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ABSTRACT
A natural problem in high-dimensional inference is to decide if a

classifier f : Rn → {−1, 1} depends on a small number of linear

directions of its input data. Call a function д : Rn → {−1, 1}, a

linear k-junta if it is completely determined by some k-dimensional

subspace of the input space. A recent work of the authors showed

that linear k-juntas are testable. Thus there exists an algorithm to

distinguish between:

(1) f : Rn → {−1, 1} which is a linear k-junta with surface area s .
(2) f is ϵ-far from any linear k-junta with surface area (1 + ϵ)s .
The query complexity of the algorithm is independent of the ambi-

ent dimension n.
Following the surge of interest in noise-tolerant property testing,

in this paper we prove a noise-tolerant (or robust) version of this

result. Namely, we give an algorithm which given any c > 0, ϵ > 0,

distinguishes between:

(1) f : Rn → {−1, 1} has correlation at least c with some linear

k-junta with surface area s .
(2) f has correlation at most c − ϵ with any linear k-junta with

surface area at most s .
The query complexity of our tester is kpoly(s/ϵ ). Using our tech-

niques, we also obtain a fully noise tolerant tester with the same

query complexity for any class C of linear k-juntas with surface

area bounded by s . As a consequence, we obtain a fully noise tol-

erant tester with query complexity kO (poly(logk/ϵ ))
for the class

of intersection of k-halfspaces (for constant k) over the Gaussian
space. Our query complexity is independent of the ambient dimen-

sion n. Previously, no non-trivial noise tolerant testers were known
even for a single halfspace.

CCS CONCEPTS
•Mathematics of computing→ Probabilistic algorithms; Di-
mensionality reduction; • Computing methodologies→ Fea-
ture selection; Spectral methods.
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1 INTRODUCTION
To motivate our setting, consider the classical notion of a Boolean
junta: a function f : {−1, 1}n → {−1, 1} is said to be a k-junta if
there are some k coordinates i1, . . . , ik ∈ [n] such that f (x) only
depends on xi1 , . . . , xik . The fundamental results for testing juntas

were obtained more than a decade ago; more recently, spurred by

motivation from several directions, several variants have appeared.

Most importantly for this work are the notions of tolerant testing,
in which we estimate the distance to the class of juntas (as opposed

to the usual testing, where we are simply testing membership); and

linear juntas, a natural continuum generalization of Boolean juntas.

In the current work, we combine these two perspectives and show

that linear juntas are noise-tolerantly testable.

1.1 Tolerant Junta Testing
Recall that a property testing algorithm for a class of functions C

is an algorithm which, given oracle access to an f : {−1, 1}n →

{−1, 1} and a distance parameter ϵ > 0, satisfies

(1) If f ∈ C, then the algorithm accepts with probability at least

2/3;

(2) If dist(f ,д) ≥ ϵ for every д ∈ C, then the algorithm rejects

with probability at least 2/3. Here, we define dist(f ,д) =
Prx∈{−1,1}n [f (x) , д(x)].

The principal measure of the efficiency of the algorithm is its query
complexity. Also, the precise value of the confidence parameter is

irrelevant and 2/3 can be replaced by any constant 1/2 < c < 1.

Fischer et al.[22] were the first to study the problem of test-

ing k-juntas and showed that k-juntas can be tested with query

complexity Õ(k2/ϵ). The crucial feature of their algorithm is that

the query complexity is independent of the ambient dimension

n. Since then, there has been a long line of work on testing jun-

tas [4, 5, 14, 15, 44] and it continues to be of interest. The flagship

result is that k-juntas can be tested with Õ(k/ϵ) queries and this is

tight [5, 15]. While the initial motivation to study this problem came

from long-code testing [3, 38] (related to PCPs and inapproxima-

bility), another strong motivation comes from the feature selection
problem in machine learning (see, e.g. [7, 9]).

Tolerant testing. The definition of property testing above requires
the algorithm to accept if and only if f ∈ C. However, for many

applications, it is important consider a noise-tolerant definition
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of property testing. In particular, Parnas, Ron and Rubinfeld [37]

introduced the following definition of noise tolerant testers.

Definition 1.1. For constants 1/2 > cu > cℓ ≥ 0 and a function
class C, a (cu , cℓ)-noise tolerant tester for C is an algorithm which
given oracle access to a function f : {−1, 1}n → {−1, 1}

(1) accepts with probability at least 2/3 ifminд∈C dist(f ,д) ≤ cℓ .
(2) rejects with probability at least 2/3 if minд∈C dist(f ,д) ≥ cu .

Further, a tester which is noise tolerant for any (given) cu > cℓ ≥ 0 is
said to be a “ fully noise tolerant" tester.

The restriction cu , cℓ < 1/2 comes from the fact that most natu-

ral classes C are closed under complementation – i.e., if д ∈ C, then

−д ∈ C. For such a class C and for any f , minд∈C dist(f ,д) ≤ 1/2.

Further, note that the standard notion of property testing corre-

sponds to a (ϵ, 0)-noise tolerant tester.
The problem of testing juntas becomes quite challenging in the

presence of noise. Parnas et al. [37] observed that any tester whose

(individual) queries are uniformly distributed are inherently noise

tolerant in a very weak sense. In particular, [21] used this observa-

tion to show that the junta tester of [22] is in fact a (ϵ, poly(ϵ/k))-
noise tolerant tester fork-juntas – note that cℓ is quite small, namely

poly(ϵ/k). Later, Chakraborty et al. [12] showed that the tester of

Blais [5] yields a (Cϵ, ϵ) tester (for some large but fixedC > 1) with

query complexity exp(k/ϵ). Recently, there has been a surge of in-

terest in tolerant junta testing. On one hand, Levi and Waingarten

showed that there are constants 1/2 > ϵ1 > ϵ2 > 0 such that any

non-adaptive (ϵ1, ϵ2) tester requires Ω̃(k
2) non-adaptive queries.

Contrast this with the result of Blais [5] who showed that there is

a non-adaptive tester for k-juntas with O(k3/2) queries when there

is no noise. In particular, this shows a gap between testing in the

noisy and noiseless case.

In the opposite (i.e., algorithmic) direction a sequence of recent

works improved on the results of [12]. First, Blais et al. [6] improved

on the results of [12] by obtaining a small and explicit value of C .
Finally, De, Mossel and Neeman [18] gave a fully noise tolerant

tester for k-juntas on the Boolean cube with query complexity

O(2k · poly(k/ϵ)).

1.2 Linear Junta Testing
In a recent work, De, Mossel and Neeman [17] initiated the study of

property testing of linear juntas. A function f : Rn → [−1, 1] is said

to be a linear k-junta if there are k unit vectors u1, . . . ,uk ∈ Rn

and д : Rk → [−1, 1] such that f (x) = д(⟨u1, x⟩, . . . , ⟨uk , x⟩).
In other words, f is a linear k-junta if there is a subspace E B
span(u1, . . . ,uk ) of R

n
such that f (x) depends only on the pro-

jection of x on the subspace E. The class of linear k-juntas is the
Rn-analogue of the class of k-juntas on the Boolean cube

We note that the family of linear k-juntas includes important

classes of functions that have been studied in the learning and

testing literature. Notably it includes:

• Boolean juntas: If h : {−1, 1}n → {−1, 1} is a Boolean junta,

then the function f (x) : Rn → {−1, 1} defined as f (x) =
h(sgn(x1), . . . , sgn(xn )) is a linear k-junta.

• Functions of halfspaces: Linear k-juntas include as a special
case both halfspaces and intersections of k-halfspaces. The
testability of halfspaces was studied in [33, 41].

The focus of the paper is on property testing of linear k-juntas.
Observe that to formally define a testing algorithm, we need to

define a notion of distance between functions f and д on Rn .
In this work, we will use the L2(γ ) metric, where γ is the stan-

dard Gaussian measure. That is, the distance between f and д is

(Ex∼γ [(f (x) −д(x))2])1/2. Note that this reduces to 2 Prx∼γ [f (x) ,
д(x)] when f and д are Boolean functions. The choice of the stan-

dard Gaussian measure is well-established in the areas of learning

and testing [2, 13, 20, 26, 28, 29, 33, 36, 46]. It is particularly natural

in our setup since the Gaussian measure is invariant under many

linear transformations, e.g., all rotations.

De, Mossel and Neeman [17] obtained an algorithm for testing

linear-k-juntas: given query access to f : Rn → {−1, 1}, it makes

poly(k · s/ϵ) queries and distinguishes between

(1) f is a linear-k-junta with surface area at most s versus
(2) f is ϵ-far from any linear k-junta with surface area at most

s(1 + ϵ).

Here surface area of f refers to the Gaussian surface area [30] of the

set f −1(1) [30] – see Definition 2.7 for the precise definition. Further,
[17] showed that a polynomial dependence on s is necessary for

any non-adaptive tester and consequently, an Ω(log s) dependence
is necessary for any tester

1
. Informally, without any smoothness

assumption a linear junta (even a linear 1-junta on R2) can look

arbitrarily random to any finite number of queries. Crucially, [17]

achieves a query complexity which is independent of the ambient

dimension n – thus, qualitatively matching the guarantee for junta

testing on the Boolean cube.

1.3 Our Results: Noise Tolerant Testing of
Linear-Juntas

In this paper, our focus is on the problem of noise tolerant testing

of linear juntas. The original motivation of [17] was for dimension

reduction in statistical and ML models involving real valued data.

Modern ML models are often overparametrized, but are neverthe-

less suspected to output a predictor that is low-dimensional in some

sense. The classical notion of juntas is not appropriate for measur-

ing dimensionality here, because there is no natural choice of basis

in many statistical models including PCA, ICA, kernel learning,

or deep learning. This motivates the notion of a linear junta. The

problem of testing linear-juntas is thus closely related to the prob-

lem of model compression in machine learning, whose goal is to

take a complex predictor/classifier function and to output a simpler

predictor/classifier (see e.g. [11]). Model compression is extensively

studied in the context of deep nets, see e.g., [1], and follow up work,

where the models are often rotationally invariant (with the caveat

that the regularization often used in optimization might not be).

Thus as a motivating example, [17] asked if given a complex deep

net classifier, is there a classifier that has essentially the same per-

formance and depends only on k of the features? Observe that this

is essentially the same question as asking whether the deep net

classifier is a linear k-junta.
The main shortcoming of the motivation in [17] is that it is

unrealistic to expect that in any of the statistical and ML models

considered, the function constructed will be exactly identical to
1
Recall that in a non-adaptive tester, the query points are chosen independently of the

target f .
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a function of a few linear direction. Rather, we only expect that

the function will be correlated with a function of a few directions;

this is the tolerant testing problem, and – as evidenced by the long

history of tolerant testing in the Boolean case – it is much more

challenging.

The main result of this paper is a fully noise tolerant tester for

k-linear juntas over the Gaussian space whose query complexity is

independent of the ambient dimension n. In particular, we prove

the following:

Theorem 1.2. There is an algorithm Robust-linear-junta-Boolean
which given parameters 1/2 > cu > cℓ > 0, junta arity k and surface
area parameter s and oracle access to f : Rn → {−1, 1} distinguishes
between the following cases:

(1) There is a linear-k-junta д with surface area at most s such
that dist(f ,д) ≤ cℓ .

(2) For all linear-k-juntasдwith surface area atmost s , dist(f ,д) ≥
cu .

The query complexity of the tester is kpoly(s/ϵ ) where ϵ = cu − cℓ ,
and the tester makes non-adaptive queries.

Note that qualitatively this result implies the main result of

[17] – thus a dependence on s is necessary, although we have no

reason to believe that an exponential dependence on s is sharp.
In fact, the result here is qualitatively stronger than [17] as our

“soundness guarantee" does not require relaxing the surface area

to s(1 + ϵ). On the other hand, the query complexity here as an

exponential dependence on s vis-a-vis [17] which has a polynomial

query complexity in all the parameters.

It is not hard to see that tolerant testing is essentially equivalent

to estimating the maximum correlation between a function and a

class. In particular, Theorem 1.2 follows from the following result

about estimating correlation. Here (and in most of this work), it is

more convenient to consider functions with values in [−1, 1]. For

these functions, we need a more general notion of smoothness: we

will define the notion of s-smooth functions later (in Definition 2.6);

for now, we just note that it includes both Lipschitz functions and

Boolean functions with bounded surface area.

Theorem1.3. There is an algorithmCorrelation-smooth-juntawhich,
given parameters ϵ > 0, junta arity k and smoothness parameter s
and oracle access to f : Rn → [−1, 1], outputs an estimate ρ̂Rn ,k ,s (f )
such that with high probability,��ρ̂Rn ,k ,s (f ) − ρRn ,k ,s (f )

�� ≤ ϵ .

Here ρRn ,k ,s (f ) is the maximum correlation of f with any s-smooth
k-linear junta. The query complexity of the algorithm is kpoly(s/ϵ ).

In particular, Theorem 1.2 follows as a simple corollary of Theo-

rem 1.3.

1.4 List Decoding the Linear-Invariant
Structure.

Given the previous theorem it is natural to ask for more, i.e., not just

test if the function is a linear-junta but also find a junta in number of

queries that depends only on k and s (but not on n) that has almost

maximal correlation with f . In other words, the goal is to find, with

query complexity independent of n, a function д : Rk → {−1, 1}

such that there exists a projection matrix A : Rn → Rk and such

that the correlation between f and д(Ax) is at least ρRn ,k ,s (f ) − ϵ .
In the case where f is a linear k-Junta with bounded surface

area, i.e., ρRn ,k ,s (f ) = 1, [17] provided such an algorithm with

query complexity that is exponential in k . In the noisy case, we

could have multiple different Juntas that have optimal or close to

optimal correlation with f . Ideally we would like to find all those

functions, which can be thought of as “list decoding" the Juntas

that are hidden in f .
There is some subtlety in the meaning of “all” here; for example,

if f is a linear 1-Junta with some added noise and we set k = 2, then

there can be a huge number (i.e. growing quickly with n) of linear
2-Juntas that are highly correlated with f , just because there is a
lot of flexibility in choosing the second direction and defining the

function in that direction. For this reason, rather than identifying

all highly-correlated linear Juntas, we only identify their averages

on a set of interesting directions; for a subspace E of Rn and a

function д : Rn → R, let AEд be obtained from д by averaging

over the directions orthogonal to E (see Definition 2.1 for a full

definition).

Theorem 1.4. There is an algorithm Learn-all-invariant-structures
which, given parameters ρ, ϵ > 0, junta arityk , smoothness parameter
s and oracle access to f : Rn → [−1, 1], outputs a set G of functions
Rk → [−1, 1] so that the following hold:

• for every д̂ ∈ G there exists an orthonormal set of vectors
w1, . . . ,wk ∈ Rn such that��E[f (x)д̂(⟨w1, x⟩, . . . , ⟨wk , x⟩)] − ρ | = O(ϵ),

and
• for every linear k-Junta д : Rn → [−1, 1] with

��E[f (x)д(x)] −
ρ
�� ≤ ϵ , there exists a function д̂ ∈ G and an orthonor-

mal set of vectors w1, . . . ,wk ∈ Rn such that, with E =
span{w1, . . . ,wk }, we have

E[
(
(AE д)(x) − д̂(⟨w1, x⟩, . . . , ⟨wk , x⟩)

)
2

] ≤ O(ϵ).

Additionally,

E[f (x)д(x)] ≈O (ϵ ) E[f (x)(AE д)(x)].

The query complexity of the algorithm is kpoly(s/ϵ ).

Informally, the theorem states that it is possible to find the “linear-

invariant" structures (i.e., the structure up to unitary transforma-

tion) of all Juntas that are almost optimally correlated with f in

number of queries that depends on s and k . We note that one cannot

hope to output the relevant directionsw1, . . . ,wk explicitly as even

describing these directions will require Ω(logn) bits of information

and thus, at least those many queries.

The significance of Theorem 1.4 is related to one of the main

difficulties in tolerant testing: there can be a large number of linear

Juntas having almost optimal correlation with f . This in in contrast

with the usual testing problem, because if f is in fact a linear k-
Junta then there is (obviously) only one linear k-Junta that is equal
to f .

Even in the noiseless case, Theorem 1.4 improves on the the

results of [17] which provided an algorithm for learning the lin-

ear structure with query complexity that is exponential in k . We
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note that in [17] it was incorrectly stated (without proof) that the

exponential dependence on k is necessary.

Thanks to Theorem 1.4, we are also able to tolerantly test certain

subclasses of linear Juntas; this is significant because in general the

testability of a class does not imply the testability of a subclass.

Definition 1.5. Let C be any collection of functions mapping Rk

to {−1, 1}. For any n ∈ N, define the induced class of C by

Ind(C)n = { f : ∃д ∈ C and orthonormal vectorsw1, . . . ,wk

such that f (x) = д(⟨w1, x⟩, . . . , ⟨wk , x⟩)}.

Note that every f ∈ Ind(C)n is a linear k-Junta. As an example, if

C is the class of intersections of k-halfspaces over Rk , then Ind(C)n
is the class of intersections of k-halfspaces over Rn .

Theorem 1.6. Let C be a collection of functions mapping Rk to
[−1, 1] such that each f ∈ C is s-smooth. There is an algorithm
Robust-C-testwhich given parameters 1/2 > cu > cℓ > 0, junta arity
k , surface area parameter s , and oracle access to f : Rn → {−1, 1},
distinguishes between the following cases:

(1) There is a linear-k-junta д ∈ Ind(C)n with surface area at
most s such that dist(f ,д) ≤ cℓ .

(2) For all linear-k-juntas д ∈ Ind(C)n , dist(f ,д) ≥ cu .
The query complexity of the tester is kpoly(s/ϵ ) where ϵ = cu − cℓ ,
and the tester makes non-adaptive queries.

As an immediate corollary, this implies that there is a fully noise

tolerant tester for intersections of k-halfspaces with query complex-

ity kpoly(logk/ϵ ). Previously, no noise tolerant tester was known for

even a single halfspace [33].

1.5 Techniques
For ease of exposition, here we just explain the technique for prov-

ing Theorem 1.3. The high level proof technique for the other results

is essentially the same albeit sometimes with added technical com-

plications. The techniques of the current paper build on those of

[17]. We briefly recap the main ideas of [17], restricted for now to

the non-tolerant setting:

I. If we sample T = poly(k/ϵ) random points x1, . . . , xT from

the standard Gaussian measure γn and consider the subspace

E = span(∇f (x1), . . . ,∇f (xT )), then if f is a linear k-Junta
then with high probability, f has correlation 1−ϵ with some

linear k-junta defined on the space E.
II. For each x, z, it is possible to accurately estimate, in number

of samples polynomial in k , quantities such as ⟨z,∇f (x)⟩
and ⟨∇f (xi ),∇f (x j )⟩. Thus, for a randomly chosen z ∼ γn ,
we can (implicitly, in a sense to be made precise later) com-

pute the orthogonal projection of z on E. (Note that a naive
estimation of ∇f (x), or even ⟨∇f (x1),∇f (x2)⟩, requires a
number of samples that depends on n.)

Observe that the implicit projection allows [17] to effectively

reduce the dimension of the ambient space toT = poly(k/ϵ), which
is independent of n. We then take an ϵ-net of linear k-juntas over
E with surface area s . The size of this net depends only on s , k and

ϵ . For each function in the net, one can estimate its distance to f ;
by iterating over all functions in the net, one can check if f is close

to a linear k-junta. This last step is different from the one in [17],

and in fact it is slightly worse. By following the ideas in the current

paper, one can show that it gives a tester for with query complexity

of kO (s2/ϵ 2)
. The advantage of the modification, however, is that it

yields a method that is more robust to noise.

Adding tolerance. In adapting the outline above to the setting of

tolerant testing, the main challenge is to imitate step I above. Our

main structural result roughly shows that if f has correlation c
with some linear k-junta of surface area at most s , then with high

probability f is at least c − ϵ correlated with an s-smooth linear

k-junta defined on E. In fact, we need to define E more carefully

than what is outlined above, and a good error analysis is crucial. If

we were to combine our new structural result with a naive error

analysis, it would give a query complexity that is exponential in

poly(k).
The proof of our structural result is non-trivial. At the intuitive

level it is related to the idea of using SVD for PCA. In our case, we

have a function, rather than a collection of data, and the right geo-

metric information is encoded by gradients (of a smoothed version

of this function). The procedure of using SVD to extract informa-

tive directions from the data can be thought of as “Gradient Based
PCA". The proof that this procedure actually extracts the relevant

dimensions requires combining linear algebraic and Poincare style

geometric estimates in just the right way. Another challenge comes

from the fact that gradients are only approximate due to sampling

effect. We use results from random matrix theory to control the

effect of sampling.

The methodology of Gradient Based PCA also allows us to im-

prove on the results of [17] in the noiseless case for finding an

approximation of the Junta. This has to do with the fact that the

results of [17] used a more naive Gram–Schmidt based process to

extract the linear structure which resulted in exponential query

complexity, compared with the polynomial query complexity we

achieve in the current work.

Another key new ingredient of this current work is the net argu-

ment outlined above. We show that the class of s-smooth linear k
juntas has an ϵ-net of size exp exp((s2 logk)/ϵ2). For each function

in the net, we can use the implicit projection algorithm to com-

pute the correlation between this function and f up to error ϵ . The
maximum of these correlations gives a good estimate of the best

correlation between f and any linear k-junta with surface area s .
This concludes the proof sketch of Theorem 1.3.

We note that there is a high-level similarity between the current

proof and the proof that Boolean juntas are tolerant testable [18].

Both strategies are based on oracle access to influential “directions"

followed by a search for juntas depending only on those influen-

tial directions. In the Boolean case, the “directions" are influential

variables, while here the directions are given by gradients of the

function f . Note, however, that the Boolean case is easier, since

the coordinates on the Boolean cube are automatically orthogonal,

while in the continuous setup, “relevant directions" as sampled from

data are often not orthogonal and indeed can be close to parallel.

This is one of the major reasons we needed to introduce and analyze

the methodology of gradient based PCA.

Related work: Besides being related to the long line of work

(including [4–6, 10, 24, 43]) on junta testing, the current work is
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also connected to the rich area of learning and testing of threshold

functions. In particular, an immediate corollary of Theorem 1.6 gives

a fully noise tolerant tester for any function of k-halfspaces over
the Gaussian space. Despite prior work on testing of halfspaces [33,

34, 41], until this work, no non-trivial noise tolerant tester was

known even for a single halfspace.

Finally, we remark that the notion of noise in property testing

(including this paper) is the so-called adversarial label noise [27].
This is stronger than many other noise models in literature such

as the random classification noise [27] and Massart noise [32]. Both
these models are important from the point of view of learning the-

ory – in particular, halfspaces (and polynomial threshold functions)

are known to be efficiently learnable [8, 19] in both these models

of noise even when the background distribution is arbitrary. On

the other hand, for arbitrary background distributions, halfspaces

are hard to learn in the adversarial label noise model [16, 23]. In

contrast, the tester in the current paper is in the adversarial label

noise model but works only when the background distribution is

the Gaussian. This discussion raises the intriguing possibility that

halfspaces (and more generally linear juntas) can be tested in the

distribution free model [25] with weaker models of noise such as

the Massart noise.

The problem of learning lineark-juntaswas originally introduced
in [45], although of course there the sample complexity depends

(polynomially) on n.

2 PRELIMINARIES
In this section, we list some useful definitions and technical prelimi-

naries.We begin with some definitions and properties of projections

and averages.

Definition 2.1. For a subspace E of Rn , we denote by ΠE : Rn →

Rn the orthogonal projection onto E. For a subspace E and f : Rn →

R, we define the operator AE as AE f (x) = Ez∼γn [f (ΠEx + ΠE⊥z)],
where γn is the standard n-dimensional Gaussian measure.

Finally, for any subspace E, we define

JE = { f : for all x and z, if ΠEz = ΠEx then f (x) = f (z)}.

One way to understand the operator AE is that it averages f on

the directions orthogonal to the subspace E. The next lemma lists

some useful properties of the operators ΠE and AE . LetC
1

b (R
n ) be

the class of differentiable functions f such that f (x) and ∇f (x) are
bounded.

Lemma 2.2. For any f ∈ C1

b (R
n ), any subspaces E ⊂ E ′ ⊂ Rn , and

any x ∈ Rn , the following hold:
(1) If ΠEz = ΠEx then AE f (x) = AE f (z). In other words,

AE f ∈ JE .
(2) (∇AE f )(x) = E

z
[ΠE∇f (ΠEx + ΠE⊥z)]

(3) (AE AE′ f )(x) = (AE f )(x)
(4) For all д ∈ JE , Ex

[д(x) AE f (x)] = E
x
[д(x)f (x)]

(5) For all д ∈ L2(γ ), E
x
[(AE f )(x)д(x)] = E

x
[f (x)(AE д)(x)].

Note that parts 1 and 4 can be interpreted as saying that AE f
is the orthogonal projection (in the L2(γ ) sense) of f onto JE .

Proof.

(1) Part 1 is immediate from the definition of AE .

(2) To prove part 2, fix v ∈ Rn . Then

(AE f )(x) − (AE f )(x −v)

= E
z
[f (ΠEx + ΠE⊥z) − f (ΠEx − ΠEv + ΠE⊥z)]

Replacingv byhv and sendingh → 0, we obtain (and there is

no trouble exchanging the limit and the expectation, because

f is Lipschitz)

(∇v AE f )(x) = E
z
[∇ΠEv f (ΠEx + ΠE⊥z)].

This proves the second item.

(3) Part 3 follows from the fact that if E ⊂ E ′ then ΠEΠE′z =
ΠEz and ΠEΠ(E′)⊥z = 0 for every z. Indeed, if z and z′ are
independent standard Gaussian variables then

(AE AE′ f )(x) = E
z,z′

[f (ΠE (ΠE′x + Π(E′)⊥z
′) + ΠE⊥z)]

= E[f (ΠEx + ΠE⊥z)] = (AE f )(x).

(4) For Item 4, let z and z′ be standard Gaussian variables. Since

д ∈ JE , we have д(z) = д(ΠEz + ΠE⊥z′). Hence,

E[дAE f ] = E
z,z′

[д(z)f (ΠEz + ΠE⊥z′)]

= E[д(ΠEz + ΠE⊥z′)f (ΠEz + ΠE⊥z′)].

Since ΠEz + ΠE⊥z′ has the same distribution as z, the claim
follows.

(5) Item 5 follows from applying claim 4 twice:

E
x
[(AE f )(x)д(x)] = E[(AE f )(x)(AE д)(x)]

= E[f (x)(AE д)(x)]. □

As an immediate consequence of the properties above, we have

the following two basic properties of ∇AE f :

Claim 2.3.

(1) Ex[∇AE f (x)] = Ex[ΠE∇f (x)].
(2) Ex[∥∇AE f (x)∥2

2
] ≤ Ex[∥ΠE∇f (x)∥2

2
].

Proof. Item 1 follows by averaging over Item 2 from Lemma 2.2.

To get Item 2, first observe that by Jensen’s inequality (applied on

Item 2 from Lemma 2.2), we have

∥(∇AE f )(x)∥2 ≤ E
z
[∥ΠE∇f (ΠEx + ΠE⊥z)∥2].

Averaging over x ∼ γ and observing that the distribution of ΠEx +
ΠE⊥z is the same as that of x, we have Item 2. □

2.1 Smoothness and Juntas
The notion of smoothness that we will use in this work depends on

the notion of Gaussian noise. In particular, we use the following

Gaussian noise operator:

Definition 2.4. For t ≥ 0 and f ∈ L2(γn ), we define Pt f : Rn → R
as

Pt f (x) = Ey[f (e−tx +
√
1 − e−ty)].

The operator Pt forms a semigroup, i.e., PtPt ′ f = Pt+t ′ f . Further, for
t > 0, Pt f is infinitely differentiable.

We recall here a basic property of this noise operator – namely,

that Pt makes any bounded function Lipschitz, a fact that can be

derived, for example, from (2.3) in [31].
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Fact 2.5. For any f : Rn → [−1, 1] and any t > 0, Pt f is C√
t
-

Lipschitz for an absolute constant C .

Now we come to the notion of s-smooth functions:

Definition 2.6. A function f : Rn → [−1, 1] is referred to as
s-smooth if for all t > 0,

E[| f (x) − Pt f (x)|] ≤ s
√
t .

In this case, we say that Sm(f ) ≤ s .

To help illustrate the definition, let us recall the notion of Gauss-

ian surface area:

Definition 2.7. For a Borel set A ⊆ Rn , we define its Gaussian
surface area, denoted by Γ(A) to be

Γ(A) = lim inf

δ→0

vol(Aδ \A)

δ
.

Here Aδ denotes the set of points which are at Euclidean distance at
most δ the set A.

The next proposition shows that the class of s-smooth functions

functions of bounded surface area. Later, we will also show that

the notion of s-smoothness is equivalent to a certain decay in the

Hermite coefficients (which can also be used to show that Sm(f ) ≤
C E[∥∇f ∥2], so for example Lipschitz functions are s-smooth).

Proposition 2.8.
(1) If f : Rn → {−1, 1} has surface area at most s ·

√
π

2
, then

Sm(f ) ≤ s .
(2) Let E be any subspace of Rn . If f is s-smooth, then so isAE f .

Proof. (1) Part 1 was proved by Pisier [40] and Ledoux [30].

(2) To prove Part 2, observe that the operators AE and Pt com-

mute. Thus,

E[| AE f (x) − Pt AE f (x)|] = E[| AE f (x) − AE Pt f (x)|].

However, Jensen’s inequality implies that for any f and д,
Ex[| AE f (x) − AE д(x)|] ≤ Ex[| f (x) − д(x)|]. This finishes
the proof.

□

We now define the class of s-smooth linear k-juntas.

Definition 2.9. For a subspace E of Rn , parameter s > 0 and k ∈ N,
we say f : Rn → [−1, 1] ∈ JE ,k ,s if

• There is a subspace E ′ ⊆ E of dimension k such that f ∈ JE′ .
• f is s-smooth.

Definition 2.10. For a function h : Rn → [−1, 1], a subspace E of
Rn , k ∈ N and s > 0, we define

ρE ,k ,s (h) = max

ϕ∈JE ,k ,s
E
x
[ϕ(x) · h(x)].

Definition 2.11. For a function h : Rn → [−1, 1] and a class C of
functions mapping Rk → [−1, 1], we define

ρRn ,C(h) B max

ϕ∈Indn (C)
E
x
[ϕ(x) · h(x)].

For a subspace E of Rn , we define IndE ,C to be the set of all functions
Φ which can be expressed in the form

Φ(x) = h(⟨v1, x⟩), . . . , ⟨vk , x⟩),

where h ∈ C and v1, . . . ,vk are orthonormal vectors in E. Thus,
IndE (C) lifts functions in C to functions over Rn where the relevant
subspace is E.

For such a class C, a subspace E of Rn and a function f : Rn →

[−1, 1], we define

ρE ,C(f ) B max

Φ∈IndE (C)
Ex[f (x) · Φ(x)].

2.2 Useful Results about Matrices
Definition 2.12. Let B ∈ Rm×n matrix. Then, the singular value
decomposition (SVD) of B corresponds to B = U · D · VT where (i)
D ∈ Rr×r is a diagonal matrix with nonzero entries and (ii) the
columns of U and V are orthonormal. The columns of U form an
orthonormal basis for the column span of B. Similarly, the columns of
V form an orthonormal basis for the row span of B.

We will also need the following random sampling result con-

cerning rank one matrices due to Rudelson and Vershynin [42].

Theorem 2.13. Let Z be a distribution over Rn such that with
probability 1, for Z ∼ Z, we have ∥Z ∥2 ≤ M . Assume that ∥E[Z ⊗

Z]∥2 ≤ 1. Let Z1, . . . ,Zd be i.i.d. copies of Z. Let a be defined as

a = C

√
logd

d
M,

for an absolute constant C > 0. Then,

Pr

[



 1d ·
( d∑
j=1

Zj ⊗ Zj
)
− E[Z ⊗ Z]






2

> t

]
≤ 2e−t

2/a2 .

Next, we recall the notion of pseudoinverse of a matrix [35, 39].

Our definition below is specialized to real square matrices though

the definition can be generalized to complex rectangular matrices

as well.

Definition 2.14. For any square matrix A ∈ Rn×n , there is a
unique matrix B which satisfies the following conditions (known as
the Moore-Penrose conditions):

(1) ABA = A and BAB = B.
(2) (AB)t = AB and (BA)t = BA.

B is referred to as the pseudoinverse of A. We remark that when A is
invertible, then B = A−1. We will thus overload this notation and in
general, use A−1 to denote the pseudoinverse of A.

Claim 2.15. Let A ∈ Rm×m be a symmetric matrix whose non-
zero eigenvalues are {λ1, . . . , λt } and corresponding orthonormal
vectors {v1, . . . ,vt } (note that t ≤ m). Then,

A =
t∑
i=1

λiviv
t
i and A−1 =

t∑
i=1

1

λi
viv

t
i .

Proof. It is immediate to verify that the Moore-Penrose condi-

tions from Definition 2.14 hold for A−1
defined as above (uses the

fact that vi are orthonormal). □

Definition 2.16. For a symmetric matrix A ∈ Rn×n and a parame-
ter η ∈ R, we defineA≥η ∈ Rn×n as projection ofA to the eigenspaces
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with eigenvalue more than η. In other words, let the spectral decom-
position of A be

A =
n∑
i=1

λiviv
t
i .

Then,
A≥η =

∑
i :λi ≥η

λiviv
t
i .

Further, for η > 0, we define A−1
≥η by

A−1
≥η =

∑
i :λi ≥η

1

λi
viv

t
i .

Note that this is the same as the pseudoinverse of A≥η . Finally, for
a symmetric matrix A and parameter η ∈ R, we let Eη (A) denote
span({vi }λi ≥η ).

2.3 Algorithmic Ingredients
We will require some algorithmic ingredients from the paper [17].

The first is Lemma 10 in the full version from [17] which is stated

below.

Lemma 2.17. There is an algorithm Compute-inner-product which
given oracle access to function д : Rn → [−1, 1], noise parameter
t > 0, error parameter ϵ > 0, confidence parameter δ > 0 and has
the following guarantee:

(1) It makes poly(t, 1/ϵ, log(1/δ )) queries to д.
(2) With confidence 1 − δ , it outputs ⟨∇(Ptд)(y1),∇(Ptд)(y2)⟩ up

to additive error ±ϵ .

The second lemma we need appears as Lemma 12 in the full

version of [17] and is stated below.

Lemma2.18. There is an algorithm Project-on-gradientwhich given
oracle access to function д : Rn → [−1, 1], noise parameter t > 0,
error parameters η,ν > 0, confidence parameter δ > 0, and x,y ∈ Rn .
The algorithm Project-on-gradientmakes poly(1/t, 1/η, 1/ν, log(1/δ ))
queries toд and outputs, with probability 1−δ , a ±ν -additive estimate
of Est(x,y), where Est(x,y) is some function satisfying

Pr

y∼γn
[|Est(x, y) − ⟨∇Ptд(x), y⟩| > λη] ≤

1

λ2

for every λ > 0.

3 PROJECTION ON LOW-DIMENSIONAL
SPACE AND CORRELATIONWITH LINEAR
JUNTAS

The goal of this section is to prove the following theorem.

Theorem 3.1. Let Φ : Rn → [−1, 1] be a (differentiable) L-
Lipschitz function and η, δ > 0. Let x1, . . . , xM ∼ γn where M

logM ≥

C L2
η2 log(1/δ ). Then, with probability 1 − δ , the matrix A ∈ Rn×n

defined as

A =
1

M

M∑
j=1

∇Φ(xj ) · ∇Φ(xj )t ,

satisfies the following: for every subspace E containing Eη/2(A), for
every s ≥ 0, and for every h ∈ JRn ,k ,s , we have

|Ex[Φ(x) · (AEh)(x)] − Ex[Φ(x) · h(x)]| ≤
√
k · η.

At a high level, this theorem says that for any Lipschitz function

Φ, its correlation with the best linear k-junta essentially remains

preserved if we restrict our attention to a subspace obtained by

spectrally truncating the empirical covariance matrix of ∇Φ. It is
the first step in realizing part I. from Section 1.5 (the other step is

to handle the fact that we can only estimate A).
The proof of Theorem 3.1 follows from the following lemma.

Lemma 3.2. Let E be a subspace of Rn and let f : Rn → R be such
that for every unit vectorv ∈ E⊥, E[⟨v,∇f (x)⟩2] ≤ δ . Then for every
s ≥ 0, and for every h ∈ JRn ,k ,s , we have

|Ex[f (x) · (AEh)(x)] − Ex[f (x) · h(x)]| ≤
√
kδ . (1)

Proof of Theorem 3.1: Define the matrix Aavg as

Aavg = Ex[∇Φ(x) · ∇Φ(x)t ].

Observe that by Theorem 2.13, with probability 1 − δ , we have that
∥Aavg −A∥ ≤ η/2. This implies that for any E ⊇ Eη/2(A) and unit

vector v ∈ E⊥, we have v ∈ Eη/2(A)
⊥
and hence

E
x
[⟨v,∇Φ(x)⟩2] = vT · Aavg · v ≤ vT · A · v +

η

2

≤ η. (2)

Then, applying Lemma 3.2 to the function h and the subspace E,
we have the proof. □

We now turn to proving Lemma 3.2.

Proof of Lemma 3.2: Let h ∈ JF for some subspace F with

dim(F ) ≤ k . Let E ′ = span(E ∪ F ) and define д = AEh. Observe
that д is s-smooth (by Item 2 of Proposition 2) and thus д ∈ JE ,k ,s .

Also, observe that h = AE′h. We now have��E
x
[f (x) · д(x)] − E

x
[f (x) · h(x)]

��
(3)

=
��E
x
[f (x) · AEh(x)] − E

x
[f (x) · AE′h(x)]

��
=
��E
x
[AE f (x) · h(x)] − E

x
[AE′ f (x) · h(x)]

��
(Item 5 of Lemma 2.2)

≤
(
E
x
[(AE f (x) − AE′ f (x))2]

) 1
2 (by Cauchy-Schwarz). (4)

We now seek to bound the right hand side of (4). Towards this, let

us split Rn = E ′ ⊕ H and E ′ = E ⊕ J . Here H is the orthogonal

complement of E ′ and J is the orthogonal complement of E inside

E ′. For any x ∈ Rn , we express it as (xH , x J , xE ) (x J represents the
component of x along the subspace J and likewise for H and E).
Observe that for x = (xH , x J , xE ), we have

AE′ f (x) = Ex′H [f (x
′
H , x J , xE )]

and AE f (x) = Ex′H ,x′J
[f (x′H , x

′
J , xE )]. (5)

Thus, we now have the following:

E
x
[(AE f (x) − AE′ f (x))2]

= ExH ,xJ ,xE [(Ex′H [f (x
′
H , xJ , xE )] − Ex′H ,x′J

[f (x′H , x
′
J , xE )])

2]

= ExJ ,xE [(Ex′H [f (x
′
H , xJ , xE )] − Ex′H ,x′J

[f (x′H , x
′
J , xE )])

2

≤ ExH ,xJ ,xE [(f (xH , xJ , xE ) − Ex′J [f (xH , x
′
J , xE )])

2]. (6)

The last inequality follows from Jensen’s inequality. Next, for any

x = (x J , xH , xE ), define the function fxH ,xE : RJ → R as

fxH ,xE (x J ) = f (xH , x J , xE ).
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Then,

Π J∇f (x) = ∇fxH ,xE . (7)

Now applying the definition of fxH ,xE to (6) and subsequently

applying the Gaussian Poincaré inequality, we get

E
x
[(AE f (x) − AE′ f (x))2]

≤ ExH ,xJ ,xE [(fxH ,xE (xJ ) − Ex′J [fxH ,xE (x
′
J )])

2].

≤ ExH ,xJ ,xE [∥∇fxH ,xE (xH , xJ , xE )∥
2

2
].

Finally, applying (7), we get

E
x
[(AE f (x) − AE′ f (x))2] ≤ ExH ,xJ ,xE [∥Π J∇f (xH , xJ , xE )∥22 ].

Now, by our assumption, for any direction v in J (since it is or-

thogonal to E), Ex[∥Πv∇f (x)∥2
2
] ≤ δ . Since the dimension of J is

at most k , we get that

E
x
[(AE f (x) − AE′ f (x))2] ≤ kδ .

Combining with (4), we get the claim.

□

4 ROADMAP FOR PROVING THEOREM 1.2,
THEOREM 1.3, THEOREM 1.4 AND
THEOREM 1.6

In this section, we give a roadmap for our main results – namely,

Theorem 1.2 , Theorem 1.3, Theorem 1.4 and Theorem 1.6. First of

all, observe that instantiating Theorem 1.6 for the class of linear

k-juntas with surface area at most s (which are O(s)-smooth by

Proposition 2.8) implies Theorem 1.2. As mentioned earlier, noise

tolerant testing for a class is equivalent to computing the maximum

correlation between a function and the same class. Thus, we will

prove the following (equivalent) version of Theorem 1.6.

Theorem 4.1. For any class C of functions mapping Rk → [−1, 1]

(each of which is s-smooth), there is an algorithm Robust-C-testwhich
has the following guarantee: given error parameter ϵ > 0 and oracle
access to f : Rn → [−1, 1], it outputs an estimate ρ̂Rn ,C(f ) such
that ��ρ̂Rn ,C(f ) − ρRn ,C(f )

�� ≤ ϵ .

The query complexity is kpoly(s/ϵ ).

Note that by instantiating Theorem 4.1 with the class of s-smooth

functions, we get Theorem 1.3. Finally, we note that the proof of

Theorem 4.1 can be easily modified to yield Theorem 1.4. This is

explained in Section 6. Thus, we now focus on proving Theorem 4.1

(which is equivalent to Theorem 1.6).

To do this, our first step is to replace the function f by a smoothed

version:

Lemma 4.2. For smoothness parameter s , error parameter κ > 0

and f : Rn → [−1, 1], the function fsm defined by fsm = Pκ2/s2 f
has the following guarantees:

(1) f ∈ C∞ and f is L-Lipschitz for L = O(s2/κ2).
(2) For any x ∈ Rn , fsm(x) can be computed to error η/10 with

probability 1 − δ using T (η, δ ) = poly(1/η, log(1/δ )) queries
to the oracle for f : Rn → [−1, 1].

(3) Let д : Rn → [−1, 1] be a s-smooth function. Then,��Ex[fsm(x)д(x)] − Ex[f (x)д(x)]
�� ≤ κ

2

.

Proof. The first property follows from Fact 2.5 and the defini-

tion of the noise operator Pt . The second property follows easily

from the definition of Pt : we simply have to take enough samples to

estimate the expectation. Finally, suppose д is a s-smooth function.

Then, it follows that E[|Pκ2/s2д(x) − д(x)|] = O(κ). It follows that��Ex[fsm(x)д(x)] − Ex[f (x)д(x)]
��

=
��Ex[Pκ2/s2 f (x)д(x)] − Ex[f (x)д(x)]

��
=
��Ex[(Pκ2/s2д(x) − д(x)) · f (x)]

��
≤ O(κ).

□

Using Lemma 4.2, it suffices to prove Theorem 1.3 for Lipschitz

functions. In particular, we shall prove the following version of

Theorem 1.3 for Lipschitz functions.

Theorem 4.3. For any class C, there is an algorithm Correlation-
smooth-junta-C with the following guarantee: Let fsm : Rn →

[−1, 1] be an infinitely differentiable L-Lipschitz function such that
fsm = Pu f for a parameter u > 0 (where f : Rn → [−1, 1]). The
algorithm is given oracle access to the functions fsm and f . It also
gets as inputs, error parameter ϵ > 0, junta arity parameter k and
outputs an estimate ρ̂Rn ,C(fsm) (with probability at least 2/3) with
the following guarantee:

|ρ̂Rn ,C(fsm) − ρRn ,C(fsm)| ≤ ϵ .

Here ρRn ,C(fsm) is the maximum correlation of fsm with any s-
smooth k-linear junta. The query complexity of the algorithm is
poly(L/u) · kO (s2/ϵ 2). Further, the algorithm also works even when
we have a noisy oracle to fsm – in particular, the above guarantee
holds even when each evaluation of fsm(·) at x returns ±η additive
error estimate for η = poly(u/L) · kO (−s2/ϵ 2).

To obtain Theorem 4.1, we let κ = ϵ/4, u = κ/s . Define fsm =
Pu f . We now invoke Theorem 4.3 on fsm with error parameter ϵ/2
– observe that the output ρ̂Rn ,C(fsm) satisfies

|ρ̂Rn ,C(fsm) − ρRn ,C(fsm)| < ϵ .

Finally, observe that while we do not have oracle access to fsm,
Theorem 4.3 only requires to evaluate fsm(·) with an additive error

of ±η = poly(u/L) · kO (−s2/ϵ 2)
. Observe that the number of queries

made by Theorem 4.3 is Q = poly(L/u) ·kΘ(s
2/ϵ 2)

. Set δ = 1/(10Q).

Using Lemma 4.2, we can evaluate fsm(x) bymakingη−2 log(1/δ ) to
the oracle for f . For our choice of δ , this means that with probability

9/10, all our evaluations of fsm(·) are ±η accurate. This means that

we can simulate our queries to fsm by using the oracle for f with a

multiplicative ovehead of η−2 log(1/δ ). Plugging in the values of η
and δ , we get the final claim.

5 PROOF OF THEOREM 4.3
We now turn to the proof of Theorem 4.3. For the moment, we will

just assume that we can evaluate fsm at any point x exactly. From

the description of our algorithm, it would be clear that the guarantee

of algorithm continues to hold even if each evaluation of fsm(x)
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Inputs

f := Oracle access to function f : Rn → [−1, 1]

fsm := Oracle access to function fsm : Rn → [−1, 1]

where fsm = Pu f .
L := Lipschitz parameter

ν := accuracy parameter

k := junta arity parameter

Parameters

δ :=
1

20

M :=
L2
η2 log(Lδ/η)

η :=
ν 2
100k .

ϵ ′ :=
η5ν 2

L8C2

0
M6

(where C0 is a large absolute constant - 10
6
suffices)

Implicit projection algorithm

(1) SampleM random points x1, . . . , xM ∼ γn .
(2) For each 1 ≤ i, j ≤ M , with confidence pa-

rameter δ/M2
and error parameter ϵ ′, we compute

⟨∇fsm(xi ),∇fsm(xj )⟩ = ⟨∇Pu f (xi ),∇Pu f (xj )⟩ using

algorithm Compute-inner-product from Lemma 2.17.

Denote this by Âi , j and let Â ∈ RM×M
as the corre-

sponding symmetric matrix.

(3) Let N̂ be the closest psd matrix to Â in Frobenius norm

(can be computed using convex programming).

(4) Let V̂ D̂2V̂T
be the spectral decomposition of N̂ .

(5) Output the points (x1, . . . , xM ) and the matrix Ŵ =

D̂−1
≥
√
η/2 · V̂

T
.

Figure 1: Description of the testing algorithm Implicit pro-
jection

has an additive error of ±η = poly(u) · kO (−L2/ϵ 2)
. We will bring

this to attention of the reader at the relevant points. The algorithm

Correlation-smooth-junta invokes two crucial subroutines. The

first is the routine Implicit projection described in Figure 1.

5.1 Implicit Projection Algorithm
Lemma 5.1. The algorithm Implicit projection takes as input oracle
access to f : Rn → [−1, 1] and fsm : Rn → [−1, 1], parameters
u, L > 0, error parameter ν > 0 and junta arity parameter k . Suppose
fsm = Pu f . The algorithm makes poly(k, 1/u, 1/ν, L) queries to f
and fsm and with probability 9/10, has the following guarantee: For
M = poly(k/ν ), it outputs M points x1, . . . , xM and a matrix Ŵ ∈

RM×M . Let BT ∈ RM×n be the matrix whose jth row is ∇fsm(x j )

and Ê be the span of the rows of Ŵ BT . There exists a k-dimensional
subspace Ẽ of Ê with the following property. Let h ∈ JRn ,k ,s . Then,
for д = AẼh,

|Ex[fsm(x)д(x)] − Ex[fsm(x)h(x)]| ≤
ν

2

. (8)

Further, the matrix Ŵ satisfies

∥ΠÊ − BŴTŴ BT ∥F = ∥Î − Ŵ BTŴT ∥F ≤ ν/2, (9)

where Î denotes the identity matrix in M dimensions. Finally, the
matrix Ŵ satisfies ∥Ŵ ∥2 ≤ 20k

ν .

The high level idea of the lemma is the following: Let E denote

the subspace spanned by the rows of BT . Let us define N = BT B

and Π̂ = BŴTŴ BT . To understand the high level idea behind the

algorithm Implicit projection, observe that if in Step 2, we could

compute ⟨∇fsm(xi ),∇fsm(xj )⟩ exactly, then N̂ = N . Consequently,

if η > 0 is sufficiently small, then it is easy to see that the rows

of Ŵ BT form an orthonormal basis of E and consequently, Π̂ is a

projection matrix into E. Unfortunately for us, we will not have

access to B explicitly and thus are only able to compute an approxi-

mation to N , namely N̂ . The goal here is two-fold: (a) Understand

why the rows of Ŵ BT are essentially orthonormal; (b) show that

for д = AÊh, Ex[fsm(x)д(x)] is nearly as large as Ex[fsm(x)h(x)].
The next claim quantifies the sense in which the rows of Ŵ BT

are almost orthonormal.

Lemma 5.2. For matrices D̂, Ŵ , B, N̂ and η > 0 (as described in
the algorithm Implicit projection), let Î = D̂−1

≥
√
η/2D̂. (That is, Î has a

1 corresponding to large eigenvalues of N̂ .) Let Ê be the span of the
rows of Ŵ BT . Then

∥ΠÊ − BŴTŴ BT ∥F = ∥Î − Ŵ BT · BŴT ∥F ≤
4

η
∥N̂ − BT B∥F .

Proof. Since N̂ = V̂ D̂2V̂T
, we can write

Î = (D̂≥
√
η/2)

−1V̂T N̂V̂ (D̂≥
√
η/2)

−1.

Then

Î − Ŵ BT BŴT = (D̂≥
√
η/2)

−1V̂T (N̂ − BT B)V̂ (D̂≥
√
η/2)

−1.

Finally, note that ∥(D̂≥
√
η/2)

−1∥ ≤ 2√
η and ∥AB∥F ≤ ∥A∥F ∥B∥ for

any matrices A and B. This proves the claimed inequality. To see

the equality, note that BŴTŴ BT and Ŵ BT BŴT
have the same

eigenvalues, and both expressions can be expressed as (
∑
(λi −

1)2)1/2, where the sum ranges over non-zero eigenvalues. □

Having shown that the rows ofŴ BT are close to being orthonor-

mal, we next show that the rows ofŴ BT essentially span E≥η (BBT )
– more precisely, we show that ΠE≥η (BBT )(I − BŴTŴ BT ) is small.

Lemma 5.3. For matrices D̂, Ŵ , B, N̂ and η > 0 (as described in the
algorithm Implicit projection),

∥ΠE≥η (BBT )(I − BŴTŴ BT )∥ ≤
20∥BT B∥F · ∥BT B∥

η
5

2

√
∥N̂ − BT B∥.

Proof. Recall that B = UDVT
is a singular value decomposition

of B. LetU≥
√
η consist of the rows ofU whose singular values are

at least

√
η, so that

ΠE>η (BBT ) = U≥
√
ηU

T
≥
√
η = U I≥√ηU

T . (10)
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∥ΠE≥η (BBT )(I − BŴTŴ BT )∥

= ∥ΠE≥η (BBT )(I − B(N̂≥η/4)
−1BT )∥

= ∥U I≥√ηU
T −U I≥√ηDV

T (N̂≥η/4)
−1VDUT )∥

= ∥V I≥√ηV
T −V I≥√ηDV

T (N̂≥η/4)
−1VDVT )∥

= ∥V I≥√ηV
T − (N≥η )

1/2(N̂≥η/4)
−1N 1/2∥.

where in the last line we set N = BT B. The first equality uses

ŴTŴ = (N̂≥η/4)
−1
. The second and third equality uses that ∥A∥ =

∥ΛAΛT ∥ for unitary matrix Λ and the last equality sets N = VDVT
.

Now, observe that V I≥√ηV
T = (N≥η )

1/2(N≥η )
−1N 1/2

, we have

∥ΠE≥η (BBT )(I − BŴTŴ BT )∥

= ∥(N≥η )
1/2

(
(N≥η )

−1 − (N̂≥η/4)
−1
)
N 1/2∥

≤ ∥N ∥ · ∥ΠE≥η (N )

(
(N≥η )

−1 − (N̂≥η/4)
−1
)
∥ (11)

Finally, we will use thee following lemma concerning stability of

the pseudoinverse. The proof is deferred to the full version.

Lemma 5.4. Let A, Ã ∈ Rn×n be psd matrices. Let η ≥ 0 and V
denote the subspace spanned by the eigenvalues of A in [η,∞). Then,

∥(A−1
≥η − Ã−1

≥η/2) · ΠV ∥ ≤
20∥A∥F

√
∥A − Ã∥2

η5/2
.

Applying Lemma 5.4 to get that

∥ΠE≥η (N )

(
(N≥η )

−1 − (N̂≥η/4)
−1
)
∥ ≤

20∥N ∥F

√
∥N − N̂ ∥

η5/2
.

Combining this with (11), we get the result. □

Lemma 5.5. Let fsm : Rn → [−1, 1], L, M , η, k , δ , N̂ , Ŵ and B
be as described in the Algorithm Implicit projection. Let Ê denote
the span of the rows of Ŵ BT . If fsm is L-Lipschitz, with probability
1 − δ , there is a subspace Ẽ of Ê with the following property: For all
h : Rn → [−1, 1] such that h ∈ JRn ,k ,s ,

|Ex[fsm(x) · AẼh(x)] − Ex[fsm(x) · h(x)

≤
√
k · η −

80L4 ·M5/2

η5/2

√
∥N̂ − BT B∥ −

16L

η
∥N̂ − BT B∥F .

The proof of this lemma uses the ingredients established thus

far along with a certain stability estimate for subspaces. The full

proof is deferred to the full version.

Proof of Lemma 5.1: By our setting of parameters, observe that

with probability 1−δ , the matrix Â satisfies ∥Â−BT B∥∞ ≤ ϵ ′. This
in turn implies that ∥Â − BT B∥F ≤ ϵ ′ · M . Since N̂ is the closest

psd matrix to Â, this means ∥N − N̂ ∥F ≤ 2ϵ ′ ·M .

Plugging the values of ϵ ′, η and M into Lemma 5.5 shows that

(8) is satisfied with probability at least 1 − 2δ = 9/10. Similarly,

(9) follows by plugging the values of ϵ ′, η and M into Claim 5.2.

Finally, observe that the query complexity of the algorithm is dic-

tated by Step 2 (i.e., the query complexity of the routine Compute-
inner-product). By plugging in Lemma 2.17, we get that the query

complexity is poly(M, 1/u, 1/ϵ ′). Plugging in the values of these pa-

rameters (from the description of the algorithm Implicit projection),
we get the claim.

Finally, to get an upper bound on ∥Ŵ ∥2, observe that Ŵ =

D̂≥
√
η/2 ·V̂ . This means that ∥Ŵ ∥2 ≤ 2/

√
η. Plugging in the value of

η from the description of Implicit projection, we get the claim. □

5.2 The Averaged Class
We next describe a preprocessing step for our class of functions C.

The point is that it is possible in principle for f to be an E-Junta but
be well-correlated with some function д ∈ C that was embedded

in Rn along a different subspace Ẽ. We handle this by adding to C

all possible projections of functions from C that were embedded in

different subspaces.

Definition 5.6. For a class C of functions Rk → [−1, 1], define C∗

to be the set of all functions Rk → [−1, 1] of the form

x 7→ E
z∼γk

[д(WT ( xz )))],

where д ranges over C andW ranges over all (2k) × k matrices with
orthonormal columns.

In other words, we are taking functions from C, embedding them

in R2k along an arbitrary k-dimensional subspace, and then aver-

aging them back down to Rk . As a consequence of Proposition 2.8,

if every function is C is s-smooth, then so is every function in C∗
.

Also, C∗
contains C, as can be seen by taking the first k rows of A

to be an orthonormal basis of Rk , and the next k rows to be zero.

We next have the following claim.

Claim 5.7. Let C be a class of functions mapping Rk → [−1, 1].
Define the set F to be the functions of the form ARm f where f ∈

Indn (C) (where n ≥ m + k andm ≥ k). Then, F = Indm (C∗).

Proof. It is easy to see that Indm (C∗) ⊆ F as long as n ≥ m+k .
So, we now argue that F ⊆ Indm (C∗). Let f ∈ Indn (C). Let E be

the relevant subspace for f and let E = J ⊕ J ′ where J = Rm∩E and

J ′ is the orthogonal complement of J inside E. It is obvious that the
dimension of J is at most k . It now easily follows that д ∈ Indm (C∗).

□

We remark that although it might be challenging in general to

characterize C∗
in terms of C, there are several classes of functions

where this is easy:

• if C is the class of all s-smooth functions then C∗ = C;

• if C is the class of all half-spaces then C∗
is the class of all

functions of the form x 7→ Φ(⟨a, x⟩ + b), where Φ is the

Gaussian c.d.f.;

• more generally, if C is closed under taking subspaces – in the

sense that if д ∈ C, E ⊂ Rk is a subspace, and z ∈ E⊥ then

x 7→ f (πEx + z) also belongs to C – then C∗
is contained in

the convex hull of C. In this situation, and because we will

be interested in maximizing a linear function over C, we can

essentially replace C∗
by C in what follows.
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5.3 Hypothesis Testing on Low-Dimensional
Space

Our final technical task is to show that functions on a low-dimension-

al space can be adequately “pulled back” to Rn under an approxi-

mate projection. The first observation is that an approximate pro-

jection can be approximated by a projection:

Lemma 5.8. For any m ≤ n and any m × n matrix X of rank m,
there exists anm × n matrix Y with orthogonal rows, such that

∥X − Y ∥F ≤ ∥XXT − I ∥F .

Proof. LetUD2UT = XXT
be a singular value decomposition

ofXXT
. Then I = (D−1UTX )(D−1UTX )T , and it follows thatVT

:=

D−1UTX is an orthogonal matrix. Let Y = UVT
. Noting that X =

UDVT
, we have ∥X − Y ∥2F = ∥D − I ∥2F , and if σ1, . . . ,σm are the

singular values of X then

∥D − I ∥2F =
∑

(σi − 1)2 ≤
∑

(σ 2

i − 1)2 = ∥XXT − I ∥2F .

□

5.3.1 The existence of a small net. We now prove the existence of

a small net of Lipschitz functions for families of s-smooth k-linear
Juntas in Rm . The main result is Proposition 5.15.

We begin with a few preliminaries related to approximate by Lip-

schitz functions, namely, s-smooth functions can be approximated

by Lipschitz functions and Lipschitz functions don’t change much

under composition by nearby linear maps.

Lemma 5.9. For every s-smooth function f : Rn → [−1, 1] and
every ϵ > 0, there is a C ·s

ϵ -Lipschitz function д : Rn → [−1, 1] such
that ∥ f − д∥L2(γ ) ≤ ϵ . Here C is the absolute constant appearing in
Fact 2.5.

Proof. Choose t = ϵ 2
s2 and set д = Pt f , so that the bound

∥ f −д∥L2(γ ) ≤ ϵ follows from the fact that f is s-smooth. The claim

follows from Fact 2.5. □

Lemma 5.10. Suppose that д : Rm → R is Lipschitz and let X and
Y be twom×n matrices. Then ∥д◦X −д◦Y ∥L2(γ ) ≤ (Lipд)∥X −Y ∥F
(here Lipд denotes the Lipschitz constant of д).

Proof. Let x be a standard normal random variable on Rn . Then

E[((д ◦ X )(x) − (д ◦ Y )(x))2] ≤ (Lipд)2 E[∥Xx − Yx∥2]

= (Lipд)2∥X − Y ∥2F . □

Our procedure for producing a net for s-smooth k-juntas in
Rm proceeds in three steps. First, we will construct a net for s-

smooth functions on Rk . Then we will find a net for k-dimensional

subspaces of Rm . Combining these two nets will give a net for

s-smooth k-juntas in Rm .

WWe next have the following lemma. The proof of this lemma

relies on standard tools from Hermite analysis and properties of

the noise operator (and is deferred to the full version).

Lemma 5.11. For any k ∈ N and any s, ϵ > 0, there exists a set Net
of functions Rk → [−1, 1] such that

(1) every function in Net is Cs
ϵ -Lipschitz (here C is the absolute

constant appearing in Fact 2.5),
(2) Net is an ϵ-net for the set of s-smooth functions Rk → [−1, 1],

(3) log |Net| ≤ kO (s2/ϵ 2), and
(4) Every function f in Net is s-smooth.

Next, we need to turn our net of functions on Rk into a net of

k-linear-juntas on Rm . We will do this by finding an appropriate

net for k-dimensional subspaces of Rm , and then using the net of

Lemma 5.11 for each of these subspaces.

Lemma 5.12. There is a set E of k-dimensional subspaces of Rm

such that

(1) for everyk-dimensional subspace E ofRm , there is some E ′ ∈ E

with ∥ΠE − ΠE′ ∥F ≤ ϵ ; and

(2) |E | ≤

(
O (k )
ϵ

)mk
.

Proof. We begin the proof by recalling the following simple

fact.

Fact 5.13. For the unit sphere in Rm (denoted by Sm−1), there is a
δ -net (in Euclidean sphere) of size (1/δ )O (m).

Now, let T be a δ -net of Sm−1
(the unit Euclidean sphere in Rm )

of cardinality at most (1/δ )O (m)
(as described in Fact 5.13). Let E

be the set of all k-dimensional subspaces that are spanned by k
elements of T . The claimed bound on the cardinality of E follows,

provided we choose δ so that ϵ ≤ C ′kδ (for an absolute constant

C ′
).

Let E be ak-dimensional subspace ofRm , and let x1, . . . , xk be an

orthonormal basis of E. Choose y1, . . . ,yk ∈ T with ∥xi − yi ∥ ≤ δ
for all i; then the yi are unit vectors, and for i , j we have

|⟨yi ,yj ⟩| = |⟨yi ,yj ⟩−⟨xi , x j ⟩| ≤ |⟨xi , x j −yj ⟩|+ |⟨yj , xi −yi ⟩| ≤ 2δ .

It follows that if Y is the matrix with rows yi , and if E ′ is the span
of y1, . . . ,yk , then ∥YTY − ΠE′ ∥2F = ∥YYT − I ∥2F ≤ 4δ2k . Hence,

∥ΠE − ΠE′ ∥F = ∥XTX − ΠE′ ∥F ≤ ∥XTX − YTY ∥F + 2δ
√
k .

It remains to bound ∥XTX −YTY ∥F , and it will suffice to show that

∥XTX − YTY ∥F = O(kδ ).
Now, if x and y are unit vectors with ∥x − y∥ ≤ δ , then ⟨x,y⟩ ≥

1 − O(δ2). It follows that ∥xxT − yyT ∥2F = 2 − 2⟨x,y⟩2 ≤ O(δ2).
Thus, by the triangle inequality,

∥XTX − YTY ∥F ≤

k∑
i=1

∥xix
T
i − yiy

T
i ∥F = O(kδ ).

□

Definition 5.14. Let Ê be am-dimensional subspace of Rn and let
C be a subset of s-smooth linear k-juntas over Rk . We define IndÊ (C)
to be the set of all functions h : Rn → R of the form

Φ(x) = h(⟨v1, x⟩, . . . , ⟨vk , x⟩),

wherev1, . . . ,vk are orthonormal vectors in Ê. In other words, IndÊ (C)
lifts the functions in C to linear k-juntas over Rn where the relevant
subspace is a k-dimensional subspace of Ê. Note that IndRn (C) =
Indn (C) (see Definition 1.5).

Finally, for such a class C, subspace Ê and a function f : Rn →

[−1, 1],
ρÊ ,C(f ) B max

Φ∈IndÊ (C)
Ex[Φ(x) · f (x)].
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Proposition 5.15. Let C be a subset of s-smooth linear functions
Rk → [−1, 1]. Then, for anym ≥ k , there is a setNetm,C of functions
mapping Rm to [−1, 1] which satisfies the following properties:

(1) Any д ∈ Netm,C is Cs/ϵ-Lipschitz.
(2) Netm,C is an ϵ-net for IndRm (C) – i.e., for everyh ∈ IndRm (C),

there is a д ∈ Netm,C such that ∥h − д∥L2(γ ) ≤ ϵ .

(3) log |Netm,C | ≤ kO (s2/ϵ 2) +O
(
mk log ks

ϵ
)
, and

(4) For every function in д ∈ Netm,C , there is h ∈ IndRm (C) such
that ∥h − д∥L2(γ ) ≤ ϵ .

Proof. It suffices to consider the case that C is the set of all
s-smooth functions Rk → R. Indeed, once we have found a net

(call it Net0) for this case, we can handle the case of general C by

simply discarding any д ∈ Net0 for which there is no h ∈ IndRm (C)

such that ∥h − д∥L2(γ ) ≤ ϵ . In this way, we ensure that property

4 is satisfied, noting that properties 1, 2 and 3 remain unchanged

if we remove functions д from Net0. For the rest of this proof, we
consider the case that C is the set of all s-smooth functions.

Let N̂et be a net for s-smooth functions on Rk , with the proper-

ties guaranteed by Lemma 5.11. Let E be a collection ofk-dimensional

subspaces of Rm , with the properties guaranteed by Lemma 5.12

with accuracy ϵ ′ = ϵ2/s . We define Net0 to be the set of functions

of the form x 7→ f (ΠEx), where f ∈ N̂et and E ∈ E. Clearly,

Net0 satisfies Property 1. To see Property 3, note that log |Net0 | =
log |N̂et|+log |E |. By using Lemma 5.11 and Lemma 5.12, the bound

on log |Net0 | follows. Thus, it remains to show Property 2.

To see Property 2, suppose that f is an s-smooth k-Junta. Then
there is some k-dimensional subspace E and an s-smooth function

д on Rk such that f = д ◦ ΠE . Choose h ∈ N̂et to be ϵ-close to д
and choose E ′ ∈ E such that ∥ΠE − ΠE′ ∥F ≤ ϵ2/s . Then h ◦ ΠE′

belongs to Net, and satisfies

∥h ◦ΠE′ − f ∥L2(γ ) ≤ ∥h ◦ΠE′ −h ◦ΠE ∥L2γ + ∥h ◦ΠE − f ◦ΠE ∥L2(γ )

The second term is at most ϵ , and the first term can be bounded

(using Lemma 5.10) by (Liph)∥ΠE′ − ΠE ∥ ≤ Cs
ϵ · ϵ2/2 ≤ Cϵ . This

proves the claim (after we change ϵ by a constant factor). □

5.3.2 Proof of the theorem. Finally, we apply Proposition 5.15 to

the to the analysis of our algorithm. The proof can be found in the

full version of the paper.

Lemma 5.16. Let C be a subset of s-smooth functions Rk → [−1, 1]

and letNetC,m be an ϵ-net as guaranteed by Proposition 5.15. Let Ê be
am-dimensional subspace ofRn and letA ∈ Rm×n with the following
two properties: (i) the rows of A span Ê and (ii) ∥AAT − I ∥F ≤ κ.
Then, for any Lipschitz function fsm, we have that��ρÊ ,C(fsm) − max

h∈Netm,C

E
x
[h(Ax) · fsm(x)]

�� ≤ C ′sκ

ϵ
+ ϵ,

for an absolute constant C ′.

Proof of Theorem 4.3:
Let C∗

be the averaged class of C, as in Definition 5.6. Let

Netm,C∗ be the set of functions guaranteed by Proposition 5.15

– with smoothness parameter s , error parameter ϵ/4 andm = M
as instantiated in the algorithm Implicit Projection. Let us also set

ν = ϵ2/(100C ′s) for the constantC ′
appearing in Lemma 5.16. Let us

now invoke algorithm Implicit projection with smoothness param-

eter u = ν/s , Lipschitz parameter L = O(s/ν ), the error parameter

ν and junta arity parameter k .
Suppose h∗ ∈ Indn (C) such that

h∗ = arg max

h∈Indn (C)
Ex[fsm(x)h(x)].

Lemma 5.1 guarantees that with probability 9/10, we get a matrix

Ŵ and points x1, . . . , xM such that the following conditions are

satisfied: let BT be the matrix where the jth row is ∇fsm(xj ). Let Ê
be the row span of BT .

(1) ∥Î − Ŵ BT BŴT ∥F ≤ ν/2. Here Î is the identity matrix inm
dimensions wherem = dim(Ê).

(2) For д = AÊh∗,

|E[fsm(x) · д(x)] − E[fsm(x) · h∗(x)]| ≤
ν

2

. (12)

Also, by Lemma 5.16, we have that��ρÊ ,C∗ (fsm)− max

h∈Netm,C∗
E
x
[h(Ŵ BT x)· fsm(x)]

�� ≤ C ′s

ϵ
·
ν

2

+
ϵ

4

<
51 · ϵ

200

(13)

Next, since д = AÊh∗ ∈ IndÊ (C
∗) (by Claim 5.7), we have that

ρÊ ,C∗ (fsm) ≥ E[fsm(x) · д(x)] ≥ E[fsm(x) · h∗(x)] −
ν

2

, (14)

where the second inequality follows from (12). On the other hand,

if д̃ ∈ IndÊ (C
∗) maximizes the correlation with fsm, there exists

(again by Claim 5.7)
˜h∗ ∈ Indn (C) with AÊ

˜h∗ = д̃, and hence (by

Lemma 5.1)

ρÊ ,C∗ (fsm) = E[fsm(x) · (AÊ
˜h∗)(x)]

≤ E[fsm(x) · ˜h∗(x)] +
ν

2

≤ E[fsm(x) · h∗(x)] +
ν

2

. (15)

Together with (14), we have

|ρÊ ,C∗ (fsm) − E[fsm(x) · h∗(x)]| ≤
ν

2

;

combinedwith (13) (and recalling thatwe choseh∗ to be a correlation-
maximizer in Indn (C), we have��ρRn ,C − max

h∈Netm,C∗
E
x
[h(Ŵ BT x) · fsm(x)]

�� ≤ 51ϵ

100

+
ν

2

=
52ϵ

100

. (16)

Thus, for our purposes, it suffices to (approximately) compute

maxh∈Netm,C∗ Ex[h(Ŵ BT x) · fsm(x)]. Towards this, consider any
fixed h ∈ Net. We set T = O(ϵ−2 log(1/ζ )) where ζ = 1/(10 ·

|Netm,C∗ |). Sample T points from the standard Gaussian γn – call

these points z1, . . . , zT . By applying the Chernoff bounds, observe

that for any h ∈ Net, with probability 1 − ζ ,����Ex[h(Ŵ BT x) · fsm(x) −
1

T

T∑
j=1

h(Ŵ BT zj ) · fsm(zj )
���� ≤ ϵ/4.
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From a union bound, it follows that with probability 9/10,���� max

h∈Netm,C∗

Ex[h(Ŵ BT x) · fsm(x)]

− max

h∈Netm,C∗

1

T

T∑
j=1

h(Ŵ BT zj ) · fsm(zj )
����
≤ ϵ/4. (17)

Combining (17) and (16), we get����ρRn ,C(fsm) − max

h∈Netm,C∗

1

T

T∑
j=1

h(Ŵ BT zj ) · fsm(zj )
���� < 2ϵ

3

. (18)

Thus, it suffices to compute the quantity

Corr = max

h∈Netm,C∗

1

T

T∑
j=1

h(Ŵ BT zj ) · fsm(zj ),

up to additive error ±ϵ/3 and upper bound the query complexity

of computing this estimate. Observe that computing { fsm(zj )}Tj=1
requires T queries. Using Lemma 5.1, we have

∥Ŵ ∥2 ≤
20k

ν
B ∆

Set θ = ϵ 2
200·C ·∆ ·s ·

√
m
. HereC is the constant appearing in Fact 5.13.

We now invoke algorithm Project-on-gradient from Lemma 2.18.

Then, we get that for any zj (for 1 ≤ j ≤ T ),

Pr

xi∼γn
[|Est(xi , zj ) − ⟨∇fsm(xi ), zj ⟩| > θ ] ≤

1

200T ·m
.

Further, we can compute ±θ estimate to Est(xi , zj ) (with confidence
1 − 1

200T ·m ) where the query complexity is poly(T ·m, 1/θ ). This
means that with probability 0.99, for each 1 ≤ j ≤ T and 1 ≤ i ≤ m,

we have ±2θ estimates (denoted by χ i , j ) for each ⟨∇fsm(xi ), zj ⟩. In
other words, for each 1 ≤ j ≤ T , we get a vector Ξj which satisfies

∥Ξj − BT zj ∥ ≤ 2θ
√
m.

Since ∥Ŵ ∥ ≤ ∆, this means that for all 1 ≤ j ≤ T ,

∥ŴΞj − Ŵ BT zj ∥ ≤ 2θ
√
m∆ =

ϵ2

100C · s
.

Sinceh ∈ Net isCs/ϵ-Lipschitz, this implies that for each 1 ≤ j ≤ T ,��h(ŴΞj ) − h(Ŵ BT zj )
�� ≤ ϵ

100

.

Consequently, this gives a ±ϵ/100 additive estimate of the quantity

1

T

T∑
j=1

h(Ŵ BT zj ) · fsm(zj ).

Recalling (18), we have shown that the algorithm produces a ±ϵ-
additive estimate of ρRn ,C(fsm). It remains to bound the query

complexity of the algorithm. The query complexity of the algorithm

Implicit projection (from Lemma 5.1) is poly(k, 1/u, 1/ν, L) where
ν = ϵ2/(100C ′s) (C ′

is the constant appearing in Lemma 5.16). Thus,

the query complexity of this part is poly(k, s, L, 1/ϵ).
For the hypothesis testing part, the query complexity can be

bounded as follows:

(1) We make T queries to fsm where T = O(ϵ−2 log |Net|.

(2) For each 1 ≤ j ≤ m and 1 ≤ i ≤ T , we compute a ±θ
approximation to Est(xi , zj ) – the query complexity of each

is poly(T ·m, 1/θ ).

Thus, the total query complexity is bounded by poly(T ,m, 1/θ ).
Using the fact thatm ≤ M (where M is set in algorithm Implicit
projection) and plugging in the value of the parameters, we get the

final bound on the query complexity.

Finally, we remark that our analysis so far was based on assuming

that we have exact oracle access to fsm. However, we only have

oracle access to f and approximate oracle to fsm (via Lemma 4.2). To

address this issue, we observe that the algorithm Implicit projection
only uses the oracle to f and not to fsm (the only invocation of these

oracles is when we call the routine Compute-inner-product). In the

hypothesis testing part, (i) we only use the oracle to f when we

invoke the algorithm Project-on-gradient. (ii) we use the oracle for
fsm when we approximate Corr to error ±ϵ/3. However, it is easy
to see that for this, it suffices to have an oracle for fsm with (say)

O(ϵ−1.5) additive accuracy. By Lemma 4.2, this can be simulated

with an oracle for f with O(ϵ−3) overhead given an oracle to f .
This finishes our proof.

□

6 LEARNING THE LINEAR-INVARIANT
STRUCTURE

The proof of Theorem 1.4 is essentially the same as the proof of

Theorem 4.3; we construct the same net of functions and estimate

the correlations of each of them. The only difference is that instead

of outputting the maximum correlation value of a function in the

net, we output the set of functions that have a large correlation.

Proof of Theorem 1.4: Let Netm,C∗ be as in the proof of Theo-

rem 4.3. With the same δ as in that proof, with probability 9/10 we

can simultaneously estimate Ex [h(Ŵ BT x) · fsm(x)] to error ±ϵ/8
for all h ∈ Netm,C∗ .

Now consider the algorithm that returns all h ∈ Netm,C∗ for

which our estimate of Ex [h(Ŵ BT x) · fsm(x)] is at least ρ − 4ϵ ; call
the returned set G. It follows that for every д̂ ∈ G,

E
x
[д̂(Ŵ BT x) · fsm(x)] ≥ ρ − 5ϵ,

and so the first claim of the theorem follows.

For the second claim, take any д ∈ Indn (C) and let Ê be the

range of Ŵ BT . Since (by Claim 5.7)AÊд ∈ IndÊ (C
∗), there is some

д̂ ∈ Netm,C∗ such that

Ex[(д̂(Ŵ BT x) − AÊд)
2] ≤ ϵ2. (19)

Now, if д’s correlation with f is at least ρ − ϵ , then by Lemma 5.1

AÊд has correlation at least ρ−2ϵ with f , and so by (19), д̂◦(Ŵ BT )
has correlation with f at least ρ − 3ϵ , and hence the definition of

G ensures that д̂ ∈ G. Going back to (19), the function д̂ witnesses

the second claim of the theorem. □
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