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A record of vapour pressure 
deficit preserved in wood and soil 
across biomes
Adrian Broz  1*, Gregory J. Retallack  1, Toby M. Maxwell  2 & Lucas C. R. Silva  3,4

The drying power of air, or vapour pressure deficit (VPD), is an important measurement of potential 
plant stress and productivity. Estimates of VPD values of the past are integral for understanding the 
link between rising modern atmospheric carbon dioxide (pCO2) and global water balance. A geological 
record of VPD is needed for paleoclimate studies of past greenhouse spikes which attempt to constrain 
future climate, but at present there are few quantitative atmospheric moisture proxies that can 
be applied to fossil material. Here we show that VPD leaves a permanent record in the slope (S) of 
least-squares regressions between stable isotope ratios of carbon and oxygen (13C and 18O) found in 
cellulose and pedogenic carbonate. Using previously published data collected across four continents 
we show that S can be used to reconstruct VPD within and across biomes. As one application, we 
used S to estimate VPD of 0.46 kPa ± 0.26 kPa for cellulose preserved tens of millions of years ago—in 
the Eocene (45 Ma) Metasequoia from Axel Heiberg Island, Canada—and 0.82 kPa ± 0.52 kPa—in the 
Oligocene (26 Ma) for pedogenic carbonate from Oregon, USA—both of which are consistent with 
existing records at those locations. Finally, we discuss mechanisms that contribute to the positive 
correlation observed between VPD and S, which could help reconstruct past climatic conditions and 
constrain future alterations of global carbon and water cycles resulting from modern climate change.

Vapour pressure deficit, or VPD, is the difference between the amount of moisture in the air and how much mois-
ture the air can hold when it is saturated, with the latter depending on ambient temperature1,2. Changes in VPD 
reflect the potential for the atmosphere to extract water from terrestrial ecosystems. VPD is often monitored as 
a proxy for plant water stress because it is a principal control on stomatal water loss and photosynthetic carbon 
fixation2. VPD is not a meteorological parameter for climate studies because it is a relative metric of stress that 
varies among plant species, as inferred from their leaf functional traits, and from interactions between roots, soils, 
and microorganisms in the rhizosophere, which together govern responses to climate at local to global scales3–5. 
However, VPD does reflect the effect of temperature and precipitation on relative humidity6 and transpiration 
demand, which stimulates stomatal closure to minimize water loss, and thus the flow of water and nutrients from 
the soil through plants and ultimately to the atmosphere7,8. Stomatal closure in turn affects carbon (C) isotopes 
of plant cellulose9–11, which decays into soil organic matter and respired CO2, and as a result the ratio of stable 
carbon isotopes (δ13C) can be passed on to pedogenic carbonates9. Oxygen (O) isotopes are also impacted by 
VPD, responding as a function of stomatal closure as well as independently of transpiration demands, and stable 
oxygen isotope ratios (δ18O) can be used to isolate VPD-imposed stress from other environmental factors that 
control δ13C of cellulose12,13. Numerous processes are known to affect the fractionation of C and O isotopes in 
plants and soils. Here, we explore the mechanisms that relate VPD with changes in δ13C and δ18O measured in 
cellulose and pedogenic carbonates and make a case for using those ratios as a proxy for climatic conditions.

Stable isotope ratios of plant cellulose in response to drought.  Cellulose δ13C values in C3 plants 
reflect the ratio of intercellular (ci) to atmospheric (ca) partial pressure of CO2 and CO2 fixation by RuBisCo, 
which yield δ13C fractionations of − 4.4‰ and − 27‰, respectively14 (Fig. 1). Physiological stress alters the cel-
lulose δ13C value via its effects on stomatal conductance and the internal concentration of CO2 in leaves10. On 
the other hand, cellulose δ18O values reflect the isotopic ratio of the source water15 which depends on condensa-
tion temperature and Rayleigh distillation processes16. Leaf water oxygen enrichment is dependent in part on 
the ratio of intercellular to atmospheric vapour pressures (ei and ea, respectively) while the ratio of ci and ca is 
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Figure 1.   Diagram of typical stable carbon and oxygen isotope values measured in cellulose (top panel) 
and soil carbonate (bottom panel). Fractionation steps (listed in italics) and the influence of vapour pressure 
deficit (VPD) for cellulose and pedogenic carbonates use a modern value for δ13C of atmospheric CO2. Stable 
isotope values for C3 plant cellulose20,21 and soil carbonate22 represent rough approximations and are expected 
to vary significantly with differences in geographic location, environmental conditions and concentration 
of atmospheric CO2. Values are on the Vienna Standard Mean Ocean Water (SMOW) and Vienna Pee Dee 
Belemnite (PDB) scales for δ18O and δ13C values, respectively.
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approximately related to δ13C values recorded in cellulose and other compounds. Decreased stomatal conduct-
ance combined with evaporative enrichment of leaf water 18O causes both 13C and 18O to increase simultaneously 
in cellulose (Fig. 1), which can lead to a positive correlation between δ13C and δ18O when water stress exerts a 
significant physiological limitation on plant-to-air C and O exchange12,17. Thus, in areas where elevated VPD 
limits plant growth, C and O isotope ratios show positive covariance in plant cellulose, and the slope of the 
relationship is related to VPD8,17–19.

Previous studies have identified possible mechanisms by which δ13C:δ18O slope varies with VPD in tree–ring 
cellulose8,12,17. For example, the data-enabled model proposed by Saurer et al.17 indicates that slope is a function 
of the ratio of ei/ea and ci/ca, which varies across species and with relative humidity. That model was tested using 
three tree genera (Picea, Fagus and Pinus sp.) at sites with markedly different soil moisture indices. The difference 
in slope values between species indicated a stronger dependence on ci/ca which suggests a species-dependent 
relationship between slope and VPD, e.g., Fagus reacted more strongly in terms of stomatal downregulation of gas 
exchange to moisture conditions than did Picea12,17. Consistent with Saurer et al., a mechanistic model proposed 
by Barbour et al. can be used to relate slope of the δ18O:δ13C relationship to annual VPD in cellulose of Pinus 
trees under varying stomatal conductance (gs) and photosynthetic capacity (Vcmax)8. Here, we summarize the 
main outputs of that model (Fig. 2) to illustrate how the slope of the δ18O and δ13C relationship increases with 
increasing VPD if gs varies alone, or in tandem with Vcmax. This model was originally tested with Pinus radiata 
from three sites in New Zealand which all showed positive and significant correlation between δ18O and δ13C 8, 
and notably the slope of the relationship (0.30‰ change in δ18O per 1‰ change in δ13C) is identical to the slope 
found in P. sylvestris by Saurer et al.17 which support the hypothesis that δ13C:δ18O slope can be used to infer 
VPD-induced stress for different species of conifers.

Scheidegger et al.12 predict with a conceptual model the occurrence of negative slope between δ13C and δ18O 
when ci, gs and δ18O increase (while δ13C decreases and Vcmax is held constant), or when Vcmax decreases and gs 
is held constant. On the other hand, drought-induced changes in stomatal conductance (high VPD) increase 
both δ13C (via stomatal conductance) and δ18O (via changes to ca/ci), so positive correlations between δ13C and 
δ18O are expected for time-series data from modern tree-ring cellulose23. Moreover, a positive linear relationship 
implies that ci/ca depends linearly on ei/ea and is influenced by changes in VPD17. Indeed, experimental studies 
have shown that ci/ca decreases linearly with increased VPD in C3 plants24 which supports the hypothesis that 
VPD controls the slope value of δ13C and δ18O during periods of water stress when other factors are held constant. 

Figure 2.   Summary output of mechanistic models developed to describe a causal relationship between VPD 
and δ18O:δ13C slopes in tree-ring cellulose (a–d) and in relation to our own observations of modern trees across 
biomes (e). Modeled δ18O and δ13C ratios are calibrated for Pinus radiata trees when: (a) and (c) vapour pressure 
deficit (VPD) varies; (b) and (d) stomatal conductance (gs) varies, under constant source water (δ18O at − 8.0‰; 
model adapted from Barbour et al.8). Air temperature was kept constant at 20 °C, and stomatal conductance 
(gs) varied between 0.02 and 0.48 mol m−2 s−1. Photosynthetic capacity (Vcmax) at the given temperature varied 
between 24 and 34 mmol m−2 s−1; Vcmax variation alone showed little influence on δ18O and δ13C8. Model defaults 
were vapour pressure deficit = 0·94 kPa, gs = 0.19 mol m−2 s−1 (on a projected leaf area basis) and Vcmax = 30 
mmol m−2 s−1 and constant source water δ18O of – 8.0‰. (e) Shows the modeled relationships between vapour 
pressure deficit (VPD) and the change in slope of the δ18O and δ13C relationship when variation in δ13C is driven 
by changes in gs alone, or by large changes in both gs and Vcmax, or by small variation in gs and large variation in 
Vcmax. We plotted our compiled global observations (triangles) of cellulose δ18O:δ13C slopes and annual average 
VPD in contemporary needle-bearing taxa from around the world which showed a positive and significant 
relationship between δ18O and δ13C (Table S5). For ease of comparison with the Barbour et al. model8, here 
we plotted our modern cellulose data to show δ18O:δ13C slopes (S-1), whereas δ13C:δ18O slopes (S) are used as 
previously suggested for paleo-VPD estimates (see Methods for details).
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Building on those findings, we examined the relationship between δ18O and δ13C slope and annual average 
VPD, and then compared our data compilation to the modelled response to VPD flux (Fig. 2e). If we fit a linear 
regression to modelled slope versus VPD reported by Barbour et al.8, we get slopes of 0.11 when gs alone varies, 
0.17 when both gs and Vcmax vary, and 1.34 when gs and Vcmax vary while gs varies over a limited range (Table S6). 
Our empirically determined slope from cellulose around the world is 1.68, which is consistent with the highest 
modelled slope for P. radiata (1.34) when both gs and Vcmax varies while gs varies over a limited range (Fig. 2e, 
Table S6). Our compiled global dataset for cellulose includes three genera of pine (P. ponderosa, P. sylvestris, P. 
radiata) as well as Larix sibirica and Tsuga canadensis (Table S5, which could explain the difference in absolute 
value (y-intercept) between our data and the Barbour et al. model8. Another factor that might have contributed 
to those differences is the variations in source water δ18O across sites, which can affect the y-intercept irrespec-
tively of potential differences in species-specific traits. Despite those differences, our data show a remarkably 
consistent slope relative to the cellulose model, which points to the possibility of new applications across spe-
cies and spatial scales. Together, mechanistic models and global observations suggest that VPD-induced stress 
can be inferred from correlations between δ13C and δ18O values. However, functional traits across species and/
or genera modulate differences in δ13C and δ18O excursions in response to drought25 and thus differences in S 
between species are expected with increasing VPD. As such, any use of a VPD proxy should only be applied to 
fossil wood where identification to the genus level is possible.

Stable isotope ratios in pedogenic carbonate in response to drought.  Changes in VPD are 
expected to cause changes in δ13C and δ18O values in pedogenic carbonate, but the mechanisms leading to those 
correlations are different than in cellulose. Pedogenic carbonate (calcite, CaCO3) forms in soil where potential 
evaporation exceeds evapotranspiration, most often in arid to subhumid regions which receive less than ~ 100 cm 
of precipitation annually26. The sources of C in pedogenic carbonate are from autotrophic root-respired CO2, 
heterotrophic decomposition of organic matter by soil microbes and from the diffusion of atmospheric CO2 
into the soil matrix26–28 (Fig. 1). Soil-respired CO2 is often an order of magnitude greater in concentration than 
atmospheric CO2 which creates a diffusion gradient that drives net flow of CO2 to the atmosphere27. Therefore, 
the carbon isotopic composition of pedogenic carbonate is most sensitive to the isotopic composition of soil-
respired CO2

11. Other variables that control the δ13C of soil carbonate are (1) the proportion of C3–C4 plants 
growing at the site; (2) root and microbial respiration rates, which are sensitive to changes in VPD; and (3) the 
CO2 concentration of the atmosphere11,29. The carbon isotopic signature of water stress in C3 plants is passed on 
to soil-respired CO2 because the original δ13C isotope composition of the plant community is preserved (± 2‰) 
in soil-respired CO2 generated during aerobic decay of soil organic matter9,11,30. Soil-respired CO2 then equili-
brates with soil water to form pedogenic carbonate during seasonal drying of the soil9,27,31.

The source of O in pedogenic carbonates is from meteoric water, which infiltrates into the soil matrix and 
becomes soil water32. Pedogenic carbonate is assumed to be in O isotopic equilibrium with soil water and thus 
carbonate δ18O values are used to constrain paleotemperature and/or paleoelevation33,34. Oxygen isotope ratios 
of pedogenic carbonate do not carry a plant signal because plant compounds show little O isotopic exchange 
with soil water during decomposition35. Therefore, the decay of cellulose into soil organic matter and respired 
CO2 is expected to pass the carbon isotopic signature of the plant community to pedogenic carbonates (Fig. 1), 
which can also record changes in moisture regime when the effect of evaporative enrichment on δ18O of plant 
and soil water is considered36–38.

In the following sections, we show that cellulose and carbonate δ13C:δ18O slopes (S) are strong predictors 
of VPD, such that S may be used to infer climatic conditions at spatiotemporal scales that go beyond those of 
tree-ring studies. Given that profound changes in atmospheric moisture are predicted with climate change7, 
VPD records would be useful for inferring past climate conditions and reducing uncertainties in future climate 
projections. We posit that atmospheric VPD is preserved in isotope ratios of soil carbonate, just as in cellulose, 
such that suitably preserved fossil wood and paleosol carbonate can be used as a proxy for VPD of past environ-
ments. As proof of concept, we use previously published data to develop S-to-VPD transfer functions using fossil 
cellulose from Arctic Metasequoia during the Eocene39 and pedogenic carbonate formed during the Oligocene 
in calcareous paleosols from Oregon40, both of which show a positive correlation between δ13C and δ18O similar 
to those found for modern cellulose and carbonate samples.

Results
Our contribution to the record of atmospheric VPD preserved in plants and pedogenic carbonate is a global 
compilation of data on stable isotopic composition of cellulose and pedogenic carbonate (Fig. 3, Supplementary 
data). The criteria used for the data selection (for cellulose) were: a positive and significant (P < 0.05) correlation 
between δ13C and δ18O measured in α-cellulose isolated from individual trees (needle-bearing taxa only) from 
1950-present which had n > 8 data points and met model assumptions for simple linear regression. For carbonate 
we considered datasets reporting positive and significant correlation between δ13C and δ18O in nodular calcite 
gathered from individual soil profiles which also had n > 8 data points and met assumptions for simple linear 
regression (see Methods for details). A positive correlation between δ13C and δ18O was found when annual aver-
age VPD (VPDannual) exceeded ~ 0.3 kPa. Non-significant (P > 0.05) and/or negative correlations of δ13C and δ18O 
were noted in cases where VPDannual was less than ~ 0.3 kPa and/or when original authors noted that drought 
stress was not a significant factor influencing isotope ratios (e.g., when isotopic excursions were attributed to 
variation in sunlight or temperature). The slope of the δ13C:δ18O relationship (S) in both modern plant cellu-
lose (Sc) and pedogenic carbonate (Sk) is correlated with VPDannual of the contemporary atmospheric systems 
(Fig. 4). In other words, differences in S between dry and wet ecosystems appear to have been preserved over 
time, even though significant climatic variability can occur within each system. The coefficient of determination 
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Figure 3.   Approximate locations where modern cellulose (green circles, n = 8) and pedogenic carbonate 
(orange circles, n = 13) stable isotope data were collected (see Table S5). The locations of fossil cellulose (green 
stars, n = 2) and pedogenic carbonate (orange stars, n = 2) used for paleo-VPD estimates are also noted.

Figure 4.   Least-squares regressions for modern samples from around the world relating vapour pressure 
deficit (VPD) and the slope of the positive correlation between δ13C and δ18O (S) in modern tree-ring cellulose 
(circles) and modern pedogenic carbonate (triangles). No fossil data are shown in this figure. Shaded areas are 
95% confidence prediction intervals. Propagated error (S.E.) for VPD predictions using cellulose (± 0.26 kPa) 
and pedogenic carbonate (± 0.52 kPa) were calculated from A) the standard error of each modern data point’s 
δ13C:δ18O slope when slope was calculated from raw data; B) the standard error of modern VPD measurements 
when calculated from average climate statistics (± 0.13 kPa)41,42; and C) the standard error of the transfer 
functions.
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of the correlation between Sc and VPDannual according to Eq. (1) is r2 = 0.61 (n = 8; s.e. ± 0.26 kPa; P < 0.02). The 
coefficient of determination of the correlation between Sk and VPDannual according to Eq. (2) is r2 = 0.76 (n = 13; 
s.e. =  ± 0.52 kPa; P < 0.0001). Additionally, a negative correlation between Sk and annual relative humidity was 
observed (Fig. S1).  

The transfer functions generated from modern tree-ring cellulose isotope training datasets (Eqs. 1 and 2) 
can be used to estimate VPDannual during the Eocene and Oligocene and are compared with other independent 
records as proof-of-concept. The Sc in Eocene (45 Ma) tree-ring cellulose of Metasequoia from Axel Heiberg 
Island, Nunavut, Canada9,10 was 0.55 (n = 85; r2 = 0.40, P < 0.001, s.e. ± 1.2 ‰). This gives paleo-VPD values 
of 0.46 kPa ± 0.26 kPa (Fig. 5). Eocene relative humidity of 67% from δH:δ18O slope and a MAT estimate of 
13.2 ± 2 °C43 allows back calculation using Eq. (3) (see Methods) to a predicted VPDannual of 0.49 kPa, which 
is remarkably consistent with our new paleo-VPD estimate derived from Sc. An additional estimate of Eocene 
VPD from mummified tree-ring cellulose of early Eocene (53.5 Ma) Piceoxylon from Lac De Gras, Canada 
(Table S3) show Sc of 0.32 (n = 84; r2 = 0.13, P < 0.007, s.e. ± 0.80‰), which indicates a paleo-VPD estimate of 
0.30 kPa ± 0.26 kPa. It should be noted that the original authors concluded that if the first 8 “juvenile” tree rings 
are excluded from the analysis the remaining samples are not significantly correlated, so caution is necessary in 
interpreting this dataset. Nevertheless, as a second test of the VPD proxy the Piceoxylon dataset, which included 
juvenile rings predicted VPD of 0.30 kPa ± 0.26 kPa, which is consistent with the mean annual temperature 
estimate of 11.4 °C ± 1.8 °C derived from transfer functions and modeled RH values ranging from 64 to 83%23 
for early Eocene polar forests. The propagated error for the transfer function is nearly as large as the estimate 
for VPD and the correlation coefficient is low so, here too, cautious interpretation is necessary, but assuming 
atmospheric CO2 of 915 ppmv44 and low VPD across Arctic Canada during that period, we conclude that our 
record captured the early Eocene “hothouse” climate described in previous studies.

Late Oligocene (26 Ma) pedogenic carbonate from the Turtle Cove Member of the John Day Formation in 
central Oregon40 had Sk of 0.82 (n = 64; r2 = 0.57, P < 0.001, s.e. ± 1.2‰). This gives a VPD of 0.82 kPa ± 0.52 kPa 

(1)VPD = 0.577 · Sc + 0.142

(2)VPD = 0.703 · Sk + 0.247

Figure 5.   Relationship between δ13C and δ18O in select modern and fossil samples (from Fig. 3) used for 
estimating paleo-VPD. Fossil samples (circles and triangles) of cellulose and carbonate are from the Eocene 
(45 Ma) and Oligocene (26 Ma), respectively. All cellulose δ18O values were recalibrated to the VPDB scale 
(Table S7). Both modern and fossil isotopic datasets are listed in Table S3 (for cellulose) and Table S4 (for 
carbonate).
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for late Oligocene (26 Ma) calcareous paleosols of the Turtle Cove Member of the John Day Formation in cen-
tral Oregon (Fig. 4), consistent with mineralogical and paleobotanical evidence for dramatic stepwise cooling 
and drying through the Eocene–Oligocene boundary45,46. An additional estimate of early Eocene (~ 55 Ma) 
VPD was derived from pedogenic carbonate from the Hannold Hill Member of the Tornillo Formation, Big 
Bend National Park, Texas, USA47. The Sk was 0.444 (n = 44; r2 = 0.81, P < 0.001, s.e. ± 0.29‰) which allowed 
for a paleo-VPD estimate of 0.56 kPa ± 0.52 kPa. Propagated error (± 0.52 kPa) was nearly as large as the VPD 
estimate of this early Eocene sample so caution with this estimate is also necessary, but a lower Sk value in this 
sample compared to the Oligocene example discussed above supports the hypothesis that early Eocene VPD was 
less than Early Oligocene VPD. The Tornillo Formation is assumed to be to be North America’s most southerly 
exposure of early Paleogene continental deposits and as such cannot be directly compared to Oligocene VPD 
because of differences in latitude and age. However, the predicted VPD of the Tornillo Formation sample is 
an estimate consistent with the conclusion of the previous study47 about a decrease in humidity, precipitation 
and temperature after the Paleocene-Eocene Thermal Maximum (PETM), which is thought to have decreased 
the production of kaolinite and increased the accumulation of calcite in these paleosols compared to the older 
underlying kaolinite-rich PETM paleosols.

Discussion
Using a compilation of isotopic data gathered from modern cellulose and carbonate samples we found a persistent 
record of vapour pressure deficit (VPD) preserved in plants and soils across four continents. A remarkably con-
sistent shift in δ13C and δ18O regression slopes (S) occur in response to increasing aridity, assessed as increasing 
VPD, in both fossil plant samples and in paleosols that were buried tens of millions of years ago. Positive cor-
relations between δ13C and δ18O ratios found in cellulose samples, which reflect species or genus-level responses 
to VPD, are similar to those found for pedogenic carbonate samples, which reflect ecosystem-scale responses to 
VPD. Taken together, our compiled data indicate that changes in S identified for both modern and paleo samples 
are directly related to VPD, and thus S may be used to constrain climatic conditions at spatiotemporal scales that 
go beyond those of tree-ring studies.

What causes slope of the δ13C and δ18O relationship to vary with atmospheric moisture deficit in pedo-
genic carbonate? Laboratory studies of pedogenic calcite precipitation under variable temperature and relative 
humidity conditions show that δ13C and δ18O slope is steeper under both higher temperature and low relative 
humidity during elevated CO2 concentrations38. Soil temperature, relative humidity, soil CO2 concentration and 
the saturation state of evaporating fluids (with respect to CaCO3) are factors that determine trends in the posi-
tive linear correlation of δ13C and δ18O in pedogenic carbonate38. In this way, slope steepness is increased with 
high evaporation rates and reduced with lower evaporation rates (Fig. S1). Since VPD is a function of RH and 
temperature, a plausible hypothesis is that slope steepness of δ13C and δ18O in pedogenic carbonate increases 
with VPD due to a proportionally greater increase in δ13C (relative to δ18O) caused by the combined effect of 
physiological fractionation and root contribution to the soil carbon pool. However, it should be noted that slope 
is strongly dependent on the timing of calcite precipitation during fluid evaporation (e.g., the saturation state 
of the evaporating liquids), and the steepest slopes in laboratory-precipitated calcite are from samples with the 
greatest soil CO2 concentrations and evaporation rates38 both of which are highly variable in the vadose zone 
during pedogenic carbonate formation. Despite these uncertainties, a recent dual-isotope mechanistic model of 
natural pedogenic carbonates show that specific covariance of δ13C and δ18O can result from a shared climatic 
driver like VPD, which is responsible for the change in both isotope systems48. Here, we find further evidence of 
that relationship with nearly identical slopes found for modern cellulose and carbonate data (Fig. 4).

Mixtures of C3 and C4 vegetation do not confound the relationship in the analysis of wood samples, because 
the cellulose of wood is created solely by the C3 pathway12. However, when C3 and C4 pathways are mixed in 
savanna ecosystems, the resulting effect is a major shift in carbon isotope ratios in soil organic matter49,50 which 
would alter the S-to-VPD relationship in pedogenic carbonate51, but not in cellulose samples. Although com-
monly observed in association with climate-induced transitions between tropical forests and savannas, that type 
of isotopic excursion does not affect our interpretation because our data compilation did not include tropical 
systems (Fig. 3). However, several sites did include mixed C3/C4 plant communities (Table S5), which do not con-
found the relationship with VPD but instead appear to increase the variance in δ13C values (Table S1). Additional 
variance in isotopic composition of organic matter and soil air also comes from seasonal variation in rainfall and 
productivity9, from different plant parts such as wood versus leaves52 and their distinct molecular composition, 
and differential decay of organic matter in soils53. The compiled dataset presented here show variance of δ13C 
up to 14.5‰ in soils receiving mixtures of C3 and C4 organic matter, and variance of δ18O up to 14.4‰ caused 
by seasonality in water inputs (Table S1).

Alteration after burial may compromise application of these transfer functions to fossils. For example, δ18O of 
pedogenic carbonate can be changed during diagenetic dewatering and recrystallization29,54. For silica perminer-
alized wood, cellulose may be extracted from the silica whose δ18O values reflect either hydrothermal or ground-
water permineralization rather than cellulose biosynthesis55. The application here was to unmineralized wood 
compressions39,43, and micritic pedogenic carbonate from nodules without evidence of burial recrystallization45. 
We stress that application of this VPD proxy should be exclusively to cellulose of needle-bearing taxa showing 
cellular permineralization with cell wall ultrastructure preservation and without replacive recrystallization. Like-
wise, only paleosol carbonate samples with classic pedogenic carbonate micromorphology (displacive and repla-
cive micrite without sparry recrystallization) should be considered. Careful sampling of paleosol carbonate with 
micrite concentrations of 70% or greater can ensure measurement of primary and not diagenetic δ18O values56.

The relationship between VPD and plant δ13C:δ18O ratios is complex and many processes are at play, most 
notably photosynthetic capacity, stomatal conductance, RuBisCO fractionation, and the amount, type and timing 
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of water inputs, all of which have been shown to alter δ13C values or δ18O values or both3,8,12,57. We therefore do 
not expect that a single mechanism would adequately explain the consistent increase in the isotope ratios in plant 
molecules and pedogenic carbonates. As predicted by theory, plants and soils respond differently to VPD (Fig. 1) 
so difference in δ13C:δ18O slope between cellulose and soil carbonate is not surprising. The plant-derived carbon 
input to soil integrates the effect of all coexisting species of trees, shrubs, grasses, forbs, and microorganisms in 
addition to vast amounts of inorganic carbon22. Further, there is no stomatal control on soil evaporative enrich-
ment of oxygen. The differences in slope of modern samples can be explained by these differences in biosynthetic 
versus physical fractionations discussed above and based on ecological processes that drive changes in the relative 
contributions of multiple sources of organic carbon.

Regional studies reveal that cellulose δ18O values reflect the isotopic ratio of source water15, which at large 
scales depends on condensation temperature and Rayleigh distillation processes16. At the local scale, δ18O of soil 
water is determined by the source and amount of water inputs and by soil–plant interactions that impact soil 
water uptake with increasing depth58. Regional variations in δ13C of organic matter and pedogenic carbonate can 
be related to atmospheric CO2 levels, vegetation types and climatic gradients11,59. These regional factors explain 
where each of our site-specific and species-specific datasets are placed on δ13C and δ18O axes (Fig. 5), but do 
not explain the significant correlation of δ13C and δ18O within that site. Changes in stomatal conductance due 
to physiological stress can result in a spread of up to 10‰ in cellulose δ13C and δ18O57,60, and our dataset spans 
most of that range for δ13C (9.3‰, Table S1) but indicates a much larger range for δ18O (17‰), which is to be 
expected given the large variation in source water across time and space. Biochemical oxygen isotope fractiona-
tion during cellulose synthesis can vary between 26‰ and 31‰ depending on temperature and VPD61, but 
another potential source of variation could possibly result from RuBisCO fractionation4 (− 27‰), which may 
select light isotopologues of CO2 for chemical reduction regardless of whether CO2 is enriched or depleted with 
respect to heavy C or O isotopes62,63. This “ternary effect” 63 is expected to be maximized when the leaf-to-air 
vapour mole fraction difference is greatest and the effect is thought to be most pronounced on factors derived by 
the difference, most notably mesophyll resistance to CO2 assimilation63. In this scenario, light isotopes of both 
C and O may be selected simultaneously which could theoretically contribute to correlations between δ13C and 
δ18O in cellulose. However, the potential net fractionation effect of this process should be much smaller than 
the large effect of VPD on evaporative enrichment. Indeed, a fractionation of − 4.4‰ is produced by stomatal 
resistance to diffusion of CO2 from the air into leaves4 (Fig. 1) but positive covariance of δ13C and δ18O does not 
require stomates because it is observed in pedogenic carbonate of paleosols before the evolution of stomates62. 
Since we do not consider mesophyll conductance in the model for VPD (Fig. 1) the ternary effect cannot be 
inferred from our data. We suggest that those potential mechanisms should be investigated experimentally in 
future studies to characterize their influence on δ13C:δ18O slopes in plants and soils.

Finally, it is important to note that the use of S as a proxy for VPD may not be suitable for application to all 
fossil cellulose or pedogenic carbonate samples, and several warnings are in order for application of the S-to-VPD 
transfer functions proposed here. For example, the use of these transfer functions should be limited to datasets 
of suitably preserved fossil specimens of known genera that show significant correlation between δ13C and δ18O 
values. Additionally, different soil types have inherently different abilities to hold water and nutrients, which 
modulates the effect of VPD on cellulose δ13C and δ18O fractionations of many dominant tree species64, as well 
as carbonate production 33. Thus, our results should be understood as site-specific VPD records for particularly 
well-studied soil types and associated plant species of interest. Furthermore, preservation bias for cellulose must 
also be considered. Cellulose in arid and drought-prone climates show a high positive slope between δ13C and 
δ18O, but in humid climates and/or waterlogged sites, S is generally lower and less significant (Fig. 4, Table S2). 
These sites and other low-VPD (< ~ 0.6 kPa) sites are among the most favorable locations to preserve cellulose 
because the preservation of cellulose requires exceptional taphonomic conditions that suppress decay65. This 
almost always requires rapid burial in an aqueous medium, and therefore the resulting mummified or coalified 
wood is likely to occur in low-VPD settings where δ13C and δ18O ratios may be decoupled66. Such low VPD sites 
include Histosol paleosols, like the Eocene Metasequoia wood sites used here, but Metasequoia stumps were 
emergent from the Histosol and so fully aerated (and subject to variations in atmosphere moisture), rather than 
completely submerged during growth67. Additionally, trees like Metasequoia cannot form woody coals unless 
their roots are aerated as well as their leaves68. Positive covariance of δ13C and δ18O in the Metasequoia sample 
implies that both roots and leaves were coupled to the atmosphere and thereby suitable for paleo-VPD estimation.

Conclusion
A compilation of previously published data reveals positive correlations between δ13C and δ18O in response to 
VPD which is recorded in modern and fossil cellulose and carbonate samples. The most likely mechanisms that 
contribute to the correlation of δ13C and δ18O under varying VPD in plants are changes to stomatal conduct-
ance and evaporative enrichment of leaf and soil water. A third possible contribution is from leaf-level RuBisCO 
selection of light isotopologues of CO2 when the isotopic composition of the ambient air is significantly different 
from inside the leaf, although that effect appears to be small and unlikely to vary with VPD. Together, our results 
suggest that the slope of δ13C and δ18O regressions in modern cellulose and pedogenic carbonate is directly related 
to VPD, and thus δ13C:δ18O slope may be used to infer paleo-VPD conditions at spatiotemporal scales that go 
beyond those of tree-ring studies. This hypothesis is supported by a comparison of our S-to-VPD transfer func-
tions applied to two fossil sites for which climate reconstructions have been previously reported. Our findings 
highlight the interconnectivity of the soil–plant–atmosphere system in response to atmospheric water deficit and 
could pave the way for the use of well-preserved fossil wood and pedogenic carbonate to estimate VPD during 
past climates and to improve Earth system models and their predictions of future climate.
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Methods
We compiled estimates of typical stable isotope values and fractionation steps for modern C3 plant cellulose20,21 
and modern soil carbonate22 (Fig. 1), describing how VPD influences each isotope system. This diagram (Fig. 1) 
displays rough approximations for isotopic values which are expected to vary significantly with differences in 
geographic location, environmental conditions and concentration of atmospheric CO2.

We use modern climate records (Table S5) along with previously published isotopic data for modern cellulose 
and pedogenic carbonate samples to calibrate the model used to estimate VPD with fossil samples (Fig. 4). We 
compiled modern (1950-present) stable isotope (δ13C, δ18O) and climate data from previously published isotopic 
studies of plant cellulose (n = 23) and pedogenic carbonate (n = 31) from around the world (Supplementary data). 
Cellulose was chosen in this study because cellulose is commonly preserved in the fossil record39,43, and because 
cellulose reflects overall trends in bulk soil organic matter variation across ecosystems64. Pedogenic carbonate 
was chosen because it is also widely observed and analyzed in the fossil record of soils28,29,34.

We then selected a subset of cellulose (n = 8) and carbonate (n = 13) stable C and O isotope datasets (Tables S3 
and S4) that met our inclusion criteria. The criteria used for data inclusion build on previous findings that show 
coupling of C and O isotope excursions under drought at the molecular8,16,18 and ecosystem48 levels, for which 
fractionation steps have been mechanistically described (Figs. 1 and 2). For cellulose these criteria include 
α-cellulose from single trees (needle-bearing taxa only) collected from 1950—present that had n ≥ 8 and a sig-
nificant (P < 0.05) positive correlation between δ13C and δ18O and met all assumptions for simple linear regres-
sion (Lack of fit test; mean of residuals is equal to 0; distributions of residuals obey normal distribution; equal 
variance of residuals, and low / no autocorrelation of residuals). Datasets that passed all criteria were included 
in the transfer function dataset (Fig. 4, Table S5). For carbonate we included only modern (Holocene) nodular 
pedogenic carbonate samples from a single soil profile with n ≥ 8 and a positive significant correlation and met 
all assumptions for simple linear regression. Both included and excluded datasets are included as supplementary 
material. Stable isotope values are reported or recalibrated to Vienna Pee Dee Belemnite, VPDB, for both δ13C 
and δ18O. The elevation, plant community, species, source water δ18O values and correlation coefficient of the 
δ13C:δ18O relationship were reported from each study (Table S5).

We use modern meteorological data (mean annual temperature [MAT], mean annual precipitation [MAP], 
annual relative humidity [RH], annual average vapour pressure deficit [VPDannual,], MAThigh and MATlow) as 
provided by the original authors or gathered from the closest weather station to each location (Table S5). VPD 
is reported in kilopascals (kPa). Modeled values of monthly maximum and minimum VPD for US locations 
are reported from the PRISM dataset (PRISM Climate Group, Oregon State University) and are also listed in 
supplementary data. We use average annual VPD for the transfer functions because the use of 50 year annual 
averages avoids consideration of short-term variations of source water δ18O17, and because it allowed for parity in 
VPD estimates across international sites. Annual average VPD, when not author- provided, was calculated using 
annual average annual relative humidity (RH), MAT, and saturation vapour pressure (SVP, varies as a function 
of MAT) and displayed in kPa using the following formula1,2

A partial-least squares regression was performed on each modern dataset, and the slope of the δ13C:δ18O 
relationship (S as a fraction) was computed for both cellulose and pedogenic carbonate datasets that met inclu-
sion criteria and model assumptions for ordinary least-squares regression.

Using our compiled modern cellulose dataset, we plotted δ18O:δ13C slope and annual average VPD on the 
modelled slopes versus VPD calibrated for P. radiata reported by Barbour et al.8 (Fig. 2e). For ease of comparison 
with the model8, we plotted our data to show δ18O:δ13C slopes (S−1), whereas δ13C:δ18O slopes (S) are used as 
previously suggested for paleo-VPD estimates. We then fit least-squares regressions to the scenarios proposed 
by Barbour et al.8 to get slopes of 0.11 when gs alone varies, 0.17 when both gs and Vcmax vary, and 1.34 when gs 
and Vcmax vary while gs varies over a limited range (Table S6).

Since VPD predictions using fossil samples assumes large uncertainties in both x and y variables, we used 
orthogonal least-squares regression to correlate the slope of the δ13C:δ18O relationship with the annual atmos-
pheric vapour pressure deficit where the cellulose or pedogenic carbonate formed (Fig. 4). We accounted for 
uncertainty in VPD predictions by summing errors in quadrature with Gaussian error propagation (Table S5). 
These errors included A) the standard error of each modern data point’s δ13C:δ18O slope when slope was calcu-
lated from raw data; B) the standard error of modern VPD measurements when calculated from average climate 
statistics (± 0.13 kPa)41,42; and C) the standard error of the transfer functions. We compared the δ13C:δ18O rela-
tionship in modern and fossil samples (Fig. 5) by plotting several of the previously published isotopic datasets 
we included. We included the Metasequoia dataset because A) there was a positive correlation between δ13C and 
δ18O; B) it met all the inclusion criteria (Table S4); and C) it was the only dataset that provided an independent 
estimate for both RH and MAT for comparison to the VPD estimate presented here. Modern and fossil cel-
lulose δ18O were normalized to the VPDB scale (Table S7) for comparisons with modern and fossil pedogenic 
carbonate δ18O.
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