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ABSTRACT: The diverse chemical composition of exhaled
human breath contains a vast amount of information about the
health of the body, and yet this is seldom taken advantage of for
diagnostic purposes due to the lack of appropriate gas-sensing
technologies. In this work, we apply computational methods to
design mass-based gas sensor arrays, often called electronic noses,
that are optimized for detecting kidney disease from breath, for
which ammonia is a known biomarker. We define combined linear
adsorption coefficients (CLACs), which are closely related to
Henry’s law coefficients, for calculating gas adsorption in metal−
organic frameworks (MOFs) of gases commonly found in breath
(i.e., carbon dioxide, argon, and ammonia). These CLACs were
determined computationally using classical atomistic molecular simulation techniques and subsequently used to design and evaluate
gas sensor arrays. We also describe a novel numerical algorithm for determining the composition of a breath sample given a set of
sensor outputs and a library of CLACs. After identifying an optimal array of five MOFs, we screened a set of 100 simplified
computer-generated, water-free breath samples for kidney disease and were able to successfully quantify the amount of ammonia in
all samples within the tolerances needed to classify them as either healthy or diseased, demonstrating the promise of such devices for
disease detection applications.
KEYWORDS: metal−organic frameworks, MOFs, breath, volatile organic compounds, VOCs, diagnostics, kidney disease, computational

■ INTRODUCTION

Despite the advances in gas-sensing technologies, clinical use
of breath samples for disease detection and monitoring is still
very much in its infancy.1−3 This is due in part to the cost,
time, and expertise required of the existing gas-sensing
technologies such as gas chromatography and mass spectros-
copy and is further complicated by the challenges associated
with breath collection and analysis.1,4−6 The result is that very
few breath-based tests are routinely found in practice, with the
present examples being for relatively simple yet important
applications such as monitoring airway inflammation (asthma)
and indirect measurement of blood alcohol content.2,3 If one
could design a device which offered portable, accurate, and
real-time sensing for a wide variety of the compounds found in
breath, it would allow for a significant leap in noninvasive
disease detection.7,8

However, disease detection via breath presents many
challenges. Although many of the compounds found in breath
have been successfully identified, only a subset of these
compounds are known biomarkers tied to health status, and of
these, only a smaller subset have established concentration
ranges associated within healthy and diseased individuals.9,10

Moreover, the concentration ranges of these compounds can
vary due to the factors independent of the health of the patient,

such as ambient air composition, activity of the patient before
sampling (e.g., diet and exercise), the history of the patient
(e.g., smoking habits and pre-existing conditions), the portion
of breath sampled (e.g., tidal, alveolar, or full breath), and the
specific sampling method, all resulting in seemingly moving
targets for normal concentration ranges.11−16 For example,
increased levels of ethane and pentane in breath are believed to
be indicative of oxidative stress, but specific concentration
ranges have not been established, and some studies even
suggest that they are not biomarkers at all but rather reflect the
concentration levels in air.17−19

Despite these challenges, disease detection and monitoring
by breath remains a promising area of research owing to its
unique and largely untapped clinical potential. Breath samples
are noninvasive and continuously available, allowing for both
quick and easy sampling, as well as real-time monitoring.4

Furthermore, breath tests would be ideal for screening large
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populations. Herein, we aim to explore the use of gas-sensing
arrays, often called electronic noses, for applications of disease
detection via breath.
In this work, we chose to target chronic kidney disease

(CKD), for which ammonia is a well-established biomarker
with known healthy and diseased concentration ranges.20,21

According to the World Health Organization, in the year 2012,
1.5% of deaths globally was attributed to CKD, and this
percentage is expected to rise.22 Moreover, CKD is caused by
diabetes and hypertension, which can also lead to anemia, bone
disease, heart disease, and cancer, among numerous other
health complications, meaning that adequate detection of CKD
could also assist with the treatment of these other diseases.22

In our previous works, we used computational methods to
rapidly design gas-sensing arrays for the detection of methane
and carbon dioxide, using metal−organic frameworks (MOFs)
as the sensing elements.23−26 MOFs are high-surface-area
porous crystals that have been widely explored for gas storage
and separation27−30 and more recently have gained attention
for gas-sensing applications.31−35 MOFs offer advantages for
gas-sensing that stem from their structural and chemical
diversity, tunability, and high internal surface areas, resulting in
impressive gas adsorption with varied sensitivity. Furthermore,
as crystalline materials, their gas adsorption properties can be
predicted using well-established computational techniques.27,36

Our previous works, however, were limited in the complexity
of the gas mixtures which could be considered due to
computational expense limitations, as the prior method
required enumerating every possible gas composition and
then for each one simulating its adsorption in every MOF that
might be used in an array. Thus, as the library of MOF
candidates grows, and as more gases are included in the set of
possible compositions, this prior method becomes combina-
torically prohibitive. As breath contains many possible gas
species at a wide range of concentrations, we needed to
develop a method that was less computationally demanding
while still maintaining sufficient accuracy.
Fortunately, for disease detection by breath, the biomarker

gases of interest are typically present only in trace quantities,
and so their adsorption in MOFs obeys Henry’s law (adsorbed
concentration is a linear function of the concentration in the
bulk mixture outside of the MOF).37 In this case, it is sufficient
to determine only the corresponding Henry’s law coefficients
for each gas/MOF pair to be able to predict the amount of
each trace gas absorbed by the MOFs, thus drastically reducing
computational demand. In this work, we evaluated a modified
form of Henry’s coefficients, which we call combined linear
adsorption coefficients (CLACs), which quantify not only the
amount of trace gas species adsorbed but also the amount of
air displaced by the trace gas, as a function of the trace gas
concentration. CLACs were evaluated for three trace gases in
50 MOFs and then were used to design a gas-sensing array
which was capable of classifying a set of simplified water-free
breath samples as either healthy or diseased for CKD via a
newly developed algorithm. These 50 MOFs were originally
chosen from the CoRE MOF database to have a diverse set of
properties and have been used in several papers by our group
for the sake of consistency.25,26,38

A similar strategy was first developed by Sturluson et al.35 In
their work, they computationally evaluated Henry’s coefficients
for a set of gases (carbon dioxide and sulfur dioxide) and
designed sensing arrays of MOFs. However, the key difference
between their work and ours is our simultaneous consideration

of both trace and nontrace gas species (i.e., gases for which
Henry’s law would not apply). In our case, the nontrace gases
are nitrogen and oxygen (i.e., air), and hence where Sturluson
et al. used traditional Henry’s coefficients, we use our so-called
CLACs. Consequently, the resulting arrays are geared toward
different applications. Nevertheless, their work has been
influential on ours, and we have adapted their methods
liberally, as will be discussed later in the Methods section.

■ METHODS
The methods employed in this work can be broken into four distinct
parts: (1) CLAC evaluation, (2) array design, (3) breath sample
generation, and (4) breath sample analysis.

CLAC Evaluation. CLACs are best described as a modification of
traditional Henry’s coefficients. Consider exposing a MOF to a gas
mixture which contains trace quantities of CO2 dispersed in nontrace
quantities of N2 and O2. Henry’s law states that the amount of CO2
adsorbed by the MOF is proportional to its partial pressure, assuming
low partial pressures of CO2. However, what Henry’s coefficient does
not quantify is how the adsorption of CO2 impacts the adsorption of
N2 and O2. Our CLACs address this by quantifying both how much of
the trace gas species (i.e., CO2) is adsorbed and how much of the
non-trace gas species (i.e., N2 and O2) is displaced, all as a function of
the concentration of the trace gas species. Thus, a CLAC is simply the
sum of a traditional Henry’s coefficient for the trace gas with a
displacement correction for the nontrace gases and can be written as
follows

* =
Δ
Δ

+
Δ

Δ
≤‐K

m

y

m

y
y yfori

trace gas

trace gas

non trace gases

trace gas
trace gas trace gas,max

(1)

where Δm is the change in adsorbed mass, Δy is the change in
concentration, and ymax is the maximum concentration for which the
trace gas species can be considered dilute. Using CLACs to calculate
the total adsorbed mass for a MOF also requires introducing a
constant, which is the total adsorbed mass of the nontrace gases, in
the absence of any trace gases, at the total pressure and temperature of
interest. The resulting model is as follows

∑= + **‐
=

m m K y
i

N

i itotal non trace gases
1 (2)

where mtotal is the total adsorbed mass, mnon‑trace gases is the constant
mentioned above, and Ki* and yi are the CLAC and mole fraction of
trace gas species, i, respectively. Note that unlike Henry’s coefficient,
which can never have a value less than 0, a CLAC can in principle take
on any real value as it is possible that the amount of the nontrace
gases displaced in the MOF is greater than the amount of trace gas
species adsorbed by the MOF, resulting in a net decrease in mass. For
further discussion, please refer to the Supporting Information
(Section 2.1).

Changes in the concentration of the trace gases within the mixture
do not impact their CLACs; however, changes in the concentrations
of the majority gas species could strongly impact them. In general, one
needs separate CLACs for all distinct majority gas species’
concentrations. To address this, we ran a set of grand canonical
Monte Carlo (GCMC) simulations in RASPA in which the mole
fraction of the trace gas species was varied from 0 to 0.05, and the
remaining gases were N2 and O2 in 3:1, 4:1, and 5:1 ratios.39 A
pressure of 1 bar and a temperature at 298 K were used to replicate
ambient conditions. The TraPPE force field was used for all gases, and
a combination of the DREIDING and Universal force fields was used
for the MOFs.40−43 Although each force field is well studied, they are
quite generic and unlikely to be highly accurate, especially for binding
with open metal sites commonly found in MOFs. Nevertheless, the
primary focus of this work is the development of a method for
computationally designing a MOF-based electronic nose. In future
works, we can revisit the force field terms to improve the accuracy of
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our simulations either via ab initio calculations or experimentally
determined CLACs. For further details, please refer to the Supporting
Information (Section S2.1).
Conveniently, for almost all gases and MOFs, the adsorbed mass of

the trace gas species was independent of the composition of the
background gases, as evidenced by the high R2 values of the resulting
fits (see Figure 1). Thus, the evaluated CLACs could be used for a

wide variety of air mixture compositions. Moreover, the total mass of
air adsorbed seemed to be independent of the composition of air,
suggesting that for the remainder of the work, air could be treated as a
single gas component, rather than separately as N2 and O2. This
greatly simplified the problem, as these were the only two gases which
were present in greater-than-trace amounts, and thus we only needed
to determine the constant, mnon‑trace gases, once for each MOF.

Figure 1. Extraction of CLAC coefficients from the adsorption data (a) in HKUST-1 with a background gas of 3:1, 4:1, and 5:1 N2:O2 (i.e., three
points for each mole fraction). (b) Linear fit for CO2 adsorption. (c) Linear fit for air displacement. All fits have an R2 threshold of 0.95. The
resulting CLAC for HKUST-1 is obtained from the sum of the slopes shown in (b,c), that is, 958−164 = 794 mg/g/mole fraction.

Figure 2. (a−c) CLAC versus maximum concentration for which adsorption of the trace gas species is linear (i.e., end of Henry’s regime) for (a)
carbon dioxide, (b) argon, and (c) ammonia. A fit was not obtained for all gases/MOFs, either because adsorption was highly nonlinear or because
their uncertainty was too high in the adsorbed masses from simulations which prevented fitting with the desired R2 cutoff. The number of nonfit
MOFs is printed on each plot. (d) CLAC for each gas/MOF combination, sorted by decreasing carbon dioxide CLAC. If a given gas/MOF
combination does not have a CLAC, a gray symbol of the same shape is plotted below the horizontal line.
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To determine the CLACs, we fit a line to the adsorbed masses of
the trace gas species for all ratios of air with the intercept forced to 0
(see Figure 1). We defined the linear region as the largest portion of
the data where the R-squared value of the fit was greater than 0.95.
Then, using the same set of compositions, a line was fit to the
adsorbed mass of air for all ratios of air, except now with no R-squared
cutoff employed, and with the intercept no longer forced to 0 as there
is still adsorbed air in the absence of any trace gas species. By adding
the slopes of these fits together, we get the CLACs for the system,
with each slope being one of the two terms in eq 1. A detailed
description of this method is given in the Supporting Information
(Section S2.2). An example of the resulting fits is shown in Figure 1,
along with the raw adsorption data. Figure 2 shows the spread of the
resulting CLACs for all gas and MOF combinations as a function of
the width of their Henry’s regime. It should be noted that as the
maximum trace gas concentration tested was 0.05 mol fraction, any
gas with Henry’s regime ending at 0.05 mol fraction may actually
exhibit linear adsorption beyond that point, but additional simulations
would need to be done to determine this.
Array Design. After calculating CLACs for each gas/MOF pair,

the next step in the process is array design. However, we first needed
to eliminate MOFs which did not have appropriately wide Henry’s
regimes for our application, as quantified by ymax in eq 1, such that all
trace gas species could be considered dilute and assumed not to
interact with each other. Here, that corresponds to a minimum mole
fraction of 0.05 for all gases (i.e., if adsorption exhibited a nonlinear
behavior below a mole fraction of 0.05, Henry’s regime was
considered to be too narrow). Although a restrictive cutoff, this was
necessary as we treat carbon dioxide as a trace gas despite it being
present in mole fractions of upward of 0.05. Fortunately, of the 50
MOFs screened, 23 MOFs met this requirement and could be used to
design arrays.
Our approach for array design was borrowed from Sturluson et al.,

who showed that the array with the best sensitivity could be
determined by performing a singular value decomposition on the
matrix of Henry’s coefficients for each array, with the best array
having the largest minimum singular value.35 In our work, we used
CLACs rather than Henry’s coefficients, but otherwise this method is
identical. It should be noted that using CLACs here is preferable to
Henry’s coefficients, as a MOF could in theory exhibit large Henry’s
coefficients for certain gases but have very low corresponding CLACs

if the nontrace gases are displaced in similar amounts to the adsorbed
trace gas. The net result would thus be very little change in the total
adsorbed mass as a function of trace gas species concentration,
meaning little sensitivity toward that gas.

We opted to design arrays of multiple different sizes (best and
worst of each 1-, 2-, 3, 4-, 5-, 10-, and 23-element arrays) so that we
could examine how the accuracy of the composition determined by
the algorithm changed with array size and, similarly, how the best and
worst arrays of a given size compare. A brief overview of the array
design method is given in the Supporting Information (Section S3);
however, for a detailed description, we refer the reader to the original
paper by Sturluson et al.35

Breath Sample Generation. Breath is primarily composed of
nitrogen, oxygen, carbon dioxide, water, and other inert gases, such as
argon. However, it has been shown that thousands of other trace
compounds (ppm and ppb levels) are found in breath, some of which
are the byproducts of metabolic processes, while others are simply
found in the air we breathe in.1,10,12,44−46 In this work, however, we
computationally generated our own simplified breath samples, 50
healthy and 50 diseased, to avoid the complications of handling
thousands of compounds. The simplified breath samples include only
the gases for which we determined CLACs and notably exclude water
vapor, as it is not only a common interferant but also destabilizes
many MOFs and is notoriously difficult to simulate.47−53 Fortunately,
several breath collection methods involve some form of a
dehumidification step.44,54,55

We identified relevant concentration ranges of ammonia for CKD
based on the report of Bevc et al., who showed that concentrations of
0.49 ± 0.08 and 3.32 ± 2.19 ppm corresponded to healthy and
diseased individuals, respectively.20 We chose the other gas
components in the simplified breath samples to be as follows: carbon
dioxide mole fraction between 2 and 5% (uniform distribution), argon
mole fraction between 0.6 and 1.2% (uniform distribution), and the
remainder of the mixture being nitrogen and oxygen in a random ratio
between 3:1 and 5:1 (uniform distribution), respectively.20 Note that
when referring to air in the context of the methods/results, we mean
only the nitrogen/oxygen mixture and not any of the other
compounds. The exact compositions of all the healthy and diseased
breath samples are given in the Supporting Information in Tables S8
and S9, respectively.

Figure 3. Simplified overview of the algorithm used to determine compositions from a set of sensor data and CLACs. Further details are given in
the Supporting Information (Section S5).
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Next, we created a set of corresponding sensor outputs for each
breath sample, here envisioning the sensor array to be composed of
surface acoustic wave (SAW) devices, each using a different MOF as
the sensing material, such that the corresponding sensor output is a
measured change in mass due to gas adsorption. A SAW device is a
microelectromechanical system that can measure very small changes
in mass on its surface, where, for example, a MOF thin film may have
been deposited. The “detected” changes in mass for each MOF for
each breath sample were calculated using CLACs, as given by eq 2.
With no instrument error yet introduced, the mass “detected” by the
sensor is exactly what would be calculated by the algorithm for that
composition. However, note that this does not necessarily result in a
perfect determination of that composition but rather guarantees that
there is a composition within the bounds of the initial composition
space which uniquely has the highest probability. Thus, if the
algorithm fails to determine a composition close to the maximumly
probable composition, it is poorly behaved.
Breath Sample Analysis. The final step is to determine the

composition of a breath sample given a set of sensor outputs. In our
case, each MOF sensing element in the array outputs a measured
change in mass, within a certainty governed by a fixed instrument
error (i.e., independent of the gases being measured) normally
distributed on the detected mass. Under certain assumptions (see
Supporting Information, Section S2, for additional details), the
composition can be determined analytically, as outlined in the paper
by Sturluson et al.35 However, we decided to develop and employ a
more general numerical algorithm that could be reused in future
works where sensing nonlinear adsorption is particularly important,
with the only requirement for the algorithm being a way of mapping
compositions to adsorbed masses. An outline of this algorithm is
depicted schematically in Figure 3.
The first step is to generate the initial set of compositions; there are

three aspects to this step. The first aspect is choosing which gas
species should be present in the composition space. Real breath
samples can contain thousands of different compounds, so knowing
which compounds must be included, which compounds can be safely
excluded, and which compounds can be grouped together is
nontrivial. Fortunately, as we consider simplified breath samples,
this is trivial as we know exactly which gases are present. The second
aspect is deciding what the minimum and maximum concentration
values should be for each of the gas species. For our chosen
application of CKD detection, reasonable concentration ranges are
already known. Finally, the third aspect is to determine the spacing
between points in the initial composition space. This choice can
impact the speed of the algorithm and accuracy of the determined
composition. Generally, the more finely grained the initial set of
compositions is, the better the accuracy of the determined
composition will be. This is discussed in more detail in the
Supporting Information (Section S6), but for now all three aspects
of creating the initial composition space (i.e., gas species,
concentration limits, and spacing) are optimized and standardized
for a given array and application prior to use. The specific gases, gas
ranges, and gas spacing used in our work are specified in Table 1 in
the Results and Discussion section.
The next step in the algorithm is to assign masses to all

compositions for all MOF sensing elements. In previous iterations
of this work, this step was a bottleneck, as for any combination of
MOF and composition, a distinct GCMC simulation was
required.23−26 As a result, considering a finely spaced multicomponent
gas mixture for several MOFs would have required significant
computing time. Now, masses are determined from eq 2.
Calculating masses in this way enables one to consider all gases

individually when using GCMC simulations, dramatically reducing
the computational time. Consequently, not only can one evaluate
more gases but one can also assign a mass to any composition for any
MOF so long as the CLACs are known, and the total mole fraction of
all trace gas species is within Henry’s regime (i.e., no competitive
adsorption).
To illustrate the computational time saved by this change, consider

our previous study; we examined a ternary gas mixture of carbon

dioxide, oxygen, and nitrogen for a set of 50 MOFs, with the
concentration of carbon dioxide and oxygen ranging from 0 to 30%
and the concentration of nitrogen ranging from 40 to 100%, all in 1%
increments.26 The result was 48,050 distinct combinations of MOFs
and compositions, each requiring a distinct simulation. In contrast, for
this study, by considering the trace gas species separately, we
evaluated the CLACs for three gases and 50 different MOFs using
only 9450 distinct simulations. Subsequently, we can examine millions
of different five-component compositions in a matter of minutes, all
while using less than 20% of the number of simulations. Because of
this advantage, designing an array which can handle all of the
thousands of gas species in breath, while still enormously difficult,
becomes a more plausible future goal.

Once masses have been assigned, the next step is to compare the
calculated masses to the masses detected by the sensor and
subsequently assign a probability to each composition for each
MOF. This is done by creating a truncated Gaussian normal
distribution centered about the detected mass with some known
standard deviation, typically chosen to emulate the measurement
error for the device (standard deviation = 10 mg/g framework). Array
probabilities are calculated by multiplying all of the element
probabilities for each composition which are then normalized.

Finally, the last step is to filter the composition space down to the
points which have the highest array probability and check for
convergence. Assuming that the algorithm has not converged, we take
the remaining highest probability compositions and subdivide the grid
in the composition space around those points. This requires choosing
both how many points are to be retained and how finely spaced the
next grid is. For choosing how many points to retain, we kept only a
small fraction such that the number of points in the next cycle was less
than or equal to the number of points in the previous cycle. This
guarantees that the number of points does not grow and cause
unintended memory or time issues. We set the composition spacing
equal to half of that which was used in the previous iteration. The net
result is an increasingly narrow and fine-grained set of compositions.

As for the convergence criteria, after each cycle we check whether
the range of concentrations for each gas is within its individually set
tolerance. For example, in this work, we considered that the
determined concentration for carbon dioxide and argon converged
when the difference between the minimum and maximum
concentration values for each gas was less than 1000 ppm, and
ammonia converged once the difference was less than 0.1 ppm. Note
that, depending on which gas species converged last, the final
concentration ranges for the other gases may be far narrower than
their specified convergence criteria. Additionally, we set a limit on the
maximum number of iterations so that the algorithm will stop if
struggling to converge. The resulting parameter set is given in Table 1.
Figure 4 shows the evolution of the determined concentration range
for a typical breath sample in this work.

Table 1. Compositions and Parameters Used for Evaluating
Breath Samples via the Algorithm

(a) Initial Compositions

initial range
(ppm)

initial spacing
(ppm)

convergence limits
(ppm)

carbon
dioxide

20,000−50,000 12.5 1000

argon 0−12,000 2000 1000
ammonia 0−10 0.25 0.1

(b) Algorithm Parameters

Parameter value

maximum number of iterations 20 cycles
fraction to keep 0.04
standard deviation 0.10 mg/g framework
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■ RESULTS AND DISCUSSION

Using the array design method outlined in the Methods
section, we determined the best five-element array, shown in
Figure 5, which includes the following MOFs: ZIF-8,56

XUKYEI, twofold interpenetrated MOF-5 (HIFTOG),57

CMOF-4b (XAHQAA),58 and MOF-399 (BAZGAM).58

The results of the breath sample analysis for this array are
given in Figure 6, with samples numbered from the lowest to
greatest ammonia concentration. Our method could reliably
determine the concentrations of each gas, including ammonia,
which is the important biomarker for CKD.
We also examined how both array size and array quality

impacted the algorithm’s performance. To this end, we
determined the best and worst one-, two-, three-, four-, five-,
and ten-element arrays, as well as the only 23-element array,
and again analyzed all 100 samples using the same algorithm
parameters. These results are shown in Figure 7.
Unsurprisingly, one- and two-element arrays struggle to

reliably determine the concentration of ammonia, with all the
one-element arrays stopping due to reaching the maximum
number of cycles and all two-element arrays converging with
poor accuracy with respect to the true composition. The best
three-element array substantially improves the overall accuracy,
but there would be several false-positives/negatives (e.g.,
healthy samples, 6, and diseased samples, 9). The four- and
five-element arrays are sufficiently accurate and would not lead
to any false-positive/negative cases for any of the 100 breath
samples, and the 10- and 23-element arrays lead to very few
(e.g., 10-element array healthy samples, 47, and 23-element
array diseased sample, 1).
The 10- and 23-element arrays offer particularly interesting

results, as the accuracy of the determined compositions is

noticeably poorer (i.e., the relative error between the
determined and true concentration of ammonia increases)
than the best five-element array, which is a subset of both the
larger arrays. As this analysis uses computer-generated sensor
outputs for the breath samples, and as we have established that
there is a composition within the bounds of the initial
composition space which uniquely has the highest probability,
the algorithm should be able to determine this composition
with sufficient parameterization. An additional artifact of using
computer-generated sensor outputs is that none of the sensors
offer contradictory information. Consequently, the reduction
in the accuracy of the compositions determined by the 10- and
23-element arrays must be caused by the algorithm.
Specifically, this behavior is the result of each of the 23

MOFs used in the various arrays having a larger CLAC for
CO2 than for ammonia, such that a small change in the
concentration of CO2 has a stronger impact on the predicted
masses than an equally small change in the concentration of
ammonia. In some instances, depending on the spacing of the
composition grid relative to the true composition, the
algorithm accounts for a slight over- or under-prediction of
CO2 with a complementary under- or overprediction of
ammonia. Although doing so pushes the algorithm further
from the true composition, from a mass perspective, it gets
closer to the correct answer. The likelihood of this happening
actually increases with additional MOFs, hence the increase in
error exhibited by large arrays. That said, the algorithm must
be close to the correct set of masses for this behavior to
happen, explaining why poor arrays still benefit from additional
MOFs; they were never close enough to the correct set of
masses to exhibit this behavior in the first place. This problem
can be alleviated either by starting with a much finer grid

Figure 4. Concentration range for a single breath sample as a function of cycle number for (a) carbon dioxide, (b) argon, and (c) ammonia. The
dashed line represents the true concentration of the gas in the breath sample.

Figure 5. All MOFs which make up the best five-element sensing array, each displayed as a 2 × 2 × 2 unit cell down the crystallographic a-axis. The
MOFs are: (a) ZIF-8,56 (b) XUKYEI, (c) twofold interpenetrated MOF-5 (HIFTOG),57 (d) CMOF-4b (XAHQAA),58 and (e) MOF-399
(BAZGAM).58 Note that the common names and first report of MOF are given when known, followed by the CoRe MOF reference code in
parenthesis.
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Figure 6. Final determined concentration ranges for the best five-element array for (a) 50 healthy and (b) 50 diseased samples, ordered by
increasing ammonia concentration. The upper and lower bounds on each plot correspond to the initial concentration range used in the algorithm.

Figure 7. Comparison of the best and worst arrays of various sizes. Note that only the determined concentration of ammonia is shown, as all the
arrays reliably determine the concentration of carbon dioxide and argon. Also note that there is only one 23-element array.
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spacing (which can lead to long analysis times) or by adding a
sensing element which exhibits more sensitivity to ammonia
over CO2. The former solution motivates the determination of
a unique set of algorithm parameters for each array/
application, and the latter underscores the importance of
both large-scale screening and intelligent selection of materials.
For further discussion of this behavior, refer to the Supporting
Information (Section S6.1).
As for a comparison between the best and worst arrays, the

difference in the accuracy of the determined compositions also
highlights that intelligent selection of sensing elements for
arrays is still a critical aspect of this electronic nose work,
especially considering that almost all real arrays will be
underdetermined to some degree given that breath can contain
thousands of different components.
Finally, as evidenced by the performance of the 10- and 23-

element arrays, the algorithm parameters have a non-negligible
impact on the accuracy of the determined compositions. Even
if an array which is capable of making accurate determinations
is used, in the absence of a sufficient parameter set for the
algorithm, the determined compositions will be unreliable. The
effects of specific parameters (i.e., initial composition set and
fraction to keep) are examined and discussed in Section S6
(Figures S5 and S6) of the Supporting Information. The
parameters used within this work were determined in a guess-
and-check fashion, but a more systematic way of determining
algorithm parameters may be desirable for future work.

■ CONCLUSIONS

In this study, we developed an updated methodology for
designing MOF-based sensor arrays for the detection of dilute
gas species in complex gas mixtures based on a modified form
of Henry’s coefficient which we call a CLAC. We determined
the CLACs for a set of gases commonly found in breath for 50
MOFs to design a sensing array for detecting kidney disease,
for which ammonia is a well-established biomarker. Then,
using the method presented by Sturluson et al., we screened
and ranked all arrays of various sizes and selected the best five-
element array for testing.35 Using our newly designed
numerical algorithm, we analyzed a series of 50 healthy and
50 diseased breath samples, successfully quantifying the
amount of ammonia for all samples in each set. Although
there is still much work to be done for building a practical
MOF-based device for CKD detection, specifically in
increasing the number of gases and MOFs considered,
accounting for the effects of humidity, accounting for the
measurement error, and improving the accuracy of force field
parameters, the various methods presented here demonstrate
marked efficiency improvements over prior work.
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