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Networks of species interactions underpin numerous ecosystem processes,
but comprehensively sampling these interactions is difficult. Interactions
intrinsically vary across space and time, and given the number of species
that compose ecological communities, it can be tough to distinguish between
a true negative (where two species never interact) from a false negative
(where two species have not been observed interacting even though they
actually do). Assessing the likelihood of interactions between species is an
imperative for several fields of ecology. This means that to predict inter-
actions between species—and to describe the structure, variation, and
change of the ecological networks they form—we need to rely on modelling
tools. Here, we provide a proof-of-concept, where we show how a simple
neural network model makes accurate predictions about species interactions
given limited data. We then assess the challenges and opportunities associ-
ated with improving interaction predictions, and provide a conceptual
roadmap forward towards predictive models of ecological networks that is
explicitly spatial and temporal. We conclude with a brief primer on the rel-
evant methods and tools needed to start building these models, which we
hope will guide this research programme forward.

This article is part of the theme issue ‘Infectious disease macroecology:
parasite diversity and dynamics across the globe’.

1. Introduction

Ecosystems are, in large part, constructed by the interactions within them—
organisms interact with one another and with their environment, either directly
or indirectly. Interactions between individuals, populations, and species create
networks of interactions that drive ecological and evolutionary dynamics and
maintain the coexistence, diversity and functioning of ecosystems [1-3]. Species
interaction networks underpin our understanding of numerous ecological pro-
cesses [4,5]. Yet, even basic knowledge of species interactions (like being able
to list them, or guess which ones may exist) remains one of the most severe bio-
diversity data shortfalls [6], in large part owing to the tedious, time-consuming,
and expensive process of collecting species interaction data. Comprehensively
sampling every possible interaction is not feasible given the sheer number of
species on Earth, and the data we can collect about interactions tend to be
biased and noisy [7]. This is then compounded as species interactions are typi-
cally measured as a binary variable (present or absent) even though it is
evident interactions are not all-or-nothing. Empirically we know species
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interactions occur probabilistically owing to variation in
species abundances in space and time [8]. Different types of
interactions vary in their intrinsic predictability (e.g. some
fungal species engage in opportunistic saprotrophy [9], obli-
gate parasites are more deterministic in their interactions
than facultative parasites [10,11]). In addition to this variance
in predictability, networks from different systems are struc-
tured by different mechanisms.

Still, like all of Earth’s systems, species interaction
networks have entered their long now’ [12], where anthropo-
genic change will have long-term, low-predictability
consequences [13] for our planet’s ecology. Therefore, our
field needs a roadmap towards models that enable prediction
(for the present) and forecasting (for the future) of species
interactions and the networks they form, and which accounts
for their spatial and temporal variation [14,15]. As an
example, in disease ecology, predicting potential hosts of
novel disease (recently notably the search for wildlife hosts
of betacoronaviruses; [16,17]) has received much attention.
Network approaches have been used for the prediction of
risk and dynamics of dengue [18], Chagas disease [19],
Rickettsiosis [20], Leishmaniasis [21] and a myriad of infec-
tious diseases in livestock and wildlife [22]. Additionally,
prediction of interaction networks is a growing imperative
for next-generation biodiversity monitoring, requiring a con-
ceptual framework and a flexible set of tools to predict
interactions that is explicitly spatial and temporal in perspec-
tive [23-25]. Developing better models for prediction of these
interactions will rely on integration of data from many
sources, and the sources for this data may differ depending
on the type of interaction we wish to predict [26].

Interactions between species can be conceptualized in a
multitude of ways (mutualistic versus antagonistic, strong
versus weak, symmetric versus asymmetric, direct versus
indirect) [27,28]. What is common among definitions of species
interactions is that at least one of the species is affected by the
presence of another [28]. Networks can be used to represent a
variety of interaction types, including: umnipartite networks:
where each species can be linked to other species (often food
webs), bipartite networks: where there are two pools of species
and all interactions occur between species in each pool (typi-
cally used for pairwise interactions; e.g. hosts and parasites),
and k-partite networks,: which expand to more than two disjoint
sets of interacting species (e.g. some parasitoid webs, seed dis-
persal networks and pollination networks [29]).

Methods for predicting interactions between species exist,
but at the moment are difficult to generalize as they are typi-
cally based around a single mechanism at a single scale:
position in the trophic niche [30,31], phylogenetic distance
[32,33], functional trait matching [34], interaction frequency
[35,36], or other network properties [37,38]. Species inter-
action networks, as we observe them on Earth today, are
the product of ecological and evolutionary mechanisms inter-
acting across spatial, temporal and organizational scales. The
interwoven nature of these processes imposes structure on
biodiversity data which is invisible when examined only
through the lens of a single scale, however machine learning
(ML) methods have enormous potential to find this structure
in data [39], and have the potential to be used together with
mechanistic models in order to make prediction of ecological
dynamics more robust [40].

Here, we use a case study to show how ML models
(specifically a deep neural network) can enable prediction

of species interactions: we construct a metaweb of host—para-
site interactions across space, using predictors extracted from
empirical data and accounting for the structure of co-occur-
rence between species. We use this case study to illustrate a
roadmap for improving predictions using open data and
ML methods; specifically, we focus on how emerging tools
from ML can be used to deliver more accurate and more effi-
cient predictions of ecological systems, and how the potential
of these approaches will be magnified with increased data
access. We then provide a non-exhaustive primer on the lit-
erature on interaction prediction, and identify the tools and
methods most suited for the future of interaction network
prediction models, covering the spatial, temporal and cli-
matic dimensions of network prediction [41]. Both the case
study and primer are largely geared towards binary (inter-
actions are either present or absent) networks; there are
limitations in data and tools that make it a more reasonable
starting approach. First, most ecological networks do not
have estimates of interaction strength, and particularly not
estimates that are independent from relative abundances.
Second, the methodological toolkit to analyse the structure
of networks is far more developed for binary interactions
[2], meaning that the predictions of binary interactions can
be more readily interpreted.

We argue that adopting a more predictive approach to com-
plex ecological systems (like networks) will establish a positive
feedback loop with our understanding of these systems [42]: the
tasks of understanding and predicting are neither separate nor
opposed [43]. Instead, ML tools have the ability to capture a lot
of our understanding into working assumptions, and compar-
ing predictions to empirical data gives us better insights
about how much we ignore about the systems we model (see
[44], who provide an overview of deep learning techniques
and concepts in ecology and evolution). Although data on
species interaction networks are currently limited in the size
of their spatial coverage, ML approaches have a demonstrated
track record of revealing the ‘unreasonable effectiveness’ of
data [45]; we argue that with a clear roadmap guiding the
use of these methods, the task of predicting species interaction
networks will become more attainable.

The premise of this manuscript is that we can predict inter-
actions between species. In this section, we provide a proof-
of-concept, where we use data from Hadfield et al. [46]
describing 51 host—parasite networks sampled across space.
In this data, as in most spatially distributed ecological net-
works, not all species co-occur across sites. As a direct
consequence, there are pairs of species that may or may not
be able to interact for which we have no data; furthermore,
there are pairs of species that may interact, but have only
been documented in a single location where the interaction
was not detected. In short, there are ecological reasons to
believe that a number of negative associations in the metaweb
(sensu [47]) are false negatives.

Without any species-level information, we resort to using
both co-occurrence and known interactions to predict novel
interactions. To do this, we (i) extract features (equivalent to
explanatory variables in a statistical model) for each species
based on co-occurrence, (ii) use these features to train a
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Figure 1. Proof-of-concept: an empirical metaweb (from Hadfield et al. [46]), i.e. a list of co-occurrences within a species pool, is converted into latent features
using probabilistic PCA, then used to train a deep neural network to predict species interactions. Panels (a) and (b) represent, respectively, the receiver-operating-
characteristic curve and the precision-recall curve, with the best classifier (according to Youden’s J) represented by a black dot. The expected performance of a neutral
‘random-gquessing’ classifier is shown with a dashed line. Panel () shows the imputed using t-distributed stochastic neighbour embedding (tSNE), and the colours of
nodes are the duster to which they are assigned based on a k-means clustering of the tSNE output. Empirical interactions are shown in purple, and imputed

interactions in grey.

neural network to predict interactions, and (iii) apply this clas-
sifier (an algorithm that assigns a categorical output based on
input features) to the original features to predict potential
interactions across the entire species pool. ML relies on a lexi-
con that shares some terms with statistics, albeit with different
meaning; we expand on the precise meanings in the ‘How to
validate a predictive model’ section below. The outputs of
the analysis are presented in figure 1, and the code to repro-
duce it is available at https://osf.io/6jp4b/; the entire
example was carried out in Julia 1.6.2 [48], using the Flux
machine learning framework [49].

We first aggregate all species into a co-occurrence matrix A
which represents whether a given pair of species (i, j) was
observed coexisting across any location. We then transform
this co-occurrence matrix A via probabilistic principal com-
ponent analysis (PCA) [50] and use the first 15 values from
this PCA space as the feature vector for each species i. For
each pair of (host, parasite) species (i, j), we then feed the fea-
ture vectors (v;, v;) into a neural network. The neural network
uses four feed-forward layers (the weights for each layer is
independent from the one before and after); the first layer
uses the RELU activation function (which ignores input
below a threshold), the rest use a o function (which transforms
linear activation energies into logistic responses). All layers

have appropriate dropout rates (in order to avoid over-fitting,
only a fraction of the network is updated on each iteration: 1 —
0.8 for the first layer, 1 — 0.6 for the subsequent ones). This pro-
duces an output layer with a single node, which is the
probability-score for interaction between species i and j.

We then train (equivalent to fif) this neural network by
dividing the original dataset into testing and training sets
(split 80-20 for training and testing, respectively). During the
training of this neural network (using the ADAM optimizer
learning rate), the 5 x 10* batches of 64 items used for training
were constrained to have at least 25% of positive interactions,
as Poisot et al. [51] show slightly inflating the dataset with posi-
tive interactions enables us to counterbalance sampling biases.
Furthermore, setting a minimum threshold of response balance
is an established approach for datasets with strong biases [52].
Validating this model on the test data shows our model pro-
vides highly effective prediction of interactions between pairs
of species not present in the training data (figure 1). The behav-
iour of the model was, in addition, checked by measuring the
training and testing loss (difference between the actual value
and the prediction, here using mean-squared error) and
stopping well before they diverged (to avoid overfitting).

This case study shows that a simple neural network can
be very effective in predicting species interactions even
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Figure 2. A conceptual roadmap highlighting key areas for the prediction of ecological networks. Starting with the input of data from multiple sources, followed by
a modelling framework for ecological networks and the landscape, which are then ultimately combined to allow for the prediction of spatially explicit networks.

without additional species-level data. Applying this model to
the entire dataset (including species pairs never observed to
co-occur) identified 1546 new possible interactions—746
(48%) of which were between pairs of species for which no
co-occurrence was observed in the original dataset. This
model reaches similar levels of predictive efficacy as previous
studies that use far more species-level data and mechanistic
assumptions [30], which serves to highlight the potential
for including external sources of data for improving our pre-
diction of interaction networks even further. For example,
Krasnov et al. [53] collected traits data for this system that
could be added to the model, in addition or in substitution
to latent variables derived from observed interactions.

3. Predicting species interaction networks across
space: challenges and opportunities

Here, we present a conceptual roadmap (figure 2) which
shows a conceptual path from data to prediction of species

interaction networks, incorporating several modelling frame-
works. We envisage this roadmap to be one conceptual path
towards incorporating space into our prediction of interaction
networks, and developing spatially explicit models of net-
works and their properties. In the following sections we
discuss the challenges and opportunities for this path for-
ward, and highlight two specific areas where it can have a
strong impact: the temporal forecasting of species interaction
networks structure, and the use of predicted networks for
applied ecology and conservation biology.

(a) Challenges: constraints on predictions

(i) Ecological network data are scarce and hard to obtain

At the moment, prediction of species interactions is made dif-
ficult by the limited availability of data. Although we have
seen a growth in species occurrence data, this growth is
much slower for ecological interactions because species inter-
actions are challenging to sample comprehensively [54,55]
and sampling methodology has strong effects on the
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resulting data [7]. In turn, the difficulty of sampling inter-
actions can lead to biases in our understanding of network
structure [7]. This knowledge gap has motivated a variety
of approaches to deal with interactions in ecological research
based on assumptions that do not always hold, such as the
assumption that co-occurrence is equivalent to meaningful
interaction strength [56]. Spatial biases in data coverage are
prevalent at the global scale (with South America, Africa
and Asia being under-represented) and different interaction
types show biases towards different biomes [57]. These
‘spatial gaps’ serve as a limitation to our ability to confidently
make predictions when accounting for real-world environ-
mental conditions, especially in environments for which
there are no analogous data.

Furthermore, empirical estimation of interaction strength
is highly prone to bias as existing data are usually summar-
ized at the taxonomic scale of the species or higher, thereby
losing information that differentiates the strength in per-
individual interactions from the strength of a whole
species interaction [58]. Empirical estimations of interaction
strength are still crucial [59], but are a hard task to quantify
in natural communities [60-62], especially as the number
of species composing communities increases, compounded
by the possibility of higher-order interactions or non-linear
responses in interactions [62]. Furthermore, interaction
strength is often variable and context dependent and can
be influenced by density-dependence and spatio-temporal
variation in community composition [62].

(ii) Powerful predictive tools work better on large data volumes
This scarcity of data limits the range of computational tools
that can be used by network ecologists. Most deep learning
methods, for instance, are very data expensive. The paucity
of data is compounded by a collection of biases in existing
datasets. Species interaction data are typically dominated
by food webs, pollination and host—parasite networks
[63,64]. This could prove to be a limiting factor when trying
to understand or predict networks of under-represented
interaction types or when trying to integrate networks of
different types [65], especially given their inherent structural
variation [66]. This stresses the need for an integrated, flexible
and data-efficient set of computational tools which will allow
us to predict ecological networks accurately from existing and
imperfect datasets, but also enable us to perform model vali-
dation and comparison with more flexibility than existing
tools. We argue that figure 1 is an example of the promise
of these tools even when facing datasets of small size. The
ability to extract and engineer features also serves to bolster
our predictive power. Although it may be tempting to rely
on approaches like bootstrapping to estimate the consistency
of the predictions, we are confronted with the issues of
low data volume and data bias—that we are more likely to
observe interactions between some pairs of species (i.e.
those that co-occur often, e.g. [67], and those with higher
relative abundance, e.g. [68]). This introduces risk in training
models on pseudo-replicated data. In short, the current lack
of massive datasets must not be an obstacle to prediction;
it is an ideal testing ground to understand how little data
is sufficient to obtain actionable predictions, and how
much we can rely on data inflation procedures to reach this
minimal amount.

(iii) Scaling-up predictions requires scaled-up data

We are also currently limited by the level of biological
organization at which we can describe ecological networks.
For instance, our understanding of individual-based net-
works (e.g. [69,70]) is still in its infancy [71] and acts as a
resolution-limit. Similarly, the resolution of environmental
(or landscape) data also limits our ability to predict networks
at small scales, although current trends in remote sensing
would suggest that this will become less of a hindrance
with time [72]. Ecosystems are a quintessential complex-
adaptive-system [73] with a myriad of processes at different
spatial, temporal, and organizational scales that influence
and respond to one another. Understanding how the product
of these different processes drive the properties of ecosystems
across different scales remains a central challenge of eco-
logical research, and we should strive to work on methods
that will integrate different empirical ‘snapshots’ of this
larger system.

(b) Opportunities: an emerging ecosystem of open tools

and data

(i) Data are becoming more interoperable

The acquisition of biodiversity and environmental data has
tremendously increased over the past decades thanks to the
rise of citizen science [74] and of novel technology [75],
including wireless sensors [76], next-generation DNA sequen-
cing [77], and remote sensing [78,79]. Open access databases,
such as GBIF (https://www.gbif.org/) (for biodiversity
data), NCBI (https://www.ncbinlm.nih.gov/) (for taxo-
nomic and genomics data), TreeBASE (https://www.
treebase.org/treebase-web/home.html) (for phylogenetics
data), CESTE (https://icestes.github.io/) [80] (for metacom-
munity ecology and species traits data) and WorldClim
(https://www.worldclim.org/data/bioclim.html) (for biocli-
matic data) contain millions of data points that can be
integrated to monitor and model biodiversity at the global
scale. For species interactions data, at the moment Mangal
(https://mangal.io/#/) is the most comprehensive open
database of published ecological networks [81], and GloBI
(https://www.globalbioticinteractions.org/about) is an
extensive database of realized and potential species inter-
actions [82]. Developing standard practices in data
integration and quality control [83] and in next-generation
biomonitoring [72] would improve our ability to make
reliable predictions of ecosystem properties on increasing
spatial and temporal scales. The advancement of prediction
techniques coupled with a movement towards standardizing
data collection protocols (e.g. [84] for plant functional traits)
and metadata (e.g. DarwinCore)—which facilitates interoper-
ability and integration of datasets—as well as a growing
interest at the government level [85]—paints a positive pic-
ture for data access and usability in the coming years.

(i) Machine learning tools are becoming more accessible

This effort is also supported by a thriving ecosystem of data
sources and novel tools. ML methods can often be more flex-
ible and perform better than classical statistical methods, and
can achieve a very high level of accuracy in many predictive
and classification tasks in a relatively short amount of time
(e.g. [86,87]). Increasing computing power combined with
recent advances in ML techniques and applications shows
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Figure 3. The nested nature of developing predictive and forecasting models, showcases the forward problem and how this relies on a hierarchical structure of the
modelling process. The choice of a specific modelling technique and framework, as well as the data retained to be part of this model, proceeds directly from our
assumptions about which ecological mechanisms are important in shaping both extant and future data.

promise in ecology and environmental science (see [88] for an
overview). Moreover, ongoing developments in deep learn-
ing are aimed at improvement in low-data regimes and
with unbalanced datasets [89,90]. Considering the current
biases in network ecology [57] and the scarcity of data of
species interactions, the prediction of ecological networks
will undoubtedly benefit from these improvements. ML
methods are emerging as the new standard in computational
ecology in general [88,91], and in network ecology in particu-
lar [92], as long as sufficient, relevant data are available.
Many studies have used ML models specifically with ecologi-
cal interactions. Relevant examples include species traits used
to predict interactions and infer trait-matching rules [93,94],
automated discovery of food webs [95], reconstruction of eco-
logical networks using next-generation sequencing data [92],
and network inference from presence-absence data [96]. As
many ecological and evolutionary processes underlie species
interactions and the structure of their ecological networks
(e.g. [68,97]), it can be difficult to choose relevant variables
and model species interaction networks explicitly. A promis-
ing application of ML in natural sciences is scientific-ML, a
framework that combines machine learning with mechanistic
models [40,98].

4. A primer on predicting ecological networks

Within the constraints outlined in the previous section, we
now provide a primer on the background concepts necessary
to build predictive models of species interaction networks,
with a focus on using ML approaches in the modelling pro-
cess. As figure 2 illustrates, this involves a variety of
numerical and computational approaches; therefore, rather
than an exhaustive summary, we aim to convey a high-level
understanding that translates the core concepts into their
application to ecological networks.

(a) Models

(i) What is a predictive model?

Models are used for many purposes, and the term ‘model’
itself embodies a wide variety of meanings in scientific dis-
course. All models can be thought of as a function, f, that
takes a set of inputs x (also called features, descriptors or
independent variables) and parameters 6 (called weights in
the contents of neural networks), and maps them to predicted

output states y (also called label, response or dependent vari-
able) based on the input to the model: y =f(x, 6).

A given model f can be used for either descriptive or pre-
dictive purposes. Many forms of scientific inquiry are based
around using models descriptively, a practice also called infer-
ence, the inverse problem, fitting a model, or training a model
[99]. In this context, the goal of using a model is to estimate
the parameters, 6, that best explain a set of empirical obser-
vations, {%, }. In some cases, these parameter values are
themselves of interest (e.g. the strength of selection, intrinsic
growth rate, dispersal distance), but in others cases, the goal
is to compare a set of competing models fy, f», ... to determine
which provides the most parsimonious explanation for a
dataset. The quantitative representation of ‘effects’ in these
models—the influence of each input on the output—is often
assumed to be linear, and within the frequentist world-
view, the goal is often to determine if the coefficient corre-
sponding with an input is non-zero to determine its
‘significance’ (often different from its ecological relevance;
[100]) in influencing the outcome.

Models designed for inference have use—descriptive
models of networks can reveal underlying mechanisms that
structure ecological communities, given a proper null
model [101]. However, in order for ecology to develop as a
predictive science [102], interest has grown in developing
models that are used not just for description of data, but
also for prediction. Predictive models are based in the forward
problem, where the aim is to predict new values of the output
y given an input x and our estimate value of 6 [99]. Because
the forward problem relies on an estimate of 6, then, the pro-
blem of inference is nested within the forward problem
(figure 3): working towards a predictive view of ecological
networks will give us the needed tools to further our under-
standing of them.

(i) What do you need to build a predictive model?

To build a predictive model, one needs the following: first,
data, split into features X and labels j (figure 3). Second, a
model f, which maps features x to labels y as a function of
parameters 6, i.e. y=f(x, 6). Third, a loss function L(y, y),
which describes how far a model’s prediction y is from an
empirical value jj. Lastly, priors on parameters, P(6), which
describe the modeller’s a priori belief about the value of the
parameters; rather than making an analysis implicit, specify-
ing priors has the merit of making the modeller’s
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assumptions explicit, which is a most desirable feature when
communicating predictions to stakeholders [103]. Often an
important step before fitting a model is feature engineering:
adjusting and reworking the features to better uncover fea-
ture-label relationships [104]. This can include projecting
the features into a lower dimensional space, as we did
through a probabilistic PCA in the case study, or removing
the covariance structure using a Whitening approach. Then,
when a model is fitted (synonymous with parameter infer-
ence or the inverse problem, see figure 3), a fitting
algorithm attempts to estimate the values of 6 that minimizes
the mean value of loss function L(i, y) for all labels ¥ in the
provided data Y. In a Bayesian approach, this typically
relys on drawing candidate parameter values from priors
and applying some form of sampling to generate a posterior
estimate of parameters, P(6|%, #). In the training of neural net-
works, this usually involves some form of error back-
propagation across the edges in order to tune their weights,
and the biases of each nodes.

After we fit a model, we inevitably want to see how ‘good’
(meaning, ‘fit for purpose’) it is. This process can be divided
into two parts: (i) model selection, where the modeller
chooses from a set of possible models, and (ii) model assess-
ment, where the modeller determines the performance
characteristics of the chosen model [105].

In the context of model selection, a naive initial approach is
to simply compute the average error between the model’s
prediction and the true data we have, and choose the
model with the smallest error—however, this approach inevi-
tably results in overfitting. One approach to avoid overfitting
is using information criteria (e.g. Akaiki information criteria,
Bayesian information criteria, minimum description length)
based around the heuristic that good models maximize the
ratio of information provided by the model to the number
of parameters it has. However, when the intended use-case
of a model is prediction the relevant form of validation is pre-
dictive accuracy, which should be tested with cross-validation.
Cross-validation methods divide the original dataset into
two—one which is used to fit the model (called the training
set) and one used to validate its predictive accuracy on the
data that it hasn’t ‘seen’ yet (called the test set) [106]. This pro-
cedure is often repeated across different test and training
subdivisions of the dataset (either picked randomly or strati-
fied by some criteria, like balance between positive and
negative interactions in the case study) to determine the
uncertainty associated with our measurement owing to our
choice of test and training sets [107], in the same conceptual
vein as data bootstrapping: the mean value of the validation
metric gives an overall estimate of its performance, and the
variance around this mean represents the effect of using
different data for training and testing. In a robust model/
dataset combination, we expect this variance to be low,
although there are no prescriptive guidelines as to how
little variance is acceptable; the choice of whether to use a
model is often left to the best judgement of the modeller.

We still have to define what predictive accuracy means
in the context of interaction network prediction. In the
proof-of-concept, we used a neural-network to perform
binary classification by predicting the presence/absence of
an interaction between any two species. There are two ways

for the model to be right: the model predicts an interaction
and there is one (a true positive (TP)), or the model predicts
no interaction and there isn’t one (a true negative (TN)). Simi-
larly, there are two ways for the model to be wrong: the
model predicts an interaction which does not exist (a false
positive (FP)), or the model predicts no interaction and it
does exist (a false negative (FN)).

A naive initial approach to measure how well a model
does is accuracy, i.e. the proportion of values it got correct.
However, consider what we know about interaction networks:
they are often very sparse, with connectance usually below a
third [108]. If we build a model that always guesses there
will be no interaction between two species, it will be correct
in the majority of cases because the majority of potential inter-
actions in a network typically do not exist. Therefore this
‘empty-matrix’ model would always have an accuracy of 1 —
C, where C is the observed connectance, which would
almost always be greater than 50%. Understanding model per-
formance within sensitivity-specificity space may be more
informative, where sensitivity evaluates how good the model
is at predicting true interactions (TP rate) and specificity
refers to the prediction of true ‘non-interactions’ (TN rate). It
must be noted that in ecological networks, there is no guaran-
tee that the mon-interactions’ (assumed TNs) in the original
dataset are indeed TNs [27,55]. This can result in the posi-
tive/negative values, and the false omission/discovery being
artificially worse, and specifically decrease our confidence in
predicted interactions.

In response to the general problem of biases in classifiers,
many metrics have been proposed to measure binary-classifiers
[109,110] and are indicative of how well the model performs
with regards to some aspect of accuracy, sensitivity, specificity
and/or precision (table 1). Ultimately the choice of metric will
depend on the intended use of the model: there is not a
single definition of ‘success,” but rather different interpretation
of what sources of error are acceptable for a given application.

In the ML literature, a common way of visualizing this exten-
sive list of possible metrics is through the use of receiver-
operating-characteristic (ROC; FP rate on the x-axis, and TP
rate on the y-axis) and precision-recall (PR; TP-rate on the x-
axis, positive-predictive-value on the y-axis) curves (figure 1).
These curves are generated by considering a continuum of
thresholds of classifier acceptance, and computing the values
of ROC/PR metrics for each value of the threshold. The area-
under-the-curve (AUC) is then used as a validation metric and
are typically called area-under-the-curve receiver-operator-
curve (AUC-ROC) and area-under-the-curve precision-recall
(AUC-PR) (e.g. ROC-AUC in table 1). These measures have
the unstated assumption that the training and testing set are
‘correct,’ or at least correct enough that the number of true/
false positive/negatives are meaningful; although should this
assumption be true, there would be no need for any predictive
approach—but it is a well established fact that ML systems are
resilient to even relatively high uncertainties in the data [45].

Ecological networks are quite sparse, and larger networks
tend to get sparser [111]; in other words, although networks
are composed of a set of interactions between species pairs,
they also form a much larger set of species pairs that do
not interact. If we aim to predict the structure of networks
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Table 1. Overview of the validation statistics applied to the case study, alongside the criteria indicating a successful lassifier and a guide to interpretation of [JEJ]
the values. (Taken together, these validation measures indicate that the model performs well, especially considering that it is trained from a small volume of

data.)

name value success
random accuracy 0.56

accuracy 0.81 -1
balanced accuracy 0.80 -1
true positive rate 0.77 —1
true negative rate 0.83 -1
false positive rate 0.16 —0
false negative rate 0.22 -0
ROC - AUC 0.86 -1
Youden's J 0.60 —1
Cohen’s x 0.58 >0.5
positive predictive value 0.66 —1
negative predictive value 0.89 —1
false omission rate 0.10 -0
false discovery rate 0.33 -0

from the ‘bottom-up’—by considering each pairwise combi-
nation of S different species—we are left with (S—1)*
interaction values to estimate, a majority of which will be
0. Instead, we can use our existing understanding of the mech-
anisms that structure ecological networks to whittle down the
set of feasible adjacency matrices, thereby reducing the
amount of information we must predict, and making the pro-
blem of predicting interactions less daunting. The processes
that structure ecological networks do not only occur at the
scale of interactions—there are also processes at the network
level which limit what interactions (or how many) are realistic.
The realized structure of a network is the synthesis of the inter-
actions forming the basis for network structure, and the
network structure refining the possible interactions—7Part
makes whole, and whole makes part’ [112].

Another argument for the joint prediction of networks and
interactions is to reduce circularity and biases in the predic-
tions. As an example, models like linear filtering [37]
generate probabilities of non-observed interactions existing,
but do so based on measured network properties. Some
recent models make interaction-level predictions (e.g. [113]);
these are not unlike stacked species distribution models,
which are individually fit, but collectively outperformed by
joint models or rule-based models [114]. By relying on ade-
quate testing of model performance of biases (i.e. optimizing
not only accuracy, but paying attention to measures like false
discovery and false omission rates), and developing models
around a feedback loop between network and interaction pre-
diction, it is likely that the quality of the predicted networks
will be greatly improved compared to current models.

(ii) What network properties should we use to inform our

predictions of interactions?
There are many dimensions of network structure [2], yet there
are two arguments to support basing network prediction
around a single property: connectance (the ratio of actual
edges to possible edges in the network). First, connectance

description

fraction of correct predictions if the classifier is random
observed fraction of correct predictions

average fraction of correct positive and negative predictions
fraction of interactions predicted

fraction of non-interactions predicted

fraction of non-interactions predicted as interactions
fraction of interactions predicted as non-interactions
proximity to a perfect prediction (ROC — AUC=1)
informedness of predictions (trust in individual prediction)

confidence in predicted interactions

confidence in predicted non-interactions

expected proportion of missed interactions

expected proportion of wrongly imputed interactions

is ecologically informative—it relates to resilience to invasion
[115,116], can increase robustness to extinction in food webs
[117], while decreasing it in mutualistic networks [118], and
connectance relates to network stability [3]. Second, most (if
not all) ecological network properties covary with connec-
tance [117,119].

Within the network science literature, there are numerous
methods for predicting edges based on network properties
(e.g. block models [120] based on modularity, hierarchical
models [121] based on embedding, etc.). However, in the con-
text of species interaction networks, these properties often
covary with connectance. As a result we suggest that using
connectance as the primary property of interest is most
likely to be practical to formulate at the moment. We have
models to estimate species richness over space [122], and
because we can predict connectance from species richness
alone [111], we can then derive distributions of network prop-
erties from richness estimates, that can serve to penalize
further models that formulate their predictions at the scale
of each possible interaction.

(iii) How do we predict how species that we have never observed

together will interact?
A neutral approach to ecological interactions would assume
the probability of an interaction mirrors the relative abun-
dance of both species, and would be unaffected by trait
variation [8,94]; more accurately, a neutral assumption
states that the relative abundances are sufficient to predict
the structure of networks, and this view is rather well sup-
ported in empirical and theoretical systems [123,124].
However, functional-trait based proxies could enable better
predictions of ecological interactions [34,125-127]. Selection
on functional traits could cause interactions to be conserved
at some evolutionary scales, and therefore predictions of
interaction could be informed by phylogenetic analyses
[32,128,129]. Phylogenetic matching in bipartite networks is
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consistent across scales [130], even in the absence of strong
selective pressure [131].

A separate family of methods are based on network
embedding (as in the proof-of-concept). A network
embedding projects each node of the network into a lower-
dimensional latent space. Previous explorations of the
dimensionality of food webs have revealed that a reduced
number of dimensions (7) was sufficient to capture most of
their structure [132]; however, recent quantifications of the
complexity of the embedding space of bipartite ecological
networks found a consistent high complexity [133],
suggesting that the precise depth of embedding required
may vary considerably across systems. Embedding enables
us to represent the structure of a network, which previously
required the S* dimensions of an adjacency matrix, with a
smaller number of dimensions. The position of each node
in this lower dimensional space is then treated as a latent
measurement corresponding to the role of that species
in the network (e.g. [51], where a network of about 1500
species was most accurately described using 12 dimensions).
Species close together in the latent space should interact
with a similar set of species [134,135]. However, these
models are sensitive to sampling biases as they are limited
to species for which there is already interaction data, and
as a result a methodological breakthrough is needed to
extend these models to species for which there is little or
no interaction data.

Species interaction networks can also be used as a means to
quantify and understand interaction strength. Interaction
strength, unlike the qualitative presence or absence of an
interaction, is a continuous measurement which attempts to
quantify the effect of one species on another. This results in
weighted networks representing different patterns of ‘flows’
between nodes—which can be modelled in a variety of
ways [136]. Interaction strength can generally be divided
into two main categories (as suggested by [137]): (i) the
strength of an interaction between individuals of each
species, or (ii) the effect that changes in one species popu-
lation has on the dynamics of the other species. It can be
measured as the effect over a period of time (in the units of
biomass or energy flux [137,138]) or the relative importance
of one species on another [4,62,139]. One recurring obser-
vation is that networks are often composed of many weak
interactions and few strong interactions [137]. The distri-
bution of interaction strength within a network effects its
stability [140,141] and functioning [142,143], and serves
to benefit multi-species models [62]. Alternatively, under-
standing flow in modules within networks can aid in
understanding the organization of networks [144,145] or
the cascading effects of perturbations [146].

In some systems, quantifying interaction strength is rela-
tively straightforward; this includes a lot of host-parasite
systems. For example, freshwater cyprinid fishes can be
divided in micro-habitats (fins, skin, digestive system, gill
subsections) and the parasites counted in each of these
micro-habitats, giving within-host resolution [147]; marine
sparids and labrids have similarly been studied this way,
see notably [148-150]. In some cases, within-host assessments
of interaction strengths can reveal macro-ecological events,
like in the conservatism of micro-habitat use in amphibian

hosts by helminths [151]. Even ectoparasites can provide
reliable assessments of interaction strength; for example,
when rodent hosts are minimally disturbed during capture,
fine combing of their fur will result in exhaustive ectopara-
sites inventories [46,152-155]. Parasites have the desirable
property of usually remaining intact within their host
during the interaction, as opposed to prey items as can be
recovered through e.g. gut content analysis or stable isotopes
[156,157]. As network ecology is starting to explore the use of
predictive models, leading up to forecasting, we argue that
host—parasite systems can provide data that are reliable and
trustworthy enough that they can become the foundations
for methodological development and benchmark studies,
thereby providing more information about host—parasite sys-
tems and supporting the technical development of the field.

However, in most situations, much like quantifying the
occurrence of an interaction, quantifying interaction strength
in the field is challenging in the majority of systems, and
one must often rely on proxies. In some contexts, interaction
strength can be estimated via functional foraging [158], where
the primary basis for inferring interaction is foraging behav-
iour like searching, capture and handling times. In food-
webs, metabolic-based models use body mass, metabolic
demands, and energy loss to infer energy fluxes between
organisms [159,160]. In addition, food-web energetics
models can be incorporated at various resolutions for a
specific network, ranging from individual-based data to
more lumped data at the species level or trophic group,
depending on data availability [138,159]. Taken together,
these considerations impose too many constraints on predict-
ing continuous interaction strength at the moment, resulting
in our primary focus in binary present/absent interactions
within this manuscript.

For several decades, ecologists have aimed to understand how
networks of many interacting species persist through time. The
diversity-stability paradox, first explored by May [161], shows
that under a neutral set of assumptions ecological networks
should become decreasingly stable as the number of species
increases. Yet, in the natural world we observe networks of
interactions that consist of far more species than May’s
model predicts [162]. As a result, understanding what aspects
of the neutral assumptions of May’s model are incorrect has
branched many investigations into the relationship between
ecological network structure and persistence [163]. These
assumptions can be split into dynamical assumptions and
topological assumptions. Topologically, we know that ecologi-
cal networks are not structured randomly. Some properties,
like the aforementioned connectance, are highly predictable
[111]. Generative models of food-webs (based on network
embeddings) fit empirical networks more effectively than
random models [164]. These models have long used allometry
as a single-dimensional niche space—naturally we want to
extend this to traits in general. The second approach to stability
is through dynamics. Early models of community dynamics
rely on the assumption of linear interaction effects, but in
recent years models of bioenergetic community dynamics
have shown promise in basing our understanding of energy
flow in food-webs in the understood relationship between allo-
metry and metabolism [165]. An additional consideration is
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the multidimensional nature of ‘stability” and ‘feasibility” (e.g.
resilience to environmental change versus extinctions) [166]
and how different disturbances propagate across levels of bio-
logical organization [167,168]. Recent approaches such as
structural stability [169,170] allow us to think of network feasi-
bility in rigorous mathematical terms, which may end up as
usable parameters to penalize network predictions.

(vi) What taxonomic scales are suitable for the prediction

of species interactions?

If we use different trait-based proxies to predict potential
interactions between species, the choice of such proxies
should be theoretically linked to the taxonomic and spatial
scale we are using in our prediction [171]. At some scales,
we can use morphological traits of co-occurring species to
assess the probability of interaction between them [34]. On
broader taxonomic scales, we can infer interaction probability
through the phylogenetic distance, assuming that functional
traits themselves are conserved [129]. In this case, we can
think of the probability that one species will interact with
another as the distance between them in niche-space [93],
and this can be modelled by simulating neutral expectations
of trait variation on phylogenetic trees [128]. At the narrowest
scales, we may be interested in predicting behavioural traits
like foraging behaviour [34], and at this scale we may need
to consider abundance’s effect on the probability of an
encounter [58].

(vii) What about indirect and higher-order interactions?
Although network ecology often assumes that interactions go
strictly from one node to the other, the web of life is made up
of a variety of interactions. Indirect interactions—either
higher-order interactions between species, or interaction
strengths that themselves interact—have gained interest in
recent years [172,173]. One mathematical tool to describe
these situations is hypergraphs: hypergraphs are the general-
ization of a graph, allowing a broad yet manageable
approach to complex interactions [174], by allowing for par-
ticular interactions to occur beyond a pair of nodes. An
additional degree of complexity is introduced by multi-
layer networks [175]. Multi-layer networks include edges
across ‘variants’ of the networks (timepoints, locations, or
environments). These can be particularly useful to account
for metacommunity structure [176], or to understand how
dispersal can inform conservation action [177]. Ecological
networks are intrinsically multi-layered [178]. However,
prima facie, increasing the dimensionality of the object we
need to predict (the multiple layers rather than a single net-
work) makes the problem more complicated. Yet, multi-
layer approaches improve prediction in social networks
[179-181], and they may prove useful in network ecology
going forward.

(c) Space

Although networks were initially used to describe the inter-
actions within a community, interest in the last decade has
shifted towards understanding their structure and variation
over space [182,183], and has established network ecology
as an important emerging component of biogeography and
macroecology.

(i) How much do networks vary over space?

Networks can vary across space either in their structural prop-
erties (e.g. connectance or degree distribution) or in their
composition (identity of nodes and edges). Interestingly, vari-
ation in the structural properties of ecological networks
primarily responds to changes in the size of the network.
The number of links in ecological networks scales with the
number of species [111,184], and connectance and size drive
the rest of network structure [117,119,185]. Species turnover
in space results in changes in the composition of ecological net-
works. However, this is not the only reason network
composition varies [8]. Intraspecific variation can result in
interaction turnovers without changes in species composition
[186]. Similarly, changes in species abundances can lead to
variation in interaction strengths [123,187]. Variation in the
abiotic environment and indirect interactions [173] could
modify the occurrence and strength of individual interactions.
Despite this, empirical networks tend to share a common
backbone [188] and functional composition [189] across space.

(i) How do we predict what the species pool at a particular

location is?

As the species pool forms the basis for network structure,
predicting which species are present at a particular location
is essential to predict networks across space. Species dis-
tribution models (SDMs) are increasingly ubiquitous in
macroecology—these models predict the range of a species
based on known occurrences and environmental conditions,
such as climate and land cover [190,191]. Including inter-
actions or co-occurrences in SDMs generally improves
predictive performance [192]. Several approaches exist to
combine multiple SDMs: community assemblage at a particu-
lar site can be predicted either by combining independent
single-species SDMs (stacked-SDMs, SSDMs) or by directly
modelling the entire species assemblage and multiple
species at the same time (joint SDMs; JSDMs) [193]. Building
on the JSDM framework, hierarchical modelling of species
communities [194] has the advantage of capturing processes
that structure communities. Spatially explicit species assem-
blage modelling constrains SDM predictions using macro-
ecological models [195]—for example, variation in species
richness across space can constrain assemblage predictions
[196].

The next step is to constrain distribution predictions using
network properties. This builds on previous calls to adopt a
probabilistic view: a probabilistic species pool [197], and
probabilistic interactions through Bayesian networks [198].
Blanchet ef al. [56] argue that the probabilistic view avoids
confusion between interactions and co-occurrences, but
that it requires prior knowledge of interactions. This could
potentially be solved through our framework of predicting
networks first, interactions next, and finally the realized
species pool.

(iii) How do we combine spatial and network predictions?

In order to predict networks across space, we need to com-
bine multiple models—one which predicts what the species
pool will be at a given location, and one to predict what inter-
action networks composed from this species pool are likely to
be (figure 2). Both of these models contain uncertainty, and
when we combine them the uncertainty from each model
should be propagated into the combined model. The
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Bayesian paradigm provides a convenient solution to this—if
we have a chain of models where each model feeds into the
next, we can sample from the posterior of the input models.
A different approach is ensemble modelling which combines
the predictions made by several models, where each model
is predicting the same thing [199]. Error propagation, an
important step in building any ecological model, describes
the effect of the uncertainty of input variables on the uncer-
tainty of output variables [200,201]. Benke et al. [202]
identifies two broad approaches to model error propagation:
analytically using differential equations or stochastically
using Monte-Carlo simulation methods. Errors induced by
the spatial or temporal extrapolation of data also need to be
taken into account when estimating the uncertainty of a
model’s output [203].

Forecasting species interactions are critical for informing eco-
system management [204] and systematic conservation
prioritization [205], and for anticipating extinctions and
their consequences [206,207]. Ecological interactions shape
species distributions at both local and broad spatial scales,
and including interactions in SDM models typically improves
predictive performance [192,208,209]. However, these tend to
rely on approaches involving estimating pairwise dependen-
cies based on co-occurrence, using surrogates for biotic-
interaction gradients, and hybridizing SDMs with dynamic
models [192]. Most existing models to predict the future dis-
tribution of species ignore interactions [210]. Changes in
species ranges and phenology will inevitably create spatio-
temporal mismatches and affect encounter rates between
species [211], which will further shift the distribution of
species across space. New interactions will also appear
between species that are not currently co-occurring [211].
Only by forecasting how species will interact can we hope
to have an accurate portrait of how biodiversity will be
distributed under the future climate.

Forecasting how climate change will alter biodiversity is
also crucial for maximizing conservation outcomes. Improving
SDMs through interactions is crucial for conservation, as
nearly 30% of models in SDM studies are used to assess popu-
lation declines or landscape ability to support populations
[212]. Reliable predictions about how ecological networks
will change over time will give us critical information that
could be communicated to decision-makers and the scientific
community about what future environmental risks we are
awaiting and how to mitigate them [213]. Not only this, but
how biodiversity is structured influences the functioning of
the whole ecosystem, community stability and persistence
[214,215]. Will climate change impact the distribution of net-
work properties (e.g. connectance)? If so, which regions or
species groups need special conservation efforts? These over-
arching questions are yet to be answered (but see [216-218]).
We believe that the path towards forecasting ecological net-
works provides useful guidelines to ultimately better predict
how climate change will affect the different dimensions of
biodiversity and ecosystem functioning.

On some scales, empirical time-series encode enough infor-
mation about ecological processes for ML approaches to

make accurate forecasts. However, there is an intrinsic limit m

to the predictability of ecological time series [219]. A forecast
inherently has a resolution limit in space, time and organiz-
ation. For example, one could never hope to predict the
precise abundance of every species on Earth on every day
hundreds of years into the future. There is often a trade-off
between the resolution and horizon of forecast, e.g. a lower
resolution forecast, like primary production will be at a maxi-
mum in the summer, is likely to be true much further into the
future than a higher resolution forecast. If we want to forecast
the structure of ecological networks beyond the forecasting
horizon of time-series-based methods, we need forecasts of
our predictive model’s inputs—a forecast of the distribution
of both environmental conditions and the potential species
pool across space (figure 3).

Often the purpose of building a forecasting model is to
inform present action [220]. Yet, the nature of forecasting—
trying to predict the future—is that you can only know if a
forecast is ‘right’ once it is too late to change it. If we want
to maximize the chance that reality falls within a forecasting
model’s predictions, there are two directions to approach this
problem: the first is to extend model validation techniques to
a forecasting context, and the second is to attempt to maxi-
mize the amount of uncertainty in the forecast without
compromising its resolution. Cross-validation (see How do
we validate a predictive model?) can be used to test the efficacy
of a forecasting model. Given a time-series of N observations,
a model can iteratively be trained on the first n time-points of
data, and the forecasting model’s accuracy can be evaluated
on the remaining time-points it has not ‘seen’ [106]. This
enables us to understand both how much temporal data is
required for a model to be robust, and also enables us to explore
the forecasting horizon of a process. Furthermore, this approach
can also be applied in the opposite temporal direction—if we
have reliable data from the past, ‘hindcasting’ can also be
used to test a forecast’s robustness.

However, these methods inevitably bump into a hard-
limitation on what is feasible for a forecasting model. The
future is uncertain. Any empirical time-series we use to vali-
date a model was collected in past conditions that may not
persist into the future. Any system we wish to forecast will
undergo only one of many possible scenarios, yet we can
only observe the realized outcome of the system under the
scenario that actually unfolds. It is therefore impossible to
assess the quality of a forecasting model in scenarios that
remain hypothetical. If the goal is to maximise the probability
that reality will fall within the forecast’s estimates, forecasts
should incorporate as much uncertainty about the future
scenario as possible—one way to do this is ensemble model-
ling [199]. However, as we increase the amount of uncertainty
we incorporate into a forecasting model, the resolution of the
forecast’s predictions could shrink [221], and therefore the
modeller should be mindful of the trade-off between resol-
ution and accuracy when developing any forecast. Finally,
ensemble models are not guaranteed to give more accurate
results: for example, Becker et al. [16] noted that the ensemble
model outperforms the best-in-class models, which should be
taken as an indication that careful model building and selec-
tion is of the utmost importance when dealing with a
problem as complex as the prediction of species interactions.
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Because we almost can, and because we definitely should.
A Dbetter understanding of species interactions, and
the networks they form, would help unify the fields of
community, network, and spatial ecology; improve the
quantification of the functional relationships between species
[222,223]; re-evaluate metacommunities in light of network
structure [224]; and enable a new line of research into the
biogeography of species interactions [225,226] which incor-
porates a synthesis of both Eltonian and Grinnellian niche
[113]. Furthermore, the ability to reliably predict and forecast
species interactions would inform conservation efforts for
protecting species, communities, and ecosystems. Integration
of species interactions into the assessment of vulnerability to
climate change is a needed methodological advancement
[227]. International panels draw on models to establish
scientific consensus [212], and they can be improved through
more effective prediction of species distributions and inter-
actions [228]. Furthermore, recent studies argue for a shift
in focus from species to interaction networks for biodiversity
conservation to better understand ecosystem processes [204].
We should invest in network prediction because the right
conditions to do so reliably and rapidly are beginning to
emerge. Given the possible benefits to a variety of ecological
disciplines that would result from an increased ability to pre-
dict networks, we feel strongly that the research agenda we
outline here should be picked up by the community.
Although novel technologies are bringing massive amounts
of data to some parts of ecology (primarily environmental
DNA and remote sensing, but now more commonly image
analysis and bioacoustics), it is even more important to be
intentional about reconciling data. This involves not only the
work of understanding the processes encoded within
data, but also the groundwork of developing pipelines to
bridge the ever-expanding gap between ‘high-throughput’
and ‘low-throughput’ sampling methods. An overall increase
in the volume of data will not result in an increase of our pre-
dictive capacity as long as this data increase is limited to
specific aspects of the problem. In the areas, we highlight in
figure 2, many data steps are still limiting: documenting
empirical interactions is natural history work that does not

lend itself to systematic automation; expert knowledge is by m

design a social process that may be slightly accelerated by
text mining and natural language processing (but is not yet,
or not routinely, or at scale). These limitations are affecting
our ability to reconstruct networks.

But the tools to which we feed these data, incomplete as
they may be, are gradually getting better; that is, they can
do predictions faster, they handle uncertainty and propagate
it well, and they can accommodate data volumes that are
lower than we may expect [94]. It is clear attempting to pre-
dict the structure of ecological networks at any scale is a
methodological and ecological challenge; yet it will result
in qualitative changes in our understanding of complex
adaptive systems, as well as changes to our ability to use
information about network structure for conservation
decisions. It is perhaps even more important to forecast the
structure of ecological networks because it is commonly
neglected as a facet of biodiversity that can (and should) be
managed. In fact, none of the Aichi targets mention biostruc-
ture or its protection, despite this being recognized as an
important task [14], either implicitly or explicitly. Being
able to generate reliable datasets on networks in space or
time will make this information more actionable.
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