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ABSTRACT

A natural problem in high-dimensional inference is to decide if a
classifier f : R" — {-1,1} depends on a small number of linear
directions of its input data. Call a function g : R® — {-1,1}, a
linear k-junta if it is completely determined by some k-dimensional
subspace of the input space. A recent work of the authors showed
that linear k-juntas are testable. Thus there exists an algorithm to
distinguish between:

(1) f : R®™ — {—1,1} which is a linear k-junta with surface area s.
(2) f is e-far from any linear k-junta with surface area (1 + €)s.
The query complexity of the algorithm is independent of the ambi-
ent dimension n.

Following the surge of interest in noise-tolerant property testing,
in this paper we prove a noise-tolerant (or robust) version of this
result. Namely, we give an algorithm which given any ¢ > 0, € > 0,
distinguishes between:

(1) f : R® — {-1,1} has correlation at least ¢ with some linear
k-junta with surface area s.

(2) f has correlation at most ¢ — € with any linear k-junta with
surface area at most s.

The query complexity of our tester is kP°V(/€). Using our tech-
niques, we also obtain a fully noise tolerant tester with the same
query complexity for any class C of linear k-juntas with surface
area bounded by s. As a consequence, we obtain a fully noise tol-
erant tester with query complexity kO(poly(logk/€)) for the class
of intersection of k-halfspaces (for constant k) over the Gaussian
space. Our query complexity is independent of the ambient dimen-
sion n. Previously, no non-trivial noise tolerant testers were known
even for a single halfspace.
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1 INTRODUCTION

To motivate our setting, consider the classical notion of a Boolean
junta: a function f : {-1,1}" — {-1,1} is said to be a k-junta if
there are some k coordinates i1, . . ., ig € [n] such that f(x) only
depends on x;,, . . ., xj, . The fundamental results for testing juntas
were obtained more than a decade ago; more recently, spurred by
motivation from several directions, several variants have appeared.
Most importantly for this work are the notions of tolerant testing,
in which we estimate the distance to the class of juntas (as opposed
to the usual testing, where we are simply testing membership); and
linear juntas, a natural continuum generalization of Boolean juntas.
In the current work, we combine these two perspectives and show
that linear juntas are noise-tolerantly testable.

1.1 Tolerant Junta Testing

Recall that a property testing algorithm for a class of functions C
is an algorithm which, given oracle access to an f : {-1,1}" —
{—1,1} and a distance parameter ¢ > 0, satisfies

(1) If f € C, then the algorithm accepts with probability at least
2/3;

(2) If dist(f, g) > e for every g € C, then the algorithm rejects
with probability at least 2/3. Here, we define dist(f,g) =
Prye—1,1n[f (%) # g(x)].

The principal measure of the efficiency of the algorithm is its query
complexity. Also, the precise value of the confidence parameter is
irrelevant and 2/3 can be replaced by any constant 1/2 < ¢ < 1.

Fischer et al.[22] were the first to study the problem of test-
ing k-juntas and showed that k-juntas can be tested with query
complexity O(k?/¢). The crucial feature of their algorithm is that
the query complexity is independent of the ambient dimension
n. Since then, there has been a long line of work on testing jun-
tas [4, 5, 14, 15, 44] and it continues to be of interest. The flagship
result is that k-juntas can be tested with O(k/¢) queries and this is
tight [5, 15]. While the initial motivation to study this problem came
from long-code testing [3, 38] (related to PCPs and inapproxima-
bility), another strong motivation comes from the feature selection
problem in machine learning (see, e.g. [7, 9]).

Tolerant testing. The definition of property testing above requires
the algorithm to accept if and only if f € C. However, for many
applications, it is important consider a noise-tolerant definition
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of property testing. In particular, Parnas, Ron and Rubinfeld [37]
introduced the following definition of noise tolerant testers.

Definition 1.1. For constants 1/2 > ¢, > ¢y > 0 and a function
class C, a (cy, cg)-noise tolerant tester for C is an algorithm which
given oracle access to a function f : {-1,1}" — {-1,1}
(1) accepts with probability at least 2/3 ifmingcc dist(f, g) < c¢.
(2) rejects with probability at least 2/3 if mingcc dist(f, g) > cy.
Further, a tester which is noise tolerant for any (given) c, > cp > 0 is
said to be a “fully noise tolerant” tester.

The restriction ¢y, cp < 1/2 comes from the fact that most natu-
ral classes C are closed under complementation - i.e., if g € C, then
—g € C. For such a class C and for any f, mingec dist(f,g) < 1/2.
Further, note that the standard notion of property testing corre-
sponds to a (e, 0)-noise tolerant tester.

The problem of testing juntas becomes quite challenging in the
presence of noise. Parnas et al. [37] observed that any tester whose
(individual) queries are uniformly distributed are inherently noise
tolerant in a very weak sense. In particular, [21] used this observa-
tion to show that the junta tester of [22] is in fact a (¢, poly(e/k))-
noise tolerant tester for k-juntas — note that ¢ is quite small, namely
poly(e/k). Later, Chakraborty et al. [12] showed that the tester of
Blais [5] yields a (Ce, €) tester (for some large but fixed C > 1) with
query complexity exp(k/e€). Recently, there has been a surge of in-
terest in tolerant junta testing. On one hand, Levi and Waingarten
showed that there are constants 1/2 > €; > €2 > 0 such that any
non-adaptive (ey, €2) tester requires Q(k%) non-adaptive queries.
Contrast this with the result of Blais [5] who showed that there is
a non-adaptive tester for k-juntas with O(k3/2) queries when there
is no noise. In particular, this shows a gap between testing in the
noisy and noiseless case.

In the opposite (i.e., algorithmic) direction a sequence of recent
works improved on the results of [12]. First, Blais et al. [6] improved
on the results of [12] by obtaining a small and explicit value of C.
Finally, De, Mossel and Neeman [18] gave a fully noise tolerant
tester for k-juntas on the Boolean cube with query complexity

02k - poly(k/e)).

1.2 Linear Junta Testing

In a recent work, De, Mossel and Neeman [17] initiated the study of
property testing of linear juntas. A function f : R® — [-1, 1] is said
to be a linear k-junta if there are k unit vectors uy,...,u;, € R"
and g : R¥ — [-1,1] such that fx) = g({u1,x), ..., (ug, x)).
In other words, f is a linear k-junta if there is a subspace E :=
span(ui, . .., ux) of R" such that f(x) depends only on the pro-
jection of x on the subspace E. The class of linear k-juntas is the
R™-analogue of the class of k-juntas on the Boolean cube

We note that the family of linear k-juntas includes important
classes of functions that have been studied in the learning and
testing literature. Notably it includes:

e Boolean juntas: If h: {-1,1}" — {-1, 1} is a Boolean junta,
then the function f(x) : R" — {-1,1} defined as f(x) =
h(sgn(x1), . ..,sgn(xy)) is a linear k-junta.

o Functions of halfspaces: Linear k-juntas include as a special
case both halfspaces and intersections of k-halfspaces. The
testability of halfspaces was studied in [33, 41].
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The focus of the paper is on property testing of linear k-juntas.
Observe that to formally define a testing algorithm, we need to
define a notion of distance between functions f and g on R".
In this work, we will use the L%(y) metric, where y is the stan-
dard Gaussian measure. That is, the distance between f and g is
(Ex~y[(fx) - g(x))Z])l/Z. Note that this reduces to 2 Pry~y [ f(x) #
g(x)] when f and g are Boolean functions. The choice of the stan-
dard Gaussian measure is well-established in the areas of learning
and testing [2, 13, 20, 26, 28, 29, 33, 36, 46]. It is particularly natural
in our setup since the Gaussian measure is invariant under many
linear transformations, e.g., all rotations.

De, Mossel and Neeman [17] obtained an algorithm for testing
linear-k-juntas: given query access to f : R" — {-1, 1}, it makes
poly(k - s/€) queries and distinguishes between

(1) f is alinear-k-junta with surface area at most s versus

(2) f is e-far from any linear k-junta with surface area at most

s(1+e).

Here surface area of f refers to the Gaussian surface area [30] of the
set f~1(1) [30] - see Definition 2.7 for the precise definition. Further,
[17] showed that a polynomial dependence on s is necessary for
any non-adaptive tester and consequently, an Q(log s) dependence
is necessary for any tester!. Informally, without any smoothness
assumption a linear junta (even a linear 1-junta on R?) can look
arbitrarily random to any finite number of queries. Crucially, [17]
achieves a query complexity which is independent of the ambient
dimension n - thus, qualitatively matching the guarantee for junta
testing on the Boolean cube.

1.3 Our Results: Noise Tolerant Testing of
Linear-Juntas

In this paper, our focus is on the problem of noise tolerant testing
of linear juntas. The original motivation of [17] was for dimension
reduction in statistical and ML models involving real valued data.
Modern ML models are often overparametrized, but are neverthe-
less suspected to output a predictor that is low-dimensional in some
sense. The classical notion of juntas is not appropriate for measur-
ing dimensionality here, because there is no natural choice of basis
in many statistical models including PCA, ICA, kernel learning,
or deep learning. This motivates the notion of a linear junta. The
problem of testing linear-juntas is thus closely related to the prob-
lem of model compression in machine learning, whose goal is to
take a complex predictor/classifier function and to output a simpler
predictor/classifier (see e.g. [11]). Model compression is extensively
studied in the context of deep nets, see e.g., [1], and follow up work,
where the models are often rotationally invariant (with the caveat
that the regularization often used in optimization might not be).
Thus as a motivating example, [17] asked if given a complex deep
net classifier, is there a classifier that has essentially the same per-
formance and depends only on k of the features? Observe that this
is essentially the same question as asking whether the deep net
classifier is a linear k-junta.

The main shortcoming of the motivation in [17] is that it is
unrealistic to expect that in any of the statistical and ML models
considered, the function constructed will be exactly identical to

!Recall that in a non-adaptive tester, the query points are chosen independently of the
target f.



Robust Testing of Low Dimensional Functions

a function of a few linear direction. Rather, we only expect that
the function will be correlated with a function of a few directions;
this is the tolerant testing problem, and - as evidenced by the long
history of tolerant testing in the Boolean case - it is much more
challenging.

The main result of this paper is a fully noise tolerant tester for
k-linear juntas over the Gaussian space whose query complexity is
independent of the ambient dimension n. In particular, we prove
the following:

Theorem 1.2. There is an algorithm Robust-linear-junta-Boolean
which given parameters 1/2 > ¢, > cg > 0, junta arity k and surface
area parameter s and oracle access to f : R™ — {—1,1} distinguishes
between the following cases:
(1) There is a linear-k-junta g with surface area at most s such
that dist(f, g) < c¢.
(2) For all linear-k-juntas g with surface area at most s, dist(f, g) >
Cy-
The query complexity of the tester is kPoY/€) \where € = ¢, —
and the tester makes non-adaptive queries.

ce,

Note that qualitatively this result implies the main result of
[17] - thus a dependence on s is necessary, although we have no
reason to believe that an exponential dependence on s is sharp.
In fact, the result here is qualitatively stronger than [17] as our
“soundness guarantee” does not require relaxing the surface area
to s(1 + €). On the other hand, the query complexity here as an
exponential dependence on s vis-a-vis [17] which has a polynomial
query complexity in all the parameters.

It is not hard to see that tolerant testing is essentially equivalent
to estimating the maximum correlation between a function and a
class. In particular, Theorem 1.2 follows from the following result
about estimating correlation. Here (and in most of this work), it is
more convenient to consider functions with values in [—1, 1]. For
these functions, we need a more general notion of smoothness: we
will define the notion of s-smooth functions later (in Definition 2.6);
for now, we just note that it includes both Lipschitz functions and
Boolean functions with bounded surface area.

Theorem 1.3. There is an algorithm Correlation-smooth-junta which,
given parameters € > 0, junta arity k and smoothness parameter s
and oracle access to f : R™ — [~1, 1], outputs an estimate prr i s(f)
such that with high probability,

|ﬁR",k,s(f) - pR",k,s(f)| <e.
Here pgn g s(f) is the maximum correlation of f with any s-smooth
k-linear junta. The query complexity of the algorithm is kPOIY(s/€),

In particular, Theorem 1.2 follows as a simple corollary of Theo-
rem 1.3.

1.4 List Decoding the Linear-Invariant
Structure.

Given the previous theorem it is natural to ask for more, i.e., not just

test if the function is a linear-junta but also find a junta in number of

queries that depends only on k and s (but not on n) that has almost

maximal correlation with f. In other words, the goal is to find, with

query complexity independent of n, a function g : R — {-1,1}
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such that there exists a projection matrix A : R” — R¥ and such
that the correlation between f and g(Ax) is at least ppn g (f) — €.

In the case where f is a linear k-Junta with bounded surface
area, i.e., prn i s(f) = 1, [17] provided such an algorithm with
query complexity that is exponential in k. In the noisy case, we
could have multiple different Juntas that have optimal or close to
optimal correlation with f. Ideally we would like to find all those
functions, which can be thought of as “list decoding” the Juntas
that are hidden in f.

There is some subtlety in the meaning of “all” here; for example,
if f is a linear 1-Junta with some added noise and we set k = 2, then
there can be a huge number (i.e. growing quickly with n) of linear
2-Juntas that are highly correlated with f, just because there is a
lot of flexibility in choosing the second direction and defining the
function in that direction. For this reason, rather than identifying
all highly-correlated linear Juntas, we only identify their averages
on a set of interesting directions; for a subspace E of R" and a
function g : R" — R, let Agg be obtained from g by averaging
over the directions orthogonal to E (see Definition 2.1 for a full
definition).

Theorem 1.4. There is an algorithm Learn-all-invariant-structures
which, given parameters p, € > 0, junta arity k, smoothness parameter
s and oracle access to f : R" — [—1, 1], outputs a set G of functions
RF - [-1,1] so that the following hold:

o for every § € G there exists an orthonormal set of vectors
Wi, ..., Wi € R" such that

[ELf ()g((w1, x), . .., (we, )] = pl = Ofe),

and
o for every linear k-Junta g : R" — [—1, 1] with |E[f(x)g(x)] -
p| < e, there exists a function § € G and an orthonor-
mal set of vectors wi,...,wr € R" such that, with E

span{ws, ..., Wy}, we have
E[((AE 9)(x) — d((w1, ), . .., (wi, x))) ] < OCe).
Additionally,

E[f(x)g(x)] o(e) E[f () (AE 9)(x)]-
The query complexity of the algorithm is kPOY(s/€),

Informally, the theorem states that it is possible to find the “linear-
invariant" structures (i.e., the structure up to unitary transforma-
tion) of all Juntas that are almost optimally correlated with f in
number of queries that depends on s and k. We note that one cannot
hope to output the relevant directions wy, . . ., wy explicitly as even
describing these directions will require Q(log n) bits of information
and thus, at least those many queries.

The significance of Theorem 1.4 is related to one of the main
difficulties in tolerant testing: there can be a large number of linear
Juntas having almost optimal correlation with f. This in in contrast
with the usual testing problem, because if f is in fact a linear k-
Junta then there is (obviously) only one linear k-Junta that is equal
to f.

Even in the noiseless case, Theorem 1.4 improves on the the
results of [17] which provided an algorithm for learning the lin-
ear structure with query complexity that is exponential in k. We
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note that in [17] it was incorrectly stated (without proof) that the
exponential dependence on k is necessary.

Thanks to Theorem 1.4, we are also able to tolerantly test certain
subclasses of linear Juntas; this is significant because in general the
testability of a class does not imply the testability of a subclass.

Definition 1.5. Let C be any collection of functions mapping R¥
to {—1,1}. For any n € N, define the induced class of C by
Ind(C)n = {f : g € C and orthonormal vectors wy, . .
such that f(x) = g({(w1,x), ..., {(wWr, x))}.
Note that every f € Ind(C)p, is a linear k-Junta. As an example, if

C is the class of intersections of k-halfspaces over R, then Ind(C),
is the class of intersections of k-halfspaces over R".

LWk

Theorem 1.6. Let C be a collection of functions mapping R to
[-1,1] such that each f € C is s-smooth. There is an algorithm
Robust-C -test which given parameters1/2 > ¢, > cg > 0, junta arity
k, surface area parameter s, and oracle access to f : R" — {-1, 1},
distinguishes between the following cases:

(1) There is a linear-k-junta g € Ind(C), with surface area at

most s such that dist(f, g) < cg.

(2) For all linear-k-juntas g € Ind(C)y, dist(f, g) > cy.
The query complexity of the tester is kP?'Y/€) \where € = ¢, — ¢y,
and the tester makes non-adaptive queries.

As an immediate corollary, this implies that there is a fully noise
tolerant tester for intersections of k-halfspaces with query complex-
ity kpoly(logk/e), Previously, no noise tolerant tester was known for
even a single halfspace [33].

1.5 Techniques

For ease of exposition, here we just explain the technique for prov-
ing Theorem 1.3. The high level proof technique for the other results
is essentially the same albeit sometimes with added technical com-
plications. The techniques of the current paper build on those of
[17]. We briefly recap the main ideas of [17], restricted for now to
the non-tolerant setting:

L. If we sample T = poly(k/e) random points x1, . . ., xT from

the standard Gaussian measure y, and consider the subspace
E = span(Vf(x1),..., Vf(x1)), then if f is a linear k-Junta
then with high probability, f has correlation 1 — € with some
linear k-junta defined on the space E.
For each x, z, it is possible to accurately estimate, in number
of samples polynomial in k, quantities such as (z, Vf(x))
and (V f(x;), Vf(xj)). Thus, for a randomly chosen z ~ yp,
we can (implicitly, in a sense to be made precise later) com-
pute the orthogonal projection of z on E. (Note that a naive
estimation of Vf(x), or even (V f(x1), Vf(x2)), requires a
number of samples that depends on n.)

I

Observe that the implicit projection allows [17] to effectively
reduce the dimension of the ambient space to T = poly(k/€), which
is independent of n. We then take an e-net of linear k-juntas over
E with surface area s. The size of this net depends only on s, k and
€. For each function in the net, one can estimate its distance to f;
by iterating over all functions in the net, one can check if f is close
to a linear k-junta. This last step is different from the one in [17],
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and in fact it is slightly worse. By following the ideas in the current
paper, one can show that it gives a tester for with query complexity
of kO(Sz/ 52). The advantage of the modification, however, is that it
yields a method that is more robust to noise.

Adding tolerance. In adapting the outline above to the setting of
tolerant testing, the main challenge is to imitate step I above. Our
main structural result roughly shows that if f has correlation ¢
with some linear k-junta of surface area at most s, then with high
probability f is at least ¢ — € correlated with an s-smooth linear
k-junta defined on E. In fact, we need to define E more carefully
than what is outlined above, and a good error analysis is crucial. If
we were to combine our new structural result with a naive error
analysis, it would give a query complexity that is exponential in
poly(k).

The proof of our structural result is non-trivial. At the intuitive
level it is related to the idea of using SVD for PCA. In our case, we
have a function, rather than a collection of data, and the right geo-
metric information is encoded by gradients (of a smoothed version
of this function). The procedure of using SVD to extract informa-
tive directions from the data can be thought of as “Gradient Based
PCA". The proof that this procedure actually extracts the relevant
dimensions requires combining linear algebraic and Poincare style
geometric estimates in just the right way. Another challenge comes
from the fact that gradients are only approximate due to sampling
effect. We use results from random matrix theory to control the
effect of sampling.

The methodology of Gradient Based PCA also allows us to im-
prove on the results of [17] in the noiseless case for finding an
approximation of the Junta. This has to do with the fact that the
results of [17] used a more naive Gram-Schmidt based process to
extract the linear structure which resulted in exponential query
complexity, compared with the polynomial query complexity we
achieve in the current work.

Another key new ingredient of this current work is the net argu-
ment outlined above. We show that the class of s-smooth linear k
juntas has an e-net of size exp exp((s? log k)/e?). For each function
in the net, we can use the implicit projection algorithm to com-
pute the correlation between this function and f up to error €. The
maximum of these correlations gives a good estimate of the best
correlation between f and any linear k-junta with surface area s.
This concludes the proof sketch of Theorem 1.3.

We note that there is a high-level similarity between the current
proof and the proof that Boolean juntas are tolerant testable [18].
Both strategies are based on oracle access to influential “directions"
followed by a search for juntas depending only on those influen-
tial directions. In the Boolean case, the “directions" are influential
variables, while here the directions are given by gradients of the
function f. Note, however, that the Boolean case is easier, since
the coordinates on the Boolean cube are automatically orthogonal,
while in the continuous setup, “relevant directions" as sampled from
data are often not orthogonal and indeed can be close to parallel.
This is one of the major reasons we needed to introduce and analyze
the methodology of gradient based PCA.

Related work: Besides being related to the long line of work
(including [4-6, 10, 24, 43]) on junta testing, the current work is
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also connected to the rich area of learning and testing of threshold
functions. In particular, an immediate corollary of Theorem 1.6 gives
a fully noise tolerant tester for any function of k-halfspaces over
the Gaussian space. Despite prior work on testing of halfspaces [33,
34, 41], until this work, no non-trivial noise tolerant tester was
known even for a single halfspace.

Finally, we remark that the notion of noise in property testing
(including this paper) is the so-called adversarial label noise [27].
This is stronger than many other noise models in literature such
as the random classification noise [27] and Massart noise [32]. Both
these models are important from the point of view of learning the-
ory - in particular, halfspaces (and polynomial threshold functions)
are known to be efficiently learnable [8, 19] in both these models
of noise even when the background distribution is arbitrary. On
the other hand, for arbitrary background distributions, halfspaces
are hard to learn in the adversarial label noise model [16, 23]. In
contrast, the tester in the current paper is in the adversarial label
noise model but works only when the background distribution is
the Gaussian. This discussion raises the intriguing possibility that
halfspaces (and more generally linear juntas) can be tested in the
distribution free model [25] with weaker models of noise such as
the Massart noise.

The problem of learning linear k-juntas was originally introduced
in [45], although of course there the sample complexity depends
(polynomially) on n.

2 PRELIMINARIES

In this section, we list some useful definitions and technical prelimi-
naries. We begin with some definitions and properties of projections
and averages.

Definition 2.1. For a subspace E of R", we denote by IIg : R" —
R™ the orthogonal projection onto E. For a subspace E and f : R" —
R, we define the operator Ag as Ag f(x) = Ez~y, [f(px + Mg12)],
where yp, is the standard n-dimensional Gaussian measure.

Finally, for any subspace E, we define

Je ={f : forallx and z, if gz = I gx then f(x) = f(2)}.

One way to understand the operator A is that it averages f on
the directions orthogonal to the subspace E. The next lemma lists
some useful properties of the operators IIg and Ag. Let C; (R™) be
the class of differentiable functions f such that f(x) and Vf(x) are
bounded.

Lemma 2.2. Forany f € C}J(R”), any subspaces E C E’ C R, and
any x € R", the following hold:

(1) If llgz = Tlgx then Ag f(x) = Ag f(2). In other words,
ﬂEf € j};
(2) (VAE f)(x) = E[gVf(gx + g.2)]

z

() (Ap Ap f)x) = (Ag f)x)

(4) For all g € Jg. Elg(x) Ag f(0] = Elg(x)f (0]

(5) Forallg € L*(y), E[(Ag Hx)g(x)] = E[f )(AE 9)x)]-
Note that parts 1 and 4 can be interpreted as saying that Ag f

is the orthogonal projection (in the L?(y) sense) of f onto Jz.
ProOF.
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(1) Part 1 is immediate from the definition of AE.
(2) To prove part 2, fix v € R". Then

(A f)x) = (Ag f)x - )
= E[f(HEx + HELZ) - f(HEX —Igv+ HELZ)]
z
Replacing v by hv and sending h — 0, we obtain (and there is

no trouble exchanging the limit and the expectation, because
f is Lipschitz)
(Vo Ap f)x) = E[Vngo f(gx + g1 2)].
This proves the second item.
(3) Part 3 follows from the fact that if E C E’ then Igllgz =

Mgz and Mg gz = 0 for every z. Indeed, if z and 2" are
independent standard Gaussian variables then

(A Ap f)x) = E (Mg x + gyez') + Mpiz)]

= E[f(Hgx +g12)] = (AE f)x).

(4) For Item 4, let z and z’ be standard Gaussian variables. Since
g € Jg, we have g(z) = g(Ilgz + g1 z’). Hence,

Elg Ag f1= E lg9(z)f gz + g z)]
= E[g(HEZ + HELZ/)f(HEZ + HELZ,)].

Since Ilgz + [1g1z” has the same distribution as z, the claim
follows.
(5) Item 5 follows from applying claim 4 twice:

E[(AE /I x)9(x0)] = E[(AE HE)(AE 9)(x)]
= E[f()(AE 9)(x)].

As an immediate consequence of the properties above, we have
the following two basic properties of V. AE f:

]

Cramm 2.3.
(1) Ex[VAE f(x)] = Ex[TTgVf(x)].
) Ex[IVAE f®)I3] < Ex[ITVf()II3].

Proor. Item 1 follows by averaging over Item 2 from Lemma 2.2.
To get Item 2, first observe that by Jensen’s inequality (applied on
Item 2 from Lemma 2.2), we have

IV AL HEI? < E[|TTpV f(gx + Mp:2)|].

Averaging over x ~ y and observing that the distribution of ITgx +
IIg.z is the same as that of x, we have Item 2. O

2.1 Smoothness and Juntas

The notion of smoothness that we will use in this work depends on
the notion of Gaussian noise. In particular, we use the following
Gaussian noise operator:

Definition 2.4. Fort > 0 and f € Ly(yn), we defineP; f : R® - R
as

Pt f(x) = Ey[f(e”'x + V1= e~ly)].
The operator P; forms a semigroup, i.e., PtPy f = Py f. Further, for
t >0, P;f is infinitely differentiable.

We recall here a basic property of this noise operator — namely,
that P; makes any bounded function Lipschitz, a fact that can be
derived, for example, from (2.3) in [31].
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Fact 2.5. Forany f : R® — [-1,1] and anyt > 0, P;f is %—

Lipschitz for an absolute constant C.
Now we come to the notion of s-smooth functions:

Definition 2.6. A function f : R" — [-1,1] is referred to as
s-smooth if for all t > 0,

E[|f(x) = Pt f(x)I] < sVE.
In this case, we say that Sm(f) <'s.

To help illustrate the definition, let us recall the notion of Gauss-
ian surface area:

Definition 2.7. For a Borel set A C R", we define its Gaussian
surface area, denoted by T'(A) to be
I(As \ A
I(4) = liminf Y245\ A
5—0

Here As denotes the set of points which are at Euclidean distance at
most § the set A.

The next proposition shows that the class of s-smooth functions
functions of bounded surface area. Later, we will also show that
the notion of s-smoothness is equivalent to a certain decay in the
Hermite coefficients (which can also be used to show that Sm(f) <
CE[|IVfII?], so for example Lipschitz functions are s-smooth).

Proposition 2.8.
(1) Iff : R® — {-1,1} has surface area at most %’7 then
Sm(f) <s.
(2) LetE be any subspace of R™. If f is s-smooth, then so is Af f.

Proor. (1) Part 1 was proved by Pisier [40] and Ledoux [30].
(2) To prove Part 2, observe that the operators A and P; com-
mute. Thus,

E[| Ag f(x) - P+ Ap fX)|] = E[| Ag f(x) - Ap Pt f(X)]].
However, Jensen’s inequality implies that for any f and g,
Ex[| Ag f(x) - A g(x)[] < Ex[|f(x) — g(x)I]. This finishes

the proof.
m]

We now define the class of s-smooth linear k-juntas.

Definition 2.9. Fora subspace E of R", parameters > 0 andk € N,
wesay f:R" — [-1,1] € IE.k.s if
o There is a subspace E’ C E of dimension k such that f € Jg.
o f iss-smooth.

Definition 2.10. For a function h : R" — [-1, 1], a subspace E of
R™, k € N ands > 0, we define

prks() = max EI9G0 03]

E,k,s
Definition 2.11. For a function h : R™® — [-1,1] and a class C of
functions mapping RK — [—1,1], we define

¢em§f(0) E[gﬁ(x) -h(x)].

For a subspace E of R, we define Indg_¢ to be the set of all functions
® which can be expressed in the form

D(x) = h({v1,x)), . . ., VR, X)),

prn,c(h) =
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where h € C and v1,...,v are orthonormal vectors in E. Thus,
Indg(C) lifts functions in C to functions over R™ where the relevant
subspace is E.

For such a class C, a subspace E of R" and a function f : R" —
[-1, 1], we define

pe,c(f) =

max
CI)E|ndE(C

: Ex[f(x) - ®(x)].

2.2 Useful Results about Matrices

Definition 2.12. Let B € R™*" matrix. Then, the singular value
decomposition (SVD) of B corresponds toB = U - D - VT where (i)
D € R™ is a diagonal matrix with nonzero entries and (ii) the
columns of U and V are orthonormal. The columns of U form an
orthonormal basis for the column span of B. Similarly, the columns of
V form an orthonormal basis for the row span of B.

We will also need the following random sampling result con-
cerning rank one matrices due to Rudelson and Vershynin [42].

Theorem 2.13. Let Z be a distribution over R" such that with
probability 1, for Z ~ Z, we have ||Z||2 < M. Assume that ||E[Z ®
Zl|l2 < 1. LetZy,...,Zg bei.id. copies of Z. Let a be defined as

logd
d

for an absolute constant C > 0. Then,

rr|

Next, we recall the notion of pseudoinverse of a matrix [35, 39].
Our definition below is specialized to real square matrices though
the definition can be generalized to complex rectangular matrices
as well.

a=C M,

27,2
>t| <27t/

d

1

‘3 (D.Z;82)) -E[Z87Z]
j=1 2

Definition 2.14. For any square matrix A € R™", there is a
unique matrix B which satisfies the following conditions (known as
the Moore-Penrose conditions):

(1) ABA = A and BAB = B.

(2) (AB)! = AB and (BA)! = BA.
B is referred to as the pseudoinverse of A. We remark that when A is
invertible, then B = A™!. We will thus overload this notation and in
general, use A™! to denote the pseudoinverse of A.

CLamM 2.15. Let A € R™™ be g symmetric matrix whose non-
zero eigenvalues are {A1,...,A;} and corresponding orthonormal
vectors {v1, ...,vs} (note thatt < m). Then,

t £y
A= Z/livivit and A7l = Z —vivit.
i=1 A

Proor. It is immediate to verify that the Moore-Penrose condi-
tions from Definition 2.14 hold for A~! defined as above (uses the
fact that v; are orthonormal). ]

Definition 2.16. For a symmetric matrix A € R™" and a parame-

tern € R, we define Axy € R™" as projection of A to the eigenspaces
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with eigenvalue more than n. In other words, let the spectral decom-

position of A be
n
A= Z }Livivf.
i=1

Then,
Asp = Z Aivivit‘
i:Ai>n
Further, forn > 0, we define A;,, by
_ 1
Azll] = A_ivivit.

i:Aizn
Note that this is the same as the pseudoinverse of Ay . Finally, for
a symmetric matrix A and parameter € R, we let E;(A) denote
span({vi}); >p)-

2.3 Algorithmic Ingredients

We will require some algorithmic ingredients from the paper [17].
The first is Lemma 10 in the full version from [17] which is stated
below.

Lemma 2.17. There is an algorithm Compute-inner-product which
given oracle access to function g : R" — [-1, 1], noise parameter
t > 0, error parameter € > 0, confidence parameter § > 0 and has
the following guarantee:
(1) It makes poly(t, 1/€,10g(1/5)) queries to g.
(2) With confidence 1 — &, it outputs (V(Ptg)(y1), V(Prg)(y2)) up
to additive error *e.

The second lemma we need appears as Lemma 12 in the full
version of [17] and is stated below.

Lemma 2.18. There is an algorithm Project-on-gradient which given
oracle access to function g : R" — [-1, 1], noise parametert > 0,
error parameters 1, v > 0, confidence parameter § > 0, and x,y € R".
The algorithm Project-on-gradient makespoly(1/t,1/n,1/v,log(1/6))
queries to g and outputs, with probability 1— 38, a tv-additive estimate
of Est(x, y), where Est(x, y) is some function satisfying

[[Est(x.y) — (VPrg(x). )] > An] < —

Pr —
Y~Yn A2

for every A > 0.

3 PROJECTION ON LOW-DIMENSIONAL
SPACE AND CORRELATION WITH LINEAR
JUNTAS

The goal of this section is to prove the following theorem.

R™®™ — [-1,1] be a (differentiable) L-
>

Theorem 3.1. Let @ :
Lipschitz function and 1,8 > 0. Let x1, . .
C{;—i log(1/8). Then, with probability 1 — 8, the matrix A € R"™"
defined as

M
s XM ~ Yn Where Tog M

M
1
A= ; Vo(x)) - VO(x;)’,

satisfies the following: for every subspace E containing E, /5(A), for
everys > 0, and for every h € Jgn i s, we have

[Ex[P(x) - (Ah)(x)] - Ex[®(x) - h(x)]| < vk - 7.
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At a high level, this theorem says that for any Lipschitz function
®, its correlation with the best linear k-junta essentially remains
preserved if we restrict our attention to a subspace obtained by
spectrally truncating the empirical covariance matrix of V®. It is
the first step in realizing part I. from Section 1.5 (the other step is
to handle the fact that we can only estimate A).

The proof of Theorem 3.1 follows from the following lemma.

Lemma 3.2. LetE be a subspace of R and let f : R™ — R be such
that for every unit vectorv € E*, E[{(v, V.f(x))?] < 8. Then for every
s 2 0, and for every h € Jpn | s, we have

[Ex[ f(x) - (AEh)(x)] - Bx[f(x) - h(x)]| < VK. 1)

Proof of Theorem 3.1: Define the matrix Aayg as
Aavg = Ex[VO(x) - V(D(X)t]~
Observe that by Theorem 2.13, with probability 1 — §, we have that

lAavg — All < /2. This implies that for any E 2 E, /5(A) and unit
vector v € E+, we have v € E,I/Z(A)l and hence

E[(v, VO(x))?] = 07 - Agyg v <07 - A0+ g <. @
X

Then, applying Lemma 3.2 to the function h and the subspace E,

we have the proof. O
We now turn to proving Lemma 3.2.

Proof of Lemma 3.2: Let h € Jf for some subspace F with

dim(F) < k. Let E’ = span(E U F) and define g = Agh. Observe

that g is s-smooth (by Item 2 of Proposition 2) and thus g € Jg k. s-

Also, observe that h = Aph. We now have

Ig[f (x) - g(x)] - E[f(x)- h(x)]|
= Ig[f (%) - Aph(x)] - g[f (x) - Aph(x)]|
=| E[ﬂ £f(x) - h(x)] - E[?{ g f(x) - h(x)]| (Item 5 of Lemma 2.2)

®)

< (BI(ALf ) - Ap f)?)? (by Cauchy-Schwarz).  (4)

We now seek to bound the right hand side of (4). Towards this, let
us split R” = E’ @ H and E’ = E @ J. Here H is the orthogonal
complement of E” and J is the orthogonal complement of E inside
E’ For any x € R", we express it as (xg7, X7, Xg) (x] represents the
component of x along the subspace J and likewise for H and E).
Observe that for x = (xy, xj, xg), we have

A f(x) = Ex [f Xy, x7.x)]
and A £(x) = By, x, £ ) x5)].
Thus, we now have the following:
E[(Apf(x) - Ap f )]
= By e [(Bxg L Xy %7 XE)] ~ By, [ %))
= Ex; xp [(Bxy, [f (37 X7, XE)] = By [f (3 X, xg)])?
(6)

The last inequality follows from Jensen’s inequality. Next, for any

S EXH,X],XE [(f(XH’X]’XE) - EX/J [f(XH’ X}7XE)])2]~

x = (x7,xH, xg), define the function fy,; xp : R/ > Ras

fxwxp(xy) = f(xm, x5, XE).
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Then,

V() =V fay,xp- (7)
Now applying the definition of fy, x; to (6) and subsequently
applying the Gaussian Poincaré inequality, we get

EI(AE f(x) ~ Ap f(9))
< ExH,x],xE [(fo,xE (X]) - Ex’] [fo,xE (x})])z]

< EXH,XJ,XE[”VfXH,XE(XHs X]’ XE)”%]

Finally, applying (7), we get
E[(Apf(x) - Ap FG)?] < Exyy,xy s TV f (xar, %7, XE) 3]

Now, by our assumption, for any direction v in J (since it is or-
thogonal to E), Ex[||Hva(x)||§] < 4. Since the dimension of J is
at most k, we get that

E[(Apf(x) - Ap f (x))°] < k6.

Combining with (4), we get the claim.

4 ROADMAP FOR PROVING THEOREM 1.2,
THEOREM 1.3, THEOREM 1.4 AND
THEOREM 1.6

In this section, we give a roadmap for our main results — namely,
Theorem 1.2 , Theorem 1.3, Theorem 1.4 and Theorem 1.6. First of
all, observe that instantiating Theorem 1.6 for the class of linear
k-juntas with surface area at most s (which are O(s)-smooth by
Proposition 2.8) implies Theorem 1.2. As mentioned earlier, noise
tolerant testing for a class is equivalent to computing the maximum
correlation between a function and the same class. Thus, we will
prove the following (equivalent) version of Theorem 1.6.

Theorem 4.1. For any class C of functions mapping R¥ — [-1,1]
(each of which is s-smooth), there is an algorithm Robust-C-test which
has the following guarantee: given error parameter € > 0 and oracle
access to f : R" — [=1,1], it outputs an estimate prn_c(f) such
that

|prr,c(f) = pra,c(f)] < e
The query complexity is kPOIY(s/€).

Note that by instantiating Theorem 4.1 with the class of s-smooth
functions, we get Theorem 1.3. Finally, we note that the proof of
Theorem 4.1 can be easily modified to yield Theorem 1.4. This is
explained in Section 6. Thus, we now focus on proving Theorem 4.1
(which is equivalent to Theorem 1.6).

To do this, our first step is to replace the function f by a smoothed
version:

Lemma 4.2. For smoothness parameter s, error parameter k > 0
and f : R" — [-1,1], the function fsm defined by fom = Py2s2 f
has the following guarantees:
(1) f € C™ and f is L-Lipschitz for L = O(s? /x?).
(2) For any x € R", fom(x) can be computed to error /10 with
probability 1 — & using T(n, §) = poly(1/n,log(1/5)) queries
to the oracle for f : R" — [-1,1].
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(3) Letg : R™ — [—1, 1] be a s-smooth function. Then,
[Ex[fim(x)9(x)] — Ex[f(x)g(x)]| < g

Proor. The first property follows from Fact 2.5 and the defini-
tion of the noise operator P;. The second property follows easily
from the definition of P;: we simply have to take enough samples to
estimate the expectation. Finally, suppose g is a s-smooth function.
Then, it follows that E[|P,2/529(x) — g(x)|] = O(x). It follows that

[Ex[fsm(x)g(x)] — Ex[f(x)g(x)]|
= [Ex[P2/52 £ ()9(x)] = Ex[f(x)g(x)]|
= [Ex[(Pez/529(x) = g(%)) - f()]]
< O(k).
o

Using Lemma 4.2, it suffices to prove Theorem 1.3 for Lipschitz
functions. In particular, we shall prove the following version of
Theorem 1.3 for Lipschitz functions.

Theorem 4.3. For any class C, there is an algorithm Correlation-
smooth-junta-C with the following guarantee: Let fsm : R" —
[—1, 1] be an infinitely differentiable L-Lipschitz function such that
fsm = Pyf for a parameteru > 0 (where f : R" — [-1,1]). The
algorithm is given oracle access to the functions fsm and f. It also
gets as inputs, error parameter € > 0, junta arity parameter k and
outputs an estimate prn_c(fsm) (with probability at least 2/3) with
the following guarantee:

|pr,c(fsm) = prr,c(fsm)l < €.

Here prn ¢(fsm) is the maximum correlation of fsm with any s-
smooth k-linear junta. The query complexity of the algorithm is
poly(L/u) - kO(*/€*) Further, the algorithm also works even when
we have a noisy oracle to fsm — in particular, the above guarantee
holds even when each evaluation of fsm(-) at x returns +n additive
error estimate forn = poly(u/L) - KOGs*/e®),

To obtain Theorem 4.1, we let k = €/4, u = k/s. Define fsm =
Py, f. We now invoke Theorem 4.3 on fsm with error parameter €/2
- observe that the output pr= c(fsm) satisfies

|pRn,c(fsm) = prr,c(fsm)l <.

Finally, observe that while we do not have oracle access to fsm,
Theorem 4.3 only requires to evaluate fsm(-) with an additive error
of +n = poly(u/L) - kO(=s*/€")_Observe that the number of queries
made by Theorem 4.3 is Q = poly(L/u)- kOG*/€%) Set § = 1/(10Q).
Using Lemma 4.2, we can evaluate fsm(x) by making =% log(1/9) to
the oracle for f. For our choice of §, this means that with probability
9/10, all our evaluations of fym(-) are 1 accurate. This means that
we can simulate our queries to fsm by using the oracle for f with a
multiplicative ovehead of 72 log(1/8). Plugging in the values of
and §, we get the final claim.

5 PROOF OF THEOREM 4.3

We now turn to the proof of Theorem 4.3. For the moment, we will
just assume that we can evaluate fs, at any point x exactly. From
the description of our algorithm, it would be clear that the guarantee
of algorithm continues to hold even if each evaluation of fym(x)
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Inputs
f = Oracle access to function f : R" — [-1,1]
fsm := Oracle access to function fym : R® — [-1,1]
where fsm = Py f.
L = Lipschitz parameter
v = accuracy parameter
k = junta arity parameter
Parameters
|
§ = %T%
M = 3 log(L8/n)
=
T = Toog,
e = nv
T I3CIMS

(where Cy is a large absolute constant - 10° suffices)

Implicit projection algorithm

(1) Sample M random points X1, ...,Xp ~ Yn-

(2) For each 1 < i,j < M, with confidence pa-
rameter § /M2 and error parameter €', we compute
(Vsmxi), Vism(x;)) = (VPuf(xi), VPuf(x;j)) using
algorithm Compute inner- product from Lemma 2.17.
Denote this by A ,j and let A € RM*M 45 the corre-
sponding symmetric matrix.

(3) Let N be the closest psd matrix to A in Frobenius norm
(can be computed using convex programmmg)

(4) Let VD?VT be the spectral decomposition of N.

(5) Output the points (x1, ...,

vT
Dl VT

xp) and the matrix W =

Figure 1: Description of the testing algorithm Implicit pro-
jection

has an additive error of +n = poly(u) - KOCL!/€®) We will bring
this to attention of the reader at the relevant points. The algorithm
Correlation-smooth-junta invokes two crucial subroutines. The
first is the routine Implicit projection described in Figure 1.

5.1 Implicit Projection Algorithm

Lemma 5.1. The algorithm Implicit projection takes as input oracle
access to f : R" — [-1,1] and fym : R® — [-1,1], parameters
u,L > 0, error parameter v > 0 and junta arity parameter k. Suppose
fsm = Pyuf. The algorithm makes poly(k, 1/u, 1/v,L) queries to f
and fsm and with probability 9/10, has the following guarantee: For
M = poly(k/v), it outputs M points x1, . . .,xp and a matrix W €
RMXM Lot BT € RMX be the matrix whose jth row is V fsm(x;)
and E be the span of the rows of WBT . There exists a k-dimensional
subspace E of E with the following property. Let h € Jrn k,s- Then,
forg =Agh,

[Ex[fsm(x)9(x)] - Ex[ fsm(®)hX)]| < - ®)
Further, the matrix W satisfies
g - BWIWBT|lp = I - WBTWT lp <v/2, ()
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where I denotes the identity matrix in M dimensions. Finally, the
matrix W satisfies |[W]||2 < @.

The high level idea of the lemma is the following: Let E denote
the subspace spanned by the rows of BT . Let us define N = BT B
and I = BWTWBT . To understand the high level idea behind the
algorithm Implicit projection, observe that if in Step 2, we could
compute (V fsm(X;), V fsm(x;)) exactly, then N = N. Consequently,
if » > 0 is sufficiently small, then it is easy to see that the rows
of WBT form an orthonormal basis of E and consequently, IT is a
projection matrix into E. Unfortunately for us, we will not have
access to B explicitly and thus are only able to compute an approxi-
mation to N, namely N. The goal here is two-fold: (a) Understand
why the rows of WBT are essentially orthonormal; (b) show that
for g = Aph, Ex[ fsm(x)g(x)] is nearly as large as Ex[ fsm(x)h(x)].

The next claim quantifies the sense in which the rows of WBT
are almost orthonormal.

Lemma 5.2. For matrices D, W, B, N and r] > 0 (as described in
the algorithm Implicit projection), let I = >\f/2D (That is, I has a

1 corresponding to large eigenvalues of N.) Let E be the span of the
rows of WBT . Then

~ ~ A ~ ~ 4 -
It — BWTWBT || = |1 - WB” - BWT || < ;”N—BTB”F-

PROOF. Since N = VDZVT, we can write

i= (DZW/Z)—IVTNV([)ZWZ)‘I
Then
I-wBTBWT = (D, i) VTN = BTBWV (D5 /2)7

!l < £ and [|AB|IF < ||AllF|IB|| for

=V

any matrices A and B. This proves the claimed inequality. To see
the equality, note that BWT WBT and WBTBWT have the same
eigenvalues, and both expressions can be expressed as (3(4; —
O

Finally, note that ||(ﬁ2 NG /2)

1)2)1/2, where the sum ranges over non-zero eigenvalues.

Having shown that the rows of WB are close to being orthonor-
mal, we next show that the rows of WBT essentially span E ZU(BBT)
- more precisely, we show that HE>,7(BBT)(I - BWTWBT) is small.

Lemma 5.3. For matrices ﬁ, W, B, N and n > 0 (as described in the
algorithm Implicit projection),

ST 20(|B"Bllr - |IB"BI| [
ITte,, ppr)(I - BW WBT)|| « ———————+/IIN - BTB|.
}72

PROOEF. Recall that B = UDVT is a singular value decomposition
of B. Let Uy i consist of the rows of U whose singular values are

at least /7, so that

(10)

_ T _ T
Mg, 857) = Uz yiUs 5 = ULy U
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T, (spr)(I — BW WB))|

= Itg, , (g57)(I = BNsp/4) B

= UL zUT = UL gDV (N5, 'vDUT)|

= VLo 7VT = VL5 5DV (N5 ) VDV

= VI 5V" = (N2p) 2Ry ) N2
where in the last line we set N = BT B. The first equality uses
wTw = (N2q/4)_1~ The second and third equality uses that ||A|| =

IAAAT || for unitary matrix A and the last equality sets N = VDV
Now, observe that VIZ‘/EVT = (NZU)l/Z(NZU)_lNl/z, we have

ITTe, , (ppr)I - BW WBT)|
= 1N 2 ((Nog) = (N N2
< INT- I o) ((No) ™ = Rz ™) (1)

Finally, we will use thee following lemma concerning stability of
the pseudoinverse. The proof is deferred to the full version.

Lemma 5.4. Let A, A € R™" be psd matrices. Lety > 0 and V
denote the subspace spanned by the eigenvalues of A in [, o). Then,

A = Allo
/2

20[|AllF

(AS, - A3} ) - Tyl <

Applying Lemma 5.4 to get that

20INIFy/IIN = N

It 30 (Vo)™ = g™ il € —— 5

Combining this with (11), we get the result. O
Lemma 5.5. Let fsm : R" — [-1,1], L, M, n, k, 6, N, W and B
be as described in the Algorithm Implicit projection. Let E denote
the span of the rows of WBT . If fum is L-Lipschitz, with probability
1— 6, there is a subspace E of E with the following property: For all
h:R"™ — [-1,1] such thath € Jgn i s,

|Ex[ fsm(x) - Ah(x)] - Ex| fsm(x) - h(x)

80L4 M5/2
<kp-———IN- BTB||——||N BT B||p.

The proof of this lemma uses the ingredients established thus

far along with a certain stability estimate for subspaces. The full
proof is deferred to the full version.
Proof of Lemma 5.1: By our setting of parameters, observe that
with probability 1— &, the matrix A satisfies ||A— BTB||oo < €’. This
in turn 1mphes that ||A — BTB||p < €’ - M. Since N is the closest
psd matrix to A, this means ||[N — N||r < 2¢’ - M.

Plugging the values of €/, n and M into Lemma 5.5 shows that
(8) is satisfied with probability at least 1 — 26 = 9/10. Similarly,
(9) follows by plugging the values of €’, n and M into Claim 5.2.
Finally, observe that the query complexity of the algorithm is dic-
tated by Step 2 (i.e., the query complexity of the routine Compute-
inner-product). By plugging in Lemma 2.17, we get that the query
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complexity is poly(M, 1/u, 1/€’). Plugging in the values of these pa-
rameters (from the description of the algorithm Implicit projection),
we get the claim.

Finally, to get an upper bound on [Wll2, observe that W =
D>\f/2 -V. This means that | W]||; < 2/+/1. Plugging in the value of
n from the description of Implicit projection, we get the claim. O

5.2 The Averaged Class

We next describe a preprocessing step for our class of functions C.
The point is that it is possible in principle for f to be an E-Junta but
be well-correlated with some function g € C that was embedded
in R™ along a different subspace E. We handle this by adding to C
all possible projections of functions from C that were embedded in
different subspaces.

Definition 5.6. For a class C of functions R¥ — [~1,1], define C*
to be the set of all functions RK — [~1,1] of the form

x> B W G

where g ranges over C and W ranges over all (2k) X k matrices with
orthonormal columns.

In other words, we are taking functions from C, embedding them
in R%k along an arbitrary k-dimensional subspace, and then aver-
aging them back down to RK. As a consequence of Proposition 2.8,
if every function is C is s-smooth, then so is every function in C*.
Also, C* contains C, as can be seen by taking the first k rows of A
to be an orthonormal basis of Rk, and the next k rows to be zero.
We next have the following claim.

Cramm 5.7. Let C be a class of functions mapping RF - [-1,1].
Define the set  to be the functions of the form Arm f where f €
Ind,(C) (wheren > m+ k and m > k). Then, ¥ = Ind,;,(C").

Proor. It is easy to see that Ind,;,(C*) € F aslongasn > m+k.
So, we now argue that ¥ C Ind,;(C*). Let f € Ind,(C). Let E be
the relevant subspace for f and let E = J& J’ where ] = R™NE and
J’ is the orthogonal complement of J inside E. It is obvious that the
dimension of ] is at most k. It now easily follows that g € Ind,(C*).

m]

We remark that although it might be challenging in general to
characterize C* in terms of C, there are several classes of functions
where this is easy:

e if C is the class of all s-smooth functions then C* = C;

e if C is the class of all half-spaces then C* is the class of all
functions of the form x +— ®({a,x) + b), where ® is the
Gaussian c.d.f;

e more generally, if C is closed under taking subspaces - in the
sense thatifg € C, E C RK is a subspace, and z € E* then
x — f(mgx + z) also belongs to C - then C* is contained in
the convex hull of C. In this situation, and because we will
be interested in maximizing a linear function over C, we can
essentially replace C* by C in what follows.
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5.3 Hypothesis Testing on Low-Dimensional
Space

Our final technical task is to show that functions on a low-dimension-

al space can be adequately “pulled back” to R" under an approxi-

mate projection. The first observation is that an approximate pro-

jection can be approximated by a projection:

Lemma 5.8. For any m < n and any m X n matrix X of rank m,
there exists an m X n matrix Y with orthogonal rows, such that

IX = Yllp < IXXT = 1||p.

Proor. Let UD?UT = XXT be a singular value decomposition
of XXT.ThenI = (D'WUTX)(D'UTX)T, and it follows that VT :=
D'UTX is an orthogonal matrix. Let Y = UV . Noting that X =
UDVT, we have ||X - Y||?, =||D - I||%, and if 01, ..., oy are the
singular values of X then

ID=11E = > (oi = 1 < Y (0F = 1)? = IIXXT - 1.

O

5.3.1 The existence of a small net. We now prove the existence of
a small net of Lipschitz functions for families of s-smooth k-linear
Juntas in R™. The main result is Proposition 5.15.

We begin with a few preliminaries related to approximate by Lip-
schitz functions, namely, s-smooth functions can be approximated
by Lipschitz functions and Lipschitz functions don’t change much
under composition by nearby linear maps.

Lemma 5.9. For every s-smooth function f : R* — [-1,1] and
every e > 0, there is a %—Lipschitzfunctiong :R™ — [-1,1] such
that || f = gllp2(y) < €. Here C is the absolute constant appearing in
Fact 2.5.

Proor. Choose t = i—z and set g = P;f, so that the bound

ILf _9||L2(y) < ¢ follows from the fact that f is s-smooth. The claim

follows from Fact 2.5. m}

Lemma 5.10. Suppose that g : R™ — R is Lipschitz and let X and
Y be twomx n matrices. Then |lgoX —goY|lr2(,) < (Lipg)IX-Yllr
(here Lip g denotes the Lipschitz constant of g).

ProOF. Let x be a standard normal random variable on R™. Then
E[((g 0 X)(x) = (9 © Y)(x))*] < (Lip 9)* E[lIXx — Yx[|*]

= (Lip g)*[1X - YII3. O

Our procedure for producing a net for s-smooth k-juntas in
R™ proceeds in three steps. First, we will construct a net for s-
smooth functions on R¥. Then we will find a net for k-dimensional
subspaces of R™. Combining these two nets will give a net for
s-smooth k-juntas in R"™.

WWe next have the following lemma. The proof of this lemma
relies on standard tools from Hermite analysis and properties of
the noise operator (and is deferred to the full version).

Lemma 5.11. Foranyk € N and anys, € > 0, there exists a set Net
of functions R¥ — [—1,1] such that
L . Cs 7 . .
(1) every function in Net is == -Lipschitz (here C is the absolute
constant appearing in Fact 2.5),
(2) Net is an e-net for the set of s-smooth functions RF > [-1,1],
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(3) log |Net| < kOG*/€) and
(4) Every function f in Net is s-smooth.

Next, we need to turn our net of functions on R¥ into a net of
k-linear-juntas on R"™. We will do this by finding an appropriate
net for k-dimensional subspaces of R™, and then using the net of
Lemma 5.11 for each of these subspaces.

Lemma 5.12. There is a set & of k-dimensional subspaces of R™
such that

(1) foreveryk-dimensional subspace E of R™, there is someE’ € &
with |[lIg —TIg || < €; and

@ [&] < (@)mk.

Proor. We begin the proof by recalling the following simple
fact.

Fact 5.13. For the unit sphere in R™ (denoted by S™1), there is a
d-net (in Euclidean sphere) of size (1/5)0("’).

Now, let T be a §-net of S™~! (the unit Euclidean sphere in R™)
of cardinality at most (1/8)°(m) (as described in Fact 5.13). Let &
be the set of all k-dimensional subspaces that are spanned by k
elements of T. The claimed bound on the cardinality of & follows,
provided we choose § so that e < C’k§ (for an absolute constant
).

Let E be a k-dimensional subspace of R™, and let x1, . . ., x be an
orthonormal basis of E. Choose y1, ..., yx € T with ||x; —y;|| < §
for all i; then the y; are unit vectors, and for i # j we have

[<yi, yi)| = Kyi yj) = Cxi x| < [{xi, x5 —yi) |+ Ky xi —yi)| < 26.

It follows that if Y is the matrix with rows y;, and if E is the span
of y1,.... Y. then [YTY =TI |2 = |YYT - I||2 < 45%k. Hence,

g - e llp = 1XTX -OplF < IXTX - YTY||p + 25 VE.

It remains to bound || X7 X — YT Y||F, and it will suffice to show that
IXTX - YTY||F = O(kS).
Now, if x and y are unit vectors with ||x — y|| < J, then (x,y) >
1 - 0(6%). It follows that [lxxT — yy |12 = 2 - 2(x,y)? < O(5?).
Thus, by the triangle inequality,
k
IXTX =YY llp < > lxix] = yiy] llF = O(Ks).
i=1

[m]

Definition 5.14. Let E be a m-dimensional subspace of R" and let
C be a subset of s-smooth linear k-juntas over RF. We define Ind 5(C)
to be the set of all functions h : R"™ — R of the form

®(x) = h((v1,x), . .., (v, X)),

wherevy, . . ., vy are orthonormal vectors in E. In other words, IndE(C)
lifts the functions in C to linear k-juntas over R™ where the relevant
subspace is a k-dimensional subspace of E. Note that Indgn(C) =
Ind,,(C) (see Definition 1.5).

Finally, for such a class C, subspace E and a function f : R" —
[-1.1],

pi.clf) = max

X ) Ex[®(x) - f(x)].
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Proposition 5.15. Let C be a subset of s-smooth linear functions
Rk — [~1,1]. Then, for anym > k, there is a set Net, ¢ of functions
mapping R™ to [—1, 1] which satisfies the following properties:
(1) Any g € Net,, ¢ is Cs/e-Lipschitz.
(2) Nety, ¢ isane-net forindgm(C) ~i.e., foreveryh € Indgm(C),
there is a g € Netp, ¢ such that ||h - g”Lz(y) <e
(3) log|Nety, ¢l < KO(s*/€?) 4 O(mklog %) and
(4) For every function in g € Netp, ¢, thereish € Indgm(C) such
that ||h — 9||L2(y) <e.

Proor. It suffices to consider the case that C is the set of all
s-smooth functions R¥ — R. Indeed, once we have found a net
(call it Netg) for this case, we can handle the case of general C by
simply discarding any g € Net for which there is no h € Indgm(C)
such that ||h — gll;2(,) < €. In this way, we ensure that property
4 is satisfied, noting that properties 1, 2 and 3 remain unchanged
if we remove functions g from Nety. For the rest of this proof, we
consider the case that C is the set of all s-smooth functions.

Let Net be a net for s-smooth functions on R¥, with the proper-
ties guaranteed by Lemma 5.11. Let & be a collection of k-dimensional
subspaces of R™, with the properties guaranteed by Lemma 5.12
with accuracy €’ = €?/s. We define Netg to be the set of functions
of the form x +— f(IIgx), where f € Net and E € &. Clearly,
Nety satisfies Property 1. To see Property 3, note that log [Neto| =
log |NE| +log |E|. By using Lemma 5.11 and Lemma 5.12, the bound
on log |Netg| follows. Thus, it remains to show Property 2.

To see Property 2, suppose that f is an s-smooth k-Junta. Then
there is some k-dimensional subspace E and an s-smooth function
g on RK such that f =goIlg. Choose h € Net to be e-close to g
and choose E’ € & such that ||[[Ig — g ||p < €?/s. Then h o IIg
belongs to Net, and satisfies

IheTlp = fllzz(y) < Ilhollp —hoTlgllr2y + kol — f oTlEllL2y)

The second term is at most €, and the first term can be bounded
(using Lemma 5.10) by (Lip h)||I1g — IIg|| < % - €%/2 < Ce. This
proves the claim (after we change € by a constant factor). O

5.3.2  Proof of the theorem. Finally, we apply Proposition 5.15 to
the to the analysis of our algorithm. The proof can be found in the
full version of the paper.

Lemma 5.16. Let C be a subset of s-smooth functions RF 5 [-1,1]
and let Net ,, be an e-net as guaranteed by Proposition 5.15. LetE be
am-dimensional subspace of R™ and let A € R™" with the following
two properties: (i) the rows of A span E and (ii) |AAT = I||F < .
Then, for any Lipschitz function fsm, we have that

C’sk

g, c(fim) = max  E[h(AX) - fim(x)]| < +e,
’ heNet,, ¢ X

for an absolute constant C’.

Proof of Theorem 4.3:

Let C* be the averaged class of C, as in Definition 5.6. Let
Net,, ¢+ be the set of functions guaranteed by Proposition 5.15
- with smoothness parameter s, error parameter €/4 and m = M
as instantiated in the algorithm Implicit Projection. Let us also set
v = €2/(100C’s) for the constant C’ appearing in Lemma 5.16. Let us
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now invoke algorithm Implicit projection with smoothness param-
eter u = v/s, Lipschitz parameter L = O(s/v), the error parameter
v and junta arity parameter k.

Suppose h, € Ind,(C) such that

hy = arg max
helnd,(C

) Ex[ fsm(®)h(x)].

Lemma 5.1 guarantees that with probability 9/10, we get a matrix
W and points X1, . .., Xp such that the following conditions are
satisfied: let BT be the matrix where the ji row is V fsm(x;). Let E
be the row span of BT

(1) I - WBTBWT||p < v/2. Here I is the identity matrix in m

dimensions where m = dim(E).
(2) Forg = Aghy,

[E[fsm(x) - 9(x)] = E[fsm(x) - h+(X)]| < ~ (12)
Also, by Lemma 5.16, we have that
N C'sv € 51-€
A pa— T . — — -_— —
|pE»C*(f‘°‘”‘) heﬁi‘?:c* EWWB %) fim()]| < 271" 200
(13)

Next, since g = Aphs € Ind(C*) (by Claim 5.7), we have that

P, c+(fsm) = E[fsm(x) - ()] = E[fsm(x) - h«(x)] = g (14)

where the second inequality follows from (12). On the other hand,
if § € Indz(C*) maximizes the correlation with fim, there exists

(again by Claim 5.7) By € Ind,(C) with ﬂEfl* = g, and hence (by
Lemma 5.1)
Pi.c+(fsm) = E[ fsm(x) - (Aph)x)]
< E[fam() - u()] +

< E[fim(®) - he(x)] + g (15)

Together with (14), we have
v
lpg, ¢ (fsm) = Elfsm(x) - he (]| < 2
combined with (13) (and recalling that we chose h. to be a correlation-

maximizer in Ind,(C), we have

51e
S —_
100

v 52¢

+ = (16)

n - max = —
lpsr.c t 2~ 100

heNet,, ¢+

E[H(WB'%) fim(0)]

Thus, for our purposes, it suffices to (approximately) compute
MaXp eNet,, o Ex[h(WBTx) - fym(x)]. Towards this, consider any
fixed h € Net. We set T = O(e~?log(1/{)) where { = 1/(10 -
|Nety, c+]). Sample T points from the standard Gaussian y, - call
these points zi, . . ., zr. By applying the Chernoff bounds, observe
that for any h € Net, with probability 1 — ¢,

T
Ex[A(WBTxX) - fom(x) — % Z hWBTz)) - fum(z))| < €/4.
£

J
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From a union bound, it follows that with probability 9/10,

Ex[W(WBTx) - fum(x)]

max
heNet,, o+

T
= D> HOVBT 7)) - fim()
=

" heNety -
<e/4. (17)
Combining (17) and (16), we get
1 I A 2€
prrclfom) = max o ]Zl hWB'2)) - fim(z) < 5. (18)

Thus, it suffices to compute the quantity

Corr= max

T
1 N
= hWBTz))- zi),
pell® T ]ZI (WB'2)) - fim(z))
up to additive error +¢/3 and upper bound the query complexity
of computing this estimate. Observe that computing { fsm(z j)}szl

requires T queries. Using Lemma 5.1, we have
20k

W1l < =A

_ e’
Set 0 = 200-C-A-s-ym
We now invoke algorithm Project-on-gradient from Lemma 2.18.

Then, we get that for any z; (for 1 < j < T),

. Here C is the constant appearing in Fact 5.13.

1
<

[|Est(xi, zj) = (V fsm(xi), zj)| > 0] < 200T -m”

r

Xi~Yn
Further, we can compute +6 estimate to Est(x;, zj) (with confidence
1- m) where the query complexity is poly(T - m, 1/6). This
means that with probability 0.99, foreach1 < j<Tand1 <i < m,
we have +20 estimates (denoted by x; ;) for each (V fom(xi), zj). In
other words, for each 1 < j < T, we get a vector Z; which satisfies

IE; — BT zj|| < 26vm.
Since ||W|| < A, this means that forall1 < j < T,
2

€
100C - s~
Since h € Net is Cs/e-Lipschitz, this implies that foreach 1 < j < T,

|IWE; - WBT ;|| < 20vVmA =

€
100°
Consequently, this gives a +€/100 additive estimate of the quantity

|n(WE)) - h(WBTz))| <

T
= Y HOWBT2) - fim(zy)
f=

Recalling (18), we have shown that the algorithm produces a +¢-
additive estimate of prrn c(fsm). It remains to bound the query
complexity of the algorithm. The query complexity of the algorithm
Implicit projection (from Lemma 5.1) is poly(k, 1/u, 1/v, L) where
v = €2/(100C’s) (C’ is the constant appearing in Lemma 5.16). Thus,
the query complexity of this part is poly(k, s, L, 1/e).

For the hypothesis testing part, the query complexity can be
bounded as follows:

(1) We make T queries to fym where T = O(e~2 log [Net|.
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(2) Foreach1 < j < mand 1 < i < T, we compute a +6
approximation to Est(x;, zj) — the query complexity of each
is poly(T - m, 1/0).
Thus, the total query complexity is bounded by poly(T, m, 1/6).
Using the fact that m < M (where M is set in algorithm Implicit
projection) and plugging in the value of the parameters, we get the
final bound on the query complexity.

Finally, we remark that our analysis so far was based on assuming
that we have exact oracle access to fsm. However, we only have
oracle access to f and approximate oracle to fsm (via Lemma 4.2). To
address this issue, we observe that the algorithm Implicit projection
only uses the oracle to f and not to fsm (the only invocation of these
oracles is when we call the routine Compute-inner-product). In the
hypothesis testing part, (i) we only use the oracle to f when we
invoke the algorithm Project-on-gradient. (ii) we use the oracle for
fsm when we approximate Corr to error +¢/3. However, it is easy
to see that for this, it suffices to have an oracle for fsn with (say)
O(e~1-%) additive accuracy. By Lemma 4.2, this can be simulated
with an oracle for f with O(¢~3) overhead given an oracle to f.
This finishes our proof.

[m]

6 LEARNING THE LINEAR-INVARIANT
STRUCTURE

The proof of Theorem 1.4 is essentially the same as the proof of
Theorem 4.3; we construct the same net of functions and estimate
the correlations of each of them. The only difference is that instead
of outputting the maximum correlation value of a function in the
net, we output the set of functions that have a large correlation.
Proof of Theorem 1.4: Let Net,, o+ be as in the proof of Theo-
rem 4.3. With the same § as in that proof, with probability 9/10 we
can simultaneously estimate Ex[h(WBTx) - fsm(x)] to error +e/8
for all h € Net,, c-.

Now consider the algorithm that returns all h € Net,, ¢+ for
which our estimate of Ex[R(WBx) - fsm(x)] is at least p — 4e¢; call
the returned set G. It follows that for every § € G,

E[!?(WBTX) fsm®)] = p - 5e,

and so the first claim of the theorem follows.

For the second claim, take any g € Ind,(C) and let E be the
range of WBT . Since (by Claim 5.7) Agpg € Indz(C*), there is some
g € Net,, o+ such that

Ex[(G(WBTx) - Azg)*] < €. (19)

Now, if g’s correlation with f is at least p — €, then by Lemma 5.1
A g has correlation at least p—2¢ with f, and so by (19), o (wBT)
has correlation with f at least p — 3¢, and hence the definition of
G ensures that § € G. Going back to (19), the function § witnesses
the second claim of the theorem. O
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