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ABSTRACT

Quantum computing (QC) is a new paradigm offering the potential
of exponential speedups over classical computing for certain compu-
tational problems. Each additional qubit doubles the size of the com-
putational state space available to a QC algorithm. This exponential
scaling underlies QC’s power, but today’s Noisy Intermediate-Scale
Quantum (NISQ) devices face significant engineering challenges
in scalability. The set of quantum circuits that can be reliably run
on NISQ devices is limited by their noisy operations and low qubit
counts.

This paper introduces CutQC, a scalable hybrid computing ap-
proach that combines classical computers and quantum computers
to enable evaluation of quantum circuits that cannot be run on
classical or quantum computers alone. CutQC cuts large quantum
circuits into smaller subcircuits, allowing them to be executed on
smaller quantum devices. Classical postprocessing can then re-
construct the output of the original circuit. This approach offers
significant runtime speedup compared with the only viable cur-
rent alternative—purely classical simulations—and demonstrates
evaluation of quantum circuits that are larger than the limit of QC
or classical simulation. Furthermore, in real-system runs, CutQC
achieves much higher quantum circuit evaluation fidelity using
small prototype quantum computers than the state-of-the-art large
NISQ devices achieve. Overall, this hybrid approach allows users
to leverage classical and quantum computing resources to evaluate
quantum programs far beyond the reach of either one alone.
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1 INTRODUCTION

Quantum computing (QC) has emerged as a promising computa-
tional approach with the potential to benefit numerous scientific
fields [41]. For example, QC offers the possibility of reduced com-
putational time for problems in machine learning [8, 27], chem-
istry [1, 25], and other areas [31]. Some of the earliest QC work
shows that quantum algorithms for factoring [43] can be exponen-
tially faster and that database search [17] can be polynomially faster
than their classical counterparts. However, these quantum algo-
rithms assume the existence of large-scale, fault-tolerant, universal
quantum computers.

Instead, today’s quantum computers are noisy intermediate-
scale quantum (NISQ) devices [39], and major challenges limit their
effectiveness. Noise can come from limited coherence time [24],
frequency selection for individual qubits [26], crosstalk among
qubits [33], and limited control bandwidth [42]. Because of these
and other issues, the difficulty of building reliable quantum com-
puters increases dramatically with increasing number of qubits. For
example, Figure 1 shows the fidelities obtained from executions of
the Bernstein—Vazirani (BV) algorithm on IBM quantum computers
with increasing number of qubits. We executed quantum circuits
of only half the size of the devices themselves and mapped the
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Figure 1: Using IBM’s quantum computers to execute the
Bernstein-Vazirani (BV) algorithm. Problem instance sizes
were selected to occupy half of the device qubits. Fidelity
(correct answer probability) decreases rapidly for larger de-
vices and drops below 1% for a 10-qubit BV executed on the
20-qubit Johannesburg device. The 53-qubit Rochester de-
vice fails to produce any meaningful results for a 26-qubit
BV circuit.

circuits to use the best qubits on the devices by using a state-of-the-
art noise-adaptive compiler [32]. However, larger devices realize
significantly worse fidelity than do smaller devices.

More fundamentally, such intermediate-scale quantum devices
are hard limited by their qubit count. Currently, only small quantum
circuits can be run on small quantum computers. The largest super-
conducting quantum computers available today have 53 qubits [3,
21], and their relatively poor fidelity further limits the size of cir-
cuits that can be run. Large neutral atom qubit arrays have been
developed recently, but achieving high gate fidelity remains a sig-
nificant challenge [16].

Both the noise and the intermediate-scale characteristics of NISQ
devices present significant obstacles to their practical applications.
On the other hand, the only currently viable alternative for QC
evaluation—classical simulations of quantum circuits—produces
noiseless output but is not tractable in general. For example, state-of-
the-art full-state classical simulations of quantum circuits of merely
45 qubits require tens of hours on thousands of high-performance
compute nodes and hundreds of terabytes of memory [52].

This work uses circuit cutting to expand the reach of small
quantum computers with partitioning and postprocessing tech-
niques that augment small QC platforms with classical computing
resources. We develop the first end-to-end hybrid approach that
automatically locates efficient cut positions to cut a large quantum
circuit into smaller subcircuits that are each independently exe-
cuted by using quantum devices with fewer qubits. Via scalable
postprocessing techniques, the output of the original circuit can
then be reconstructed or sampled efficiently from the subcircuit
outputs.

To evaluate the performance of CutQC, we benchmarked six
different quantum circuits that represent a general set of circuits
for gate-based QC platforms and promising near-term applications.
We demonstrate executing quantum circuits of up to 100 qubits
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- State Vector Simulation (Ideal) (a)
Quantum Quantum Device Qc b)
Circuit (noisy, shot-based) Evaluation
Partition large circuit into
subcircuits, execute CutQC (©)
-~ independently Evaluation

(noisy, shot-based)

Figure 2: Different quantum circuit evaluation modes. (a)
Purely classical simulation produces the ground truth to ver-
ify other evaluation outputs. (b) Purely quantum evaluation
on quantum computers. Multiple vendors provide cloud ac-
cess to their devices. (c) Our hybrid mode, which is orders of
magnitude faster than (a), produces much less noisy outputs
than (b), and evaluates much larger circuits than (a) and (b).

on existing NISQ devices. This is significantly beyond the current
reach of either quantum or classical methods alone.
Our contributions include the following:

(1) Expanding the size of quantum circuits that can be run on
NISQ devices and classical simulation by combining the two.
Our method allows executions of quantum circuits more than
twice the size of the available quantum computer backend
and much beyond the classical simulation limit.
Improving the fidelity of quantum circuit executions on
NISQ devices. We show an average of 21% to 47% improve-
ment to y? loss for different benchmarks by using CutQC
with small quantum computers, as compared with direct
executions on large quantum computers.

Speeding up the overall quantum circuit execution over
classical simulations. We use quantum computers as copro-
cessors to achieve 60X to 8600X runtime speedup over clas-
sical simulations for different benchmarks.

@

~

3

=

2 BACKGROUND

This section introduces quantum circuits and explains the differ-
ences between several quantum circuit evaluation modes. For a
more comprehensive introduction to quantum computing we refer
the reader to [13, 34].

Quantum programs are expressed as circuits that consist of a
sequence of single- and multiqubit gate operations. Quantum cir-
cuits can be evaluated by using classical simulations, on quantum
computers, or in a hybrid mode as explored in this paper. Figure 2
provides an overview of the different evaluation modes. Several sim-
ulation and hardware QC platforms recently emerged [15, 29, 40].
One widely used package is the IBM Qiskit [2], which allows simu-
lation and cloud access to IBM’s quantum hardware.

State vector simulation (Figure 2a) is typically an idealized noise-
less simulation of a quantum circuit. All quantum operations are
represented as unitary matrices. N-qubit operations are 2NV x 2V
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Figure 3: Procedure to cut one qubit wire. The wire between
vertices u and v (left) can be cut by (as shown on the right)
summing over four pairs of measurement circuits appended
to u and state initialization circuits prepended to v. Measure-
ment circuits in the I and Z basis have the same physical im-
plementation. The three different upstream measurement
circuits and the four different downstream initialization cir-
cuits are now separate and can be independently evaluated.

unitary matrices. State vector simulation executes circuits by se-
quentially multiplying each gate’s corresponding unitary matrix
with the current state vector. This yields an error-free output repre-
sented as complex amplitudes, which cannot be obtained on quan-
tum computers. This evaluation mode scales exponentially and
serves only to provide the ground truth for benchmarking NISQ
devices for small quantum circuits. We use this evaluation mode
as a baseline to verify the output of modes (b) and (c) in Figure 2
and to compute the y? metric to quantify the noise and quality of
quantum circuit executions.

Physical executions on NISQ computers use a shot-based model.
Quantum algorithms are first compiled to satisfy device-specific
characteristics such as qubit connectivity, native gate set, noise, and
crosstalk [32, 33]. A real NISQ device then executes the compiled
quantum circuit thousands of times (“shots”) in quick succession.
At the end of each shot, all qubits are measured; and the output, a
classical bit string, is recorded. After all shots are taken, a distribu-
tion of probabilities over the observed states is obtained. Section 6
compares the runtimes of the state vector simulation (Figure 2a)
and CutQC evaluation (Figure 2c) modes. We also compare the
execution fidelities of the QC evaluation (Figure 2b) and CutQC
evaluation (Figure 2c) modes.

3 CIRCUIT CUTTING

This section presents an overview of the theory behind cutting a
quantum circuit. Figure 4 offers an illustrative example, where one
cut separates a 5-qubit quantum circuit into 2 subcircuits of 3 qubits
each. Time goes from left to right in quantum circuit diagrams, and
each row represents a qubit wire. CutQC performs vertical cuts on
qubit wires, in other words, timewise cuts.

3.1 Circuit Cutting: Theory

The physics theory behind the ability to cut a qubit wire originates
from the fact that the unitary matrix of an arbitrary quantum op-
eration in a quantum circuit can be decomposed into any set of
orthonormal matrix bases. For example, the set of Pauli matrices
I1,X,Y, Z is a convenient basis to use. Previous work in theoretical
physics proved the mathematical validity of decomposing unitary
matrices of quantum operations but with an exponentially higher
overhead [37].
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Specifically, an arbitrary 2X2 matrix A can be decomposed as

_ Tr(ADI+Tr(AX)X + Tr(AY)Y + Tr(AZ)Z
; .

A (0

This identity, however, requires access to complex amplitudes,
which are not available on quantum computers. To execute on
quantum computers, we further decompose the Pauli matrices into
their eigenbasis and organize the terms. We obtain the following
identity in cutting a quantum wire timewise.

_ Al +Ar+ A3+ Ay

A . @
where
Ay = [Tr(AD) +Tr(AZ)]0) (0|
Ay = [Tr(AD)-Tr(AZ)] 1) (1]
Az = Tr(AX)[2]+) (+| =0} (0] - [1) (1]]
Ay = Tr(AY)[2[+i) (+i| —10) (0] - 1) (1]]

Each trace operator corresponds physically to measure the qubit
in one of the Pauli bases. And each of the density matrices corre-
sponds physically to initialize the qubit in one of the eigenstates.
Figure 3 shows the resulting subcircuits and the reconstruction
procedure incurred when making a single cut. Since measuring
a qubit in either the I or Z basis corresponds physically to the
same quantum circuit, three different upstream subcircuits and four
different downstream subcircuits result. Four pairs of Kronecker
products between the subcircuit outputs are then performed and
summed together to reconstruct the uncut circuit output. A simi-
lar procedure can then be applied to more than one cutting point
in a large quantum circuit in order to split it into a few smaller
subcircuits.

3.2 Circuit Cutting: Example

Consider the quantum circuit example in Figure 4. Here we show
how the example 5-qubit circuit can be cut to fit on a 3-qubit device.
First, we define notation for a circuit’s output state probability
distribution. Let the input to an n-qubit circuit be initialized to the
|90, - - -, qn—1) state, where g; € {|0),|1),|+), |+i)}. Let the output
be measured in the My, ..., M,y basis, where M; € {[,X,Y,Z}.
We use the notation C(|qo, ..., qn-1); Mo, - . ., Mu—1) to represent
a quantum circuit C with its qubits initialized in the given states
and measured in the given basis.

3.2.1 Selecting the Cut Locations. Assuming for now that cut loca-
tions are chosen manually, we show in Figure 4 that a single cut
can be made to qubit g2 between the first two cZ gates, splitting the
original 5-qubit circuit into two circuits containing 3 qubits each.
Now, the last qubit in subcircuit 1 (subcircly) and the first qubit in
subcircuit 2 (subcirc2p) can be mapped to the u and v appearing in
the right-hand side of Figure 3. Section 4.1 describes the automation
of the selection of cut locations.

3.2.2  Attributing the Shots. Note that subcirclz does not appear in
the final output of the uncut circuit. Therefore each shot obtained
from executing the subcircuit 1 needs to be multiplied by a +1
factor, contingent on the measurement outcomes of qubit subcirc1,.
Specifically, each measurement outcome of subcircuit 1 should be
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subcirc1o 0) —{ H] Re(7/2)
subcirc11 0) — H Re(m/2)
subcirc1, 0) LXY
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Figure 4: Example of cutting a five-qubit circuit into two smaller subcircuits of three qubits each. The subcircuits are produced
by cutting the g, wire between the first two cZ gates. The three variations of subcircuit; and four variations of subcircuit, can
then be evaluated on a 3-qubit quantum device, instead of a 5-qubit device. The classical postprocessing involves summing
over four Kronecker products between the two subcircuits for the one cut made.

attributed to the final output as

xx0,xx1— +xx My =1

®)

xx0— +xx

xx1— —xx otherwise,

where xx is the measurement outcome of the qubits subcircly and
subcircly.

We demonstrate an example of how the probability of the state
|01010) of the uncut circuit is calculated. The relevant state of
subcircuit 1 is |01). According to Equation 3, the four subcircuit 1
terms involved in the reconstruction are

pi1 = p(|010) 1) + p(|011) I) + p(]010) |Z) - p(|011) | Z)
pi2 = p(|010) 1) + p(|011) ) - p(]010) |Z) + p(|011) | Z)
3 = p(|010)|X) - p(]011) |X)
pra = p(|010)[Y) - p(l011) [Y).

The relevant state of subcircuit 2 is |010). Hence, its four terms
are

pz1 = p(|010)]]0))
pzz = p(|010) 1))
p23 = 2p(|010)[[+)) — p(]010) [10)) — p(|010) [[1))
p2a = 2p(|010)[|5)) — p(]010) | |0)) — p(|010) | [1}).

3.2.3 Building the Full Probabilities. The full probability distribu-
tion for the uncut circuit can then be reconstructed in the classi-
cal postprocessing step by taking the relevant outputs of the two
smaller subcircuits, performing the four pairs of Kronecker prod-
ucts, and summing together, as indicated in Figure 3. Specifically,
the final reconstructed probability of the uncut state |01010) is

4
1
p(101010)) = - ;pl,i ® poi.

The mathematical theory of circuit cutting [37] proves that the
CutQC output strictly equals the output of the uncut circuit. How-
ever, if too few shots were taken for the subcircuits, the subcircuit
probabilities can be far from convergence. As a result, it is possible
to get a negative reconstructed probability output. However, much
like a user is expected to take enough shots when evaluating an
uncut circuit, one is also expected to take sufficient shots for the
subcircuits in the CutQC mode. Our real-device experiments took
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at most 8,192 shots for one subcircuit, depending on the size of the
subcircuit, and we did not observe negative results.

3.3 Circuit Cutting: Challenges

The first challenge is to find cut locations. While quantum circuits
can always be split into smaller ones, finding optimal cut locations
is crucial in order to minimize the classical postprocessing overhead.
In general, large quantum circuits may require more than one cut
in order to be separated into subcircuits. In this case, the cutting
scheme evaluates all possible measurement-initialization combina-
tions. The resulting number of Kronecker products is 45, with K
being the number of edges cut. For general quantum circuits with
n quantum edges, this task faces an O(n!) combinatorial search
space. Section 4.1 addresses this problem with mixed-integer pro-
gramming. Our work shows that with only a few cuts, many useful
applications can be tractably mapped to NISQ devices currently
available.

The second challenge is to scale the classical postprocessing.
Large quantum circuits have exponentially increasing state space
that quickly becomes intractable to even store the full-state proba-
bilities. Section 4.3 addresses this problem with a dynamic definition
algorithm to efficiently locate the “solution” states or sample the full
output distribution for large quantum circuits beyond the current
QC and classical simulation limit.

4 FRAMEWORK OVERVIEW

Figure 5 summarizes the key components of CutQC. Our framework
is built on top of IBM’s Qiskit [2] package in order to use IBM’s
quantum devices, but we note that the hybrid approach works with
any gate-based quantum computing platforms. Given a quantum
circuit specified as an input, the first step is to decide where to
make cuts. We propose the first automatic scheme that uses mixed-
integer programming to find optimal cuts for arbitrary quantum
circuits. The backend for the MIP cut searcher is implemented in
the Gurobi solver [18]. Small quantum devices then evaluate the
different combinations of the subcircuits. Eventually, a parallel C
implementation of the reconstructor postprocesses the subcircuit
outputs and reproduces the original full circuit outputs from the
Kronecker products.
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Figure 5: Framework overview of CutQC. A mixed-integer
programming (MIP) cut searcher automatically finds opti-
mal cuts given an input quantum circuit. The small sub-
circuits resulting from the cuts are then evaluated by us-
ing quantum devices. The reconstructor then reproduces the
probability distributions of the original circuit.

4.1 MIP Cut Searcher

Unlike the manual example in Section 3.2, CutQC’s cut searcher
uses mixed-integer programming to automate the identification
of cuts that require the least amount of classical postprocessing.
Our problem instances are solved by the Gurobi mathematical
optimization solver [18].

Without loss of generality, the framework assumes that the input
quantum circuit is fully connected. That is, all qubits are connected
via multiqubit gates either directly or indirectly through interme-
diate qubits. A quantum circuit that is not fully connected can be
readily separated into fully connected subcircuits without cuts, and
these do not need the classical postprocessing techniques to sew
together. We focus on the more difficult general cases where cutting
and reconstruction are needed.

4.1.1 Model Parameters. Besides an input quantum circuit, the
MIP cut searcher requires the user to specify the maximum number
of qubits allowed per subcircuit, D, equal to the size of the quantum
devices available to the user. Another input is the maximum number
of subcircuits allowed, nc.

A quantum circuit can be modeled as a directed acyclic graph G.
Quantum operations are always applied sequentially to the qubits,
and neither classical nor quantum control dependencies are permit-
ted under current hardware restrictions. The single-qubit gates are
ignored during the cut-finding process, since they do not affect the
connectivity of the quantum circuit. The multiqubit quantum gates
are then modeled as the vertices V = {01, ...,0n, }, and the qubit
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wires are modeled as the edges E = {(eq, €p) : eq € V, e € V}in
the graph. Choosing which edges to cut in order to split G into
subcircuits C = {cl, .. .,c,,c} can also be thought of as clustering
the vertices. The corresponding cuts can then obtained from the
vertex clusters.

The MIP searcher uses a parameter w associated with each vertex
v € V that indicates the number of original input qubits directly
connected to v. That is, w, € {0, 1,2}, Yo € V. Note that w depends
only on the input quantum circuit. In this paper, w, can only take
the values 0, 1, or 2 since we consider only circuits with gates
involving at most two qubits. This approach is consistent with the
native gates supported on current superconducting hardware.! Any
gates involving more than two qubits can be decomposed into the
native gate set before execution on quantum computers.

4.1.2  Variables. Inspired by constrained graph clustering algo-
rithms [4], we define the following variables associated with the
vertices and the edges.

1 if vertex v is in subcircuit ¢
Yoc = ) ,YoeV,VceC
0 otherwise
1 if edge e is cut by subcircuit ¢
Xec = ) ., Ye€e E,Yce(C
0 otherwise

The number of qubits required to run a subcircuit is the sum of two
parts, namely, the number of original input qubits and the number
of initialization qubits induced by cutting (in Figure 4, subcirc2y is
an example of an initialization qubit). The number of original input
qubits, ¢, in each subcircuit depends simply on the weight factors
wy for the vertices in the subcircuit and is given by

ac = Z Wy X Yy, Ve € C.
veV

4)

A subcircuit requires initialization qubits when a downstream ver-
tex ey, is in the subcircuit for some edge (eq, €p) that is cut. The
number of initialization qubits, p¢, is hence

2

e:(eq.ep)€E

©)

pc = Xe,e X Yep,c, Ve € C.
A subcircuit requires measurement qubits when an upstream vertex

eq is in the subcircuit for some edge (eq, €p) that is cut. The number
of measurement qubits, O, is hence

2

e:(eq.ep) EE

O¢ = (6)

Xe,e X Yeg,cr Ve € C.

Consequently, the number of qubits in a subcircuit that contributes
to the final measurement of the original uncut circuit is

fe ™)

4.1.3 Constraints. We next turn to constraints. We require that
every vertex be assigned to exactly one subcircuit.

Zyv,czl, YoeV
ceC

ac + pe — O, Ve € C.

®)

Current superconducting architectures are limited to 1- and 2-qubit gates; other
architectures (based on ion traps or neutral atoms) allow for multiqubit gates. The
MIP cut searcher can easily be generalized to multiqubit gates.
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We also require that the d. qubits in subcircuit ¢ be no larger
than the input device size D.

de=ac+pc <D, VceC 9)

To constrain the variable x, we note that an edge e pointing from
vertex e, to ey, is cut by a subcircuit ¢ if and only if that subcircuit
contains one and only one of these two vertices. An edge, if cut at
all, is always cut by exactly two subcircuits. Thus, x, . = 0 indicates
that either e is not cut at all or that e is cut somewhere else but
just not in subcircuit c. The constraint on the variable x is hence
defined as

(10)

This nonlinear constraint can be encoded by linear constraints:

Xee = Yeg,c D Yep,c, Ve = (eq, ep) € E,c € C.

Xee = Yege T Yep,c

Xee 2 Yege ~ Yep,c (11)
Xee 2 Yep,c — Yeg,c

Xee < 2 - Yea,c — Yep,c-

For a given solution to this optimization problem, there are
nc! possible relabelings with identical objective function values.
Breaking all such symmetries can significantly decrease the time
required to solve problem instances but can require introducing
many auxiliary variables and constraints [35]. Nevertheless, our
formulation breaks by forcing vertices with smaller indices to be in
subcircuits with smaller indices. Specifically, we require vertex 1 to
be in subcircuit 1, vertex 2 to be in subcircuit 1 or subcircuit 2, and
so on. This requirement translates to the following constraint:

nc

Z Yk,j =0, k=1,...,nc.
Jj>k+1

(12)

4.1.4  Objective Function. For efficiency and without loss of gen-
erality, we seek to minimize the classical postprocessing overhead
required to reconstruct a circuit from its subcircuits. Therefore, the
objective is set to be the number of floating-point multiplications
involved in the build step.

The number of cuts made is given by

K:%ZZX&C,

ceCecE

(13)

The objective function for the MIP cut searcher is hence the recon-
struction time estimator:

e

(14)

c=2 i=1

This cost objective accurately captures the bulk of the computa-
tion when we aim to build the full 2" probabilities for an n-qubit
uncut circuit, under the full definition CutQC mode (discussed in
Section 4.2).

However, there is a prohibitive memory requirement for storing
the 2" probabilities as floating-point numbers when circuits get
larger. Section 4.3 introduces a novel dynamic definition method to
efficiently sample very large circuits with a much lower postpro-
cessing overhead. Nevertheless, we chose to minimize Equation 14
during cut search as a positively correlated objective.
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The overall MIP cut search problem is therefore
L (Eq. 14)
Egs. (4) — (13).

minimize objective
. (15)
s.t. constraints

4.2 Classical Postprocessing

We developed two types of classical postprocessing algorithms: a
full-definition (FD) query and a dynamic-definition (DD) query al-
gorithms. The difference in these methods lies in whether the entire
2" full-state probability output of the uncut circuit is reconstructed.

FD query reconstructs the probability for every possible out-
put state of the uncut circuit. To make the postprocessing more
efficient, we developed three techniques: greedy subcircuit order,
early termination, and parallel processing. The combination of these
techniques improves the performance of the CutQC postprocessing
toolchain. In addition, we used the kernel functions in the Basic
Linear Algebra Subprograms (BLAS) through the Intel Math Kernel
Library [51] to optimize the performance on CPUs.

The greedy-subcircuit-order technique exploits the fact that a
large quantum circuit is (in general) cut into subcircuits of different
sizes. The order of subcircuits in which the reconstructor computes
the Kronecker products incurs different sizes of carryover vectors
and affects the total number of floating-point multiplications. Our
approach places the smallest subcircuits first in order to minimize
the carryover in the size of the vectors. Since the reconstructor
must eventually reproduce a probability vector with size equal to
the Hilbert space of the uncut circuit, this technique may reduce
the overhead by up to 50%.

The early termination technique exploits the fact that a Kro-
necker product term ends up being a vector of all zeros if any of its
components contains only zeros. Such a Kronecker product term
hence does not contribute to the full circuit output and can be
ignored by the reconstructor. Experiments using classical simu-
lation to produce the subcircuit outputs show that this situation
happens surprisingly often. As a result, many Kronecker terms can
be skipped by the reconstructor.

The parallel processing approach exploits the fact that the vector
arithmetics have no data dependency at all and can hence be easily
executed in parallel. Individual compute nodes read the subcircuit
output data stored on disk in order to avoid the need for any in-
ternode communications. This approach allows our toolchain to
scale almost perfectly with increasing numbers of compute nodes.

4.3 Dynamic Definition

Quantum circuits can be loosely categorized into two groups. The
first group produces sparse output probabilities, where just a few
“solution” states have very high probabilities and the “non-solution”
states have zero probabilities. Most known quantum algorithms
fall into this category, such as Grover search [17], the Bernstein—
Vazirani algorithm [7], and the Quantum Fourier Transform [12].
This is where QC shows promise over classical computing by effi-
ciently locating the “solution” states.

The second group of circuits produces dense output probabilities,
where many states have nonzero probabilities. For this type of
circuit, even with access to quantum computers large enough to
execute the circuits directly, querying the FD probability output
quickly becomes impossible. The reason is that (1) an exponentially
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increasing amount of memory is required to store the probabilities
and (2) an exponentially increasing number of shots are required on
a quantum computer before the probabilities converge. Fortunately,
knowing the FD probabilities of all states simultaneously is usually
not of interest. Instead, users are interested in the distribution itself.
Examples include the 2-D random circuits from Google [9], which
produce the Porter-Thomas distribution [38].

DD query allows us to find the “solution” states or sample dense
probability distributions efficiently with very large quantum cir-
cuits, even when storing the full-state probability is not tractable.
DD query produces a probability distribution that merges certain
states into one bin and maintains the sum of their probabilities
instead of the individual states within. Algorithm 1 presents the DD
algorithm. In each recursion, DD runs the subcircuits and merges
subcircuit states before postprocessing. The active qubits in each
recursion determine the number of bins, and the merged qubits
determine which states are merged in a single bin. Users can choose
which qubits are active, that is, which qubits have their states ac-
tively explored. For those qubits, DD then recursively zooms in on
their more prominent (i.e., higher probability) bins; this lets DD
efficiently obtain fine-grained probabilities for the states within the
bins.

Algorithm 1: Dynamic Definition

Initialize empty list probability_bins;
for each DD recursion do

if First recursion then
Choose a subset of qubits to label as active, max

number determined by system memory;

else

Choose the bin from probability_bins with the
largest sum of probability;

Fix the active qubits in the bin according to the
index of the bin; label as zoomed;

Label the rest of the qubits as ;
Attribute the subcircuit shots, group shots with common
qubits together;
Reconstruct the 2#4¢/1%¢ probability output for the
active qubits; append to probability_bins;

For sparse outputs, DD can recursively pinpoint the “solution”
states and their probabilities. To do so, DD query follows a DFS-like
search strategy to recursively choose the qubit_state with higher
probabilities to zoom in on. By recursively locating the active qubits
in their most probable zoomed states, “solution” states can be easily
located after just a few recursions. For an n-qubit full circuit, the
number of recursions needed is O(n).

For dense outputs, DD can build a “blurred” probability land-
scape of the exact FD probability distribution, with the ability to
arbitrarily “zoom in” on any region of the Hilbert space. To do so,
DD query follows a BFS-like strategy to choose the qubit_state
with higher probabilities to zoom in on. Users can decide the num-
ber of recursions and subset of states of interest to zoom in on. This
is equivalent to efficient sampling of very large circuits on small
quantum computers.
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5 METHODOLOGY
5.1 Backends

We test our approach by running postprocessing and classical sim-
ulation benchmarks on a medium-size computing cluster using up
to 16 compute nodes. Each node has an Intel Xeon CPU E5-2670 v3
at 2.30 GHz, with 256 GB allocated DDR4 memory [22]. We found
16 compute nodes to be sufficient to process the data generated by
our tests (reported in the experiments section).

We first tested FD query for circuits up to 35 qubits, where storing
the full-state probability is still tractable. We cut original circuits
and mapped the resulting subcircuits to quantum computers of
various sizes to demonstrate executing circuits larger than device
sizes and study the postprocessing runtime. Because NISQ devices
currently do not allow high-fidelity executions of circuits beyond
just a few qubits, we executed the subcircuits with statevector
simulation to demonstrate the effectiveness of our postprocessing
techniques.

We tested DD query for circuits up to 100 qubits, significantly be-
yond the current classical and quantum limit. Because no backends
are capable of producing accurate circuit executions on this scale,
we used uniform distributions as the subcircuit output to study the
runtime.

Since gate times of superconducting quantum computers are on
the order of nanoseconds [3], we assume that quantum computer
runtime is negligible in the comparisons. CutQC allows executing
the subcircuits on many small quantum computers in parallel to fur-
ther reduce the time spent on quantum computers. In addition, our
experiments limit the MIP cut searcher to search for cuts that will
divide an input circuit into at most 5 subcircuits with 10 cuts. The
set of cuts with the smallest objective function value is then taken
to be the optimal solution, with ties broken arbitrarily. MIP is able
to find an optimal solution within minutes for all the experiments
reported in this paper; its runtime therefore is also ignored.

5.2 Metric

For the runtime analysis, we allow CutQC to compute the inde-
pendent Kronecker products during postprocessing for at least 10
minutes on each compute node, after which we scale the runtime
according to the total number of Kronecker products required. For
cases where < 10 minutes postprocessing is required, our bench-
mark reports the end-to-end wall time. We verified the scaled-up
runtime against the end-to-end runtime for several medium-sized
circuits to confirm the validity of our scaling approach. This ap-
proach is accurate because each Kronecker product requires the
same amount of computation.

Besides the runtime analysis, we ran CutQC with IBM’s 5-qubit
Bogota device to compare the fidelity with directly executing the
circuits on IBM’s 20-qubit Johannesburg device. As NISQ devices
improve, CutQC can be applied to larger devices to produce useful
executions on larger scales. To quantify the noise behaviors, we
used y? loss

(16)
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where a; are elements of circuit execution probability distributions
(from Figure 2b, 2c) and b; are elements of the ground truth prob-
ability distributions (from Figure 2a). The smaller the y? is, the
better the execution results are.

5.3 Benchmarks

We used the following circuits as benchmarks.

(1) Supremacy. This is a type of 2-D random circuit adapted
from [9]. It is an example of circuits with dense probability
output and was used by Google to demonstrate quantum
advantage [3]. The circuit depth was 10 in our experiments.
We verified that the rectangular shapes (such as 2*10) are
much easier to be cut and require little postprocessing. We
therefore focused only on the more difficult near-square
shapes, with the two dimensions differing by up to 2 qubits
(such as 4*5). Hence not all numbers of qubits are valid.

(2) Approximate Quantum Fourier Transform (AQFT). QFT [12]
is a common subroutine in many quantum algorithms that
promise speedup over classical algorithms. AQFT has been
proposed to yield better results than QFT on NISQ devices [5].

(3) Grover. In comparison with classical algorithms this quan-
tum Grover search algorithm offers polynomial speedup in
unstructured database search [17]. We used the Qiskit [2]
implementations of the Grover search that require n—1 ancil-
las; hence only odd numbers of qubits are valid. Additionally,
Qiskit’s oracle construction does not scale beyond 59-qubit
Grover circuits.

(4) Bernstein—Vazirani (BV). This quantum algorithm solves the
hidden string problem more efficiently than classical algo-
rithms do [7].

(5) Adder. Adder is a quantum ripple-carry adder with one an-
cilla and linear depth [14]. It is an important subroutine in
quantum arithmetic involving summing two quantum regis-
ters of the same width; hence only even numbers of qubits
are valid.

(6) Hardware efficient ansatz (HWEA). HWEA is an example
of near-term variational applications, a promising class of
quantum algorithms on NISQ devices [30].

The benchmark circuits represent a general set of circuits for gate-
based QC platforms and promising near-term applications.

6 EXPERIMENT RESULTS
6.1 Full Definition Query

The size of quantum devices serves as the baseline to demonstrate
CutQC'’s ability to expand the size of quantum circuits. The Qiskit
runtime of classically simulating the benchmark circuits serves as
the baseline to demonstrate CutQC’s ability to speed up quantum
circuit evaluations.

The experiments in Figure 6 show the effect of different bench-
marks, quantum circuit sizes, and quantum computer sizes on post-
processing runtime. We used 10-, 15-, 20-, and 25-qubit quantum
computers and ran benchmark circuits larger than the devices in FD
query using 16 compute nodes for postprocessing. We achieve an
average of 60X to 8600X runtime speedup over classical simulation
for our benchmarks.
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Figure 6: Use of CutQC to execute circuits mapped to 10-,
15-, 20-, and 25-qubit quantum computers in FD query. The
horizontal axis shows the size of the quantum circuits; the
vertical axis shows the postprocessing runtime in log scale.
Experiments are done with all optimization techniques and
on 16 compute nodes. BV and HWEA have similar runtimes,
and the lines are not discernible in the 25-q plot. CutQC en-
ables FD query almost always faster than classical simula-
tions do. CutQC offers an average of 60X to 8600X runtime
speedup over classical simulation alternatives for different
benchmarks.

Some benchmarks cannot be mapped onto the quantum comput-
ers within 10 cuts and 5 subcircuits, Figure 6 thus has some of the
benchmarks terminated early. Supremacy, Grover, and Adder face
size limitations mentioned in Section 5, and we examine only an
even number of qubits for AQFT, BV, and HWEA.

The type of benchmarks, quantum circuit sizes, and available
quantum computer sizes are all important contributors to runtime.
First, some benchmarks are harder to cut and require more post-
processing overhead. Specifically, Supremacy, Grover, and AQFT
are more densely connected circuits and generally require more
postprocessing. Second, larger quantum circuits generally require
more postprocessing. The reason is that executing quantum circuits
that significantly exceed the available quantum resources has to
rely more on classical computing resources. In some cases, the clas-
sical postprocessing incurred outweighs any benefit from having
quantum computers, and the resulting runtime is longer than clas-
sical simulation. Third, having larger quantum computers generally
improves the runtime. However, having larger quantum computers
faces diminishing returns. The postprocessing overhead eventually
plateaus when the quantum computer is large enough to support an
efficient partitioning of the circuit. For example, the 57 Supremacy
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Figure 7: Use of CutQC to execute a 4-qubit BV circuit on 3-
qubit quantum computers in DD query. During each recur-
sion, we plot the probability of every state in a merged bin
as the average of the sum of probabilities for that bin. With
recursive zoom-in, recursion 4 shows that the sum of proba-
bility for the output state |1111) is 1; that is, it is the solution
state.
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Figure 8: Use of CutQC to execute a 4-qubit supremacy cir-
cuit on 3-qubit quantum computers in DD query. By recur-
sively zooming in and improving the definition for bins with
higher probabilities, CutQC allows building a better approx-
imation to the ground truth distribution.

circuit is cut into 2 subcircuits with 5 cuts on both 20- and 25-qubit
computers and has similar runtime.

6.2 Dynamic Definition Query

We used DD to efficiently sample quantum circuits of which the
full Hilbert space is too large to even store. We first used 4-qubit
BV and Supremacy circuits to illustrate the DD process of locating
the solution state and sampling a target probability distribution.
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Figure 9: Use of CutQC to execute 16- to 24-qubit benchmark
circuits on 15-qubit quantum computers in DD query for a
maximum of 10 recursions or until y*> = 0. Maximum sys-
tem memory is set to 10-qubit. Solid lines (left axis) show the
decreasing y? as DD obtains more fine-grained information
about the full distribution. Dotted lines (right axis) show the
increasing cumulative runtime of all recursions. In contrast,
classical simulation of 24-qubit circuits takes about 130 sec-
onds on the same classical hardware.

Figure 7 shows results after cutting and executing a 4-qubit BV
on 3-qubit quantum computers. We set the number of active qubits
during each recursion to 1; hence 4 recursions are required to locate
the solution state. Recursion 1 merges qubits 2, 3, and 4 and shows
that the sum of probabilities for output states |0000) to [0111) is 0
and for |1000) to [1111) is 1. Recursion 2 then holds qubit 1 in state
|1) and merges qubits 3 and 4 to show that the sum of probabilities
for output states [1000) to [1011) is 0 and for |1100) to [1111) is 1.
Eventually, recursion 4 successfully locates the solution state to be
[1111). Each recursion stores and computes vectors only of length
21, instead of 2%. DD on larger circuits works similarly.

For circuits with dense output, DD chooses to zoom in and in-
crease the definition for bins with higher probabilities, in order
to reconstruct a blurred probability landscape. Figure 8 shows re-
sults after cutting and executing a 4-qubit Supremacy circuit on
3-qubit quantum computers. Each recursion zooms in on a bin of
states with the highest probability, improving its definition. More
recursions hence allow a closer reconstruction of the ground truth
probability landscape.

Figure 9 shows the evolution of y? via DD for several medium
sized benchmark circuits. BV has exactly one solution state and
hence requires just a few recursions to locate it. HWEA has two
solution states that are maximally entangled. DD recursively im-
proves the definition of the more prominent bins and is also able to
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Figure 10: Use of CutQC to execute circuits mapped to 30-
, 40-, 50-, and 60-qubit quantum devices in DD query. The
vertical axis shows the postprocessing runtime of 1 DD re-
cursion with a definition of 2%° bins.

locate the solution states in just a few recursions. Supremacy has
dense output, its )(2 decreases as DD runs more recursions, without
ever storing the full distribution. Figure 9 evaluates up to 24 qubits
and 10 recursions because the computation of y? takes a long time
for even medium-sized quantum circuits. It is noteworthy that the
per-recursion and cumulative runtime of CutQC is negligible com-
pared with the purely classical simulation runtime on the same
classical hardware.

NISQ devices will gradually improve in fidelity and sizes to allow
evaluating subcircuits beyond the classical simulation limit. CutQC
then will allow the use of those NISQ devices to efficiently evaluate
even larger quantum circuits. We cut and executed circuits of up to
100 qubits and used DD query to sample their blurred probability
landscape with a definition of 23> bins in one recursion. Figure 10
shows the runtime of using 30-, 40-, 50-, and 60-qubit quantum
computers. Larger quantum computers allow the execution of larger
quantum circuits and faster runtime. Therefore, DD offers a way
to efficiently sample large circuits, with the ability to arbitrarily
increase the definition of any subregions of interest by doing more
recursions. This is all without the need for either a large quantum
computer or vast classical computing resources.

6.3 Real QC Runs

To study the effect of device noise on our toolchain, we ran ex-
periments on IBM’s real quantum devices. Figure 11 compares
the circuit output obtained from (a) directly executing circuits on
the state-of-the-art 20-qubit Johannesburg device and (b) execut-
ing circuits with more than 5 qubits on the 5-qubit Bogota device
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Figure 11: Comparison of the 20-qubit Johannesburg quan-
tum computer versus the 5-qubit Bogota device with CutQC.
For each benchmark we find the ideal output distribution
via statevector simulation. We then use this ideal distribu-
tion to compute the y? metric for two execution modes: QC
evaluation on the Johannesburg device ( )(jz) and CutQC eval-

uation utilizing the Bogota device ( Xé)- The reported y? per-
centage reduction is computed as 100 s ( )(; - X?;) / )(;. A distri-

bution that is close to ideal will have a small y? value, and
therefore a positive y? percentage reduction indicates im-
proved performance. Only the AQFT workloads experience
anegative reduction and are omitted. CutQC achieves an av-
erage of 21% to 47% y° reduction for different benchmarks.

with CutQC. We show that CutQC evaluation with small quan-
tum computers produces a lower y? loss and hence outperforms
QC evaluation with large quantum computers. CutQC reduces y?
loss by nearly 60% in the best cases. The experiments stop at 12
qubits because QC evaluation beyond this point succumbs to the
effects of noise and fails to produce meaningful output. Among
the benchmarks, only the AQFT circuits experienced a negative
reduction. This is because AQFT compiled for the current NISQ
devices is much deeper than the other benchmarks. Therefore both
QC and CutQC on AQFT have accuracy too low for meaningful
comparisons. As NISQ devices improve in noise and connectivity,
we expect AQFT to improve.

Despite requiring more subcircuits and readout, CutQC evaluates
circuits with better fidelity. The main reason for such improvements
is that CutQC runs subcircuits that are both smaller and shallower
than the uncut circuit run by the QC mode. Furthermore, CutQC
substitutes the noisy quantum entanglement across subcircuits by
noise-free classical postprocessing. Quantum compilers also are
suboptimal [45] and may affect QC more than they do CutQC, be-
cause the logical circuits they need to compile are more complicated
in the QC mode.

Not only does CutQC need smaller quantum computers, it also
produces better outputs. Therefore, combined with CutQC, building
small but reliable quantum computers becomes much more useful
than merely increasing qubit counts at the cost of degrading fidelity.
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Figure 12: Postprocessing a 4"6 supremacy_grid circuit
mapped to a 15-qubit IBM Melbourne device. Four cuts incur
4* = 256 Kronecker products. The 16-node postprocessing
requires roughly 0.5 seconds, a 260X speedup over classical
simulation alternative. The blue line shows the postprocess-
ing runtime speedup compared with that of a single node.
The black line shows perfect scaling as a reference. Runtime
scales well with the number of compute nodes.

6.4 Discussion — Comparison with Classical
Simulations

Other classical simulation techniques partition qubits, decompose 2-
qubit gates across the partitions, simulate each partition classically,
and employ Feynman path simulation [10, 28]. These methods have
key differences from CutQC: (1) they cannot run on NISQ devices be-
cause they require complex amplitudes of the states, which are not
available from NISQ devices; and (2) they cut 2-qubit gates across
qubit partitions, instead of quantum edges among gates. Because
of the differences in methods, implementations, and experimental
setup, direct comparisons are difficult. However, Feynman path
simulations do not scale well past subcircuits beyond the classical
simulation limit, while CutQC easily scales as NISQ devices become
larger and more reliable, as Figure 10 demonstrates.

As one example, [28] only simulates 220 states with < 1% fi-
delity for up to 56-qubit input quantum circuit. In contrast, CutQC
processes 23° bins in Figure 10 for up to 100 qubits with perfect
postprocessing fidelity. The overall fidelity of CutQC is limited by
NISQ noise, but this will improve as NISQ devices improve, and
these improvements will not increase CutQC’s runtime.

In addition, other classical simulation results make use of su-
percomputers to perform quantum circuit evaluations in parallel.
Directly comparing with such results is challenging because many
simulations often require supercomputers with hundreds to thou-
sands of compute nodes [19, 50, 52], millions of core-hours [49], and
a prohibitive amount of memory [36]. Furthermore, many simulate
only a small subset of output states for large quantum circuits, called
partial state simulation [11, 50]. Most of these approaches do not
scale. CutQC offers advantages in runtime, resources requirement,
and the ability to sample the full output distribution.

First, CutQC requires no internode communication and hence
has nearly perfect multinode scalability. For example, we cut and ex-
ecute a 4”6 Supremacy circuit on the 15-qubit Melbourne quantum
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computer. Figure 12 shows the postprocessing runtime speedup as
the number of parallel nodes increases. The 16-node postprocessing
has a 14X speedup over 1 node. CutQC does not require many com-
pute nodes when the postprocessing incurs only a few Kronecker
products. When more cuts are required, we expect the runtime
to scale well with more compute nodes. Our scaling studies with
1-16 nodes indicate that CutQC can be easily ported to CPU-based
supercomputing platforms to scale to thousands of compute nodes.

Second, the DD query algorithm efficiently samples the full out-
put distribution with good scalability. Partial state simulation pro-
duces the probability only for very few output states, representing
an infinitesimal region of the entire Hilbert space, whereas the
DD query efficiently samples the entire Hilbert space with scalable
runtime (Figure 10).

7 RELATED WORK

Many quantum compilation techniques have been developed with
the goal of improving the performance of NISQ devices. Using
real-time device calibration data to map logical qubits to physical
qubits [32, 48], efficiently scheduling operations to reduce quantum
gate counts [20, 44], and repeating circuit executions to mitigate
error [23, 46, 47] are among the more recently developed techniques.
However, these focus on improving a purely quantum computing
approach and are intrinsically limited by the size and fidelity of
NISQ devices. Specifically, our experiments used the noise adaptive
compiler [32] in both CutQC and QC evaluations. The improved
fidelity we demonstrate is in addition to that given by the compiler.
Furthermore, previous compilers do not allow executions of circuits
beyond quantum computer sizes at all. Our approach can work in
concert with any compilers to execute circuits both larger in size
and better in fidelity.

Theoretical physics approaches have considered trading classical
and quantum computational resources. These approaches, how-
ever, use simple partitioning of qubits [10] or involve exponentially
higher postprocessing [37]. Several works manually separate small
toy circuits with convenient structures as proof-of-concept demon-
strations [6, 53]. Our approach is more flexible, has exponentially
lower overhead, automatically selects cut positions, works with
circuits of arbitrary structures, and is the first end-to-end scalable
toolchain.

Previous works on classical simulation require massive comput-
ing resources [19, 36, 49, 50, 52], or only simulate very few output
states with low fidelity [11, 28, 50].

8 CONCLUSION

This paper demonstrates how to leverage both quantum and classi-
cal computing platforms together to execute quantum algorithms
of up to 100 qubits while simultaneously improving the fidelity
of the output. Our results are significantly beyond the reach of
current quantum or classical methods alone, and our work pioneers
pathways for scalable quantum computing. Even as NISQ machines
scale to larger sizes and as fault-tolerant QC emerges, CutQC’s
techniques for automatically cutting and efficiently reconstructing
quantum circuit executions offer a practical strategy for hybrid
quantum/classical advantage in QC applications.
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A ARTIFACT APPENDIX
A.1 Abstract

Our artifact provides the source codes for the end-to-end CutQC
toolflow. We also provide the benchmarking codes for several sam-
ple runtime and fidelity experiments. The HPC parallel version of
the code is not provided, as different HPC platforms require very
different setups.

A.2 Artifact Checklist

o Algorithm: Mixed Integer Programming, Dynamic Definition, and
Quantum Mechanics.

Compilation: Intel icc (ICC) 19.1.0.166 20191121.

Hardware: IBM superconducting quantum computers.

Run-time state: Runtime is sensitive to CPU usage.

Metrics: Wall clock runtime, y? defined by Equation 16.

Output: Runtime and fidelity are printed by running the Python
script provided.

o Experiments: We use CutQC package to measure the runtime and
fidelity of several quantum circuits.

How much disk space required (approximately)?: About 4GB.

o How much time is needed to prepare workflow (approximately)?:

Under one hour.
o How much time is needed to complete experiments (approx-
imately)?: About 20 minutes for the provided runtime benchmarks
in the Python script. The fidelity script runtime largely depends on
the real-time queue on IBMQ devices. Large customized quantum
circuits take longer.
Archived (provide DOI)?: https://doi.org/10.5281/zenodo.4329804.

A.3 Description

A.3.1 How to Access. The DOI of our artifact is available at:https://doi.org/
10.5281/zenodo.4329804.

A.3.2  Hardware Dependencies. The runtime experiments used classical
computing hardware specified in Section 5. Different hardware may produce
different runtimes, although the relative speedup should be similar.

The fidelity experiments require an active IBMQ account to access the
IBM quantum computers.

A.3.3  Software Dependencies. Python 3.7, Intel icc (ICC) 19.1.0.166, Qiskit
0.23, Gurobi 9.0+.
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A.4 Installation

Users should refer to the README.md in the artifact directory to install
the required software tools.

A.5 Experiment Workflow

To run the runtime benchmark, run the Python script named "runtime_test.py”.
The script should take about 20 minutes to finish. To run the fidelity bench-
mark, run the Python script named "fidelity_test.py”. The runtime largely
depends on the real-time queue on IBMQ devices.

A.6 Evaluation and Expected Results

Speedup over the Qiskit classical simulation is printed to terminal after
running the "runtime_test.py” Python script. The provided script runs ex-
periments on a 15-q QC. y? is printed after running the "fidelity_test.py”
Python script. Expected results are reported in Section 6.

A.7 Experiment Customization

User can adjust the relevant parameters in the provided Python scripts to
run other runtime experiments. The adjustable parameters include size of
QC, size of quantum circuits, type of circuits, number of parallel threads,
max system memory, and IBM devices.

A.8 Notes

Due to the different setup required to run on different HPC platforms, the
multi-node parallel version of CutQC is not provided in the artifact. Instead,
the artifact runs on single node with parallel threads. As a result, the speedup
obtained from the artifact may be smaller than reported in the paper.

Furthermore, since the 20-qubit IBM Johannesburg device used in
the paper has retired, we recommend using the 20-qubit Boeblingen de-
vice. Smaller experiments can also run on the publicly available 15-qubit
IBMQ_16_Melbourne and the 5-qubit Vigo devices, although the fidelity
results may vary.

A.9 Methodology
Submission, reviewing and badging methodology:

o https://www.acm.org/publications/policies/artifact-review-badging
o http://cTuning.org/ae/submission-20201122.html
o http://cTuning.org/ae/reviewing-20201122.html
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