

Comparing Design Thinking Traits between National Samples of Civil Engineering and Architecture Students

Emma Coleman Todoroff¹, Tripp Shealy², Julie Milovanovic³, Allison Godwin⁴, Frederick Paige⁵

¹Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061. E-mail: ece17@vt.edu

²Assistant Professor, Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061 (corresponding author). E-mail: tshealy@vt.edu

¹² ³Research Associate, Graduate School of Architecture and Ecole Centrale, Nantes, France. E-mail: julie.milovanovic@crenau.archi.fr

14 ⁴Associate Professor, Dept. of Engineering Education, Purdue Univ., West Lafayette, IN 47907.
15 E-mail: godwina@purdue.edu

16 ⁵Assistant Professor, Dept. of Civil and Environmental Engineering, Virginia Tech, Blacksburg,
17 VA 24061. E-mail: freddyn@vt.edu

Abstract

20 Civil engineers and architects are both trained in design thinking, but they approach the process of
21 design from differing perspectives largely due to the divergence in their educational curriculums.
22 With an interest in the effect of differing educational perspectives on design thinking outcomes,
23 comparisons were made between the self-identified design thinking abilities of students in their
24 final year of undergraduate civil engineering or architecture programs. Perceived design thinking
25 ability was evaluated through a survey that was distributed to students enrolled in four-year
26 institutions across the United States. The Analysis of Variance (ANOVA) test was used to compare

27 responses between the civil engineering ($n = 356$) and architecture ($n = 335$) student samples.
28 There is a significant difference in perceived design thinking ability between the groups.
29 Architecture students score higher than civil engineering students on all design thinking traits.
30 Based on these results, the civil engineering curriculum may benefit from the incorporation of
31 pedagogy that emphasizes design thinking, like studio-based learning.

32
33 **Introduction**

34 Civil engineers and architects both design for “complex living, working, playing, and
35 learning systems or environments” (Buchanan, 1992, p.10). When designing for these
36 environments, both disciplines consider “the role of design in sustaining, developing, and
37 integrating human beings into broader ecological and cultural environments, shaping these
38 environments when desirable and possible, or adapting to them when necessary,” (Buchanan,
39 1992, p. 10). Although civil engineers and architects share similar design aims (Chan *et al.*, 2002),
40 the curriculum standards they experience are vastly different (Wilkinson and Scofield, 2002).
41 Engineering educators struggle to encourage creativity (Daly *et al.*, 2014) while architecture
42 educators struggle to teach a balance between creativity and rationality in the design studio
43 (Bashier, 2014).

44 Design thinking transcends the education within civil engineering and architecture because
45 it requires a balance of rationality and creativity. Several definitions of design thinking exist and
46 are explored in design research literature (Adams *et al.*, 2011; Dorst, 2011; Charnley *et al.*, 2011,
47 Cross, 2006; Lawson, 2006; Visser, 2009). One commonly referenced definition of design thinking
48 within industry is “a human-centered, creative, iterative, and practical approach to finding the best
49 ideas and ultimate solutions to the world’s greatest problems” (Brown, 2008, p. 92). This definition
50 is widely accepted within management and service industries (Kleinsmann, *et al.*, 2017; Micheli,

51 *et al.*, 2018). Included in Brown's definition are five non-exhaustive traits of design thinkers: (1)
52 a willingness to ask questions and take new approaches to problem solving (experimentalism); (2)
53 an ability to analyze holistically to develop novel solutions (integrative thinking); (3) an ability to
54 adopt the psychological viewpoint of others in everyday life (empathy); (4) an ability to work with
55 many disciplines (collaboration); and (5) refusal to back down from challenging problems
56 (optimism) (Blizzard *et al.*, 2015; Brown, 2008).

57 The quantitative results presented in this paper compare the perceived ability of students
58 from civil engineering and architecture related to Brown's five design thinking traits. Traits of
59 design thinking remain a commonality between design disciplines, but differences emerge as a
60 result of the domain. The domain independence of civil engineering and architecture creates a set
61 of invariants about design thinking (Cross, 1982; Visser, 2009; Goel & Pirolli, 1992). The purpose
62 of this paper is to measure the differences between civil engineering and architecture students with
63 regards to their perceived design thinking ability.

64 Design education plays a critical role (Atman *et al.*, 2004; Adams *et al.*, 2003) in civil
65 engineers' and architects' skill development (Akin, 2001; Roozenburg & Cross, 1991). Comparing
66 design competences, based on designers' field of expertise is a dynamic topic in design research.
67 For example, researchers focused on quantitatively comparing industrial designers with architects
68 (Goldschmidt & Rodgers, 2013), analyzing divergence in design fixation of industrial, mechanical
69 and architecture students (Purcell & Gero, 1996), evaluating specifics in design thinking models
70 and processes between architects and engineers (Akin, 2001; Roozenburg & Cross, 1991), and
71 qualitatively assessing differences between designers of practice with designers of education
72 (Gunther & Ehrlenspiel, 1999). The research presented in this paper uniquely contributes to the

73 body of knowledge on design education research. Specifically, through a quantitative comparison
74 of design thinking traits between national samples of civil engineering and architecture students.

75 The research presented in this paper builds on Blizzard *et al.*'s (2015) design thinking
76 survey instrument. Blizzard and colleagues tested their design thinking questions on a national
77 survey of U.S. students enrolled in their first year of college. Nine survey questions were validated
78 and mapped to the five design thinking traits of *experimentalism, integrative thinking, feedback*
79 *seeking, collaboration, and optimism* (Blizzard *et al.*, 2015). In their study, the researchers who
80 developed the survey instrument (Blizzard *et al.*, 2015) acknowledge that qualitative traits of
81 design thinking cannot be fully encompassed by nine quantitative survey questions. However, they
82 advocate that this set of questions does allow for exploration and comparison of design thinking
83 between sample groups like civil engineering and architecture students.

84 Blizzard *et al.*'s (2015) survey instrument was used in the study presented in this paper to
85 evaluate perceived design thinking ability of civil engineering ($n = 356$) and architecture college
86 students ($n = 336$) in their final year of college. The results presented in this paper explore
87 differences between design thinkers in these two distinct disciplines. Despite differences in design
88 thinking traits, these disciplines are often asked to collaborate on design tasks in the real world
89 (Stein and Hess, 2003). Understanding how students from these two disciplines perceive their
90 design thinking abilities may provide evidence to improve collaboration between these two groups
91 (Coates, 1993) or explain why conflict may arise during the design process (Stein and Hess, 2003).
92 The discussion offers some explanation in terms of discrepancies between educational
93 curriculums, and the conclusion offers recommendations for civil engineering educators.

94 **Background**

95 Civil engineering design and architectural design models are rooted in two distinct
96 approaches to design thinking. Civil engineering generally approaches design thinking by
97 optimizing for a particular objective (Pahl *et al.*, 2007) while architecture often takes a more
98 intuitive, holistic approach (Hillier, Musgrove, O'Sullivan, 1984). Civil engineering design
99 models are mainly problem-focused where design problems are analyzed in sub-problems, and
100 solutions are recomposed from partial ones in a procedural manner. A procedural approach to
101 design thinking was explored in architectural design (Alexander, 1964) but presented
102 shortcomings in its application (Alexander, 1965). Current architectural design thinking supports
103 a less procedural, more iterative, and intuitive approach to design problem solving. Architectural
104 design relies on the early formulation of pre-concept solutions or primary generators (Darke, 1979)
105 as a means to structure the design problem.

106 Both models have limitations. In practice, architects and civil engineers build on both
107 procedural, analytical strategies and intuitive, iterative ones (Roozenburg and Cross, 1991).
108 Overall, designers' skills include abilities to resolve ill-defined problems, adopt solution-focused
109 strategies, employ abductive reasoning (Cross, 2006) and use symbolic and analog representations
110 of design knowledge and artifacts (Akin, 2001) to design and to communicate design artifacts
111 (Zimring and Graig, 2001).

112 ***Design thinking traits***

113 Differences between disciplines do exist, yet there are common traits among design
114 thinking processes and skills defined in the literature. Commonalities are summarized into the
115 design thinking traits listed in Table 1 (Blizzard *et al.*, 2015; Brown, 2008). Each design thinking
116 trait relates to different facets of design thinking skills and processes. For instance, feedback
117 seeking and empathy relate to the social situatedness of design (Schön, 1983), and the role of the

118 designer as a part of a team in a social process (Dym *et al.*, 2015). Integrative thinking implies that
119 designers maintain sight of the big picture using strategies to decompose design problems and
120 recompose design solutions (Akin, 2001) using systems thinking (Dym *et al.*, 2015). Optimism
121 and the search for a better solution relates to a creative and innovative solution-focused design
122 thinking process (Cross, 2005). Experimentalism approaches design as an inquiry and an
123 opportunistic iteration (Visser, 2009) between divergent and convergent thinking that entails a co-
124 evolution of the design space (Maher & Poon, 1996; Dorst & Cross, 2001). Finally, collaboration
125 is inherent to design thinking as the complexity of design artifacts rest on a diversity of knowledge
126 contributed by different designers to the design process (Dym *et al.*, 2005). The multiplicity of
127 design languages, symbolic and analog (Akin, 2001), supports communication between designers
128 (Dym *et al.*, 2005).

129 ***Differences between civil engineers and architects' approach to design, in relation with design***
130 ***thinking traits***

131 Akin (2001) points out differences in civil engineers and architects cognitive design thinking
132 process. He states that differences are anchored within each disciplines' ethos and culture, and the
133 differences are supported by each profession and educational philosophy. According to Akin
134 (2001), civil engineers tend to use routine design strategies, fixate on a satisfying solution without
135 searching for alternatives, use standardized schemata to decompose design problems, and rely on
136 predetermined procedures (Akin, 2001). This routine, standardized approach to design within the
137 civil engineering field is reinforced by the American Society of Civil Engineer's (ASCE) Body of
138 Knowledge (BOK), which states "the design component at the undergraduate level should involve
139 application of the design process under a defined set of standards and constraints." (ASCE, 2019,
140 p. 36). Architects, on the other hand, work in a professional culture which incentivizes creative

141 and inventive strategies which push on constraints and challenge standards. Architects search for
142 alternative solutions even if one solution has been found, and they depend on non-standard and
143 idiosyncratic strategies to decompose design problems and recompose design solutions.

144 Akin (2001) also points out differences in design artifacts. The architectural artifact is
145 socially situated; it must fit into a social context and address its users' functional, economical,
146 ergonomic, cognitive, and psychological needs on a continuous basis. Engineered artifacts often
147 answer to a smaller set of user needs. The ASCE's BOK states that civil engineers must consider
148 "risk assessment, standards, codes, regulations, safety, security, sustainability, resilience,
149 constructability, and operability at various stages of the design process." (ASCE, 2019, p. 36).
150 There is mention of considering societal impacts, but user-centered design is not emphasized.

151 The prominence of constraints on design artifacts differs between disciplines. This
152 difference in focus on constraints affects designers' interaction and collaboration with end users.
153 Engineered artifacts are often associated with "invisible" design processes, such that the end-user's
154 lack of technical expertise may hinder collaboration with the designer (Zimring and Graig, 2001).
155 This is sometimes contrary to architectural drawings, which are understandable by the end-user,
156 thus favoring collaboration and integration of the end-user into the design process. The differences
157 in design thinking approaches between civil engineers and architects are categorized in relation to
158 the non-exhaustive design thinking traits pointed out by Blizzard *et al.* (2015) and Brown (2008)
159 in Table 2. Domain-dependent divergence in design thinking suggests potential differences in
160 design traits between civil engineers and architects.

161 ***Comparisons of design education across civil engineering and architecture***

162 Educational philosophies are grounded in each design disciplines ethos, beliefs, models, and
163 culture. Engineering education follows a science-based and problem focused philosophy (Akin,

164 2001) whereas architectural education tends to be arts-based (Roozenburg and Cross, 1991) and
165 focused on the proposal of innovative, creative solutions. The literature discussed in this section
166 provides an overview of major differences between civil engineering and architecture curriculums
167 that could lead to differences in the types of design thinkers they produce. The curriculums of civil
168 engineering and architecture programs are continuously evolving (Connor, Karmokar, &
169 Whittington, 2015), but the present study draws comparisons situated within pedagogical
170 philosophies of the majority rather than evolving philosophies of the minority, similar to Atman
171 *et al.*'s (2004) broad characterization of design within engineering education.

172 Civil engineering and architecture design curriculums were compared within this literature
173 review in terms of the five design thinking traits listed in Table 2. Civil engineering pedagogical
174 commitment to these traits is less clear (Cropley, 2015; Howe, 2010; Zancul *et al.*, 2017) than in
175 architectural education (Bashier, 2004 ; Kuhn, 1999) because the American Institute of
176 Architecture considers the design thinking process as the “most critical aspect” of design studio
177 education (Bashier, 2014). Studio education is traditionally viewed as a pedagogical approach for
178 artistic disciplines, like architecture and industrial design, not engineering (National Academy of
179 Engineering, 2005; Little & Cardenas, 2001). Studio education typically includes (1) semester-
180 length projects with a complex/open-ended nature; (2) design solutions which undergo multiple
181 and rapid iterations; (3) frequent informal and formal critique of work-in-progress by peers and
182 instructors; (4) conversations to simultaneously address heterogeneous issues; (5) situating designs
183 within the big picture of previous works; (6) faculty guidance on how to impose constraints to find
184 a satisfactory solution; and (7) appropriate use of multiple design media to support design activities
185 and improve skill and insight (Kuhn, 1999).

186 In a survey of five architecture programs, traditional studio education made up one-third of
187 their design curriculum; while five engineering programs stated that studio education was
188 nonexistent in their curriculum (Nix *et al.*, 2016). Some 21st century approaches in engineering
189 education, and more specifically civil engineering education, have experimented with studio
190 pedagogy, but it is still relatively rare (Zancul *et al.*, 2017; National Academy of Engineering,
191 2005). The definition of studio pedagogy within engineering education ranges widely from an
192 isolated environment where students teach themselves with guided computer exercises (Little &
193 Cardenas, 2001; Connor, Karmokar, & Whittington, 2015; Ercan, Sale, & Kristian, 2016) to an
194 interactive environment where a mentor encourages and comments on ongoing work (Little &
195 Cardenas, 2001). The latter end of this scope is conducive with traditional architecture studio
196 design approaches.

197 *Prototyping and design iterations*

198 Architecture studio courses also emphasize prototyping or in Kuhn's words, "design[ing]
199 solutions which undergo multiple and rapid iterations," (Kuhn, 1999). In contrast to the
200 architecture curriculum where prototyping is central to the studio design experience, only 37% of
201 engineering students indicate that prototyping was a topic taught in their engineering design
202 courses (Howe, 2010). For those engineering courses that do incorporate prototyping, they often
203 take a traditional engineering approach where just one prototype is produced rather than multiple
204 iterations (Zancul *et al.*, 2017). The development of only one prototype is disadvantageous for the
205 development of design thinking skills. An iterative prototyping technique is essential to design
206 thinking because a focus within design thinking is taking a human-centered, iterative approach
207 (van der Bijl-Brouwer & Dorst, 2017).

208 One objective of iterative prototyping is incorporation of user feedback for an improved
209 final product that better meets users' needs. The feedback seeking involved in iterative prototyping
210 acknowledges the importance of meeting the end-users' needs which is a significant component
211 of empathy. Moreover, design iterations support parallel lines of thoughts (Lawson, 1993) that
212 allow the exploration of design alternatives. Because iterative prototyping incorporates,
213 experimentalism, feedback seeking, and requires empathizing with the user, architecture students
214 may have a higher perceived design thinking ability than civil engineering students.

215 *Critiques and teacher feedback*

216 Civil engineering and architecture design courses differ in the frequency of both formal
217 and informal critique on works-in-progress by peers and instructors. Sixty-six percent of
218 engineering students in capstone design courses said finding time to work on their design project
219 was either entirely or partially their responsibility, meaning 66% did not have a class period
220 dedicated purely to project work (Howe, 2010). The limited time during class periods to work on
221 projects in the current engineering capstone format, limits time for instructors to provide students
222 with a critique on works-in-progress.

223 Civil engineering design courses generally involve presentations of progress, but they are
224 infrequent and predominately formal (Labossière and Roy, 2015). Ninety-two percent of
225 engineering students reported having formal final presentations while only 25% had more than one
226 formal interim presentation (Howe, 2010). Perhaps the most shocking statistic is that more than
227 half of capstone engineering students (55%) said their designs were never reviewed (Howe, 2010).
228 Instructors' feedback, when provided, entice different design thinking behavior either promoting
229 a convergent or divergent design process (Yilmaz and Daly, 2016). Without having their designs
230 challenged through review or critique, civil engineering students are not frequently given the

231 opportunity for divergent thinking through ideation, which is a crucial component of
232 experimentalism. This shortcoming of civil engineering design education may be detrimental to
233 civil engineering students' perceived design thinking ability. In addition, minimal time for project
234 work during class does not encourage collaboration between peers nor instructor.

235 *Creativity*

236 A third key difference between civil engineering and architecture design education is
237 comfort with the concept of creativity, specifically divergent thinking in pedagogical approaches.
238 The challenge when incorporating creativity into any design curriculum whether civil engineering
239 or architecture is maintaining a balance between divergent and convergent thinking, promoting an
240 openness of thinking (Beiler, 2015) while also providing a certain amount of guidance (Bucciarelli,
241 2003).

242 Architecture courses, in particular, tend to emphasize divergent thinking or the “generation
243 of ideas” (Treffinger *et al.*, 2002). They also promote thinking outside of the box with project
244 assignments that are complex and open-ended (Kuhn, 1999). Creative responses are often
245 encouraged within architecture studio courses to support designing innovative and artistic forms
246 (Bashier, 2014). Generation of ideas or divergent inquiry allows for conceptual thinking where
247 answers are not required to have “truth value”, meaning answers are not always verifiable (Dym
248 *et al.*, 2005). This way of thinking directly conflicts with principles at the core of engineering
249 science that is taught in civil engineering curriculums (Akin, 2001). It would be unacceptable for
250 a civil engineering student to respond to a final exam question in a civil engineering course by
251 providing multiple concepts with no “truth value” (Dym *et al.*, 2005).

252 Convergent thinking is well represented in civil engineering design courses (McKilligan *et*
253 *al.*, 2017), but instruction on generating ideas and openness to exploring ideas is less evident (Daly

254 *et al.*, 2014; Yilmaz & Daly, 2016). As an illustration, a recent study found that engineering
255 students who view themselves as highly creative are less likely to graduate with an engineering
256 degree (Atwood & Pretz, 2016), an indication that ideologies of incorporating creativity into civil
257 engineering education are still at odds with practitioners views of civil engineering design
258 (Bucciarelli, 2003). The literature review presented throughout this section contributes to
259 exploring differences between civil engineering and architecture curriculums, in relation to their
260 impacts on design thinking traits. This relationship is illustrated in Figure 1.

261

262 **Fig. 1. Characteristics of design education that affect design thinking traits**

263 Based on the information presented, it seems as though the architecture curriculum may better
264 prepare students to become design thinkers than their engineering counterparts. However, civil
265 engineering educators have recently begun to incorporate design thinking concepts into the civil
266 engineering curriculum (McKilligan *et al.*, 2017; Zancul *et al.*, 2017; Connor *et al.*, 2015). Many
267 of these courses and subsequent research studies about it are still experimental, and it is unclear
268 whether these developments are being incorporated into the civil engineering curriculum on a
269 larger scale. By surveying a national sample of civil engineering and architecture students, the
270 research presented in this paper seeks to bring new insight to some of this uncertainty.

271 **Questions and Hypotheses**

272 The purpose of the research presented in this paper was to explore differences in perceived
273 design thinking ability between civil engineering and architecture students. The research questions
274 that guided this research include:

275 1) What differences exist in perceived design thinking ability between undergraduate civil
276 engineering and architecture students in their final year of college?

277 2) Does one discipline hold higher perceptions than the other for certain design thinking
278 traits?

279 Answering these questions fills a gap in the literature providing a national, quantitative
280 comparison of perceived design thinking ability between architecture and civil engineering
281 students. The hypotheses corresponding with the research questions are:

282 1) Architecture students have a higher perceived design thinking ability than civil engineering
283 students during their final year of undergraduate studies.

284 2) Architecture students hold higher perceived abilities than civil engineering students in the
285 experimentalism and collaborative design thinking traits, based on Kuhn's (1999)
286 principles of architecture studio education.

287 **Methods**

288 ***Survey Development***

289 The survey to measure design thinking traits between civil engineering and architecture
290 students is based on Blizzard *et al.*'s (2015) study. Explanations of the instrument are provided in
291 this section along with an explanation of methods used for their validation.

292 ***Design Thinking Scale***

293 In 2012, Blizzard and colleagues administered a nationwide survey titled Sustainability and
294 Gender in Engineering (SaGE) to 7,451 freshmen collegiate students from 59 U.S. institutions
295 (Shealy *et al.*, 2016). The survey included a nine-item design thinking instrument (Table 1)
296 mapped to five design thinking traits: collaboration, integrative thinking, experimentalism,
297 optimism, and feedback seeking (Blizzard *et al.*, 2015). The design thinking instrument, as

298 developed by Blizzard and colleagues, is shown in Table 3. Each item underwent a detailed
299 exploratory factor analysis and were categorized into traits as a result of that process.

300 The design thinking instrument developed by Blizzard *et al.* (2015) includes four of the five
301 design thinking traits from Brown (2008): integrative thinking, optimism, experimentalism, and
302 collaboration (Table 1). To measure one aspect of the empathy trait, Blizzard *et al.* (2015) also
303 included feedback seeking. The items “I seek input from those with a different perspective from
304 me” and “I seek feedback and suggestions for personal improvement” described this feedback
305 seeking variable which captured students’ willingness to seek input from others in design.

306 *Validation of the Survey Instruments*

307 When conducting research with a survey instrument, the survey questions must appropriately
308 measure the intended variable for the target sample group. This section describes the techniques
309 used to validate the survey instrument. Validation methods ensure that the survey instrument
310 measures a single latent variable. The expectation is that the instrument is capable of measuring
311 design thinking (Blizzard *et al.*, 2015). However, when the instrument was created, it was validated
312 with samples that did not represent the responses of civil engineering or architecture students. The
313 instrument was originally intended for first-year college students. The original validation of the
314 instrument was conducted by previous researchers (Blizzard *et al.*, 2015). A summary of their
315 exploratory factor analysis is provided below. The authors of the present study conducted a
316 secondary, confirmatory analysis to validate the survey instruments with civil engineering and
317 architecture student samples.

318 *Exploratory Factor Analysis*

319 Exploratory factor analysis (EFA) is a technique commonly used in the development of
320 survey instruments. When researchers develop survey instruments, EFA is used to determine the
321 number of latent variables that a survey instrument measures for some sample population. The
322 latent variables are inferred by the researcher on the basis of a theoretical framework in conjunction
323 with the statistical test. The design thinking instrument used for this study was developed based
324 on a prior theoretical framework of design thinking (Blizzard *et al.*, 2015). The authors of Blizzard
325 *et al.* (2015) performed an EFA on the design thinking instrument. They found that the instrument
326 measured five factors when applied to a first-year college student sample. The five factors shown
327 through their EFA were indicative of the five design thinking traits previously described, including
328 feedback seeking, integrative thinking, collaboration, optimism, and experimentalism. These five
329 factors are theorized to represent design thinking as the latent variable.

330 *Confirmatory Factor Analysis*

331 Confirmatory factor analysis (CFA) is a technique commonly used for the validation of
332 survey instruments. A CFA is typically performed after an EFA to determine if the factor structure
333 determined by the EFA persists when the survey instrument is applied to a different sample
334 population. The authors conducted a CFA to ensure that the design thinking instrument developed
335 by prior researchers with a first-year college student sample (Blizzard *et al.*, 2015) was appropriate
336 for measurements of design thinking within the populations of interest, civil engineering and
337 architecture students.

338 Two confirmatory factor analyses were conducted using the lavaan package in R (Rosseel,
339 2012). CFA was conducted on architecture ($n=335$) and engineering student ($n=356$) samples for
340 the design thinking instrument from Blizzard *et al.* (2015). Several fit indices of the CFA were

341 evaluated based on Byrne's suggestions (Byrne, 1994) to determine if the factor structure was a
342 good fit including Comparative Fit Index (*CFI*, acceptable values above 0.9), Tucker Lewis Index
343 (*TLI*, acceptable values above 0.9), and root mean square error of approximation (*RMSEA*, values
344 less than 0.01, 0.05, and 0.08 indicate excellent, good, and moderate fit, respectively; Byrne,
345 1994). The *RMSEA* is a better indicator of fit than *CFI* or *TLI*, and is less sensitive to changes in
346 sample size (Schumacker & Lomax, 2004), so it gives the most weight when evaluating the fit
347 indices, listed in Table 4. The design thinking, five-factor model was a good fit for the architecture
348 student sample (*RMSEA* = 0.05) and a moderate fit for the civil engineering student sample
349 (*RMSEA* = 0.06).

350 ***Sampling and Statistical Analysis***

351 Responses from civil engineering and architecture students in their final year of college were
352 collected through a stratified random sampling (SRS) procedure. A total of 335 student responses
353 were analyzed for the architecture sample, and 356 responses were analyzed for the civil
354 engineering sample. Parametric statistical tests were used to compare design thinking measures
355 between the groups.

356 ***Data Collection***

357 The target group for both samples were students in their final year of study at four-year
358 institutions with accredited engineering and architecture programs. The sampling frame for each
359 group consisted of four-year institutions offering accredited civil engineering and architecture
360 programs. Lists of these programs were obtained from the National Center for Education Statistics.
361 Stratified random lists of institutions were compiled separately for architecture and engineering
362 programs by separating small (<5,400), medium (5,400-14,800), and large institutions (>14,800)

363 based on overall undergraduate enrollment. The authors contacted a random number of programs
364 from each list. The gatekeepers for distribution of surveys were instructors of the students' senior
365 design courses whom the researchers individually contacted via email. Students from fifteen civil
366 engineering programs and thirty-five architecture programs participated in the survey. The
367 programs that participated are distributed across the United States. The identities of individual
368 programs are not published to protect the privacy of participants according to our IRB protocol.
369 The random sampling procedure enables for the researchers to use statistical assumptions that infer
370 the samples are representative of their larger populations.

371 Responses to the design thinking instrument were collected from eight engineering
372 disciplines for a total of 2,095 responses from engineering students. Only civil engineering student
373 data was considered for analysis in the present study, resulting in 356 civil engineering student
374 responses. Architecture program data from thirty-five institutions resulted in 335 analyzable
375 responses. Details on sample size and distribution are provided in Table 5. Distribution statistics
376 of skewness, kurtosis, and standard deviation (Table 5) allow for the conclusion that the data is
377 reasonably normally distributed, thus parametric statistical tests are appropriate for data analysis.

378 *Analysis Technique*

379 Perceived design thinking ability was measured by calculating a design thinking score for
380 each participant. The score was calculated by taking the average of participant responses to the
381 nine items of the design thinking instrument in Table 3. Scores were calculated for participants
382 who answered at least five of the nine items. A five-level Likert scale was used for the nine items
383 ranging from "0-strongly disagree" to "4-strongly agree," so design thinking scores also ranged
384 from 0 to 4. Because this study was conducted through a survey, some bias is inherent due to self-
385 identification. Self-identification means students may have overestimated their abilities when

386 answering survey questions. This limitation is common with survey methodology that strives to
387 evaluate the abilities of a group of interest. However, the risk of bias is decreased in this study
388 because ability is compared between two groups within the same year of educational curriculum.

389 A three-way analysis of variance (ANOVA) was conducted to compare design thinking scores
390 by discipline (civil engineering, architecture,), sex (male, female), and average in-major grade (A
391 or B). Three-way ANOVA is a factorial ANOVA test and is utilized when testing the effect of two
392 or more factors on the response variable (Ott & Longnecker, 2001). Assumptions for ANOVA
393 were met including random and independent samples, equal variance between samples (s_{max}/s_{min}
394 < 2 , where s_{max} is the larger sample variance, and s_{min} is the smaller sample variance; Ott &
395 Longnecker, 2001), and approximately normal distribution as examined by skew and kurtosis (see
396 Table 5). Sex and average in-major grade were considered in the analysis because Blizzard *et al.*
397 (2015), found that first-year college students' sex and academic achievement had a significant
398 effect on design thinking score. Because the participants were all in their final year of study, the
399 number of participants with an average in-major grade of "C" was small (architecture: $n=7$, civil
400 engineering: $n=14$). Given the small number of responses within this category, responses from
401 participants with a "C" average were removed from the analysis to reduce the distribution's skew.
402 Demographic breakdown of the samples by average in-major grade and sex are shown in Table 6.

403 **Results**

404 ***Differences in perceived design thinking ability between senior civil engineering and***
405 ***architecture students***

406 The three-way ANOVA model showed that two interaction effects were significant: the
407 interactions between 1) discipline and in-major average grade ($p = 0.022$) and 2) sex and in-major

408 average grade ($p = 0.013$). In an orderly interaction, the order of the means for levels of factor B
409 is the same even though the magnitude of the differences between levels of factor B may change
410 from level to level of factor A (Ott & Longnecker, 2001). When the order of the means is the same,
411 in an orderly interaction, the main effects of factors A and B can be considered independently.
412 Least square means interaction plots from the ANOVA model were graphed to determine if the
413 interactions were orderly or disorderly (Figure 2, Figure 3).

414

415 **Fig. 2. Least Square Means Interaction Plots for Discipline and In-Major Average Grade**

416

417 **Fig. 3. Least Square Means Interaction Plots for In-Major Average Grade and Sex**

418 The interaction between discipline and in-major average grade is orderly. However, the
419 effect of grades on design thinking score are masked by discipline (Figure 2). This means the effect
420 of discipline on design thinking score is meaningful, and the effects can be considered separately
421 from in-major average grade; while the effect of in-major average grade on design thinking score
422 should not be evaluated independently. The interaction between in-major average grade and sex is
423 disorderly because the order of the means is inconsistent. Therefore, the effects of in-major average
424 grade and sex should not be evaluated independently.

425 Discipline was the only treatment factor that had an independently, significant effect on
426 design thinking score ($p < 0.0001$). The average design thinking score of architecture students (M
427 = 3.31, $SD = 0.441$) was significantly higher than the average design thinking score of civil
428 engineering students ($M = 2.59$, $SD = 0.456$). The distribution of design thinking scores across
429 each sample is shown in Figure 4. In addition to the significant difference between the means ($p <$
430 0.0001), Figure 4 provides a visualization of minimal overlap between design thinking score
431 distributions of civil engineering and architecture students.

432

433 **Fig. 4. Distribution of design thinking scores for civil engineering and architecture**
434 **students**

435 Cohen's *d* effect size was calculated to quantitatively evaluate the amount of overlap in
436 design thinking scores between the sample groups. Effect size is equal to the difference between
437 the two samples' means divided by the standard deviation where 0.2 is a small effect size, 0.5 is a
438 medium effect size, and 0.8 or higher is considered a large effect size (Cohen, 1988). Effect size
439 was calculated to be 1.6 indicating a non-overlap of 73% between the design thinking score
440 distributions of civil engineering and architecture students. An effect size of 1.6 is large and shows
441 there is a significant difference in the distribution of scores between the groups, in addition to a
442 significant difference between the means ($p < 0.0001$).

443 ***Effect of discipline for certain design thinking traits***

444 The second question of interest was: does one discipline outperform the other for certain
445 design thinking traits? Five three-way ANOVA models were calculated, one for each design
446 thinking trait, to evaluate differences between the sample groups. A summary of significant results
447 is given in Table 7.

448 Least square means plots were created for each significant interaction effect indicated in Table
449 7. Similar to results from analysis of overall design thinking score, interactions between sex and
450 in-major average grade were disorderly, while interactions involving discipline were orderly.
451 Therefore, the effect of discipline on each design thinking trait was independent of sex and in-
452 major average grade. There was a significant difference between the means for all design thinking
453 traits, with regards to discipline. Architecture students significantly outperformed civil engineering
454 students on every trait. Descriptive statistics for the design thinking trait results are presented in
455 Table 8 along with *p*-value and Cohen's *d* effect size.

456 **Discussion**

457 Civil engineers' and architects' design thinking approaches are rooted in two different models
458 of design. Civil engineers approach design by optimizing for a particular objective (Pahl *et al.*,
459 2007), while architects tend to rely on a more intuitive and holistic approach (Hillier, Musgrove,
460 O'Sullivan, 1984). In relation to Blizzard *et al.*'s (2015) design traits, these differing approaches
461 to design thinking suggest that architects may score higher on perceived design thinking ability
462 than civil engineers. Our results confirm this hypothesis. Our results also suggest that architecture
463 education may promote design thinking more holistically than civil engineering education. Indeed,
464 each disciplines' ethos and culture are supported by its educational philosophies (Akin, 2001).

465 Overall, and for each individual trait, architecture students' perceived design thinking ability
466 significantly exceeds civil engineering students' perceived ability. Initial results revealed this
467 significant difference, but to avoid bias, design thinking results were subsequently analyzed based
468 on sex. It was necessary to analyze on the basis of sex because within the civil engineering sample,
469 females outperformed males on the design thinking scale. However, when the effects of sex were
470 combined with the effects of discipline, the effect of discipline ($p < 0.001$) dwarfed the effect of
471 sex ($p = 0.06$) on perceived design thinking ability. Presenting results with sex incorporated,
472 reinforces the strength of disciplinary effects on perceived design thinking abilities.

473 In addition to considering the effects of sex, design thinking results were analyzed considering
474 the effects of academic achievement. Academic achievement, measured as in-major average grade,
475 was of interest in the analysis because prior researchers found a correlation between academic
476 achievement and design thinking score (Blizzard *et al.*, 2015). Our results show that academic
477 achievement is positively correlated with the design thinking scores of architecture students, but
478 not with those of civil engineering students. In other words, architecture students with higher in-

479 major average grades had better design thinking scores. In-major average grade had no significant
480 effect on the scores of civil engineering students. Incorporating academic achievement in our
481 analysis provides a springboard for future research. Future researchers might investigate the
482 following questions: are design thinking traits more useful for students' academic success within
483 architecture than civil engineering, or have students who are more academically successful in
484 architecture learned to develop these traits?

485 Among the design thinking traits analyzed, the significant disciplinary difference between
486 feedback seeking scores must be noted ($p < 0.0001$, Cohen's $d = 2.5$). This significant difference
487 may be a product of educational training. Notable differences in educational training include, but
488 are not limited to, architecture pedagogical tendencies to promote iterative prototyping, encourage
489 informal critiques, and advocate for creative thinking. Further discussion focuses on creative
490 thinking as a source of feedback seeking tendency in architecture students.

491 Given civil engineering students' low average design thinking scores, in relation to
492 architecture students ($M = 2.6$ vs. $M = 3.3$, $p < 0.0001$) the remaining discussion concentrates on
493 hurdles to incorporate design thinking into civil engineering education. Shortcomings related to
494 creative thinking development are addressed first, followed by shortcomings in divergent thinking
495 development. We provide explanations on how these shortcomings may act as a barrier to the
496 development of design thinking among civil engineering graduates. We conclude by offering
497 recommendations to engineering educators.

498 ***Shortcomings of creative thinking development in engineering design education***

499 Shortcomings of creative thinking in civil engineering education might be attributed to a
500 lack of value placed on creative skill development (Cropley, 2015). Three barriers to teaching
501 creativity in civil engineering education are: 1) overspecialization and narrow focus on technical

502 content, 2) pseudo-expertise or teaching purely focused in factual knowledge rather than adaptive
503 expertise, and 3) civil engineering faculty's focus on the "what?" and "can?" rather than "how?"
504 and "why?" (Cropley, 2015).

505 Across fields, engineering has the greatest room for improvement in supporting creative skill
506 development (Foley & Kazerounian, 2007). For example, a recent study found that creativity is
507 not appropriately rewarded in engineering curriculum. Lack of reward for creativity leads
508 engineering students who consider themselves to be creative to leave the engineering field in favor
509 of more creative disciplines (Atwood & Pretz, 2016). In recent years, the National Academy of
510 Engineers (NAE) has taken note of this shortcoming and recognizes the need to improve
511 engineering design education.

512 NAE proposed an initiative calling for more creative engineering graduates by the year 2020
513 (National Academy of Engineering, 2004). Currently, engineering pedagogy decreases students'
514 creativity from first-year to senior year (Sola *et al.*, 2017). However, improving creative ability is
515 possible by taking small steps in creativity training (Sola *et al.*, 2017). Creative thinking influences
516 design thinking, so shifting civil engineering pedagogy to develop creative skills may, in turn,
517 improve the design thinking ability of civil engineering graduates (Bairaktarova, 2017).

518 Creative thinking relies on an iteration of divergent and convergent thinking (Goldschmidt,
519 2016). Both must be encouraged in design education. A recent study showed that engineering
520 education failed to improve engineering students' capacity for divergent thinking (Bennetts *et al.*,
521 2017). The study compared divergent thinking between freshman and senior engineering students
522 and found that both groups produced their most original ideas when conducting familiar tasks
523 rather than unfamiliar tasks (Bennetts *et al.*, 2017). This finding is contrary to the definition of
524 divergent thinking, "ignoring old assumptions to produce new ideas" (Bennetts *et al.*, 2017, p. 1),

525 and demonstrates no significant difference in the ability to generate original ideas between first-
526 year and senior engineering students.

527 Stagnation of divergent thinking development exhibited by Bennetts *et al.* (2017) aligns
528 with another study published nearly twenty years prior. The study compared the design approach
529 of first-year and senior engineering students (Atman *et al.*, 1999). First-year students accepted the
530 given description of the design process while seniors challenged directions given to develop
531 alternative solutions. The seniors argued only one design was necessary, and they claimed
532 “alternative ideas” could be modifications of the original design. A similar phenomenon of
533 “fixation” was observed more recently among engineering designers in professional practice
534 (Crilly, 2015). The most recent version of ASCE’s BOK states that, “the design process is open-
535 ended and involves a number of possible correct solutions, including creative and innovative
536 approaches” (ASCE, 2019, p. 36). More work must be done to incorporate this ideology into civil
537 engineering education.

538 A decrease in creative ability (Sola *et al.*, 2017) and stagnation of divergent thinking over
539 the course of an engineering education (Bennetts *et al.*, 2017) are reasons to believe engineering
540 pedagogy is falling short of producing graduates with high perceived design thinking ability. A
541 possible cause of these shortcomings is lack of faculty commitment to design pedagogy that
542 incorporates creativity training and divergent thinking assessment (McKilligan *et al.*, 2017; Sola
543 *et al.*, 2017; Dym *et al.*, 2005). Engineering educators may need to look towards the humanities
544 for guidance (Bairaktarova, 2017), especially the discipline of architecture whose educators
545 consider the design thinking process as the most critical aspect of design education (Bashier,
546 2014).

547 ***Recommendations for civil engineering educators to improve design thinking in civil***
548 ***engineering graduates***

549 The contrast between perceived design thinking ability of civil engineering and architecture
550 students holds important implications for civil engineering education. The National Academy of
551 Engineers recognizes the need to develop engineers who are design thinkers (Dym *et al.*, 2005).
552 In fact, ABET refers to design as an “iterative, creative, decision making process” (ABET, 2018)
553 which is reminiscent of design thinking as defined by Blizzard *et al.* (2015). Yet, implementation
554 of civil engineering courses that help students develop design thinking skills appear scarce and ill-
555 defined in the literature, an estimate of the number of courses is not available. A civil engineering
556 studio design course could suggest pedagogical strategies ranging from isolated work in a
557 computer lab to collaborating with an instructor one-on-one (Little & Cardenas, 2001).

558 In contrast, architecture studio design courses consistently train students to be design
559 thinkers. Architectural design courses place emphasis on prototyping, design iteration, frequent
560 student-tutor critiques, feedback on works-in-progress, divergent thinking, creativity, and ideation.
561 Civil engineering educators can leverage opportunities to implement similar pedagogical strategies
562 into civil engineering design courses for improving engineering students’ design thinking skills.

563 Civil engineering explorations of studio-based learning are increasing as educators study how
564 to teach creative skills and how to incorporate studio-based learning into the curriculum
565 (McKilligan *et al.*, 2017). For example, the engineering department at Harvey Mudd College was
566 a trailblazer for creative skill development when they explored benefits of incorporating studio
567 methods into introductory engineering courses (Little & Cardenas, 2001). Their studies, along with
568 other more recent studies, can serve as excellent resources for civil engineering educators to
569 incorporate design thinking into their curricula. Daly *et al.* (2014) showed how assessments can

570 motivate engineering students to improve their creative skills, and Connor *et al.* (2015) discussed
571 the effectiveness of adopting studio-based learning into engineering design courses. The
572 incorporation of prototyping into the design process has also encouraged engineering students'
573 divergent thinking (Youmans, 2011). Motivating students to improve their creative skills (Daly *et*
574 *al.*, 2014) and incorporating greater opportunity for prototyping within design courses (Youmans,
575 2011) will help civil engineering educators satisfy ABET's expectation of design as an iterative,
576 creative process (ABET, 2018).

577 **Conclusions**

578 This study provides evidence of a significant difference between the perceived design thinking
579 ability of civil engineering and architecture students at the conclusion of their undergraduate
580 studies. Architecture students excelled in their perceived design thinking ability based on five traits
581 of design thinkers: feedback seeking, integrative thinking, optimism, experimentalism, and
582 collaboration. Civil engineering students in our sample fell short in all design thinking traits when
583 compared to the architecture students.

584 Quantitative comparisons of design thinking ability between nationally representative samples
585 of civil engineering and architecture students use the scale developed by (Blizzard *et al.*, 2015) as
586 it was intended, for making broad categorizations. The findings from this study also build on
587 Blizzard *et al.*'s (2015) study by addressing three of their future research goals: 1) testing new
588 questions, 2) conducting a confirmatory factor analysis, and 3) studying how design thinking traits
589 are impacted by various factors. The confirmatory factor analysis conducted in the present study
590 showed promising results because the design thinking scale was transferable to sample groups
591 outside of the original sample.

592 A limitation of the present study is that a greater percentage of design thinkers may have self-
593 selected into the architecture field. Future studies should explore why and how students choose to
594 major in architecture versus civil engineering. Future research should also conduct longitudinal
595 studies to determine if a causal link exists between education and design thinking. However, a
596 recent study on engineering education found that senior engineering students scored significantly
597 lower than first-year engineering students on the design thinking scale (Coleman *et al.*, 2019). This
598 might suggest that a higher perceived design thinking ability among senior architecture students
599 is not simply a product of self-selection into the architecture field.

600 **Acknowledgements**

601 This material is based in part on work supported by The National Science Foundation, through
602 Grant EEC-1635534 and EEC-1635204. Any opinions, findings, and conclusions or
603 recommendations expressed in this material are those of the author(s) and do not necessarily reflect
604 the views of the National Science Foundation.

605 **Data Availability**

606 Some or all data, models, or code that support the findings of this study are available from the
607 corresponding author upon reasonable request.

608 **References**

609 Adams, R., Daly, S., Mann, L., & Dall'Alba, G. (2011). Being a professional: Three lenses into
610 design thinking, acting, and being. *Design Studies*, 32, 588-607.

611 Adams, R., Turns, J., & Atman, C. (2003). Educating effective engineering designers: the role of
612 reflective practice. *Design Studies*, 24, 275-294.

613 Akin, O. (2001). Variants in design cognition. In C. Eastman, M. McCracken, & W. Newstetter
614 (Eds.), *Design knowing and learning: Cognition in design education*. Elsevier.

615 Alexander, C. (1964). *Notes on the Synthesis of Form*. Harvard University Press.

616 Alexander, C. (1965). A city is not a tree. *Architectural Forum*, 122(1), 58–62.

617 Atman, C., Cardella, M., Turns, J., & Adams, R. (2004). Comparing freshmen and senior
618 engineering design processes: an in-depth follow up study. *Design Studies*, 26, 325-357.

619 Atman, C., Chimka, J., Bursic, K., & Nachtmann, H. (1999). A Comparison of Freshman and
620 Senior Engineering Design Processes. *Design Studios*, 131-152.

621 Atwood, S. A., & Pretz, J. E. (2016). Creativity as a factor in persistence and academic
622 achievement of engineering undergraduates. *Journal of Engineering Education*, 105(4),
623 540-559.

624 Bairaktarova, D. (2017). The New Renaissance Artificers: Harnessing the Power of Creativity in
625 Engineering Classroom. In *Creative Ways of Knowing in Engineering* (pp. 1-22). Springer
626 International.

627 Bashier, F. (2014). Reflections on architectural design education: The return of rationalism in the
628 studio. *Frontiers of Architectural Research*, 424-430.

629 Beiler, M.R.O. (2015) Integrating innovation and entrepreneurship principles into the civil
630 engineering curriculum. *Journal of Professional Issues Engineering Education and*
631 *Practice*. 141(3), 04014014.

632 Bennetts, C., Caldwell, B., Cheeley, A., & Green, M. (2017). Comparing Facets of Divergent
633 Thinking in Engineering Freshmen and Upperclassmen. *ASME 2017 International Design*

634 *Engineering Technical Conferences and Computers and Information in Engineering*
635 *Conference*. Cleveland: ASME.

636 Blizzard, J., Klotz, L., Potvin, G., Hazari, Z., Cribbs, J., & Godwin, A. (2015). Using Survey
637 Questions to Identify and Learn more About Those who Exhibit Design Thinking Traits.
638 *Design Studies*, 92-110.

639 Brown, T. (2008). Design Thinking. *Harvard Business Review*.

640 Bucciarelli, L. (2003). Designing and learning: a disjunction in contexts. *Design Studies*, 24, 295-
641 311.

642 Buchanan, R. (1992). Wicked Problems in Design Thinking . *Design Issues*, 5-21.

643 Byrne, B. M. (1994). Structural equation modeling with EQS and EQS/Windows: Basic concepts,
644 applications, and programming. Thousand Oaks, CA: Sage

645 Chan, E., Chan, M.W., Scott, D., Chan, A. 2003. Educating the 21st Century Construction.
646 *Professionals Journal of Professional Issues in Engineering Education and Practice*,
647 128(1): 1.

648 Charnley, F., Lemon, M., & Evans, S. (2011). Exploring the process of whole system design.
649 *Design Studies*, 32, 156-179.

650 Coates, J. (1993). Facilitating Sustainable Development: Role of Engineer. *Journal of Professional*
651 *Issues in Engineering Education and Practice*, 119(3): 1.

652 Cohen, J. (1988). The Concepts of Power Analysis. In *Statistical Power Analysis for the*
653 *Behavioral Sciences* (pp. 1-17). New York, NY: Lawrence Erlbaum Associates.

654 Coleman, E., Shealy, T., Grohs, J., & Godwin, A. (2019). Design thinking among first-year and
655 senior engineering students: A cross-sectional, national study measuring perceived ability.
656 *Journal of Engineering Education*, jee.20298. <https://doi.org/10.1002/jee.20298>

657 Connor, A., Karmokar, S., & Whittington, C. (2015). From STEM to STEAM: Strategies for
658 Enhancing Engineering & Technology Education. *International Journal of Engineering
659 Pedagogy*, 37-47.

660 Crilly, N. (2015). Fixation and creativity in concept development: The attitudes and practices of
661 expert designers. *Design Studies*, 54-91.

662 Cropley, D. H. (2015). Embedding Creativity in Engineering Education. In *Creativity in
663 Engineering* (pp. 257-289). Elsevier Inc.

664 Cross, N. (1982). Designerly ways of knowing. *Design Studies*, 3(4), 221–227.
665 [https://doi.org/10.1016/0142-694X\(82\)90040-0](https://doi.org/10.1016/0142-694X(82)90040-0)

666 Cross, N. (2006). *Designerly ways of knowing*. Springer.

667 Daly, S., Mosjowski, E., & Seifert, C. (2014). Teaching Creativity in Engineering Courses.
668 *Journal of Engineering Education*, 417-442.

669 Darke, J. (1979). The primary generator and the design process. *Design Studies*, 1(1), 36–44.
670 [https://doi.org/10.1016/0142-694X\(79\)90027-9](https://doi.org/10.1016/0142-694X(79)90027-9)

671 Demirkan, H., & Afacan, Y. (2012). Assessing creativity in design education: Analysis of
672 creativity factors in the first-year design studio. *Design Studies*, 262-278.

673 Dorst, K. (2011). The core of ‘design thinking’ and its application. *Design Studies*, 521-532.

674 Dorst, K., & Cross, N. (2001). Creativity in the design process: Co-evolution of problem–solution.

675 *Design Studies*, 22(5), 425–437. [https://doi.org/10.1016/S0142-694X\(01\)00009-6](https://doi.org/10.1016/S0142-694X(01)00009-6)

676 Dym, C., Agogino, A., Eris, O., Frey, D., & Leifer, L. (2005). Engineering Design Thinking,

677 Teaching, and Learning. *Journal of Engineering Education*, 103-120.

678 Ercan, F., Sale, D., & Kristian, N. (2016). Innovative Curriculum to Enhance the Learning

679 Experience of Electrical and Mechanical Engineering Students. *International Journal of*

680 *Engineering Pedagogy*, 37-44.

681 Foley, S., & Kazerounian, K. (2007). Barriers to Creativity in Engineering Education: A Study of

682 Instructors and Students Perceptions. *ASME 2007 International Design Engineering*

683 *Technical Conferences and Computers and Information in Engineering Conference* (pp.

684 539-555). Las Vegas: ASME.

685 Goel, V., & Pirolli, P. (1989). Motivating the Notion of Generic Design within Information-

686 Processing Theory: The Design Problem Space. *AI Magazine*, 10(1), 19.

687 <https://doi.org/10.1609/aimag.v10i1.726>

688 Goldschmidt, G., & Rodgers, P. (2013). The design thinking approaches of three different groups

689 of designers based on self-reports. *Design Studies*, 34(4), 454-471.

690 Gunther, J., & Ehrlenspiel, K. (1999). Comparing designers from practice and designers with

691 systematic design education. *Design Studies*, 20(5), 439-451.

692 Howe, S. (2010). Where Are We Now? Statistics on Capstone Courses Nationwide. *Advances in*

693 *Engineering Education*.

694 Hillier, W., Musgrave, J., & O'Sullivan, P. (1984). Knowledge and design. *Developments in*

695 *Design Methodology*.

696 Kleinsmann, M., Valkenburg, R., & Sluijs, J. (2017). Capturing the value of design thinking in
697 different innovation practices. *International Journal of Design*, 11(2), 25-40.

698 Koppen, E., & Meinel, C. (2015). Empathy via Design Thinking: Creation of Sense and
699 Knowledge. *Design Thinking Research*, pp. 15-28.

700 Kuhn, S. (1999). Learning from the Architecture Studio: Implications for Project-Based Pedagogy.
701 *Mudd Design Workshop II, Designing Design Education for the 21st Century*, (pp. 195-
702 200).

703 Labossière, P. and Roy, N. (2015). Original Concept for a Civil Engineering Capstone Project.
704 *Journal of Professional Issues in Engineering Education and Practice* Vol. 141(1): 1.

705 Lawson, B. (1993). Parallel lines of thought. *Languages of Design*, 1(4), 357–366.

706 Lawson, B. (2006). *How designers think: The design process demystified* (4. ed).
707 Elsevier/Architectural Press.

708 Levine, D., Agogino, A., & Lesniewski, M. (2016). Design Thinking in Development Engineering.
709 *International Journal of Engineering Education*, 1396-1406.

710 Little, P., & Cardenas, M. (2001). Use of "Studio" Methods in the Introductory Engineering Design
711 Curriculum. *Journal of Engineering Education*, 309-318.

712 Maher, M. L., & Poon, J. (1996). Modeling design exploration as co-evolution. *Computer-Aided
713 Civil and Infrastructure Engineering*, 11(3), 195–209. [https://doi.org/10.1111/j.1467-
8667.1996.tb00323.x](https://doi.org/10.1111/j.1467-
714 8667.1996.tb00323.x)

715 McKilligan, S., Fila, N., Rover, D., & Mina, M. (2017). Design Thinking as a catalyst for changing
716 teaching and learning practices in engineering. *Frontiers in Education Conference*.
717 Indianapolis: IEEE.

718 Micheli, P., Wilner, S., Bhatti, S. H., Mura, M., & Beverland, M. (2018). Doing Design Thinking
719 Conceptual Review, Synthesis, and Research Agenda. *Journal of Product Innovation
720 Management*.

721 National Academy of Engineering. (2004). *The engineer of 2020: Visions of engineering in the
722 new century*. Washington, D.C.: The National Academies Press.

723 National Academy of Engineering. (2005). *Educating the Engineer of 2020: Adapting Engineering
724 Education to the New Century*. National Academy of Sciences.

725 Nix, A. A., Lemke, M. T., Arlitt, R. M., & Stone, R. B. (2016). Design Education Across
726 Disciplines: Opportunities for Curriculum Advancement. *ASME 2016 International Design
727 Engineering Technical Conferences and Computers and Information in Engineering
728 Conference*. Charlotte.

729 Oh , Y., Ishizaki, S., Gross, M., & Do, E. Y.-L. (2013). A theoretical framework of design
730 critiquing in architecture studios. *Design Studies*, 302-325.

731 Ott, R., & Longnecker, M. (2001). *An Introduction to Statistical Methods and Data Analysis*.
732 Pacific Grove: Thomson Learning Inc.

733 Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory, knowledge,
734 models and medium. *Design Studies*, 29(2), 99-120.

735 Pahl, G., Beitz, W., Feldhusen, J., & Grote, K. (2007). *Engineering design: A systematic approach*
736 (3rd ed). Springer.

737 Purcell, A. T., & Gero, J. S. (1996). Design and other types of fixation. *Design Studies*, 17(4),
738 363–383. [https://doi.org/10.1016/S0142-694X\(96\)00023-3](https://doi.org/10.1016/S0142-694X(96)00023-3)

739 Roozenburg, N. F. M., & Cross, N. G. (1991). Models of the design process: Integrating across
740 the disciplines. *Design Studies*, 12(4), 215–220. [https://doi.org/10.1016/0142-694X\(91\)90034-T](https://doi.org/10.1016/0142-694X(91)90034-T)

742 Schaar, R. Y., Rains, J. K., & Jacobson, M. C. (2015). Jump-Starting Biomedical Design Education
743 in the Sophomore Year: A Human Centered Approach. *Open*. Washington: VentureWell.

744 Schön, D. (1983). *The reflective practitioner: How professionals think in action*. Temple Smith.

745 Shealy, T., Valdes-Vasquez, R., Klotz, L., Potvin, G., Godwin, A., Cribbs, J., & Hazari, Z. (2016).
746 Career Outcome Expectations Related to Sustainability among Students Intending to Major
747 in Civil Engineering. *Journal of Professional Issues in Engineering Education and*
748 *Practice*, 142.

749 Sola, E., Hoekstra, R., Fiore, S., & McCauley, P. (2017, July). An Investigation of the State of
750 Creativity and Critical Thinking in Engineering Undergraduates. *Creative Education*,
751 1495-1522.

752 Stein, S. and Hess, R. (2003). Here Comes the Judge—Duties and Responsibilities of Design
753 Professionals When Deciding Disputes *Journal of Professional Issues in Engineering*
754 *Education and Practice*, 129(3): 1.

755 Treffinger, D., Young, G., Shelby, E., & Shepardson, C. (2002). *Assessing creativity: A guide for*
756 *educators*. Sarasota: The National Research Center on the Gifted and Talented.

757 van der Bijl-Brouwer, M., & Dorst, K. (2017). Advancing the strategic impact of human-centered
758 design. *Design Studies*, 53, 1-23.

759 Visser, W. (2009). Design: One, but in different forms. *Design Studies*, 30(3), 187–223.
760 <https://doi.org/10.1016/j.destud.2008.11.004>

761 Wilkinson, S. and Scofield, R. L. (2002). Integrated management curriculum for civil engineers
762 and architects. *Journal of Professional Issues in Engineering Education and Practice*,
763 128(3): 125–130.

764 Yilmaz, S., & Daly, S. R. (2016). Feedback in concept development: Comparing design
765 disciplines. *Design Studies*, 45, 137–158. <https://doi.org/10.1016/j.destud.2015.12.008>

766 Youmans, R. (2011). The effects of physical prototyping and group work on the reduction of
767 design fixation. *Design Studies*, 115-138.

768 Zancul, E. D., Durao, L. F., Lopes, R. D., Nakano, D., Blikstein, P., Majzoub, G., & Dalmon, D.
769 (2017). An Empirical Study on Design-Based vs. Traditional Approaches in Capstone
770 Courses in Engineering Education. *International Journal of Engineering Education*, 1543-
771 1560.

772 Zimring, C., & Craig, D. L. (2001). Defining Design between Domains: An Argument for Design
773 Research A la Carte. In C. Eastman, M. McCracken, & W. Newstetter (Eds.), *Design*
774 *knowing and learning: Cognition in design education* (pp. 125–146). Elsevier.

775

776

777

778

779

780

781

782

783

784

785

Table 1. Design thinking traits based on literature

Design thinking traits (Blizzard <i>et al.</i> , 2015)	Design thinking traits (Brown, 2008)	Design skills and processes
Feedback seeking - they ask questions and look for input from others to make decisions and change directions.	Empathy - imagine the world from multiple perspectives	<ul style="list-style-type: none"> • Think as a part of a team in a social process (Dym <i>et al.</i>, 2015) • Design is socially situated (Schön, 1983) and address aesthetic, ergonomic, psychologic, economic, and technical needs (Akin, 2001)
Integrative Thinking - they can analyze at a detailed and holistic level to develop novel solutions.	Integrative thinking - not only rely on analytical processes but also see aspects of a confounding problem and create novel solutions that go beyond and dramatically improve on existing alternatives	<ul style="list-style-type: none"> • Maintain sight of the big picture by including systems thinking and systems design (Dym <i>et al.</i>, 2015) • Strategies to decompose design problems and recompose design solutions from partial ones (Akin, 2001)
Optimism - they do not back down from challenging problems	Optimism – propose better solution than existing alternatives even with high constraints	<ul style="list-style-type: none"> • Solution-focused strategies (Cross, 2005)
Experimentalism - they ask questions and take new approaches to problem solving	Experimentalism - pose questions and explore constraints in creative ways that proceed in entirely new directions	<ul style="list-style-type: none"> • Tolerate ambiguity by viewing design as an inquiry or as an iterative loop of divergent-convergent thinking and handle uncertainty (Dym <i>et al.</i>, 2015) • Opportunistic iteration (Visser, 2009) • Co-evolution of problem solution / space (Maher & Poon, 1996; Dorst & Cross, 2001)
Collaboration - they work with many different disciplines and often have experiences in more than just one field.	Collaboration – enthusiastic interdisciplinary collaborator	<ul style="list-style-type: none"> • Think as a part of a team in a social process and communicating in several languages of design (Dym <i>et al.</i>, 2015)

792 **Table 2.** Differences between architects and civil engineers' approach to design thinking
 793 in relation to design thinking traits

	Architects	Civil Engineers
Feedback seeking	<ul style="list-style-type: none"> • Socially situated – design to fit in a social context that addresses functional, ergonomic, psychological, cognitive needs (Akin, 2001) 	<ul style="list-style-type: none"> • Either socially situated, respond to technical needs, or ergonomic needs or user cognitive needs (Akin, 2001)
Integrative thinking	<ul style="list-style-type: none"> • Complexity management strategies (recompose of comprehensive design solution from partial ones) (Akin, 2001) • Integrate analytical into the dominant intuitive approach to problem solving (Roozenburg and Cross, 1991) 	<ul style="list-style-type: none"> • Predetermined procedures to handle interactions between parts of solutions (Akin, 2001) • Integrate intuitiveness into the dominant analytical approach to problem solving (Roozenburg and Cross, 1991)
Optimism	<ul style="list-style-type: none"> • Search for alternative solutions (Akin, 2001) 	<ul style="list-style-type: none"> • Design fixation on satisfying solution (Akin, 2001)
Experientialism	<ul style="list-style-type: none"> • Dominance of creative inventive strategies (Akin, 2001) • Non-standard problem individual composition strategies (Akin, 2001) 	<ul style="list-style-type: none"> • Dominance of routine design strategies (Akin, 2001) • Standardize schemata to decompose problems (Akin, 2001)
Collaboration	<ul style="list-style-type: none"> • Easy collaboration with end users through design representations (Zimring & Graig, 2001) 	<ul style="list-style-type: none"> • Complex collaboration with end users (Zimring and Graig (2001) cited in Visser (2009))

794

795

796

797

798

799

800

801

802

803

Table 3. Design thinking instrument (Blizzard, et al., 2015)

Design thinking traits	Survey questions
Feedback seeking- they ask questions and look for input from others to make decisions and change directions.	<ul style="list-style-type: none"> • I seek input from those with a different perspective from me. • I seek feedback and suggestions for personal improvement.
Integrative thinking- they can analyze at a detailed and holistic level to develop novel solutions.	<ul style="list-style-type: none"> • I analyze projects broadly to find a solution that will have the greatest impact. • I identify relationships between topics from different courses.
Optimism- they do not back down from challenging problems	<ul style="list-style-type: none"> • I can personally contribute to a sustainable future. • Nothing I can do will make things better in other places on the planet.
Experimentalism- they ask questions and take new approaches to problem solving.	<ul style="list-style-type: none"> • When problem solving, I focus on the relationships between issues.
Collaboration- they work with many different disciplines and often have experiences in more than just one field.	<ul style="list-style-type: none"> • I hope to gain general knowledge across multiple fields. • I often learn from my classmates.

Table 4. Confirmatory factor analysis fit indices

Design Thinking Scale			
	CFI	TLI	RMSEA
Architecture (n=335)	0.974	0.948	0.05
Civil Engineering (n=356)	0.970	0.941	0.06

Table 5. Sample sizes and distribution statistics

Design Discipline	Data Collected	Distribution Statistics of Design Thinking Responses		
		<i>n</i>	skewness	kurtosis
Civil Engineers		356	-0.28	0.03
Architects		335	-0.92	1.40

860

Table 6. Demographics by Percent of Sample Size

Design Discipline	Average In- Major Grade (%)			Sex (%)		
	A	B	C	M	F	N/A*
Civil Engineering	29.8	46.9	3.9	73.0	21.3	5.6
Architecture	50.7	35.8	2.1	39.1	46.9	14.0

861 *N/A = participant chose not to answer

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

Table 7. Summary of Significant Model Effects for Each Design Thinking Trait

Treatment Factor	Optimism	Feedback Seeking	Collaboration	Integrative Thinking	Experimentalism
A	***	***	***	***	***
B					
A x B				**	
C					
A x C	*		*		
B x C	**		*	**	
A x B x C		*	*	***	*

883

Treatment Factor Key: Factor A= Discipline, Factor B= Sex, Factor C= In-Major Average Grade

884

Significant Results Key: * $p<0.05$, ** $p<0.01$, *** $p<0.001$, **** $p<0.0001$

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

Table 8. Trait comparisons between architecture and engineering students

Design Thinking Traits	Architecture (<i>M</i>)	Engineering (<i>M</i>)	<i>p</i> -value	Cohen's <i>d</i>
Design Thinking	3.31	2.59	<0.0001	1.6
Feedback Seeking	3.46	1.66	<0.0001	2.5
Integrative Thinking	3.34	2.89	<0.0001	0.7
Optimism	3.21	2.93	0.0003	0.4
Experimentalism	3.15	2.66	<0.0001	0.6
Collaboration	3.33	2.91	<0.0001	0.6