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Abstract—We report results of an experiment in applying
deep Q-learning for dynamic spectrum sharing (DSS) in the
Alleys of Austin scenario from the DARPA Spectrum Collabo-
ration Challenge. This scenario mimics mobile operations in an
urban environment by up to five squads (teams) of soldiers. Each
team operates its own wireless network. We consider teamwise–
distributed DSS, where there is no central agent to coordinate
spectrum usage across teams, but spectrum usage within each
team is coordinated by a single member of that team. The spatial
distributions of the soldiers creates opportunities for spatial
reuse by certain subsets of the teams, and our experiment is
set up to evaluate whether the deep Q-learning algorithm can
discover and take advantage of these opportunities. The results
show that deep Q-learning is able to take advantage of spatial
reuse and that doing so results in better performance than a
fair-share, disjoint spectrum allocation among the teams.

I. INTRODUCTION

Dynamic spectrum sharing (DSS) offers the potential to
improve performance over conventional spectrum allocation
schemes because it can adapt the spectrum allocation to time-
varying traffic loads and locations of the communicators in
a given area. Although there have been many papers that
discuss the potential application of machine learning (ML)
to cognitive radio systems (see, for example, [1]–[3]), there
are few results that report results from experiments using
full radio stack implementations with realistic traffic. In this
paper, we present results from such an experiment carried
out using the Colosseum wireless network emulator. We
train a deep-Q network agent to determine the bandwidth a
team should use in a five-team wireless networking scenario,
where the teams are moving through an emulated mobile
environment and experiencing changing traffic loads across
three different stages of the scenario.

The experiment in this paper focuses on whether the ML
agents that determine the spectrum sharing policy for each
team can take advantage of spatial reuse opportunities that
exist because of the spatial distribution of squads in the
Alleys of Austin (AoA) scenario, which is described more
fully in Section II-B. To focus on evaluating the potential for
an ML agent to improve performance, we consider a scenario
in which each team is using identical physical and link layers.
Since each team has the same mix of traffic in AoA, then in
the absence of interference, each team needs approximately
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the same amount of spectrum to deliver their flows. The pri-
mary purpose of DSS agents in the experiment is to determine
which portions of the spectrum that each team should use,
including taking advantage of spatial reuse opportunities in
which two teams that are sufficiently separated in space can
reuse the same frequency bands.

As reported in our previous work [4], the state space
for applying DSS in this scenario is huge compared to
that considered in many previous ML works. In [4], we
applied domain-specific knowledge to the problem of feature
selection and quantization before training a SARSA-based
reinforcement learning agent. By contrast, in this paper, we
use deep-Q learning to discover effective strategies in the
presence of this huge state space. However, we have to limit
the deep-Q agent to choosing only the number of channels
that a team will use in the next epoch. The particular channels
that are used are allocated using an algorithm that tries to
avoid other teams’ signals, or use spatial reuse if available;
more details are in Section III-C. Thus, the deep-Q agent can
cause spatial reuse to occur (when the total of the channels
allocated by the agents at all the teams exceeds the available
spectrum), but it cannot determine which teams or which
radios reuse a particular frequency band.

We compare the performance to a system in which each
team is allocated a fair share of the total spectrum, equal
to the available bandwidth divided by the number of teams.
The actual frequencies that are used are still determined
using the same distributed process as for the ML agent.
We compare the performance for several different configura-
tions of the five teams, where different configurations offer
different amounts of interference (and hence spatial reuse
opportunities) among the teams. We begin by providing a
more detailed discussion of the experimental setup.

II. EXPERIMENTAL SETUP OVERVIEW

In this section, we give a brief overview of the RF
emulation capabilities of Colosseum and the DSS scenario
under which the experiment was conducted. We note that
the experimental setup described here is a modified version
of that we employed in [4]. The current setup provides a
more uniform and controlled environment, using which we
can better demonstrate and evaluate the efficacy of employing
the proposed machine-learning DSS algorithm.

A. Colosseum

Colosseum is a massive RF emulator originally devel-
oped by the Defense Advanced Research Projects Agency



(DARPA) to support the DARPA Spectrum Collaboration
Challenge (SC2). After the completion of the SC2, Colos-
seum was moved to Northeastern University. It is currently
operates under the the National Science Foundation (NSF)
Platforms for Advanced Wireless Research (PAWR) program
as a national resource for the wireless research community.

The core of Colosseum is a Field Programmable Gate
Array (FPGA) matrix, together with supporting RF frontends,
that can emulate 256⇥ 256 80 MHz RF channel connection
over the frequency range from 10 to 6000 MHz. In addition,
there are 128 standard radio nodes (SRNs) connected to the
RF emulator. Each SRN consists of a USRP X310 software-
defined radio (SDR) with 2 transmit and 2 receive chains
and a compute server. Most components in the SDR and the
compute server are fully user programmable.

In the experiment described in the paper, we employ 50
SRNs, and hence 100 ⇥ 100 RF connections in the channel
emulator, over the frequency band from 990 to 1010 MHz.

B. DSS Scenario

The DSS scenario emulated by Colosseum for the experi-
ments in this paper is a member (scenario 10015) of the class
of “Alleys of Austin” (AoA) scenarios developed by DARPA
for the SC2. This scenario is the only AoA scenario currently
supported in Colosseum. Generally, as described by DARPA,
the AoA scenarios model a situation in which:
“A platoon from the Texas Army National Guard at Camp

Mabry is practicing urban maneuvers and communications

in Austin. The platoon is split into five squads consisting of

9 squad members and one UAV (unmanned aerial vehicle).

The squads move through the Heritage neighborhood ...”

For the AoA 10015 scenario1 considered in this paper, the
allowed channel bandwidth is 20 MHz2, and the scenario
contains three stages, each of which is 120 s long. The
DSS environment in the AoA scenario consists of five teams
(networks) of 10 radios each communicating in the allowed
20 MHz frequency band. We note that the AoA scenario can
support a maximum of 5 teams of 10 radios each at five
different sets of locations. We refer to one of the five sets
of team locations as position i, and to the team occupying
position i as Team i, for i = 0, 1, 2, 3, 4. For example, Fig. 1
shows the trajectories of the five teams over the whole course
of the AoA scenario in an experiment run. As previously
noted, the inter-team interference experienced by each team
varies with the configuration. Each team may determine to
use any portion of the allowed 20 MHz band on its own
accord with or without regard to spectrum usage decisions of
other teams. There is no pre-determined allocation of 20 MHz
band among the teams, and all spectrum decisions are made
separately by each team: there is no centralized agent to
coordinate the sharing of the spectrum.

Each team is to deliver a number of offered traffic flows
from prescribed sources to destination radios within the
team’s network. The offered traffic loads increase at each

1Hereafter, we will simply refer to this scenario as the AoA scenario.
2The operating frequency band is from 990 to 1010 MHz.

Fig. 1. Trajectories of the five teams of radios in the AoA scenario. The
five teams are Teams 0, 1, 2, 3, and 4 occupying Positions 0, 1, 2, 3, and
4, respectively. The nine squad members’ radios are close to each other and
appear as a cluster of dots along straight lines. The circulating trajectories
shows the positions of the UAVs in the teams over time.

stage change. In the first stage, the traffic is primarily Voice
over IP (VoIP) and Blue Force Tracking (BFT) data, which
require low throughput. Stages 2 and 3 add file and video
flows, which require much higher throughput. The traffic
flows offered to each team in the three stages of the AoA
scenario are summarized in Table I.

Each team receives a score based on the traffic flows that
it is able to successfully deliver, as well as the traffic flows
delivered by the other teams’ networks. For each traffic flow,
a quality-of-service (QoS) mandate is provided that details
the QoS requirements that must be achieved in order to score
points for that flow. Two types of flows are offered in the
AoA scenario. For a flow with a constant arrival rate, the
QoS mandate specifies minimum throughput and maximum
latency requirements. For a file burst, the QoS requirement
is that 90% of the packets in the file have to be delivered
before a specified file transfer deadline. Each flow has an
associated number of points that can be achieved in each
second in which the QoS is achieved, along with a hold time,
which is a number of seconds for which the mandated QoS
must be sustained before that flow scores any points. The
QoS requirements and the point rewards of different types of
flows in the AoA scenario are summarized in Table I.

In addition, each team has a mandate threshold, and the
actual score that a team achieves in any second is limited to
the lowest score among the teams if any team is below its
mandate threshold. In our experiment, the mandate threshold
is set to be the maximum score that can be achieved at
any time. This choice of the mandate threshold ensures a
maximum degree of collaboration among the teams in sharing
the available 20 MHz spectrum, since each team’s actual
score is the minimum among the scores achieved by the
five teams. Finally, it is worth noting that the traffic load
and the latency QoS requirement are that all five teams
may simultaneously deliver enough of their respective offered
flows to achieve a high score only if proper spectrum sharing
decisions are made such that spatial reuse is achieved among
the teams. This is particularly true in stages 2 and 3 of the
AoA scenario.



TABLE I
SUMMARY OF TRAFFIC FLOWS, WITH THEIR QOS REQUIREMENTS AND POINT REWARDS, OFFERED TO EACH TEAM IN THREE STAGES.

Flow type # of flows Min. throughput (kbps) Max. latency (s) Hold time (s) Point per flow
[File size (kb)] [Transfer deadline (s)]

Stage 1 VoIP 10 36.50 0.37 10 4
BFT 1 0.26 1.0 10 1

Stage 2

VoIP 10 36.50 0.37 10 4
BFT 10 0.26 1.0 10 1

Video 1 918.69 3.0 10 10
Image 1 5120 10 .0 10 2
UAV 1 11.23 0.12 10 4

Stage 3

VoIP 10 36.50 0.37 10 4
BFT 11 0.26 1.0 10 1

Video 7 401.80 3.0 10 5
Video 1 918.69 3.0 10 10
Image 8 5120 10 .0 10 2
UAV 1 11.23 0.12 10 4
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Fig. 2. Time-frequency pocket structure for channel access.

III. RADIO SYSTEM OVERVIEW

Each team in the experiments employed the radio system
(physical and link layers) based on our previous design used
for the SC2 competition [4]. We provide an overview of the
design of the channelization method and spectrum decision
process used in our radio system below.

A. Channelization

Channel access by the radios in each team follows a time-
frequency structure as shown in Fig. 2. The available 20 MHz
spectrum in the AoA scenario is channelized into 20 non-
overlapping channels of 1 MHz in bandwidth. A subset of
non-overlapping channels is dynamically selected to support
the data flows admitted by the team.

The channels are subdivided in time into a repeating
schedule of frames, each of which consists of a fixed number
of time slots, as illustrated in Fig. 2. In the experiments
considered, there are ten 56 ms time slots per frame. A
given time-frequency slot is called a pocket. Most pockets
are used for data transmission from a single source to one
or more destinations in the team’s network. In addition, a
randomized subset of pockets, referred to as hot pockets,
is used to broadcast network management information and
acknowledgments (ACKs). Each hot pocket is divided into
minislots, and each radio sends its network management
information and ACKs in an assigned minislot.

Transmission in each pocket is packetized into physical-
layer (PHY) packets of a fixed duration. The PHY signaling
is based on single-carrier frequency-domain (SC/FD) equal-
ization with adaptive modulation and coding that is chosen
based on channel conditions and flow QoS requirements.
Each radio is capable of simultaneously transmitting and
receiving on multiple channels.

B. Network and channel information

Each radio is equipped with a spectrum sensor that can
measure the power spectral density (PSD) over the allowed
frequency band. The PSD measurements are used to estimate
the occupancy percentage of each channel.

Under the AoA scenario, each team does not have any
information about the radio implementations and strategies
of the other teams, except for information it can gather using
its spectrum sensor during the experiment runs. However, the
AoA scenario does provide a collaboration network

3 over
which teams of networks may exchange a limited amount
of relevant spectrum sharing information as described below.
Each team has one radio that acts as a gateway (GW), and
the GW can communicate a limited set of collaboration
information to other teams over the collaboration network.
The information carried over the collaboration network must
adhere to a specified Collaborative Intelligent Radio Network
Interaction Language (CIL) and includes:

• locations of the radios, specified as global positioning
system (GPS) coordinates,

• frequencies used/are using/plan to use by the team, and
• estimate of a team’s score and the mandate threshold.
Spectrum usage and GPS information of other teams’

networks obtained from the collaboration network are fused
with the PSD measurements to form an interference map
at the GW. Through the use of a simple path-loss model,
the GW then calculates the interference power seen at each
channel of each radio and provides signal-to-interference-
and-noise ratio (SINR) estimates for the current and future
time. All the information collected by the spectrum sensor
and through the collaboration network is fed as input to the
DSS decision agent described in the next section.

C. DSS Decision Agent

The DSS decision agent is responsible for determining
what channels the team’s radio network will use and which
flows can be supported using those channels. Based on the

3The term collaboration network was used by DARPA in the SC2. This
spectrum-sharing information exchange network may be implemented in
practice using a backbone network, a satellite link, or a cellular network
operating in a different frequency band.



channelization method described in Section III-A, that is
equivalent to determining which flows are transmitted and in
which pockets they will be transmitted. The output produced
by the DSS agent is called the pocket schedule, which
is a list of pockets (time-frequency slots) and the source
and destination(s) that will communicate in that slot. Each
team’s pocket schedule is determined solely based on its
own DSS agent, incorporating the scenario information that
it measures itself and that it obtains from the other teams via
the collaboration network as described in Section III-B.

The goal of the DSS agent is to maximize a team’s score
over the AoA scenario. However, it is impossible to apply any
machine learning algorithm to directly solve this optimization
problem in order to obtain the optimal pocket schedule. Take
the choices of parameters in the experiment for example. We
have 10 time slots per frame and 20 possible channels to
use, and hence 200 pockets to assign all the flows in the
AoA scenario. From Table I, there are 38 flows in stage 3
of the AoA scenario. Even if we limit the assignment to at
most 1 flow per pocket, the action space alone contains 39200
possible pocket schedules. That is clearly too large for any
practical machine learning implementation. Because of the
complexity of this optimization problem, we decompose the
problem into the following three steps:

Channel selection: The DSS agent chooses the set of
channels C to use by radios in the team by first identifying
the number of channels, |C|, to use and then choosing the
particular set of |C| channels. The DSS agent employs a deep
Q-learning algorithm to determine |C| in the first step, taking
in the information described in Section III-B as input to the
algorithm. The details of the deep Q-learning algorithm will
be discussed in Section IV.

After the value of |C| is determined by the agent, the
particular set of channels to use is then chosen by iteratively
selecting channels from the following sets in order of priority
(all channels from the first listed set are added to C before
going to the next set, etc.).

1) Uncontested channels: channels this team was using in
the previous ephoch that no other team is trying to use,

2) Unoccupied channels: channels that no team is cur-
rently using,

3) Spatial-reuse channels used in previous epoch: chan-
nels that are in use by one other peer network (at a
sufficient separation to support spatial reused4) that this
team was using in the previous epoch,

4) Spatial-reuse channels: channels that are in use by a
peer network that are sufficiently separated to allow
spatial reuse,

5) Channels used strictly by higher-scoring peers: we
target the channels of higher-scoring peers to gain
additional capacity for our team, while also causing
interference to teams that are outperforming us,

6) Channels used by higher-scoring peers: these channels
may also be used by lower-scoring peers, so there

4For these experiments, a distance of approximately 290 m or more was
found to effectively support spatial reuse.
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Fig. 3. Convolutional neural network (CNN) with 3 hidden layers used in
the deep Q-learning algorithm.

may be some further degradation to their performance,
which may hurt us by preventing that team from
reaching the scoring threshold, and

7) Channels used only by lower-scoring peers: these are
a last resort.

Within each set, channels are prioritized based on distance
and then occupancy (according to the spectrum sensor).

Admission control: Given the target set of channels C,
admission control is performed by estimating the number of
pockets or fractions of a pocket needed to support each flow,
taking into account the latency and throughput requirements
of the flow, as well as the estimated bits/pocket that can
be delivered for the source-destination for each flow. The
cardinality of C determines the maximum number of pockets
available, and an iterative process is used to choose the set
of flows that maximizes the number of points that can be
scored given |C| and the observed capacities for each source-
destination pair.

Pocket schedule assignment: After the set of flows to
be supported is determined, a linear program is used to
allocate the pockets needed for sources to satisfy the latency
requirements of their latency-bound flows to a set of virtual
channels, which will be mapped to physical channels in a
later step. The linear program determines the number of
pockets that each source uses on each channel but does
not determine a particular set of pockets that satisfies the
specified latency requirements and restrictions on the number
of simultaneous transmissions. Thus, an iterative algorithm is
used to search for a specific pocket assignment that can be
used to satisfy the latency requirements for all sources. The
remaining pockets are assigned to satisfy the total throughput
requirements from each source, subject to constraints on the
number of possible simultaneous transmissions from a radio
in a slot. Finally, the virtual channels are mapped to physical
channels based on maximizing the worst-case SINR of any of
the source-destination pairs assigned to the virtual channel.

IV. DEEP Q-LEARNING FOR CHANNEL SIZE SELECTION

The DSS agent of each team, operating at the GW, employs
a deep Q-learning algorithm to determine the number of
channels, |C|, that the team’s network should use. The deep
Q-learning algorithm runs on a convolutional neural network
(CNN) with 3 hidden layers (and 4 convolution kernels) as
shown in Fig. 3. The action space A consists of the possible
number of channels that the team may select, i.e., A =
{0, 1, . . . , 20}. The input to the CNN is a 28-dimensional



feature vector s = (s0, s1, . . . , s21) 2 [0, 1]28 that is obtained
from the set of network and channel information described
in Section III-B as follows:

s0 = (our current score)/rmax

s1 = (our current mandate threshold)/rmax

s2 = (our current load)/rmax

s3 = (our current bandwidth)/bmax

where “our” means the team of the DSS agent, rmax =
maximum possible score in AoA and bmax = 20 MHz is the
bandwidth of the allowed spectrum, and for i = 1, 2, 3, 4,

s4+6(i�1) = (peer i’s current score)/rmax

s5+6(i�1) = (peer i’s current mandate threshold)/rmax

s6+6(i�1) = (peer i’s current load)/rmax

s7+6(i�1) = (peer i’s current bandwidth)/bmax

s8+6(i�1) = (overlap bandwidth b/w peer i & us)/bmax

s9+6(i�1) = (distance b/w centroids of our and peer i’s
network)/dmax

where “peer” means another team and dmax = 600 m is the
maximum possible distance between any two radios from
any two teams in the AoA scenario. All bandwidths are
measured in MHz and all distances are measured in meters.
The maximum possible score that a team can achieve in
the current stage is interpreted as the current load offered
to the team in above. The current score of a team is the
individual score estimated by the team. Note that the current
score may not be the actual score awarded to the team
(see Section II-B). The feature vector s and the action a are
updated every second. Also note that the action a determined
by the optimal policy, normalized by bmax at the current time
is the feature s3 for the next second. With this model choice,
we implicitly assume that the evolution of the DSS system
as seen by each team can be approximately modeled by a
Markov decision process with s and a as the input state and
action, respectively.

The CNN takes the feature vector s as input to approximate
the “Q-value” Q(s, a) for each action a 2 A. The kernel
sizes of the first, second, third, and fourth convolution kernels
are chosen to be 12, 5, 5, and 5, respectively. The depths
of the first, second, and third hidden layers are set to 448,
20, and 320, respectively. The CNN is trained offline with
feature vectors and actions collected from experiment runs
(jobs) in Colosseum. Let s[n], a[n], and r[n] be the feature
vector, action, and reward at the nth second obtained from a
Colosseum job. In order to account for the QoS requirement
of 10 s hold time, we define the reward r[n] to be the moving
average of the actual score awarded to the team over a 10 s
forward window staring from time n. The loss function used
in the training process is
X

n2T

✓
r[n+ 1] + �max

a02A
Q(s[n+ 1], a0)�Q(s[n], a[n])

◆2

where T is a consecutive block of time (seconds) and �
is the discount factor. We set |T | = 10 and � = 0.95 in

TABLE II
SUMMARY OF TEAM POSITIONS AND CUMULATIVE SCORES IN ALL

EXPERIMENTAL JOBS.

Job # DSS strategy Team Positions Cumulative score
1 Fair sharing 0, 1, 2, 3, 4 11284
2 Fair sharing 0, 1, 2, 3, 4 11428
3 Fair sharing 0, 1, 2, 3, 4 10922
4 Fair sharing 0, 1, 2, 3, 4 11594
5 Fair sharing 0, 1, 2, 3, 4 11335

Fair sharing Average score = 11312.6
6 Deep Q-learning 0, 1, 2, 3, 4 16833
7 Deep Q-learning 0, 1, 2, 3 ,4 17046
8 Deep Q-learning 0, 1, 2, 3, 4 17315
9 Deep Q-learning 0, 1, 2, 3, 4 15963

10 Deep Q-learning 0, 1, 2, 3, 4 16599
Deep Q-learning Average score = 16751.2

11 Fair sharing 2 26058

the experiment. Epsilon-greedy policies are employed online
in experiment runs to collect training data. However, the
optimal policy argmaxa2A Q(s, a) resulted from training is
employed to obtain the performance results presented in the
next section. The optimal policy is generated every second.
However, the DSS agency only generates a new pocket
schedule every 11 seconds in order to make sure that the
pocket schedule does not change too quickly to upset the hold
time QoS requirement and to limit the frequency of sending
of control information about the updated pocket schedule
over the team’s network. The policy at the time of the pocket
schedule update is taken to select |C|.

V. EXPERIMENTAL RESULTS

In this section, we present some experimental results to
evaluate the performance of the DSS solutions produced by
the DSS agent employing the deep Q-learning algorithm as
described in Sections III-C and IV. .

For comparison, we also consider a fair-sharing solution
which assigns |C| = 4 channels to each team throughout the
whole AoA scenario in the first part of the channel selection
step in lieu of using the deep-Q algorithm. The rest of the
steps in Section III-C are then implemented by the fair-
sharing agent to obtain the pocket schedule. We ran five jobs
with 5 teams using their respective fair-sharing DSS agents
to share the allowed 20 MHz spectrum in the AoA scenario.
The cumulative actual scores achieved5 over the whole AoA
scenario are summarized in Table II (Jobs 1–5). The average
score of the five fair-sharing jobs is 11312.6. The spectrum
sharing plan distributively determined by the five teams in
Job 4 is shown in Fig. 4. We can see from the figure that
each team’s DSS agent was able to grab 4 channels using
the approach described in Section III-C based on the DSS
information shared via the collaboration network.

To exclude the possibility that any limited performance in
score is caused by inefficiency of our radio design, we also
ran a job with a single team in postion 2. In this case, the

5Since the mandate threshold is chosen to the maximum possible score,
the actual score for each teams is the minimum of individual scores achieved
among the five teams at any time.



Fig. 4. Fair-share spectrum sharing plan distributively generated by the
teams in Job 4.

DSS agent fixed |C| = 20 channels (i.e., the team may use
the whole 20 MHz band) throughout the whole AoA scenario
in the first part of the channel selection step in lieu of using
the deep-Q algorithm. The result is shown in the last row
(Job 11) of Table II. The score achieved is 26058, which
is very close to the maximum possible score (26760) that
can be achieved in the AoA scenario. The small difference is
due to dropping of flows during the transition from one stage
to the next. As a result, we can conclude that the decrease
in score performance in Jobs 1–5 is due to the reduction in
bandwidth that each team can use.

We ran eight jobs employing epsilon-greedy policies to
generate data for training the deep-Q CNN described in Sec-
tion IV. The optimal policy of the CNN model obtained from
the training process was then employed to run five additional
jobs. The cumulative scores for these five jobs using the deep-
Q CNN to select |C| are summarized in Jobs 6-10 in Table II.
We see from the table that the DSS agents using the deep-
Q channel selection algorithm outperformed the fair-sharing
agents. The average cumulative score over Jobs 6–10 using
the deep-Q agent is 16751.2, which is 48% higher than the
average score obtained using the fair-sharing agent.

The deep-Q agent achieves the scoring advantage by taking
advantage of spatial reuse in all stages of the AoA scenario.
This is best demonstrated by examining the spectrum sharing
plan obtained in Job 6 as shown in Fig. 5. We see from
the figure that the deep-Q agent of each team decided to
use between 4 to 6 channels throughout the three stages.
Since each agent selected to use 5 for the majority of
time, the teams must share overlapping channels. The DSS
agents were able to make the right spatial reuse decisions
in a distributed manner. To see that, consider the channel
plan in stage 3 in which the channel assignments of the
5 teams are stable, except in a few transient periods. For
Teams 1, 2, and 3, their respective DSS agents decided on
using three non-overlapping subsets of 5 channels because the
two teams’ networks were close in locations that no spatial
reuse advantage could be exploited. On the other hand, the
DSS agents of Teams 0 and 4 converged on using the same

Fig. 5. Deep Q-network spectrum sharing plan distributively generated by
the teams in Job 6.

subset of 5 channels because the two teams’ networks were
sufficiently far apart such that full spatial reuse advantage
could be exploited between them.

Finally, we observe that there are transient periods in the
channel sharing plan as shown in Fig. 5. These transients in
channel assignments caused the traffic flows assigned to use
these channels to fail their hold-time QoS requirements, and
hence resulted in the lower score. Nevertheless, we should
point out that these channel assignment transients are not
caused by the deep Q-learning channel selection algorithm
described in Section IV, but rather by the distributed and
asynchronous operation of the DSS agents of different teams.

VI. CONCLUSION

We present results from Colosseum experiments that
demonstrate the efficacy of a deep-Q network for dynamic
spectrum sharing. In particular, the results show that the deep-
Q agent is able to identify and take advantage of spatial reuse
opportunities in the Alleys of Austin scenario, achieving
an approximate 48% improvement in traffic delivery (based
on the SC2 QoS-based scoring system). The use of deep
reinforcement learning for this problem is still limited by
the ability to both generate sufficient training data, as well
as the time required for training. Future work will consider
the impact of diverse traffic flows to the agents, as well as
agents that use heterogeneous strategies and/or physical and
link layers.
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