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The fields of viral ecology and evolution are rapidly expanding, motivated in part by concerns around emerging zoonoses. One consequence is
the proliferation of host-virus association data, which underpin viral macroecology and zoonotic risk prediction but remain fragmented across
numerous data portals. In the present article, we propose that synthesis of host-virus data is a central challenge to characterize the global virome
and develop foundational theory in viral ecology. To illustrate this, we build an open database of mammal host-virus associations that reconciles
four published data sets. We show that this offers a substantially richer view of the known virome than any individual source data set but also
that databases such as these risk becoming out of date as viral discovery accelerates. We argue for a shift in practice toward the development,
incremental updating, and use of synthetic data sets in viral ecology, to improve replicability and facilitate work to predict the structure and

dynamics of the global virome.
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he emergence of SARS-CoV-2 was a harsh reminder
that uncharacterized wildlife viruses can suddenly
become globally relevant. Efforts to identify wildlife viruses
with the potential to infect humans and to predict spillover
and emergence trajectories are becoming more popular than
ever (including with major scientific funders). However,
the value of these efforts is limited by an incomplete under-
standing of the global virome (Wille et al. 2021). Significant
knowledge gaps exist regarding the mechanisms of viral
transmission and replication, host-pathogen associations
and interactions, spillover pathways, and several other
dimensions of viral emergence. Furthermore, although bil-
lions of dollars have been invested in these scientific chal-
lenges over the last decade alone, much of the data relevant
to these problems remains unsynthesized. Fragmented data
access and a lack of standardization preclude an easy rec-
onciliation process across data sources, making the whole
less than the sum of its parts and hindering viral research
(Wyborn et al. 2018).
In the present article, we propose that data synthesis is
a seminal challenge for translational work in viral ecology.
This requires researchers to go beyond the usual steps of
data collection and publication and to develop a community
of practice that prioritizes data synthesis and reconciles
semireproduced work across different teams and disciplines.
As an illustrative example, we describe the analytical hurdles
of working with host-virus association data, a format that

characterizes the global virome as a bipartite network of
hosts and viruses, with pairs connected by observed poten-
tial for infection. Recent studies highlight the central role for
these data in efforts to understand viral macroecology and
evolution (Carlson et al. 2019, Dallas et al. 2019, Albery et al.
2020), to predict zoonotic emergence risk (Han et al. 2015,
2016, Olival et al. 2017, Wardeh et al. 2020), and to antici-
pate the impacts of global environmental change on infec-
tious disease (https://doi.org/10.1101/2020.01.24.918755
[preprint: not peer reviewed], Gibb et al. 2020, Johnson
et al. 2020). Several bespoke data sets have been compiled to
address these questions, each of which differs in sources and
scope. Scientific knowledge of the global host-virus network
is continually evolving as a consequence of novel discoveries,
changing research priorities and taxonomic revision, and
as interest in this field has grown, so has the fragmentation
of total knowledge across these data sets. To illustrate this
problem (and a simple solution), we compare and reconcile
four major host-virus association data sets, each of which is
different enough that we anticipate the results of individual
studies could be strongly shaped by choice of data set.

Four snapshots of one host-virus network

Although host-pathogen association data exist in dozens of
sources and repositories, there are four particularly large and
widely used published data sets, which each capture between
0.3% and 1.5% of the estimated 50,000 species of mammal
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Table 1. Available “big data” on host-virus associations, and major features of each data set.

Diagnostic
method
Original Original identified
Nature taxonomic taxonomic  (PCR,
Data of data  Association Host Virus scope of scope of serology,
set Source set records species species pathogens hosts etc.)? URL of current version
GMPD2  University Static 895 226 154 All parasites Mammals Yes http://onlinelibrary.wiley.
of Georgia and pathogens  (subset: only com/doi/10.1002/
(including ungulates, ecy.1799/suppinfo
viruses, carnivores,
bacteria, and
macroparasites, primates)
protozoans,
prions)
EID22 University Dynamic 1,342 418 398 All symbionts Vertebrates No https://eid2.liverpool.
of Liverpool (including and ac.uk/
viruses, invertebrates
bacteria,
macroparasites,
protozoans,
prions, green
algae, molluscs,
and cnidarians)
HP3 EcoHealth  Static 2,784 751 561 Viruses Mammals Yes https://github.com/
Alliance ecohealthalliance/HP3
Shaw Shaw Static 4,210 957 733 Viruses and Vertebrates  Yes https://doi.org/10.6084/
LP and bacteria m9.figureshare.8262779
colleagues
(2020).

self-reporting by the data curators).

Note: Numbers of unique association records and host, virus, and pathogen species are all derived from the reconciled version presented in the
CLOVER database, and therefore these numbers may differ from those presented in the main text (which are taken from the source data, or from

aNumber of associations and taxa accurate as of 2015 static release in Scientific Data paper.

viruses (Carlson et al. 2019). Individually, each of these data
sets forms the basis for numerous studies in host-pathogen
ecology and macroecology, and the differences between
them—especially with regards to taxonomic scope, avail-
able metadata, and frequency of data updates—make them
preferable for different purposes (table 1). However, these
differences may also complicate cross-comparison and syn-
thetic inference.

GMPD 2.0. The Global Mammal Parasite Database (GMPD;
Nunn and Altizer 2005), started in 1999 and now in its
second public version (Stephens et al. 2017), emerged from
efforts to compile mammal-parasite association data from
published literature sources. Construction of the GMPD
used a variety of similar strategies that combined host Latin
names with a string of parasite-related terms to search
online literature databases. Pertinent literature was then
manually identified and relevant association and metadata
were compiled. The initial database was focused on primate
hosts (Nunn and Altizer 2005) and expanded to include
separate sections for ungulates (Ezenwa et al. 2006) and car-
nivores (Lindenfors et al. 2007).

In 2017, GMPD 2.0 was released, which merged these
three previously independent databases (Stephens et al.
2017). The updated data set encompasses 190 primate,
116 ungulate, and 158 carnivore species, and records their
interactions with 2412 unique “parasite” species, includ-
ing 189 viruses, as well as bacteria, protozoa, helminths,
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arthropods, and fungi. Notable improvements GMPD 2.0
are the construction of a unified parasite taxonomy that
bridges occurrence records across host taxa, the expansion
of host-parasite association data along with georeferencing,
and enhanced parasite trait data (e.g., transmission mode).

The original data are available as a web resource
(www.mammalparasites.org), and the data from GMPD
2.0 can also be downloaded as static files from a data
paper (Stephens et al. 2017). In addition, one subsec-
tion of the GMPD, named the Global Primate Parasite
Database, has been independently maintained and
regularly updated by Charles Nunn (data available at
https://parasites.nunn-lab.org). Consequently, the primate
subsection of GMPD 2.0 includes papers published up to
2015, whereas the ungulate and carnivore subsections stop
after 2010 (Stephens et al. 2017).

EID2. The ENHanCEd Infectious Diseases Database (EID2),
curated by the University of Liverpool, may be the largest
dynamic data set of any symbiotic interactions (Wardeh
et al. 2015). EID2 is regularly compiled from automated
scrapes of two web sources: publication titles and abstracts
indexed in the PubMed database and the National Center
for Biotechnology Information (NCBI) Nucleotide Sequence
database (along with its associated taxonomic metadata).
The EID2 data is structured using the concepts of car-
rier and cargo rather than host and pathogen, because it
includes a number of ecological interactions beyond the
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Box 1. Glossary.

Association data: a format that records ecological interactions between a host and symbiont (an association) in the form of an edge list.

of different provenance, and generate a new synthetic product.
different host-symbiont pair.

available from a single file rather than a query interface.

Data provenance: The primary literature origin of a particular record or set of records in a synthetic data set.

Data reconciliation: the task of harmonizing the language of a given data set’s fields and metadata to allow a researcher to merge data
Edge list: a table, spreadsheet, or matrix of “links” in a host-symbiont network, where each row records the known association of a
Flat file: a static document in Excel or similar spreadsheet or data format, with no dynamic component (no updating) and all data

Metadata: additional data describing focal data of interest and that is relevant to interpretation and analysis. Important examples for
host-virus associations include sampling method (for example, serological assay, PCR or pathology), date and geographical location
of sampling, and standardized information on host and virus taxonomy.

Open data: data that is directly and freely accessible for reuse and exploration without impediment, gatekeeping, or cost restriction.

scope of normal host-pathogen interactions, including
potentially unresolved mutualist or commensal associa-
tions. Interactions are stored as a geographic edge list, where
each carrier and cargo can also have locality information;
additional metadata include the number of sequences in
GenBank and related publications.

EID2’s dynamic web interface (currently available through
download on a limited, query-by-query basis that research-
ers often manually bind or by personal correspondence with
data curators) to date contains information encompass-
ing 1560 mammal carrier species and 3986 microparasite
or macroparasite cargo species, of which 1446 are viruses
(Wardeh et al. 2020). However, many researchers continue to
use the static, open release of EID2 from a 2015 data paper
(Wardeh et al. 2015), which we focus on in the present article
for comparative purposes as a stable version of the database
available to the community of practice. The EID2 data were
originally validated for completeness against GMPD 1.0.

HP3. The Host-Parasite Phylogeny Project data set (HP3)
was developed by EcoHealth Alliance over the better part
of a decade. Published along with a landmark analysis
of the correlates of zoonotic potential (data from Olival
et al. 2017), the HP3 data set consists of 2805 associations
between 754 mammal hosts and 586 virus species. These
were compiled from literature published between 1940 and
2015, on the basis of targeted searches of online reference
databases. Complementary with the search strategy used for
the GMPD, rather than starting with a list of host names,
HP3 started with names of known mammal viruses listed
in the International Committee on Taxonomy of Viruses
(ICTV) database. These virus names along with their syn-
onyms were then used as search terms to identify literature
containing host-virus association data.

Data collection and cleaning for HP3 began in 2010, and
the database has been static since 2017; it can be obtained
as a flat file in the published study’s data repository (Olival
et al. 2017). HP3 includes a host-virus edge list (see box 1),

https://academic.oup.com/bioscience

separate files for host and virus taxonomy, and separate files
for host and virus traits. Host-virus association records are
provided with a note about method of identification (poly-
merase chain reaction [PCR], serological methods, etc.),
which may be useful for researchers interested in the differ-
ent levels of confidence ascribed to particular associations
(https://doi.org/10.1101/2020.05.22.111344 [preprint: not
peer reviewed]). HP3’s internal taxonomy is also harmo-
nized with two mammal trees (Bininda-Emonds et al. 2007,
Fritz et al. 2009), facilitating analyses that seek to account
for host phylogenetic structure while testing hypotheses
about viral ecology and evolution (e.g., Becker et al. 2020,
https://doi.org/10.1101/2020.02.25.965046 [preprint: not
peer reviewed], Olival et al. 2017, Washburne et al. 2018,
Guth et al. 2019, Park 2019, Albery et al. 2020, Mollentze and
Streicker 2020). HP3 was also validated against GMPD 1.0.

shaw. In recent work, Shaw and colleagues (2020) built a
host-pathogen edge list by combining a systematic literature
search with cross-validation from several of the above-men-
tioned data sets. Similar to the construction of HP3, Shaw
and colleagues (2020) started with lists of known pathogenic
bacteria and viruses found in humans and animals. They
then conducted Google Scholar searches pairing pathogen
names with disease-related keywords, followed by manual
review of search results. For well-studied pathogens, they
limited their manual review to a subset of the top 200 most
relevant publications as determined by Google. From the
resulting literature searches, Shaw’s team compiled 12,212
interactions between 2656 vertebrate host species (includ-
ing, but not limited to, mammals) and 2595 viruses and
bacteria. GMPD?2, EID2, and the Global Infectious Diseases
and Epidemiology Network Guide to Medically Important
Bacteria (Gideon Informatics and Berger 2020) were used to
validate the host-pathogen associations.

The data set is available as a static flat file through figshare
and the project GitHub repository (Shaw et al. 2020). Host-
pathogen associations are provided alongside pathogen
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metadata (e.g., genome size, bacterial traits, transmission
mode, zoonotic status) and diagnostic method (i.e., PCR,
pathogen isolation, pathology). The data set al.o includes
a comprehensive host phylogeny, developed specifically for
the study using nine mitochondrial genes for downstream
analyses of host phylogenetic similarity and host breadth.

A reconciled mammalian virome data set

Some of these data sets were validated against each other
during production, and others have been used for cross-
validation in analytical work (Albery et al. 2020), and certain
studies have generated a study-specific ad hoc reconciled
data set (https://doi.org/10.1101/2020.02.25.965046 [pre-
print: not peer reviewed], Gibb et al. 2020). However, no
work has been published with the primary aim of recon-
ciling them as correctly, comprehensively, and reproduc-
ibly as possible. More recently developed data sets such as
Shaw’s can inherently draw on a greater cumulative body
of scientific work. This could mean they include most of
the data captured by previous efforts, but we found there
are substantial differences among all four data sets. In isola-
tion, we expect that these differences could affect ecologi-
cal and evolutionary inference in ways that are difficult to
quantify, with special relevance to significance thresholds
in hypothesis-testing research (i.e., different data sets may
confer different power to statistical tests). We expected that
separate host-virus data sources could be standardized into
one shared format, allowing them to cover a greater percent-
age of the global virome, a greater diversity of host species,
and obviating the need for researchers to either choose
between individual data sets or implement ad hoc solutions
that merge them prior to analysis.

To illustrate the potential for comprehensive data recon-
ciliation, we harmonized the four major data sets described
in the present article, creating a new synthetic CLOVER
data set out of the four leaves (which we have made avail-
able with this study). Doing this required harmonizing
and standardizing both host and virus taxonomy, as well as
metadata describing the strength of evidence for interac-
tions. This process involved several steps applied to each
source data set. First, we manually harmonized virus names
across all four data sets to revolve subtle formatting differ-
ences. Second, we applied a standardized scheme of virus
detection methods using information provided in each
source data set (described further below). Finally, using the
R package taxize (Chamberlain and Szdcs 2013), we accessed
the most current binomial for each host species and applied
a standardized host and virus taxonomy (species, genus,
family, order, and class) using the same taxonomic hierar-
chy (Schoch et al. 2020) as the NCBI's Taxonomy database
(ncbi.nlm.nih.gov). Host (n = 34) and virus (n = 24) species
that did not return an exact automated match (i.e., fuzzy
matches) were manually checked and resolved where pos-
sible against the NCBI Taxonomy database (or against the
International Union for Conservation of Nature Red List
database, https://iucnredlist.org, for 14 mammal species
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without a match in the NCBI Taxonomy database). All virus
names are given at the species level even if finer classifica-
tions exist, and viruses that could not be resolved to species
are resolved to the next-lowest taxonomic level (genus or
family, although all original reported names are retained
and accessible from the column “VirusOriginal”). Host and
virus names, metadata, NCBI unique taxonomic identifiers,
virus ICTV ratification status, and primary data sources as
originally described were included in the combined data set,
to ensure traceability.

With all four data sets taxonomically consistent, we were
able to show that each only covered a portion of the known
global mammalian virome, even for the most studied hosts
and viruses (figure 1). Our taxonomic harmonization helped
reconcile some discrepancies, increasing overlap among
the data sets (figure 2), but notable differences remained.
This could confound inference: For example, using a simple
linear model, we found that data provenance (see box 1)
explained 8.8% of variation in host species’ viral diversity
(but only 4.7% after harmonization). When viral ecology
studies report different findings based on slight variation
around a significance threshold, readers should therefore
consider whether subtle differences in the underlying data
sets might account for such variation.

Integrated data sets move us a step closer to resolving
this uncertainty. The CLOVER data set covers 1085 mam-
mal host species and 831 associated viruses. This only rep-
resents 16.9% of extant mammals (Burgin et al. 2018) and,
at most, 2.1% of their viruses (Carlson et al. 2019)—a mar-
ginal improvement over the 957 mammal hosts (14.9%)
and 733 viruses (1.8%) in the reconciled Shaw data subset
but an improvement nonetheless. The biggest functional
gain is not in the breadth of the reconciled data but in
its depth: the Shaw database records 4209 interactions
among these host and virus species, whereas CLOVER
captures 5477. Given that previous studies have estimated
that 20%-40% of host-parasite links are unknown (in
GMPD2 (Dallas et al. 2017)), this 30% improvement is
notable and shows the value of data synthesis: Both build-
ing out and filling in synthetic data sets will significantly
improve the performance of statistical models, which are
usually heavily confounded by matrix sparseness (https://
doi.org/10.1101/2020.05.22.111344 [preprint: not peer
reviewed], Dallas et al. 2017).

In addition, harmonization of metadata on virus detec-
tion methods across data sets enables a greater scrutiny
of the strength of evidence in support of each host-virus
association. We applied a simplified detection method
classification scheme (i.e., either serology, PCR or sequenc-
ing, isolation or observation, or method unknown) based
on descriptions in the source databases or, where these
are not provided, adopted the most conservative defini-
tion given the data source in question (i.e., EID2 entries
derived from the NCBI Nucleotide database are classified
under PCR or sequencing, although they might also qualify
for the next strongest level of isolation or observation,
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Figure 1. Network representation of the CLOVER data set. The nodes of the
entire CLOVER network have been projected to a two-dimensional space using
t-SNE, and disaggregated to each of the four data sources. In each panel, only
the nodes found in the given data set are shown with filled symbols (the unfilled
symbols indicate associations recorded in the other data sets); the triangles
represent mammal hosts, whereas the circles represent viruses. In each data set,
a nontrivial proportion of associations is completely unique and unrecorded
elsewhere, even after taxonomic reconciliation. This was the case for 186 of
1342 associations in EID2 (13.8%), 611 of 2783 in HP3 (22%), 271 of 895 in

GMPD2 (30.3%), and 1707 of 4210 in Shaw (40.5%).

whereas entries derived from PubMed are classified under
method unknown). Of the 5477 unique host-virus pairs in
CLOVER, a total of 2160 (39%) have been demonstrated
using either viral isolation or direct observation and 1871
(34%) via PCR or sequencing-based methods (with some
overlap, because some associations have been reported with
both of the above methods). Notably, a substantial propor-
tion (2256, 41%) are based solely on serological evidence,
which, although it is an indicator of past exposure, does not
reflect host competence (i.e., effectiveness at transmitting
a pathogen; Gilbert et al. 2013, Lachish and Murray 2018,
Becker et al. 2020). Such harmonized metadata facilitate
investigation of inferential stability using various types
of evidence, as well as enabling a best practice of subset-
ting data for a particular research purpose. For example,

https://academic.oup.com/bioscience

Vivyv
vry VN

VAT T I W

e Overview Articles

HP3 serological assays are a much weaker
wy form of evidence if the aim of a study

": ? . is zoonotic reservoir host prediction,
UR-2TRAE, ‘il whereas virus isolation data open new
we V'Yvé # avenues for testing hypotheses about

o v, reservoir competence (https://www.

biorxiv.org/content/10.1101/2021.01.01.
425052v1).

Data synthesis inherently relies on
a scientific community that generates
new, often conflicting, data. The gen-
eration of truly novel data and finding
ways to resolve existing observations that
are in conflict are two equally viable
paths to scientific knowledge produc-
tion. However, in the current funding
landscape, researchers may have a sig-
nificant incentive to position themselves
as creating an entirely “novel” data set
from scratch, even if it partially repli-
cates available data sources, or to focus
their limited resources on data sets that
improve the depth of knowledge within
a narrow scope (e.g., a focus on spe-
cific taxonomic groups). But when test-
ing microbiological or ecoevolutionary
hypotheses, rather than simply using the
newest published data set as a benchmark
for which one is most up to date, we sug-
gest a necessary shift in scientific cultural
norms toward using synthetic, reconciled
data as an analytical best practice. As an
example, two studies have already used
CLOVER to advance the science of viral
ecology: One showed that the apparently
higher diversity of zoonotic pathogens in
urban-adapted mammals is likely a con-
sequence of sampling bias (https://www.
biorxiv.org/content/10.1101/2021.01.02.4
25084v1 [preprint: not peer reviewed]),
whereas another showed that a two-step
process of network imputation and graph embedding can be
used to substantially improve a model that identifies zoonotic
viruses on the basis of their genome composition (https://
arxiv.org/abs/2105.14973 [preprint: not peer reviewed]).

To make this kind of work possible, at least a handful of
researchers will need to continue the task of stepwise integra-
tion, using data sets that synthesize existing knowledge across
teams, institutions, and funding programs to fill in critical data
with even more detail. The required tasks (e.g., identifying
relevant source data, cleaning taxonomic information, harmo-
nizing metadata on diagnostic information or spatiotemporal
structure) can be time consuming but are relatively straight-
forward to conduct and can increasingly be automated thanks
to the rapid growth of new tools for reproducible research
(Boettiger et al. 2015, Lowndes et al. 2017, Colella et al. 2020).
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Figure 2. Proportional overlap between data sets before and after host and virus taxonomic reconciliation. The
percentages and fill colors in these tiles can be interpreted as the percentage of the y-axis that was contained in the x-axis;
for example, 31% of originally reported EID2 hosts were also represented in GMPD2, whereas 47% of reconciled Shaw
associations were also contained in HP3. The darker colors represent higher proportions of shared data.

There is a clear need and no obvious technical barrier to invest
more effort in data harmonization: Engaging in this process as
a form of open science will accelerate progress for the entire
research community.

Relevance to future efforts

In the present article, we showed that a simple data synthesis
effort can create a dramatically more comprehensive data set
of mammal-virus associations. However, this is a temporary
solution and one that is becoming less sustainable given
global investments in accelerating the rates of viral discovery
in wildlife (Wille et al. 2021). Even if similar data sets con-
tinue to proliferate or if newer iterations of existing data sets
are periodically released, static data sets will quickly become
out of date, and their relation to the most recent empirical
knowledge will be left unclear. This is already a significant
issue with the CLOVER data set, which becomes much
sparser after 2010, both in terms of the overall number of
reported host-virus associations, and the reporting of novel
(i.e., previously undetected) associations (figure 3a, 3b).
This sparseness is most likely because of time lags between
host-virus sampling in the field, the reporting or publication
of associations and their eventual inclusion in one of the
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component data sets and suggests that CLOVER may now be
missing up to a decade’s worth of complete host-virus data.
This gap is concerning, given that the last decade has seen
unprecedented and exponential growth in viral discovery
and research effort in wildlife (figure 3c).

In the near term, microbiologists and data scientists may
therefore need to approach the task of data reconciliation
with a much broader scope and develop a more sustainable
data platform—one that is dynamic, and minimizes the time
between scientific discoveries and their documentation in
an aggregate data source. The reconciliation process we
describe in the present article will need to evolve in order
to power these kinds of databases; to integrate data sources
that update every day (e.g., NCBI's GenBank database or
the Global Biotic Interactions database), the taxonomic
reconciliation process cannot rely on manual curation
steps such as those undertaken to generate CLOVER. The
development of automated taxonomic pipelines is not an
unfamiliar challenge in ecological data synthesis, but it poses
a particular problem with respect to viral taxonomy, which
is in a constant state of flux. Often, a substantial lag between
virus discovery and official ratification by the International
Committee on the Taxonomy of Viruses (ICTV) exacerbates
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Figure 3. Temporal trends in host-virus association reports and virus-related research effort. The bar graphs show, for
each year, the annual number of reported associations color-coded by source database, which can include duplicates of the
same association reported over multiple years (a), and the number of novel unique associations (i.e., unreported before
that year) (b). The years reflect the date when an association was reported, either in a published paper or report (for
literature-based records) or to the NCBI Nucleotide database (EID2 only). The trend plot (c) shows the trend in virus-
related publications across all hosts in the CLOVER data set up to 2020 (PubMed search term: “host binomial and virus
or viral”). The points represent the annual total publications summed across all host species, and point size denotes the
number of host species with virus-related publications in a given year.

the gulf between scientific knowledge and available data.
Furthermore, the global virome is not simply one static,
incompletely characterized entity; viruses evolve more rap-
idly than most targets of biodiversity databases, and the
continual emergence of new lineages through reassortment
and recombination unfortunately implies that host-virus
associations are not a static property that can be captured
through snapshots of the system (Shi et al. 2018).

Given these problems, databases might even be forced
in the long term to move away from the familiar format
of species concepts and toward data structures based on
operational taxonomic units (OTUs). Although an OTU-
based host-virus network would be better tailored to the
underlying virology, it will require the incorporation of
genetic sequence data, which comes with additional logisti-
cal challenges in terms of both data curation and the logistics
and governance of data sharing. In the coming decade, these
kinds of radical solutions may be unavoidable.

Steps toward an atlas of the global virome

Scaling up the aggregation of host-virus association data
will not be easy, but is not an insurmountable endeavor. We

https://academic.oup.com/bioscience

suggest working backward from the intended end product:
The goals outlined in the present article are best served by
a central system (with an online access point to the con-
sumable data), spanning the information available from
multiple data sources (which demands backend engines
drawing from existing databases while data provenance is
tracked and proper attribution is ensured). Furthermore,
the most valuable data resource would be easily updat-
able by practitioners (which demands a portal for manual
user input or an integrated publishing toolkit to work
from flat files). For users, these data should be accessible
in a programmatic way (through a web API allowing for
bulk download or other interfaces such as an R package),
encourage reproducibility (through versioning of the entire
database, or of a specific user query), and offer predictable
formats (through a data specification standard devised by a
multidisciplinary group).

Fortunately, the field of ecoinformatics has the capacity to
help inform this design and development process. Massive
bioinformatic data portals such as the Global Biodiversity
Informatics Facility (gbif.org), the Encyclopedia of Life
(eol.org), and the Ocean Biodiversity Information System
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(obis.org) all offer most of the functionalities we outline
in the present article, although they are aimed at slightly
different forms of biodiversity data. More recent contribu-
tions dedicated to ecological network data include GloBI
(for global biotic interactions; Poelen et al. 2014), helminthR
(Dallas 2016), and mangal (Poisot et al. 2016), all of which
reconcile their taxonomy with other databases through the
use of unique taxon keys. In short, researchers interested in
the global virome need not divert their attention, resources,
and effort away from the pressing tasks related to monitor-
ing viral pathogens. Rather, they can leverage existing prod-
ucts, expertise, and capacity in neighboring fields to bolster
their ability to do so. Given the eagerness ecologists have
shown to participate in SARS-CoV-2 research, we anticipate
that our field may be especially well poised to jump into
this task after the pandemic. We aim, in our current efforts,
to lay that groundwork: The CLOVER database is the first
step toward a project called the Virome in One Network, a
prototype of the next-generation database described in the
present article.

An atlas of the global virome would have inherent value
for the entire scientific community. When the format of a
data set is well established, it allows for the development of
tools that mine the data in real time. For example, the field
of biodiversity studies has adopted the concept of essen-
tial biodiversity variables, which can be updated when the
underlying data change (Pereira et al. 2013, Fernandez et al.
2019, Jetz et al. 2019). Having the ability to revisit predic-
tions about the host-virus network could improve models
that assess zoonotic potential of wildlife viruses (https://doi.
0rg/10.1101/2020.02.25.965046 [preprint: not peer reviewed],
https://doi.org/10.1101/2020.11.12.379917 [preprint: not peer
reviewed]), generate priority targets for wildlife reservoir
sampling (Becker et al. 2020, Babayan et al. 2018, Plowright
et al. 2019), and help benchmark model performance related
to these tasks. Beyond training and validation, link predic-
tion models built on these reconciled databases may be used
to target future literature searches, shifting from systematic
literature searches to a model-based approach to database
updating. Increased collaboration between data collectors,
data managers, and data scientists that leads to better data
standardization and reconciliation is the only way to produc-
tively synthesize our knowledge of the global virome.
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