 2020). Nevertheless, pathogens better represented in mapping
studies are typically those that share common vectors with exten-
sively studied pathogens. For example, pathogens that are also trans-
mitted by I. scapularis and I. ricinus (the primary vectors of Lyme
borreliosis and TBEV, respectively) tended to be better described in
our data, often as part of integrative surveillance focused on these
specific vectors instead of anyone pathogen. Pathogens capable of
transmission through agricultural production systems were also the
focus of many mapping studies, even when the human burden of zo-
onotic transmission is comparatively low, as is the case with African
swine fever and Q fever. In these instances, the bulk of mapped
studies stem from the existence of established surveillance in live-
stock, management of wildlife populations, or testing of agricultural
products (e.g., bulk tank milk testing) (Hilbert et al. 2015, Food and
Agriculture Organization of the United Nations 2019).

In this review, we find several pathogens of increasing public
health importance that would make good candidates for targeted
surveillance efforts, where areas of transmission risk are largely
derived from vector distributions. For example, four pathogens—
Omsk hemorrhagic fever virus, sawgrass virus, Colorado tick fever
virus, and Rickettsia africae—were entirely absent from the results
of our literature searches, and represent important future priorities.
Similarly, proportionally understudied pathogens transmitted by
I. scapularis—including A. phagocytophilum, E. chaffeensis, and
Powassan virus—could be more regularly involved in vector sur-
veillance efforts. In a similar vein, the geographic distribution of
reviewed literature indicates several regional disparities in mapped
tick-borne disease research, highlighting potential opportunities for
increased research efforts. South America, for example, is repre-
sented in the tick mapping literature by only two studies conducted
in Brazil, despite having confirmed cases of tick-borne diseases and
known tick species of medical importance (Guglielmone et al. 2006).
Documentation of zoonotic pathogens on the continent is similarly
underfunded, and tick-borne transmission cycles are an active area of
research (Guglielmone et al. 2006, Rodriguez-Morales et al. 2018).
Identifying regional priorities for surveillance based on clinical and
veterinary significance, and expanding the purview of tick-borne di-
sease mapping using participatory approaches alongside quantita-
tive and GIS work, will help manage the burden of tick-borne disease
where it remains the highest.
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