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Figure 3: Procedure to cut one qubit wire. The wire between

vertices 𝑢 and 𝑣 (left) can be cut by (as shown on the right)

summing over four pairs ofmeasurement circuits appended

to𝑢 and state initialization circuits prepended to 𝑣 . Measure-

ment circuits in the 𝐼 and 𝑍 basis have the same physical im-

plementation. The three different upstream measurement

circuits and the four different downstream initialization cir-

cuits are now separate and can be independently evaluated.

unitary matrices. State vector simulation executes circuits by se-

quentially multiplying each gate’s corresponding unitary matrix

with the current state vector. This yields an error-free output repre-

sented as complex amplitudes, which cannot be obtained on quan-

tum computers. This evaluation mode scales exponentially and

serves only to provide the ground truth for benchmarking NISQ

devices for small quantum circuits. We use this evaluation mode

as a baseline to verify the output of modes (b) and (c) in Figure 2

and to compute the 𝜒2 metric to quantify the noise and quality of

quantum circuit executions.

Physical executions on NISQ computers use a shot-based model.

Quantum algorithms are first compiled to satisfy device-specific

characteristics such as qubit connectivity, native gate set, noise, and

crosstalk [32, 33]. A real NISQ device then executes the compiled

quantum circuit thousands of times (łshotsž) in quick succession.

At the end of each shot, all qubits are measured; and the output, a

classical bit string, is recorded. After all shots are taken, a distribu-

tion of probabilities over the observed states is obtained. Section 6

compares the runtimes of the state vector simulation (Figure 2a)

and CutQC evaluation (Figure 2c) modes. We also compare the

execution fidelities of the QC evaluation (Figure 2b) and CutQC

evaluation (Figure 2c) modes.

3 CIRCUIT CUTTING

This section presents an overview of the theory behind cutting a

quantum circuit. Figure 4 offers an illustrative example, where one

cut separates a 5-qubit quantum circuit into 2 subcircuits of 3 qubits

each. Time goes from left to right in quantum circuit diagrams, and

each row represents a qubit wire. CutQC performs vertical cuts on

qubit wires, in other words, timewise cuts.

3.1 Circuit Cutting: Theory

The physics theory behind the ability to cut a qubit wire originates

from the fact that the unitary matrix of an arbitrary quantum op-

eration in a quantum circuit can be decomposed into any set of

orthonormal matrix bases. For example, the set of Pauli matrices

𝐼 , 𝑋,𝑌 , 𝑍 is a convenient basis to use. Previous work in theoretical

physics proved the mathematical validity of decomposing unitary

matrices of quantum operations but with an exponentially higher

overhead [37].

Specifically, an arbitrary 2×2 matrix A can be decomposed as

A =

𝑇𝑟 (A𝐼 )𝐼 +𝑇𝑟 (A𝑋 )𝑋 +𝑇𝑟 (A𝑌 )𝑌 +𝑇𝑟 (A𝑍 )𝑍

2
. (1)

This identity, however, requires access to complex amplitudes,

which are not available on quantum computers. To execute on

quantum computers, we further decompose the Pauli matrices into

their eigenbasis and organize the terms. We obtain the following

identity in cutting a quantum wire timewise.

A =

𝐴1 +𝐴2 +𝐴3 +𝐴4

2
(2)

where

𝐴1 = [𝑇𝑟 (A𝐼 ) +𝑇𝑟 (A𝑍 )] |0⟩ ⟨0|

𝐴2 = [𝑇𝑟 (A𝐼 ) −𝑇𝑟 (A𝑍 )] |1⟩ ⟨1|

𝐴3 = 𝑇𝑟 (A𝑋 ) [2 |+⟩ ⟨+| − |0⟩ ⟨0| − |1⟩ ⟨1|]

𝐴4 = 𝑇𝑟 (A𝑌 ) [2 |+𝑖⟩ ⟨+𝑖 | − |0⟩ ⟨0| − |1⟩ ⟨1|]

Each trace operator corresponds physically to measure the qubit

in one of the Pauli bases. And each of the density matrices corre-

sponds physically to initialize the qubit in one of the eigenstates.

Figure 3 shows the resulting subcircuits and the reconstruction

procedure incurred when making a single cut. Since measuring

a qubit in either the 𝐼 or 𝑍 basis corresponds physically to the

same quantum circuit, three different upstream subcircuits and four

different downstream subcircuits result. Four pairs of Kronecker

products between the subcircuit outputs are then performed and

summed together to reconstruct the uncut circuit output. A simi-

lar procedure can then be applied to more than one cutting point

in a large quantum circuit in order to split it into a few smaller

subcircuits.

3.2 Circuit Cutting: Example

Consider the quantum circuit example in Figure 4. Here we show

how the example 5-qubit circuit can be cut to fit on a 3-qubit device.

First, we define notation for a circuit’s output state probability

distribution. Let the input to an 𝑛-qubit circuit be initialized to the

|𝑞0, . . . , 𝑞𝑛−1⟩ state, where 𝑞𝑖 ∈ {|0⟩ , |1⟩ , |+⟩ , |+𝑖⟩}. Let the output

be measured in the 𝑀0, . . . , 𝑀𝑛−1 basis, where 𝑀𝑖 ∈ {𝐼 , 𝑋,𝑌 , 𝑍 }.

We use the notation 𝐶 ( |𝑞0, . . . , 𝑞𝑛−1⟩ ;𝑀0, . . . , 𝑀𝑛−1) to represent

a quantum circuit 𝐶 with its qubits initialized in the given states

and measured in the given basis.

3.2.1 Selecting the Cut Locations. Assuming for now that cut loca-

tions are chosen manually, we show in Figure 4 that a single cut

can be made to qubit 𝑞2 between the first two 𝑐𝑍 gates, splitting the

original 5-qubit circuit into two circuits containing 3 qubits each.

Now, the last qubit in subcircuit 1 (𝑠𝑢𝑏𝑐𝑖𝑟𝑐12) and the first qubit in

subcircuit 2 (𝑠𝑢𝑏𝑐𝑖𝑟𝑐20) can be mapped to the 𝑢 and 𝑣 appearing in

the right-hand side of Figure 3. Section 4.1 describes the automation

of the selection of cut locations.

3.2.2 Attributing the Shots. Note that 𝑠𝑢𝑏𝑐𝑖𝑟𝑐12 does not appear in

the final output of the uncut circuit. Therefore each shot obtained

from executing the subcircuit 1 needs to be multiplied by a ±1

factor, contingent on the measurement outcomes of qubit 𝑠𝑢𝑏𝑐𝑖𝑟𝑐12.

Specifically, each measurement outcome of subcircuit 1 should be
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Figure 5: Framework overview of CutQC. A mixed-integer

programming (MIP) cut searcher automatically finds opti-

mal cuts given an input quantum circuit. The small sub-

circuits resulting from the cuts are then evaluated by us-

ing quantumdevices. The reconstructor then reproduces the

probability distributions of the original circuit.

4.1 MIP Cut Searcher

Unlike the manual example in Section 3.2, CutQC’s cut searcher

uses mixed-integer programming to automate the identification

of cuts that require the least amount of classical postprocessing.

Our problem instances are solved by the Gurobi mathematical

optimization solver [18].

Without loss of generality, the framework assumes that the input

quantum circuit is fully connected. That is, all qubits are connected

via multiqubit gates either directly or indirectly through interme-

diate qubits. A quantum circuit that is not fully connected can be

readily separated into fully connected subcircuits without cuts, and

these do not need the classical postprocessing techniques to sew

together. We focus on the more difficult general cases where cutting

and reconstruction are needed.

4.1.1 Model Parameters. Besides an input quantum circuit, the

MIP cut searcher requires the user to specify the maximum number

of qubits allowed per subcircuit, 𝐷 , equal to the size of the quantum

devices available to the user. Another input is the maximum number

of subcircuits allowed, 𝑛𝐶 .

A quantum circuit can be modeled as a directed acyclic graph 𝐺 .

Quantum operations are always applied sequentially to the qubits,

and neither classical nor quantum control dependencies are permit-

ted under current hardware restrictions. The single-qubit gates are

ignored during the cut-finding process, since they do not affect the

connectivity of the quantum circuit. The multiqubit quantum gates

are then modeled as the vertices 𝑉 = {𝑣1, . . . , 𝑣𝑛𝑉 }, and the qubit

wires are modeled as the edges 𝐸 = {(𝑒𝑎, 𝑒𝑏 ) : 𝑒𝑎 ∈ 𝑉 , 𝑒𝑏 ∈ 𝑉 } in

the graph. Choosing which edges to cut in order to split 𝐺 into

subcircuits 𝐶 =

{

𝑐1, . . . , 𝑐𝑛𝐶
}

can also be thought of as clustering

the vertices. The corresponding cuts can then obtained from the

vertex clusters.

TheMIP searcher uses a parameter𝑤 associated with each vertex

𝑣 ∈ 𝑉 that indicates the number of original input qubits directly

connected to 𝑣 . That is,𝑤𝑣 ∈ {0, 1, 2},∀𝑣 ∈ 𝑉 . Note that𝑤 depends

only on the input quantum circuit. In this paper,𝑤𝑣 can only take

the values 0, 1, or 2 since we consider only circuits with gates

involving at most two qubits. This approach is consistent with the

native gates supported on current superconducting hardware.1 Any

gates involving more than two qubits can be decomposed into the

native gate set before execution on quantum computers.

4.1.2 Variables. Inspired by constrained graph clustering algo-

rithms [4], we define the following variables associated with the

vertices and the edges.

𝑦𝑣,𝑐 ≡

{

1 if vertex 𝑣 is in subcircuit 𝑐

0 otherwise
, ∀𝑣 ∈ 𝑉 ,∀𝑐 ∈ 𝐶

𝑥𝑒,𝑐 ≡

{

1 if edge 𝑒 is cut by subcircuit 𝑐

0 otherwise
, ∀𝑒 ∈ 𝐸,∀𝑐 ∈ 𝐶

The number of qubits required to run a subcircuit is the sum of two

parts, namely, the number of original input qubits and the number

of initialization qubits induced by cutting (in Figure 4, 𝑠𝑢𝑏𝑐𝑖𝑟𝑐20 is

an example of an initialization qubit). The number of original input

qubits, 𝛼𝑐 , in each subcircuit depends simply on the weight factors

𝑤𝑣 for the vertices in the subcircuit and is given by

𝛼𝑐 ≡
∑

𝑣∈𝑉

𝑤𝑣 × 𝑦𝑣,𝑐 ,∀𝑐 ∈ 𝐶. (4)

A subcircuit requires initialization qubits when a downstream ver-

tex 𝑒𝑏 is in the subcircuit for some edge (𝑒𝑎, 𝑒𝑏 ) that is cut. The

number of initialization qubits, 𝜌𝑐 , is hence

𝜌𝑐 ≡
∑

𝑒 :(𝑒𝑎,𝑒𝑏 ) ∈𝐸

𝑥𝑒,𝑐 × 𝑦𝑒𝑏 ,𝑐 ,∀𝑐 ∈ 𝐶. (5)

A subcircuit requires measurement qubits when an upstream vertex

𝑒𝑎 is in the subcircuit for some edge (𝑒𝑎, 𝑒𝑏 ) that is cut. The number

of measurement qubits, 𝑂𝑐 , is hence

𝑂𝑐 ≡
∑

𝑒 :(𝑒𝑎,𝑒𝑏 ) ∈𝐸

𝑥𝑒,𝑐 × 𝑦𝑒𝑎,𝑐 ,∀𝑐 ∈ 𝐶. (6)

Consequently, the number of qubits in a subcircuit that contributes

to the final measurement of the original uncut circuit is

𝑓𝑐 ≡ 𝛼𝑐 + 𝜌𝑐 −𝑂𝑐 ,∀𝑐 ∈ 𝐶. (7)

4.1.3 Constraints. We next turn to constraints. We require that

every vertex be assigned to exactly one subcircuit.
∑

𝑐∈𝐶

𝑦𝑣,𝑐 = 1, ∀𝑣 ∈ 𝑉 (8)

1Current superconducting architectures are limited to 1- and 2-qubit gates; other
architectures (based on ion traps or neutral atoms) allow for multiqubit gates. The
MIP cut searcher can easily be generalized to multiqubit gates.
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We also require that the 𝑑𝑐 qubits in subcircuit 𝑐 be no larger

than the input device size 𝐷 .

𝑑𝑐 ≡ 𝛼𝑐 + 𝜌𝑐 ≤ 𝐷, ∀𝑐 ∈ 𝐶 (9)

To constrain the variable 𝑥 , we note that an edge 𝑒 pointing from

vertex 𝑒𝑎 to 𝑒𝑏 is cut by a subcircuit 𝑐 if and only if that subcircuit

contains one and only one of these two vertices. An edge, if cut at

all, is always cut by exactly two subcircuits. Thus, 𝑥𝑒,𝑐 = 0 indicates

that either 𝑒 is not cut at all or that 𝑒 is cut somewhere else but

just not in subcircuit 𝑐 . The constraint on the variable 𝑥 is hence

defined as

𝑥𝑒,𝑐 = 𝑦𝑒𝑎,𝑐 ⊕ 𝑦𝑒𝑏 ,𝑐 ,∀𝑒 = (𝑒𝑎, 𝑒𝑏 ) ∈ 𝐸, 𝑐 ∈ 𝐶. (10)

This nonlinear constraint can be encoded by linear constraints:

𝑥𝑒,𝑐 ≤ 𝑦𝑒𝑎,𝑐 + 𝑦𝑒𝑏 ,𝑐
𝑥𝑒,𝑐 ≥ 𝑦𝑒𝑎,𝑐 − 𝑦𝑒𝑏 ,𝑐
𝑥𝑒,𝑐 ≥ 𝑦𝑒𝑏 ,𝑐 − 𝑦𝑒𝑎,𝑐
𝑥𝑒,𝑐 ≤ 2 − 𝑦𝑒𝑎,𝑐 − 𝑦𝑒𝑏 ,𝑐 .

(11)

For a given solution to this optimization problem, there are

𝑛𝐶 ! possible relabelings with identical objective function values.

Breaking all such symmetries can significantly decrease the time

required to solve problem instances but can require introducing

many auxiliary variables and constraints [35]. Nevertheless, our

formulation breaks by forcing vertices with smaller indices to be in

subcircuits with smaller indices. Specifically, we require vertex 1 to

be in subcircuit 1, vertex 2 to be in subcircuit 1 or subcircuit 2, and

so on. This requirement translates to the following constraint:

𝑛𝐶
∑

𝑗≥𝑘+1

𝑦𝑘,𝑗 = 0, 𝑘 = 1, . . . , 𝑛𝐶 . (12)

4.1.4 Objective Function. For efficiency and without loss of gen-

erality, we seek to minimize the classical postprocessing overhead

required to reconstruct a circuit from its subcircuits. Therefore, the

objective is set to be the number of floating-point multiplications

involved in the build step.

The number of cuts made is given by

𝐾 =

1

2

∑

𝑐∈𝐶

∑

𝑒∈𝐸

𝑥𝑒,𝑐 , (13)

The objective function for the MIP cut searcher is hence the recon-

struction time estimator:

𝐿 ≡ 4𝐾
𝑛𝐶
∑

𝑐=2

𝑐
∏

𝑖=1

2𝑓𝑖 . (14)

This cost objective accurately captures the bulk of the computa-

tion when we aim to build the full 2𝑛 probabilities for an 𝑛-qubit

uncut circuit, under the full definition CutQC mode (discussed in

Section 4.2).

However, there is a prohibitive memory requirement for storing

the 2𝑛 probabilities as floating-point numbers when circuits get

larger. Section 4.3 introduces a novel dynamic definition method to

efficiently sample very large circuits with a much lower postpro-

cessing overhead. Nevertheless, we chose to minimize Equation 14

during cut search as a positively correlated objective.

The overall MIP cut search problem is therefore

minimize objective 𝐿 (Eq. 14)

s.t. constraints Eqs. (4) − (13).
(15)

4.2 Classical Postprocessing

We developed two types of classical postprocessing algorithms: a

full-definition (FD) query and a dynamic-definition (DD) query al-

gorithms. The difference in these methods lies in whether the entire

2𝑛 full-state probability output of the uncut circuit is reconstructed.

FD query reconstructs the probability for every possible out-

put state of the uncut circuit. To make the postprocessing more

efficient, we developed three techniques: greedy subcircuit order,

early termination, and parallel processing. The combination of these

techniques improves the performance of the CutQC postprocessing

toolchain. In addition, we used the kernel functions in the Basic

Linear Algebra Subprograms (BLAS) through the Intel Math Kernel

Library [51] to optimize the performance on CPUs.

The greedy-subcircuit-order technique exploits the fact that a

large quantum circuit is (in general) cut into subcircuits of different

sizes. The order of subcircuits in which the reconstructor computes

the Kronecker products incurs different sizes of carryover vectors

and affects the total number of floating-point multiplications. Our

approach places the smallest subcircuits first in order to minimize

the carryover in the size of the vectors. Since the reconstructor

must eventually reproduce a probability vector with size equal to

the Hilbert space of the uncut circuit, this technique may reduce

the overhead by up to 50%.

The early termination technique exploits the fact that a Kro-

necker product term ends up being a vector of all zeros if any of its

components contains only zeros. Such a Kronecker product term

hence does not contribute to the full circuit output and can be

ignored by the reconstructor. Experiments using classical simu-

lation to produce the subcircuit outputs show that this situation

happens surprisingly often. As a result, many Kronecker terms can

be skipped by the reconstructor.

The parallel processing approach exploits the fact that the vector

arithmetics have no data dependency at all and can hence be easily

executed in parallel. Individual compute nodes read the subcircuit

output data stored on disk in order to avoid the need for any in-

ternode communications. This approach allows our toolchain to

scale almost perfectly with increasing numbers of compute nodes.

4.3 Dynamic Definition

Quantum circuits can be loosely categorized into two groups. The

first group produces sparse output probabilities, where just a few

łsolutionž states have very high probabilities and the łnon-solutionž

states have zero probabilities. Most known quantum algorithms

fall into this category, such as Grover search [17], the Bernsteinś

Vazirani algorithm [7], and the Quantum Fourier Transform [12].

This is where QC shows promise over classical computing by effi-

ciently locating the łsolutionž states.

The second group of circuits produces dense output probabilities,

where many states have nonzero probabilities. For this type of

circuit, even with access to quantum computers large enough to

execute the circuits directly, querying the FD probability output

quickly becomes impossible. The reason is that (1) an exponentially
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increasing amount of memory is required to store the probabilities

and (2) an exponentially increasing number of shots are required on

a quantum computer before the probabilities converge. Fortunately,

knowing the FD probabilities of all states simultaneously is usually

not of interest. Instead, users are interested in the distribution itself.

Examples include the 2-D random circuits from Google [9], which

produce the PorterśThomas distribution [38].

DD query allows us to find the łsolutionž states or sample dense

probability distributions efficiently with very large quantum cir-

cuits, even when storing the full-state probability is not tractable.

DD query produces a probability distribution that merges certain

states into one bin and maintains the sum of their probabilities

instead of the individual states within. Algorithm 1 presents the DD

algorithm. In each recursion, DD runs the subcircuits and merges

subcircuit states before postprocessing. The active qubits in each

recursion determine the number of bins, and the merged qubits

determine which states are merged in a single bin. Users can choose

which qubits are active, that is, which qubits have their states ac-

tively explored. For those qubits, DD then recursively zooms in on

their more prominent (i.e., higher probability) bins; this lets DD

efficiently obtain fine-grained probabilities for the states within the

bins.

Algorithm 1: Dynamic Definition

Initialize empty list 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑏𝑖𝑛𝑠;

for each DD recursion do

if First recursion then
Choose a subset of qubits to label as 𝑎𝑐𝑡𝑖𝑣𝑒 , max

number determined by system memory;

else
Choose the bin from 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑏𝑖𝑛𝑠 with the

largest sum of probability;

Fix the 𝑎𝑐𝑡𝑖𝑣𝑒 qubits in the bin according to the

index of the bin; label as 𝑧𝑜𝑜𝑚𝑒𝑑 ;

Label the rest of the qubits as𝑚𝑒𝑟𝑔𝑒𝑑 ;

Attribute the subcircuit shots, group shots with common

𝑚𝑒𝑟𝑔𝑒𝑑 qubits together;

Reconstruct the 2#𝑎𝑐𝑡𝑖𝑣𝑒 probability output for the

𝑎𝑐𝑡𝑖𝑣𝑒 qubits; append to 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦_𝑏𝑖𝑛𝑠;

For sparse outputs, DD can recursively pinpoint the łsolutionž

states and their probabilities. To do so, DD query follows a DFS-like

search strategy to recursively choose the 𝑞𝑢𝑏𝑖𝑡_𝑠𝑡𝑎𝑡𝑒 with higher

probabilities to zoom in on. By recursively locating the 𝑎𝑐𝑡𝑖𝑣𝑒 qubits

in their most probable 𝑧𝑜𝑜𝑚𝑒𝑑 states, łsolutionž states can be easily

located after just a few recursions. For an 𝑛-qubit full circuit, the

number of recursions needed is O(𝑛).

For dense outputs, DD can build a łblurredž probability land-

scape of the exact FD probability distribution, with the ability to

arbitrarily łzoom inž on any region of the Hilbert space. To do so,

DD query follows a BFS-like strategy to choose the 𝑞𝑢𝑏𝑖𝑡_𝑠𝑡𝑎𝑡𝑒

with higher probabilities to zoom in on. Users can decide the num-

ber of recursions and subset of states of interest to zoom in on. This

is equivalent to efficient sampling of very large circuits on small

quantum computers.

5 METHODOLOGY

5.1 Backends

We test our approach by running postprocessing and classical sim-

ulation benchmarks on a medium-size computing cluster using up

to 16 compute nodes. Each node has an Intel Xeon CPU E5-2670 v3

at 2.30 GHz, with 256 GB allocated DDR4 memory [22]. We found

16 compute nodes to be sufficient to process the data generated by

our tests (reported in the experiments section).

We first tested FD query for circuits up to 35 qubits, where storing

the full-state probability is still tractable. We cut original circuits

and mapped the resulting subcircuits to quantum computers of

various sizes to demonstrate executing circuits larger than device

sizes and study the postprocessing runtime. Because NISQ devices

currently do not allow high-fidelity executions of circuits beyond

just a few qubits, we executed the subcircuits with statevector

simulation to demonstrate the effectiveness of our postprocessing

techniques.

We tested DD query for circuits up to 100 qubits, significantly be-

yond the current classical and quantum limit. Because no backends

are capable of producing accurate circuit executions on this scale,

we used uniform distributions as the subcircuit output to study the

runtime.

Since gate times of superconducting quantum computers are on

the order of nanoseconds [3], we assume that quantum computer

runtime is negligible in the comparisons. CutQC allows executing

the subcircuits on many small quantum computers in parallel to fur-

ther reduce the time spent on quantum computers. In addition, our

experiments limit the MIP cut searcher to search for cuts that will

divide an input circuit into at most 5 subcircuits with 10 cuts. The

set of cuts with the smallest objective function value is then taken

to be the optimal solution, with ties broken arbitrarily. MIP is able

to find an optimal solution within minutes for all the experiments

reported in this paper; its runtime therefore is also ignored.

5.2 Metric

For the runtime analysis, we allow CutQC to compute the inde-

pendent Kronecker products during postprocessing for at least 10

minutes on each compute node, after which we scale the runtime

according to the total number of Kronecker products required. For

cases where < 10 minutes postprocessing is required, our bench-

mark reports the end-to-end wall time. We verified the scaled-up

runtime against the end-to-end runtime for several medium-sized

circuits to confirm the validity of our scaling approach. This ap-

proach is accurate because each Kronecker product requires the

same amount of computation.

Besides the runtime analysis, we ran CutQC with IBM’s 5-qubit

Bogota device to compare the fidelity with directly executing the

circuits on IBM’s 20-qubit Johannesburg device. As NISQ devices

improve, CutQC can be applied to larger devices to produce useful

executions on larger scales. To quantify the noise behaviors, we

used 𝜒2 loss

𝜒2 =

2𝑛−1
∑

𝑖=0

(𝑎𝑖 − 𝑏𝑖 )
2

𝑎𝑖 + 𝑏𝑖
, (16)
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A ARTIFACT APPENDIX

A.1 Abstract

Our artifact provides the source codes for the end-to-end CutQC

toolflow. We also provide the benchmarking codes for several sam-

ple runtime and fidelity experiments. The HPC parallel version of

the code is not provided, as different HPC platforms require very

different setups.

A.2 Artifact Checklist
• Algorithm: Mixed Integer Programming, Dynamic Definition, and

Quantum Mechanics.

• Compilation: Intel icc (ICC) 19.1.0.166 20191121.

• Hardware: IBM superconducting quantum computers.

• Run-time state: Runtime is sensitive to CPU usage.

• Metrics: Wall clock runtime, 𝜒2 defined by Equation 16.

• Output: Runtime and fidelity are printed by running the Python

script provided.

• Experiments: We use CutQC package to measure the runtime and

fidelity of several quantum circuits.

• How much disk space required (approximately)?: About 4GB.

• Howmuch time is needed to prepareworkflow (approximately)?:

Under one hour.

• Howmuch time is needed to complete experiments (approx-

imately)?: About 20 minutes for the provided runtime benchmarks

in the Python script. The fidelity script runtime largely depends on

the real-time queue on IBMQ devices. Large customized quantum

circuits take longer.

• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.4329804.

A.3 Description
A.3.1 How to Access. The DOI of our artifact is available at:https://doi.org/

10.5281/zenodo.4329804.

A.3.2 Hardware Dependencies. The runtime experiments used classical

computing hardware specified in Section 5. Different hardware may produce

different runtimes, although the relative speedup should be similar.

The fidelity experiments require an active IBMQ account to access the

IBM quantum computers.

A.3.3 Software Dependencies. Python 3.7, Intel icc (ICC) 19.1.0.166, Qiskit

0.23, Gurobi 9.0+.

A.4 Installation
Users should refer to the 𝑅𝐸𝐴𝐷𝑀𝐸.𝑚𝑑 in the artifact directory to install

the required software tools.

A.5 Experiment Workflow
To run the runtime benchmark, run the Python script named "runtime_test.pyž.

The script should take about 20 minutes to finish. To run the fidelity bench-

mark, run the Python script named "fidelity_test.pyž. The runtime largely

depends on the real-time queue on IBMQ devices.

A.6 Evaluation and Expected Results
Speedup over the Qiskit classical simulation is printed to terminal after

running the "runtime_test.pyž Python script. The provided script runs ex-

periments on a 15-q QC. 𝜒2 is printed after running the "fidelity_test.pyž

Python script. Expected results are reported in Section 6.

A.7 Experiment Customization
User can adjust the relevant parameters in the provided Python scripts to

run other runtime experiments. The adjustable parameters include size of

QC, size of quantum circuits, type of circuits, number of parallel threads,

max system memory, and IBM devices.

A.8 Notes
Due to the different setup required to run on different HPC platforms, the

multi-node parallel version of CutQC is not provided in the artifact. Instead,

the artifact runs on single nodewith parallel threads. As a result, the speedup

obtained from the artifact may be smaller than reported in the paper.

Furthermore, since the 20-qubit IBM 𝐽 𝑜ℎ𝑎𝑛𝑛𝑒𝑠𝑏𝑢𝑟𝑔 device used in

the paper has retired, we recommend using the 20-qubit 𝐵𝑜𝑒𝑏𝑙𝑖𝑛𝑔𝑒𝑛 de-

vice. Smaller experiments can also run on the publicly available 15-qubit

𝐼𝐵𝑀𝑄_16_𝑀𝑒𝑙𝑏𝑜𝑢𝑟𝑛𝑒 and the 5-qubit𝑉𝑖𝑔𝑜 devices, although the fidelity

results may vary.

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html
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