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Abstract— We report the development of novel fault detection
and isolation (FDI) methods for model-based fault detection
(MB-FD) and quotient-space fault isolation (QS-FI). This FDI
approach performs MB-FD and QS-FI of single or multiple con-
current faults in plants and actuators simultaneously, without
a priori knowledge of fault form, type, or dynamics. To detect
faults, MB-FD characterizes deviation from nominal behavior
using the plant velocity and plant and actuator parameters
estimated by nullspace-based adaptive identification. To isolate
(i.e. identify) faults, the QS-FI algorithm compares the esti-
mated parameters to a nominal parameter class in progressively
decreasing-dimensional quotient spaces of the parameter space.
A preliminary simulation study of these proposed FDI methods
applied to a three degree-of-freedom uninhabited underwater
vehicle plant model shows their ability to detect as well as isolate
faults for the cases of both single and multiple simultaneous
faults and suggests the generalizability of the MB-FD and QS-FI
approaches to any well-defined second-order plant and actuator
model whose parameters enter linearly: a broad class of systems
which includes aerial vehicles, marine vehicles, spacecraft, and
robot arms.

I. INTRODUCTION

Robots and autonomous vehicles hold incredible poten-
tial across all application areas for increasingly complex,
long-endurance missions. In ocean science for example, the
promise of robust and reliable robotic vehicles to advance
human goals, reduce human danger, and expand human
capabilities can hardly be overstated. The National Academy
of Sciences (NAS) Ocean Studies Board’s (OSB) Committee
on an Ocean Infrastructure Strategy for U.S. Ocean Research
in 2030 recently articulated the need for “extensive fleets
of underwater gliders and autonomous underwater vehicles
(AUVs) capable of operating in both expeditionary and long-
duration modes... [and] AUVs with larger payloads, higher
endurance, and ability to work in rough conditions (e.g.
high currents, sea states, ice coverage) and at all expected
working temperatures.” [1]. Another study by the NAS OSB
concluded “Unmanned vehicles (UVs)... are important to
almost all decadal science priorities, demonstrating a broad
utility across many scientific disciplines... UVs will continue
to play a major role in providing detailed observations and
enabling precise sampling, manipulative experiments, and
installation of scientific equipment on the seafloor” [2].

The potential utility of robotic platforms, however, is
vitiated by their vulnerability to unexpected faults. From
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changes in vehicle shape, mass, or buoyancy, to actuator
failure, to external disturbance, faults are difficult to de-
tect, isolate, and – when possible – compensate for. While
some subsystems directly report fault status (e.g. a vehi-
cle power distribution system continuously monitoring for
ground-faults in onboard electric instruments), many plant
and actuator faults can only be inferred by observing the
effect of control input on the dynamic response of a vehicle.
For example, no sensors onboard an uninhabited underwater
vehicle (UUV) are able to detect directly an unexpected
change in vehicle mass or buoyancy. Consequences range
from aborted or failed missions to total loss of vehicle
and collateral damage. The success of future robot systems,
especially as application spaces expand to less controlled and
predictable environments, depends highly on effective fault
detection and isolation (FDI) and fault-tolerant control.

This paper reports a novel model-based fault detection
(MB-FD) method and a novel quotient-space fault isola-
tion (QS-FI) algorithm and evaluates their performance in
numerical simulations. The MB-FD methods utilizes recent
advancements in adaptive identification (AID) of dynamical
model parameters, namely nullspace-based adaptive iden-
tification (NS-AID) [3]. To the best of our knowledge,
this is the first application of NS-AID to perform FDI.
Without needing to make any assumptions about potential
fault dynamics, this approach detects fault conditions via
any change in the underlying model parameters that causes
a deviation from nominal vehicle behavior. We also report
a novel QS-FI algorithm that determines which parameters
are responsible for the fault by exploiting the linearity of
the parameters in the system dynamics. A simulation study
using a three-degree-of-freedom (3-DOF) UUV plant model
shows the ability of this FDI approach to detect as well
as isolate faults for the cases of both single and multiple
simultaneous faults and suggests its generalizability to the
broad class of second-order dynamical systems whose plant
and actuator parameters enter linearly, e.g. aerial vehicles,
marine vehicles, spacecraft, and robot arms.

II. RELATED WORK

In 2015, an exhaustive survey of the field by Gao, Cecati,
and Ding identified five broad categories of FDI: model-
based, signal-based, knowledge-based, active, and hybrid
approaches [4], [5]. Model-based methods are applicable to
dynamical systems whose continuous-time or discrete-time
dynamics are known a priori. Signal-based methods apply
statistical signature tests and/or spectrum analysis to plant
input and output signals to distinguish between normal and
fault conditions, e.g. [6]. Knowledge-based methods, in lieu
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of plant models or signal patterns, rely on historical data
sets from past plant operations, e.g. [7]. Machine learning
approaches such as [8], [9] fall into this category. Active
methods seek to discern normal or fault conditions from a
priori known responses in the plant output to additive probe
signals applied on the plant input, e.g. [10]. Hybrid methods
involve some combination of the above approaches, e.g. [11].

Of the 227 papers cited in the 2015 survey papers by Gao,
Cecati, and Ding, less than 10% address FDI for uninhabited
or autonomous systems [4], [5], and effective fault detection
and fault-tolerant control remain open problems in robotics,
posing significant obstacles to reliable deployments. A study
by the developers of the Tethys long-range UUV of 7,000
hours of mission time reported 199 faults that required the
vehicle to surface unexpectedly [12]. Of these 199 faults,
119 arose from servo/thruster faults. Studies of the ABE
AUV [13], [14] and the Sentry AUV [15] by the NSF-
supported National Deep Submergence Facility of the ABE’s
and Sentry’s first 380 scientific dive missions revealed that
68 of the 380 missions terminated prematurely due to faults.
Of these 68 failed missions, 43 failures (or 63%) were due
to plant or actuator faults of the type addressed herein [16].
Other AUV groups report similar fault statistics, e.g. [17],
[18], [19]. Clearly, the need for more effective fault detection
and isolation – leading to more effective fault mitigation and
fault-tolerant control – remains a key obstacle to the success
of robotics applications in the real world.

Among model-based FDI approaches, residual-based solu-
tions have been widely explored. Regarding faults as inputs
acting on the system, such approaches seek to generate a set
of residual outputs that isolate the faults, where each residual
filters for one fault independently of all other inputs. The
selective sensitivity of each residual then enables detection
and isolation of multiple concurrent faults. Notably, Mas-
soumnia derived necessary and sufficient conditions for the
solvability of the residual generation problem, formulated as
the construction of a Luenberger observer [20], and De Persis
and Isidori generalized these results to nonlinear systems
[21]. Another class of methods applies parameter identifi-
cation techniques such as least squares [22] and adaptive
identification [23] to estimate the parameters of a model of
the fault included in the system dynamics; these estimates
then serve as the residual signals.

All of the above approaches fundamentally assume knowl-
edge of fault dynamics, explicitly modeling every potential
fault as an input to the system, e.g. as additive torques [22].
In contrast, we propose an approach that performs parameter
identification not on an assumed fault model, but directly on
the model of the plant and actuator. By defining faults not
as separate inputs to the system, but as any change in the
underlying plant and actuator parameters that govern system
behavior, our approach enables fault detection and insight
into the fault source without specifying its form a priori.
Moreover, adaptive online estimation of the true plant and
actuator parameters to capture the behavior of the system
accurately even under fault conditions then provides a natural
basis for fault-tolerant control.

Model-based approaches to a wide range of problem in

robotics have motivated extensive work in nonlinear system
identification, since they require exact knowledge of the
plant’s kinematic and dynamic parameters. While kinematic
parameters are often easily measurable and generally do not
vary with time, plant dynamic parameters are often subject
to change, either from external disturbance (e.g. bio-fouling
of a underwater vehicle hull increasing its drag), vehicle
reconfiguration (e.g. the mass and inertial distribution of
a vehicle varying with different payloads), or even routine
operation (e.g. decreasing mass from fuel consumption).
These dynamic parameters must be identified through em-
pirical experimentation. Most previously reported identifica-
tion methods for parameters entering linearly into the plant
equations of motion employ least squares [24], [25], [26],
[27], [28], Kalman filter [29], [30], machine learning [31],
[32], [33], [34], or adaptive [35], [36] methods.

In [3], Paine reported a novel nullspace-based adaptive
identifier (NS-AID) for simultaneous estimation of both plant
and actuator parameters, discussed further in Sections IV-
A and V-B. Unlike many previous parameter identification
approaches, the NS-AID does not require a priori knowledge
of the actuator parameters, requires access only to position
and velocity signals and does not require instrumentation of
acceleration, converges quickly enough for online estimation,
and has been applied to both fully actuated and underactuated
systems [3]. In the present study, we apply a NS-AID to
the FDI problem, systematically characterizing the behavior
of the system through parameter estimation. To the best of
our knowledge, this paper reports the first application of an
adaptive identifier for fault detection via simultaneous plant
and actuator model parameter estimation, as well as a novel
algorithm for fault isolation via quotient space-based analysis
of the model parameter vector.

III. PROBLEM STATEMENT

We consider the general class of n degree-of-freedom
second-order nonlinear systems of the form

Ga(ξ)θa = Wp(v̇, v, q)θp (1)

where q ∈ Rn are the world-frame position and attitude
coordinates, v, v̇ ∈ Rn are body-frame velocities and ac-
celerations, respectively, and ξ ∈ Rc is the control input.
The plant model on the right-hand side of (1) consists of
the matrix-valued function Wp(v̇, v, q) ∈ Rn×p (termed
the “regressor matrix”) and a parameter vector θp ∈ Rp
representing the plant dynamic coefficients such as mass,
inertia, lift, drag, or buoyancy terms. Wp(v̇, v, q) can be
determined from kinematic analysis, whereas θp must be
determined empirically. Similarly, the left-hand side of (1)
shows the actuator model, factored into the matrix-valued
function Ga(ξ) and the actuator parameter vector θa ∈ Ra,
which contains thruster, propeller, control surface or other
actuator coefficients. This broad class of systems whose
parameters enter linearly includes marine and aerial vehicles
[37], spacecraft [38], and robot arms [39].
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Combining the plant and actuator dynamics, we have

0 = [Wp(v̇, v, q) −Ga(ξ)]

[
θp
θa

]
(2)

= Wpa(v̇, v, q, ξ)θpa (3)

where the aggregate vector of plant and actuator parame-
ters θpa = [θTp θ

T
a ]T ∈ R(p+a) is a member of the nullspace

of the known time-varying regressor matrix-valued function
Wpa(v̇, v, q, ξ) = [Wp(v̇, v, q),−Ga(ξ)] ∈ Rn×(p+a). This
means that the “true” parameter vector is not a single point
in parameter space Rp+a, but an element of the equivalence
class P ⊂ R(p+a). P is a linear vector subspace of R(p+a)

defined as

P = {θpa : ‖θpa‖ 6= 0,∀t θpa ∈ null(Wpa(v̇, v, q, ξ))}. (4)

In other words, each equivalence class P represents all
parameter vectors that belong to a particular evolution of
Wpa(v̇, v, q, ξ) over time. We note that this nullspace struc-
ture arises from the linearity of the parameter vector in the
equations of motion of this class of systems and not from any
artifact of the FDI methods we later employ; for example,
(1) remains invariant for any scalar multiple of the entire
parameter vector θpa.

Given some nominal P ∗ corresponding to a “known good”
or expected set of system behaviors, we can represent the
”true” parameter vector as

θpa = θ∗pa + η (5)

where θ∗pa ∈ P ∗ is the nominal part and η /∈ P ∗ is an
unknown deviation. Our goal is then to detect the presence
of nontrivial η, i.e. a fault, and to isolate its source by deter-
mining the specific plant and actuator parameters affected.

IV. MODEL-BASED FAULT DETECTION AND
QUOTIENT-SPACE FAULT ISOLATION

We have seen above that each equivalence class of parame-
ter vectors (4) “belongs” to a set of system behaviors, i.e. the
nullspace of the regressor matrix-valued function. Identifying
the parameter vector corresponding to the system’s motion
at any given point can thus serve to characterize its normal
or fault condition. This FDI approach employs a novel
application of nullspace-based adaptive identification (NS-
AID) as described in [3] to compute estimates of plant
and actuator parameters simultaneously, which then serve as
inputs to the MB-FD and QS-FI methods described below.
A. Online Stable Nullspace-Based Adaptive Identification

With the assumptions that the state q(t), velocity v(t),
and control input ξ(t) are available signals, but without
requiring access to acceleration, the NS-AID computes an
online estimate θ̂pa(t) of the plant and actuator parameters,
as well as an estimated velocity v̂(t) based on θ̂pa(t). We
define the error coordinates

∆v(t) = v̂(t)− v(t) (6)

∆θpa(t) = θ̂pa(t)− θpa(t). (7)

As shown in [3], we can then design update laws ˙̂v(t), ˙̂
θpa(t)

such that all signals remain bounded, limt→∞∆v(t) = ~0,
limt→∞

˙̂
θpa(t) = ~0 and, with additional persistence of

excitation (PE) conditions1, limt→∞ θ̂pa(t) ∈ P .
The strong stability and convergence properties of these

signals provide insight into system behavior that is robust
against noise and disturbance. In the following section, we
will employ these signals as the basis of our FDI approach.
B. Fault Detection and Isolation

During vehicle operation, continuous estimation of the
vehicle velocity and plant and actuator parameters by the NS-
AID enables both the detection of abnormal vehicle behavior
and the isolation of a fault to the parameters responsible.
1) Model-Based Fault Detection (MB-FD)

The velocity and parameter estimates of the NS-AID can
indicate the presence of a fault in two distinct ways. First, we
expect that the magnitude of the error ∆v(t) = v̂(t) − v(t)
between the estimated and true vehicle velocities should
be large at the beginning of a mission and converge to
a small value as the AID correctly identifies the vehicle
plant and actuator parameters. Any significant increase in
the magnitude of ∆v(t) after the initial convergence period
indicates an unexpected change in the underlying parameters
of the system and thus existence of one or more faults, but
does not reveal the cardinality or nature of the faults.

Second, we can continuously compute a separate real-time
forward simulation of the vehicle velocity, denoted vθpa∗ ,
according to (1) and an a priori known good set of nominal
parameters θpa∗ ∈ P ∗ identified from previous vehicle trials
or from the first converged estimate. The magnitude of the
error ∆vθpa∗ (t) = vθpa∗ (t) − v(t) reflects the deviation of
vehicle behavior from the nominal known good as in 5, and
any significant increase again indicates one or more faults but
does not isolate their cause. Unlike ∆v(t), this error persists
even after re-convergence of the NS-AID.

For both of these fault detection metrics, it is necessary
to tune the error threshold based on empirical data for the
system being considered to mitigate false positives due to
fluctuations of the NS-AID during estimation.
2) Quotient-Space Fault Isolation (QS-FI)

While the plant velocity estimated by the NS-AID can be
directly compared to a true or nominal velocity to detect the
presence of a fault, as above, it is not as simple to isolate
the source of the fault. Because each parameter vector is
not a single point but a member of an equivalence class,
the absolute error between any two sets of parameters is not
well-defined; for example, it could be confounded by the
possibly different scale factors.

A more meaningful error metric, given a nominal θpa∗ ∈
P ∗ and test vector θ̂pa, is the projection of θ̂pa onto P ∗⊥,
the orthogonal complement of the equivalence class P ∗ to
which θpa∗ belongs. Persistent nonzero values of θ̂pa ∈ P ∗⊥
certainly signal a fault via the deviation of θ̂pa from the

1The signal W(t) is PE if ∃ constants to, T > 0, and ε > 0 such
that ∀t > to, it holds that σmin[

∫ t+T
t W (τ)TW (τ)dτ ] ≥ ε, where

the σmin : Rn×n → R returns the smallest eigenvalue of the positive
symmetric real argument [40], [41].
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Fig. 1. Comparing a “fault” parameter vector θ̂pa to a “nominal” parameter
vector θpa∗ (both shown as normalized unit vectors) by projecting θ̂pa onto
P ∗⊥, the orthogonal complement of span{θpa∗}. The fault in θ̂pa consists
of a 50% reduction of the z-component, which is obscured when looking
directly at the components of θ̂pa ∈ P ∗⊥ (top right). However, viewing
θ̂pa, θpa∗ in the quotient spaces created by collapsing one dimension at a
time (bottom) reveals the z-dimension to be the source of the fault.

nominal subspace, and one potential method to localize
the responsible parameters is to examine the components
of θ̂pa ∈ P ∗⊥. But because a change in any individual
component of the parameter vector moves the entire vector
in parameter space Rp+a, the real source of the fault remains
obscured. Figure 1 shows an example of a 3D nominal
parameter vector θpa∗ = [1 2 3]T and estimated “true”
parameters with a fault in the z-dimension, θ̂pa = [1 2 1.5]T ,
which have been normalized to reflect that parameter vectors
are unique up to a scale factor. We see that, although the z-
parameter is solely responsible for the fault, the components
of θ̂pa ∈ P ∗⊥ show a higher “error” value in the y dimension.
Notably, however, when θpa∗ , θ̂pa are projected onto the xy-
plane, θ̂pa now appears to lie exactly within the span of θpa∗ .
In other words, when the faulty parameters are quotiented out
of the parameter vector, the fault is no longer detectable.

Using this basic intuition, the fault isolation algorithm (Al-
gorithms 1 and 2) determines the fault source by collapsing
progressively increasing dimensions of the parameter space,
testing for the combination of dimensions in which θpa∗ , θ̂pa,
belong to the same equivalence class. Then the excluded
dimensions must be the source of the fault. In linear algebraic
terms, for every combination Ck of k standard basis vectors
{ei∈Ck

} (Alg. 2 Line 3) we map θpa∗ , θ̂pa to elements q∗, q̂
of the quotient space Q := Rp+a/sp{ei∈Ck

}, which is
isomorphic to R(p+a)−k (Alg. 2 Line 4). If the projection of q̂
onto the orthogonal complement of sp{q∗} performed in the
quotient space has magnitude less than some error threshold
ε > 0, we have found a fault-free parameter subspace (Alg. 2
Line 9). Starting with all combinations of

(
p+a
1

)
dimensions,

we progressively quotient more and more dimensions (Alg.
1 Line 5) until the first fault-free subspace is found. Then

the k excluded dimensions are the source of a fault of k
concurrent parameters (Alg. 1 Line 11). As with the MB-
FD, the error threshold ε must be determined empirically
based on the system in question.

Algorithm 1 Fault isolation algorithm

1: procedure FIND FAULT(θ∗pa, θ̂pa)
2: flags← [−1,−1, ...,−1]T ∈ Rp+a
3: . Start with (p+ a)− 1 combinations
4: k ← 1
5: . Collapse the parameter space into progressively

lower dimensions until a fault is found or the threshold of
faults to be considered simultaneously has been reached

6: while k <= kmax do
7: igood ← PROJ QUOTIENT K(θ∗pa, θ̂pa, k)
8: if igood = ∅ then
9: . Keep looking in lower dimensions

10: k ← k + 1
11: else
12: . Found fault; indicate fault locations
13: ibad = {1, ..., (p+ a)} \ igood
14: flags[igood]← 0 . no-fault parameters
15: flags[ibad]← k . k-fault parameters
16: end if
17: end while
18: return flags
19: end procedure

Algorithm 2 Projection of estimated θ̂pa and nominal θ∗pa
onto quotient spaces of the parameter space

1: procedure PROJ QUOTIENT K(θ∗pa, θ̂pa,k)
2: igood ← ∅
3: for all

(
p+a
k

)
combinations Ck of 1, ..., (p+a) do

4: . Map θpa∗ , θ̂pa to Q := Rp+a/sp{ei∈Ck
}

5: q∗ ← θ∗pa[i /∈ Ck]

6: q̂ ← θ̂pa[i /∈ Ck]
7: . Normalize q∗, q̂
8: . Project q̂ onto sp(q∗)⊥

9: E ← (I(p+a)−k − q∗(q∗)T )q̂
10: if ||E||2 < ε then
11: . Found a fault-free subspace
12: igood ← igood ∪ i /∈ Ck
13: end if
14: end for
15: return igood
16: end procedure

This fault isolation method has algorithmic complexity
O((p + a)kmax) due to the

(
p+a
k

)
combinations at each

level k. Heuristic methods for first considering groupings
of parameters (e.g. all mass parameters or all drag param-
eters) to narrow the search space offer significant potential
for efficiency gains. Finally, separating fault detection and
fault isolation into a two-stage process by attempting fault
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isolation only upon triggering a fault detection event can
further reduce computational expense.

V. PRELIMINARY SIMULATION STUDY IN 3-DOF

To investigate the feasibility of the novel MB-FD and
QS-FI algorithms introduced in Section IV, we conducted a
simulation study of the proposed approaches applied to a 3-
DOF UUV plant model. We note that, while this preliminary
study was performed on a limited underwater vehicle model,
the mathematical principles central to the FDI approach
depend only on the linearity of the parameters in the system
dynamics and are thus applicable to any system that can be
written in the form (1) – including a wide variety of aerial,
marine, space, and manipulator platforms. Furthermore, NS-
AID employed to provide parameter estimates to the FDI
algorithms has been studied for both fully-actuated and
underactuated 3-DOF and 6-DOF UUV models under noise
conditions, indicating high potential for generalizability.
A. 3-DOF Dynamical Plant Model

As derived in [3], we have the following equations of
motion for a general 3-DOF UUV

τ(v, ξ) = Mv̇ + C(v)v +D(v)v + G(q). (8)

The UUV hydrodynamic model is the right-hand side of
(8), where M ∈ R3×3 is the positive-definite symmetric
vehicle mass matrix, C(v) ∈ R3×3 is the vehicle Cori-
olis matrix-valued function, D(v) ∈ R3×3 is the positive
semi-definite quadratic drag matrix-valued function D(v) =∑3
i=1 |vi|Di , and G(q) ∈ R3 is the buoyancy/gravity

force/moment vector. The control vector τ(v, ξ) ∈ IR3 is
defined as the body forces resulting from body velocity v and
a control input vector denoted as ξ ∈ R3. For this preliminary
study, we choose the body center-of-mass (COM) frame.

To write the system in the form of (1), we factor the right-
hand side of (8) as

Mv̇ + C(v)v +D(v)v + G(q) = Wp(v̇, v, q)θp, (9)

the product of the regressor matrix and and the parameter
vector θp containing the plant hydrodynamic coefficients.

For this 3-DOF model in the vertical plane (surge, heave,
and pitch), the factorization in (9) yields a 25-parameter plant
model as follows:

Mv̇ =

[
bMT 02×1
01×2

bi

]
v̇ =

 m11 m12 0
m12 m22 0

0 0 m33

 v̇
(10)

= WpM (v̇)θpM (11)

where bMT ∈ R2×2 represents the combined hydrodynamic
and rigid body added mass and bi ∈ R represents the
hydrodynamic and rigid body rotational inertia. Then θpM =
[m11 m12 m22 m33]T ∈ R4 parameterizes both the mass
matrix as in (11) and the Coriolis matrix as in (13):

C(v)v =

 02×2 J T (1) bMT

[
v1
v2

]
[v1 v2] bMTJ T (1) 0

 v
(12)

= adse(2)(v)WpM (v)θpM (13)

where we define the adjoint operator adse(2) : R3 → R3×3

adse(2)(v) =

 0 v3 0
−v3 0 0
v2 −v1 0

 (14)

and the skew-symmetric operator J : R→R2×2

J (a) =

[
0 −a
a 0

]
. (15)

The drag matrix for each DOF, herein defined positive
semi-definite symmetric and signed appropriately as a dissi-
pative term, is given by:

Di =

 d11 d12 d13
d12 d22 d23
d13 d23 d33

 (16)

so that θpDi
= [d11 d12 d13 d22 d23 d33]T ∈ R6

and the stacked vector θpD = [θTpD1
θTpD2

θTpD3
]T ∈ R18

parameterizes the total quadratic drag

D(v)v = (

3∑
i=1

|vi|Di)v = WpD (v)θpD . (17)

We define rcb = [rcb,x rcb,z]
T ∈ R2 as the vector from the

body COM to the center of buoyancy. Then G(q) consists of
the force bfG ∈ R2 and the righting moment bτG ∈ R exerted
on the vehicle by gravity and the buoyant forces, written as
follows, where R(q) ∈ SO(2) is the rotation from the world
to the body frame, ρ,m,5 are the water density, vehicle dry
mass, and vehicle displacement volume, respectively, e2 =
[0 1]T , and gc is the gravitational constant:

G(q) =

[
bfG
bτG

]
=

[
gcR(q)e2(m− ρ5)
gcr

T
cbJ (1)Re2(−ρ5)

]
(18)

= WpG (q)θpG , (19)

with parameters θpG = [m− ρ5 rcb,xρ5 rcb,zρ5]T ∈ R3.
Combining (11),(13),(17),(19) gives the regressor matrix

Wp(v̇, v, q) =

[(WpM (v̇) + adse(2)(v)WpM (v)) WpD (v) WpG (q)] (20)

and parameter vector θp = [θTpM θTpD θTpG ]T ∈ R25.
We use a simple actuator model with three thrusters,

whose forces in the direction of unit vectors u1, u2, u3 ∈
R3 are proportional to the signed square of the con-
trol inputs ξ1, ξ2, ξ3 ∈ R with proportionality constants
α1, α2, α3 ∈ R, located with respect to the body COM frame
by ra1 , ra2 , ra3 ∈ R2. Then we can express the external
forces and moments τ(v, ξ) in (8) as follows:
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τ(v, ξ) =

[
bfa
bτa

]
=

[ ∑3
i=1 αiξi|ξi|ui∑3

i=1 αiξi|ξi|rai × ui

]
(21)

=

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 ξ1|ξ1|
ξ2|ξ2|
ξ3|ξ3|

 (22)

= Ga(ξ)θa (23)

with parameter vector θa = [a11 a12 a13...a33]T ∈ R9.
The combined plant and actuator parameter vector can thus
be constructed as θpa = [θTp θ

T
a ]T ∈ R34

B. Online Stable Adaptive Plant and Actuator Parameter
Identification

Following the approach reported in ([3]), we design the
following parameter update laws for the NS-AID:

˙̂v = M̂−1(−Ĉ(v)v − D̂(v)v

+Ĝ(q) +Ga(ξ)θ̂a)− α∆v (24)
˙̂
θpM = γM (ψT1 WpM (v) + ψT2 WpM (∆v)) (25)
˙̂
θpD1

= γD1(WpD1
(v))T∆v (26)

˙̂
θpD2

= γD2
(WpD2

(v))T∆v (27)
˙̂
θpD3

= γD3
(WpD3

(v))T∆v (28)
˙̂
θpG = −γG(WpG (q))T∆v (29)

˙̂
θa = −γa(Ga(ξ))T∆v (30)

where
• ψ1 = adse(2)(v)T∆v

• ψ2 = ˙̂v + α∆v
• α, γM , γD1

, γD2
, γD3

, γG , γa ∈ IR+

• v̂(t0) = v(t0)

The error dynamics then take the form

M∆v̇ = M( ˙̂v − v̇) (31)
= −αM∆v −∆Mψ2 − adse(2)(v)∆Mv (32)
−WpD (v)∆θpD +WpG (q)∆θpG +Ga(ξ) ∆θa,

and we consider the Lyapunov function candidate

V (∆v,∆θpa) =
1

2
∆vTM∆v +

1

2γM
∆θTpM ∆θpM (33)

+
3∑
i=1

1

2γDi

∆θTpDi
∆θpDi

+
1

2γG
∆θTpG∆θpG +

1

2γa
∆θTa ∆θa

which is positive definite in ∆v,∆θpa, radially unbounded,
and equal to zero if and only if ∆v = 0 and ∆θpa =
0. As in Section IV-A, we refer to the details of the
proof in [3] to show that all signals remain bounded,
V̇ (t) is negative definite in ∆v and negative semi-definite
overall, limt→∞∆v(t) = ~0, limt→∞

˙̂
θpa(t) = ~0 and

limt→∞ θ̂pa(t) ∈ P .
C. Simulation Results

We conducted a simulation study using the above 3-DOF
model and the following conditions:

• AID gains:
– α = 1.0
– (γPM

, γPD1
, γPD2

, γPD3
, γPG , γa)

= (1.0, 20.0, 30.0, 40.0, 1.0, 50.0)

• True parameters:
– θ̂pM = [1 0 1 1]T

– θ̂pD1
= [2 0 0 2 0 2]T

– θ̂pD2
= [3 0 0 3 0 3]T

– θ̂pD2
= [4 0 0 4 0 4]T

– m = 1.0, ρ5 = 0.8, rcb = [1 1.2]T

– α1, α2, α3 = 5.0
– ra1 = [−1 − 1]T , ra2 = [−1 1]T , ra1 = [1 0]T

– u1 = [1 0]T , u2 = [1 0]T , u3 = [0 1]T

• Initial conditions:
– ˆθpM = [1 0 1 1]T

– ˆθpDi
= [1 0 0 1 0 1]T

– m = 1.1, ρ5 = 0.8, rcb = [1 1.2]T

– α1, α2, α3 = 1.0
– ra1 = [−1 − 1]T , ra2 = [−1 1]T , ra1 = [1 0]T

– u1 = [1 0]T , u2 = [1 0]T , u3 = [0 1]T

• Control input:
– ξ1 = sin(0.7t)
– ξ2 = sin(1.1t− π

4 )
– ξ3 = sin(2.0t− π

3 )

• Error threshold: ε = 0.05

which were chosen empirically such that initial parameter
values different significantly from true parameters, gains
provided reasonable convergence time, the error threshold
resulted in consistent fault detection, and control input sig-
nals were smooth, bounded, and sufficiently rich to induce
parameter convergence to P ∗.

The NS-AID achieved convergence of velocity (Figure
2) and parameter estimates (Figure 3) over an interval of
1200 seconds. At t=1200 seconds, a fault consisting of a
50% decrease in the gain coefficient of the first thruster was
introduced, corresponding for example to loss of a propeller
blade. At t=2400 seconds, an additional fault representing
loss of a streamlined hull fairing through a 150% scaling
of the drag matrix of the second DOF was introduced.
Both faults were followed by an immediate increase in the
magnitude of ∆v(t) before the AID was able to attain
new parameter estimates, after which ∆v(t) decreased to
a near-zero value. Additionally, the magnitude of ∆vθpa∗ (t)
immediately increased after the introduction of a fault and
remained nonzero, indicating persistence of the faults despite
convergence of the NS-AID.

Figure 4 shows the output of the fault isolation algorithm,
which correctly flagged the actuator parameters of the first
fault and additionally flagged the drag parameters of the
second fault while maintaining the status of the first fault. We
observe that false fault detections occurred only sporadically
and exclusively within the initial convergence period of
each estimation interval. In practice, first performing fault
detection using ∆v(t) and ∆vθpa∗ (t) before attempting fault
isolation would prevent erroneous results from applying the
algorithm to badly-converged parameter estimates.
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Fig. 2. The error Δv(t) between the NS-AID estimated velocity and the
true velocity (top) and the error Δvθpa∗ (t) between the velocity of a system

under nominal parameters and the true velocity (bottom). The estimate error
converges over each interval even after introducing faults at t = 1200 and
t = 2400, while the nominal error indicates a persistence of fault behavior.

Fig. 3. Adaptively estimated parameters of the system, shown normalized
by a scale factor to correspond to initial values of the “true” parameters.
The first fault at t=1200 scales a11, a21, a31 by 50% (bottom left) and the
second fault at t=2400 scales the second DOF drag by 150% (middle right).
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Fig. 4. The output of the fault isolation algorithm, which correctly identified
no faults during the first interval, a two-parameter actuator fault during the
second interval, and an additional three-parameter drag fault during the third
interval. Scaled zero parameters were not flagged as faults.

Although these preliminary simulation results demonstrate

FDI on a limited, fully-actuated model with simplified faults,

they indicate the potential applicability of this approach to

more complex 6-DOF models and fault scenarios.

VI. CONCLUSION

This paper has reported novel MB-FD and QS-FI ap-

proaches to the FDI problem for second-order nonlinear

systems, as well as a preliminary numerical simulation

evaluation of these approaches applied to a 3-DOF UUV

plant model. The simulation study shows their ability to

detect as well as isolate faults for the cases of both single and

multiple simultaneous faults and suggests the generalizability

of the MB-FD and QS-FI approaches to any well-defined

second-order plant and actuator model whose parameters

enter linearly: a broad class of systems which includes aerial

vehicles, marine vehicles, spacecraft, and robot arms. Since

the faults are not attached to any assumed fault model, but are

characterized only from their effect on the vehicle dynamics,

this approach shows significant potential for flexible and

effective FDI. Moreover, obtaining an accurate estimation

of true vehicle dynamics in the presence of faults forms a

strong basis for fault-tolerant model-based control. In future

work, we aim to address more complex 6-DOF plant models,

underactuation, varied platforms including both marine and

aerial vehicles, improvements in algorithmic efficiency, ex-

perimental evaluation incorporating more realistic model un-

certainty, noise, and disturbance conditions, and comparative

evaluation against current state-of-the-art FDI approaches.
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