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Abstract— The performance-driven design of SDN architec-
tures leaves many security vulnerabilities, a notable one being
the communication bottleneck between the controller and the
switches. Functioning as a cache between the controller and the
switches, the flow table mitigates this bottleneck by caching flow
rules received from the controller at each switch, but is very
limited in size due to the high cost and power consumption of
the underlying storage medium. It thus presents an easy target
for attacks. Observing that many existing defenses are based on
simplistic attack models, we develop a model of intelligent attacks
that exploit specific cache-like behaviors of the flow table to
infer its internal configuration and state, and then design attack
parameters accordingly. Our evaluations show that such attacks
can accurately expose the internal parameters of the target flow
table and cause measurable damage with the minimum effort.

Index Terms— Software defined networking, cache inference,
denial of service attack.

I. INTRODUCTION

AS A NEW networking paradigm, Software Defined Net-
working (SDN) has fundamentally changed the way net-

works are built and maintained. By separating the data plane
and the control plane, SDN moves the control functions to a
logically centralized controller, thus enabling flexible routing,
service composition, and network management. These advan-
tages have lead to massive adoption of SDN in enterprises and
datacenters worldwide.

Meanwhile, the widespread adoption raises the issue of
security. While SDN eases the defense against traditional
IP-network attacks such as port scanning and firewall prob-
ing [2] by using agile structures and policies [3], it also
introduces new vulnerabilities that allow attackers to learn
about the target network and use the learned information to
attack it.

We hereby focus on the vulnerabilities of the flow table,
which is a data structure at each SDN-enabled switch that
stores the flow rules received from the controller. These flow
rules, each containing match, action, and several other fields
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(e.g., priority, counters), encode how the controller wants each
flow to be processed by the switch. Packets not matching
existing rules in the flow table will typically be forwarded
to the controller for further processing, which invokes slow
elements such as the switch CPU [4] and significantly degrades
the performance. However, due to the high cost and power
consumption of the underlying storage medium, flow tables
are usually small, holding up to a few thousand rules [5].

This vulnerability has been explored to launch various flow
table overflow attacks [6]–[9] and control plane saturation
attacks [10]. However, existing studies have only modeled
unintelligent attacks that apply simple techniques to bluntly
harm the target. We argue that an intelligent attacker, that
employs a reconnaissance stage to learn the internal config-
uration (e.g., size, policy) and state (e.g., load) of the target
flow table, can attack more precisely and efficiently.

To demonstrate the above claim, we develop algorithms to
explicitly infer the size, policy, and state of the target flow
table from probes sent by a compromised host, based on which
intelligent Denial of Service (DoS) attacks can be mounted to
cause measurable damage with the minimum effort.

A. Related Work

SDN vulnerabilities: The design of existing SDN architec-
tures and protocols is performance-driven, leaving many secu-
rity vulnerabilities. The weakest aspect of SDN is the inter-
dependency between the controller and the switches. The
controller→switch dependency arises due to the needs for the
controller to maintain an updated network state for making
proper control decisions. This creates a vulnerability if the
attacker can gain control of one or more switches [11] to
inject fake links [12], eavesdrop on control messages and client
traffic [13], impersonate the controller [14], or otherwise
subvert the control applications by sending false reports [15].
The switch→controller dependency arises due to the needs
for the data plane to obtain instructions on packet processing
from the control plane, which can create a communication
bottleneck [4]. This bottleneck can be exploited in active
attacks [6]–[10], adversarial reconnaissance [16]–[19], and
joint reconnaissance and attack [20]. We will exploit this
bottleneck for joint reconnaissance and attack on the flow
table. Unlike previous works [17]–[19] that focus on inferring
specific rules, we aim at inferring global parameters of the
flow table (e.g., size, policy) useful for planning later attacks.

SDN defenses: Traditional network defenses are often based
on detecting the signatures of specific attacks or using machine
learning or other models to detect anomalies against normal
behaviors. In SDNs, although the centralized control eases
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the defense against traditional network attacks through agile
structures and policies [3], it remains open how to design
robust defenses against a large threat surface and unknown
attacks. Existing defenses can be classified into proactive
defenses that extend OpenFlow to mitigate vulnerabilities such
as [10], and reactive defenses that focus on detecting specific
ongoing attacks such as [12], [21]. However, a systematic
understanding of the attack vectors and fundamental lim-
its is still missing. In this sense, our work contributes to
the future development of defenses in SDN by developing
reconnaissance techniques that utilize the switch→controller
dependency to extract information about the internal states
and policies of SDN switches and demonstrating how this
information can be used to launch more intelligent attacks.

Flow table management: To put our work into context,
we briefly review techniques for flow table management.
Existing techniques can be classified into: (i) rule replacement,
(ii) rule compression, and (iii) rule distribution [22]. Among
the three, approaches (ii-iii) still have many open issues [22].
In contrast, approach (i) is a mature technology that has
been widely implemented in OpenFlow switches, e.g., Open
vSwitch supports the First In First Out (FIFO) policy and
the Least Recently Used (LRU) policy [23], and hardware
switches usually employ FIFO [7]. We will thus focus on flow
tables managed by rule replacement policies.

Rule replacement policies & their security Existing rule
replacement policies are designed exclusively for a benign
environment. In addition to FIFO and LRU, researchers have
proposed other rule replacement policies, such as those based
on the Least Frequently Used (LFU) policy [24]–[26], and the
approximation of Bélády’s optimal replacement policy [27].
In contrast, very few studies have considered the security
of rule replacement policies in an adversarial environment.
In [7]–[9], the feasibility of filling the flow table with the
attacker’s rules was demonstrated, but the attack was unin-
telligent. In [6], an attack was designed to cause flow table
overflow with the minimum rate of attacking traffic. However,
it assumed that an attacker’s rule will remain in the flow table
until its timeout, which is not valid with reactive eviction.
The work closest to ours is [16], which attempted to model
an intelligent adversary that infers the flow table size and
occupancy under a given policy (FIFO or LRU). However,
their algorithms require knowledge of the replacement policy,
and ignore the interference from background traffic.

Security of general caches: Viewing the flow table as
a cache of flow rules, one might borrow results on infer-
ence/attack of general caches, but even then existing results
are very limited. In [28], a procedure was proposed to infer
the cache replacement policy and input parameters from obser-
vations of all the misses. This solution is not applicable to
adversarial reconnaissance as the attacker can only observe
the results of his own packets. In [29], two attacks were
proposed to replace popular contents in the cache by unpopular
contents, but their parameters were not intelligently designed.
In [30], algorithms were proposed to infer the size and other
parameters of an LRU cache, but it did not address the problem
of unknown cache replacement policy.

B. Summary of Contributions

We demonstrate the feasibility of intelligent reconnaissance-
based attacks in SDN by exploiting the data-control plane
bottleneck and specific cache-like behaviors of the flow
table.

1) We formulate the adversarial cache inference problem
to jointly infer both static parameters (e.g., size, policy)
and dynamic parameters (e.g., current load) of the flow
table from a single compromised host.

2) By analyzing the behaviors of candidate policies,
we develop algorithms to explicitly infer the size,
the policy, and the load parameters of the target flow
table, using only two primitives that have been shown
to be feasible.

3) We demonstrate the value of the inferred information
by designing intelligent Denial of Service (DoS) attacks
that minimize the attack rate while sufficiently degrading
the performance of legitimate users.

4) We verify through synthetic/trace-driven simulations and
trace-driven Mininet experiments that the proposed solu-
tion can achieve accurate reconnaissance (with more
than 90% accuracy) and effective attack design despite
interference from background traffic.

Compared to the preliminary version [1], this work makes the
following additional contributions: (i) we analyze the impact
of controller-imposed timeouts on our algorithms; (ii) we
add a discussion of possible defenses against the proposed
attacks, identifying a tradeoff between defense efficacy and
performance penalty for future research; (iii) we demonstrate
an alternative method for policy inference based on TTL
approximation that achieves a high accuracy under heavy
background traffic and a low probing rate, which comple-
ments the previously proposed algorithm that requires light
background traffic and a relatively high probing rate; (iv) we
use traces of significantly higher rates and complement the
simulations with experiments based on a virtual SDN testbed,
thus validating our algorithms in a more realistic environment.

Roadmap. Section II introduces our models and prob-
lem formulation. Sections III–IV present our solutions for
reconnaissance and attack design. Sections V–VI validate the
proposed solutions. Section VII concludes the paper. Further
considerations (timeouts, defenses) are provided as supple-
mentary materials.

II. PROBLEM FORMULATION

A. Flow Table Model

We model the flow table at the target switch as a cache
of flow rules. This model is valid as long as all the rules are
stored in a single table, which is often the case in practice.
According to the OpenFlow Switch Specification 1.5.1 [31],
each rule contains a number of fields including match, priority,
counter, action, and timeout, that specify which packets will be
processed by this rule and how. OpenFlow allows a variety of
header fields to be used as match fields, e.g., source/destination
MAC addresses, IP addresses, and port numbers. It is up to
the controller which fields to use. However, prior work [6]
has shown that by sending probing packets while changing
one header field at a time, the attacker can learn which header
fields are used in matching packets.

As a cache of flow rules, the flow table is characterized by
two basic parameters: (1) the size that specifies the maximum
number of stored flow rules and (2) the replacement policy that
specifies which rule will be evicted if a new rule needs to be
installed when the table is full. The first parameter is akin to
the cache size, and the second parameter is akin to the cache
replacement policy. Although OpenFlow also allows rules to
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be proactively removed due to timeouts, the use of timeouts
is optional, and their influence will be dominated by reactive
rule replacements when the flow table is full.

We denote the flow table size by C (unit: rules), and the
replacement policy by π. In commodity switches, C is usually
small, up to a few thousand [5]. The replacement policy π also
comes from a small set of candidate policies. For example,
Open vSwitch [23] implements an approximation of Least
Recently Used (LRU) when rules have idle timeouts and no
hard timeout, or First In First Out (FIFO) when rules have
hard timeouts and no idle timeout.1 A study [7] found that
certain hardware switches use FIFO. While there are more
sophisticated policies proposed by researchers, e.g., [24]–[27],
they are yet to be adopted in production. We will therefore
focus on the common case of π ∈ {FIFO, : LRU} and discuss
extensions to other cases when appropriate.

B. Adversary Model

We consider an external attacker that performs reconnais-
sance and attacks against the target switch from a compro-
mised host. This also models coordinated reconnaissance and
attacks from multiple compromised hosts against the same
switch. We assume the following primitives for the attacker:

• Primitive 1: The attacker can detect whether a given
probe results in a hit or miss at the target flow table. This
capability has been demonstrated in previous studies [16],
[33]. For example, the attacker can measure the round-trip
time (RTT) of the probe and compare it with a threshold
learned from RTTs of sure misses (e.g., packets with
randomly generated source IP addresses) and sure hits
(e.g., the second packet in a pair of back-to-back packets
with identical headers).

• Primitive 2: The attacker can craft a probe that requires
a new rule. It has been shown in [6] that the attacker
can learn the matching fields and craft the probes by
modifying one or multiple matching fields, such that
each crafted probe requires a distinct rule. Moreover,
as each matching field has a large solution space (e.g.,
all MAC/IP addresses or port numbers), the randomly
crafted matching fields will almost never coincide with
those of legitimate packets.

Let dI denote the (average) delay between a miss and
the time that the requested rule is installed, i.e., the rule
installation time. We assume that the attacker can estimate
dI by measuring the differences between RTTs of hits and
misses.

Remark: Our attacks are based on the above primitives
that have been validated on current SDN implementations.
In particular, Primitive 1 has only been validated on edge

switches (Primitive 2 is about learning the matching fields
used by the controller, hence independent of the location
of the target switch). Intuitively, edge switch is the most
vulnerable to host-based attacks as it is directly exposed to the
attacker. It remains open how feasible it is to perform similar
reconnaissance and attacks on switches deeper in the network.

C. The Adversarial Cache Inference Problem

The goal of the attacker is to optimally use the above prim-
itives to learn about and attack the flow table. This includes

1Open vSwitch implements a rule replacement policy that under the basic
setting (empty ‘groups’ column and same ‘importance’ for all flows), chooses
the flow that expires soonest for eviction [32]. This implies a hybrid of LRU
and FIFO in the presence of both hard and idle timeouts.

Fig. 1. Forward-backward probing (‘h’: hit; ‘m’: miss).

inferring the size C, the policy π, and other parameters, as well
as using this information to design more efficient attacks.
We refer to this problem as the adversarial cache inference
problem, as solutions to this problem are also applicable to
other types of caches as long as the same primitives are
supported. In the sequel, we will interchangeably use ‘flow
table’ and ‘cache’, and ‘flow rule’ and ‘content’.

Challenges: While simplified versions of the above problem
have been tackled in prior works [16], [30], the solutions
therein do not solve our problem. In [16], two different
algorithms were proposed to infer the cache size under FIFO
and LRU, respectively, but the policy must be known to apply
the right algorithm. In [30], an algorithm was proposed to
infer the size of an LRU cache, but it did not consider the
problem that the replacement policy can be different and
unknown. To our knowledge, this is the first work simultane-
ously addressing unknown cache size, unknown replacement
policy, and interference from background traffic.

III. JOINT CACHE SIZE AND POLICY INFERENCE

As size and policy are static parameters,2 the attacker can
infer these parameters during off-peak hours when there is
little background traffic, in preparation for larger attacks.
In this section, we demonstrate the feasibility of such attacks
by developing explicit size and policy inference algorithms.

A. Cache Size Inference

We will show that under mild conditions on the replacement
policy, the cache size can be inferred without knowing the
exact policy. Modeling the internal state of the cache by an
ordered list of cached contents (f1, . . . , fC), where the content
f1 at the head of the list is the last to evict and the content
fC at the tail is the first to evict, we assume:

1) the newly entered content is always at the head;
2) if all the cached contents are only requested once, then

the content at the tail is the first content entering the
cache.

These conditions hold under both FIFO and LRU, two of
the most commonly-used replacement policies. Moreover, they
hold for a more general family of permutation policies [34].
For the ease of presentation, in the sequel we will use fi to
denote both a probe and the content requested by a probe.

Basic idea: Our key observation is that under the above
conditions, the cache size can be revealed by a “forward-
backward probing experiment” as follows. We illustrate the
basic idea in Fig. 1 in the simplest case when there is no
background traffic. Given an estimated cache size c, we gen-
erate c distinct probes, send them back-to-back in the order
of f1, . . . , fc (“forward probing”), and wait for time dI to
ensure that the requested contents are installed. We then
send these probes in the reverse order fc, . . . , f1 (“backward
probing”). In absence of background traffic, the cache state

2Although in theory, SDN architecture allows the admin to remotely change
configurations inside a switch, we find configurations such as flow table size
and replacement policy to be fixed once the switch starts operating.
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Algorithm 1 Robust Cache Size Estimation (RCSE)
input : Initial guess of cache size c0, number of repetitions per

experiment n, rule installation time dI

output: Estimated cache size �C
1 �C ← 0;
2 c← c0;
3 while true do
4 foreach i = 1, . . . , n do
5 δ ← forward-backward-probing(c, dI);
6 �C ← max( �C, δ);
7 if δ = c then
8 break;
9 if �C < c then

10 break;
11 else
12 c← 2× c;
13 return �C;
forward-backward-probing(c,dI):

14 δ ← 0;
15 foreach i = 1, . . . , c do
16 send probe fi;
17 wait for dI ;
18 foreach i = c, c− 1, . . . , 1 do
19 send probe fi;
20 if fi results in a hit then
21 δ ← δ + 1;
22 else
23 break;
24 return δ;

should be (fc, . . . , fc−min(c,C)+1) after the forward probing,
with fc−min(c,C)+1 being the next to evict. Thus, the backward
probing should yield hits for exactly min(c, C) probes.

This probing mechanism has been used to estimate the size
of an LRU cache [30]. However, it was not realized then that
the method applies to a broader set of policies, and there was
no consideration of background traffic.

Algorithm: We now formalize this idea and augment it
to guard against background traffic. The algorithm, Robust
Cache Size Estimation (RCSE) (Algorithm 1), is based on
a subroutine called forward-backward-probing(c, dI)
that performs the above probing experiment and returns the
number of hits δ. Note that once we encounter a miss during
backward probing, all the subsequent probes will lead to
misses, and hence no further probe is needed.

The main algorithm repeats the experiment for each value of
c for n times (lines 4–7), where n controls the tradeoff between
the robustness against background traffic and the probing cost.
Note that since only the largest number of hits is recorded
(line 6), once we reach the upper bound c (line 7), there is no
need to further repeat the experiment.

Overall, RCSE starts with an initial guess of the cache size
c = c0 (line 2), and then doubles it every n experiments
(line 12) until the largest number of hits out of n experiments
is still less than c (line 10), at which point this largest number
of hits is returned as the estimated cache size.

Accuracy: We now analyze the accuracy of RCSE
(Algorithm 1) in the presence of background traffic. The
key observation is that background traffic can only cause
underestimation of the cache size. Thus, if we repeat the
experiment many times, then the largest number of hits across
the experiments will converge to the true cache size.

To formalize this intuition, suppose that the background
traffic is modeled as a Poisson process of rate λ.

Theorem 1: Let Tc denote the time to send c probes. The
error probability of RCSE (Algorithm 1) decays exponentially
in n, and specifically,

Pr{Ĉ �= C} ≤ (1 − e−λT4(C−1))n. (1)

Proof: As background traffic can only cause underestima-
tion of the cache size, Pr{Ĉ �= C} = Pr{Ĉ < C}.

Since δ on line 5 of Algorithm 1 equals min(c, C) if there
is no background traffic during the experiment, we have

Pr{δ < min(c, C)} ≤ 1 − e−λT2c . (2)

Let c∗ be the final value of c. To have Ĉ < C, we must
have (i) c∗ ≤ C and Ĉ < c∗, or (ii) c∗ > C and Ĉ < C.
In case (i),

Pr{Ĉ < C} ≤ Pr{ max
i=1,...,n

δi < c∗} ≤ (1 − e−λT2c∗ )n, (3)

where δi is the result of the i-th probing experiment for input
c∗. In case (ii),

Pr{Ĉ < C} ≤ Pr{ max
i=1,...,n

δi < C} ≤ (1 − e−λT2c∗ )n. (4)

Although c∗ is random, we must have Ĉ = c∗/2 in the
second-to-last round in order to execute line 12. As Ĉ is
monotone increasing, having Ĉ < C when the algorithm stops
implies that c∗/2 < C and hence c∗ ≤ 2(C −1). This implies
that

Pr{Ĉ < C} ≤ (1 − e−λT2c∗ )n ≤ (1 − e−λT4(C−1))n, (5)

which proves the theorem. �
We note that although the above analysis is done for Poisson

traffic, RCSE applies to other types of traffic too. Intuitively,
for background traffic following general renewal processes,
we expect a similar exponential decay due to the repetition of
the same experiments, except that the term (1 − e−λT4(C−1))
will be replaced by the probability3 of having at least one
arrival during time T4(C−1). We have further verified the
performance of RCSE on real traces (see Fig. 4–6).

Probing cost: Measured by the number of probes, the prob-
ing cost of RCSE is bounded as follows.

Theorem 2: The number of probes required by RCSE is
upper-bounded by{

n(7C − 2c0 + 1) if c0 ≤ C,

n(c0 + C + 1) if c0 > C.
(6)

Proof: The worst case is when the experiment for each
value of c is repeated for n times, and c grows from the initial
guess c0 to the first value greater than C. Depending on the
initial guess c0, there are two cases:

Case 1. c0 ≤ C: The value of c grows as
c0, 2c0, . . . , 2m+1c0, where m = �log(C/c0)�. For c =
c0, . . . , 2mc0, each experiment takes at most 2c probes. For
c = 2m+1c0, each experiment takes at most c+C +1 probes.
Therefore, the total number of probes is at most

m∑
i=0

nc02i+1 + n(2m+1c0 + C + 1)

= n(6c0 · 2m − 2c0 + C + 1) ≤ n(7C − 2c0 + 1). (7)

3Rigorously, it is the conditional probability of having the next arrival in
time T4(C−1) , conditioned on the elapsed time since the previous arrival.
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Algorithm 2 Robust Cache Policy Detection (RCPD)
input : Cache size C, number of experiments N
output: Detected cache replacement policy

1 foreach i = 1, . . . , N do
2 if flush-promote-evict-test(C,dI) returns ‘hit’

then
3 return ‘FIFO’;
4 return ‘LRU’;
flush-promote-evict-test(C,dI):

5 send C distinct probes f1, . . . , fC back to back;
6 send f1 again;
7 send a new probe fC+1;
8 wait for dI ;
9 send f2 again;

10 return the result (‘hit’/‘miss’) of the last probe;

Case 2. c0 > C: There is only one round with c = c0,
in which each experiment takes at most c0 + C + 1 probes.
Therefore, the total number of probes is at most n(c0+C+1).

�
Theorem 2 clearly characterizes the dependency of the

probing cost on the initial guess of the cache size. It is easy to
see that the minimum worst-case probing cost is 2n(C + 1),
achieved at c0 = C + 1.

B. Replacement Policy Inference

Given the cache size C (estimated by RCSE), we further
infer the replacement policy. We will first consider the special
but realistic case where the policy is known to be either FIFO
or LRU, and then discuss more general cases.

Basic idea: Our idea is to employ a four-step probing exper-
iment that we call “flush-promote-evict-test”. Fig. 2 illustrates
this idea in the basic case when there is no background traffic.
The first step (“flush”) is to fill the cache with distinct contents
f1, . . . , fC , which creates the same cache state under both
candidate policies. The second step (“promote”) is to introduce
a difference in the cache state by requesting f1 again. Under
FIFO, f1 will remain at the tail of the cache, but under LRU,
f1 will be promoted to the head of the cache. The third step
(“evict”) is to introduce a difference in the set of cached
contents by requesting a new content fC+1, which will evict
f1 under FIFO, but f2 under LRU. The last step (“test”) is to
test this difference by requesting f2 again after the eviction
occurs. As the last probe will result in a hit under FIFO and
a miss under LRU, we can detect which policy is used.

Algorithm: We now augment this procedure to improve its
robustness. The algorithm, called Robust Cache Policy Detec-
tion (RCPD) (Algorithm 2), is based on a subroutine called
flush-promote-evict-test(C, dI) that performs the
above experiment and returns the result of the last probe. The
main algorithm repeats this experiment for N times, where N
controls the tradeoff between the robustness and the probing
cost. As shown next, only FIFO can result in ‘hit’, and hence
once an experiment returns ‘hit’, we can detect the policy as
FIFO and skip the remaining experiments. We will only detect
the policy as LRU if all the experiments return ‘miss’.

Accuracy: The presence of background traffic can only
cause error in one way: under FIFO, contents installed due
to background traffic may cause f2 to be evicted before the
test step, resulting in ‘miss’; however, under LRU, background
traffic will not change the experiment result, which is always

Fig. 2. Cache state during “flush-promote-evict-test”; ti: dI time after step
i (i = f : flush, i = p: promote, i = e: evict).

‘miss’. Thus, by repeating the experiments many times and
only detecting the policy as LRU if all the experiments report
‘miss’, our detected policy will converge to the ground truth.

To formalize this intuition, we again model the background
traffic as a Poisson process of rate λ.

Theorem 3: RCPD (Algorithm 2) will always detect LRU
correctly, but may detect FIFO as LRU with a probability of
(1 − e−λTC+3)N , where Tc is defined as in Theorem 1.

Proof: Under LRU, content f2 must have been evicted
before the test step (either by a subsequent probe or by
the background traffic), and thus the subroutine will always
return ‘miss’, which makes RCPD return ‘LRU’ with certainty.
Under FIFO, Fig. 2 (a) has explained that if there is no
background traffic during an experiment of “flush-promote-
evict-test” (which lasts for TC+3), then the subroutine will
return ‘hit’. Meanwhile, if there is any background traffic
during the experiment which inserts at least one new content,
then f2 will be evicted before the test, and hence the subroutine
will return ‘miss’. Hence, the probability for the subroutine to
return ‘miss’ under FIFO is the probability to have at least one
arrival in the background traffic during an experiment, which
equals 1 − e−λTC+3 . The overall probability of mistakenly
detecting FIFO as LRU via N independent experiments is thus
(1 − e−λTC+3)N . �

We note that similar to RCSE, RCPD itself does not rely
on the Poisson assumption. In practice, we expect a similar
exponentially decaying error probability for general types of
traffic due to the repetition of experiments, which has been
verified on real traces (see Fig. 8).

Probing cost: It is easy to see that the maximum number of
probes required by RCPD is N(C + 3). Meanwhile, we show
that in the special case of no background traffic, RCPD with
N = 1 achieves the optimal probing cost.

Theorem 4: In the case of no background traffic, the num-
ber of probes required by any algorithm to distinguish FIFO
and LRU is at least C + 3.

Proof: As the cache may be initially empty, at least C
distinct probes are required to fill the cache, before which there
will be no eviction and hence no invocation of the replacement
policy. Moreover, to generate different responses (hits/misses),
the cached contents must be different under the two policies,
which requires at least one probe for a content already in the
cache to put different contents at the tail of the cache, and at
least one probe for a new content to evict the content at the
tail. Finally, to detect the difference in cached contents, at least
one more probe is needed, such that the requested content is
cached under one policy but not cached under the other policy.
Hence, the required number of probes is at least C + 3. �
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Discussion: The above idea can be extended to distinguish
multiple candidate policies. Using binary detection algorithms
like RCPD to differentiate two sets of policies via carefully
designed probing sequences, we can gradually narrow down
the candidate policies. We will also discuss another approach
to handle multiple candidate policies in Section IV-A.4.

IV. INTELLIGENT ATTACKS

Having learned the cache (i.e., flow table) size and policy,
we now demonstrate how this information can be used to
launch attacks against legitimate users of the cache.

A. Intelligent Side Channel Attack

We show that under common assumptions, the attacker
can use the information (size and policy) learned during
reconnaissance to infer parameters of the background traffic.
Unlike previous side channel attacks [17]–[19] that focus on
inferring specific rules, we aim at inferring parameters useful
for planning DoS attacks, such as the number of active flows
and the individual flow rates.

1) Model of Background Traffic: We assume that the back-
ground traffic consists of F flows, each modeled as an
independent Poisson process of rate λi, requesting content
(i.e., rule) fi (i ∈ {1, . . . , F}). Let λ :=

∑F
i=1 λi denote

the total rate. The goal of this attack is to jointly infer F and
(λi)F

i=1. In our evaluations, we further assume that the flow
sizes follow the Zipf distribution with skewness α, i.e., λi

λ =
i−α

�F
j=1 j−α , which reduces the unknown parameters to λ, F ,

and α. However, the Zipf assumption is not mandatory for
our solution. The Poisson traffic model, a.k.a. the Independent
Reference Model (IRM), has been widely used in the literature.
It is also known that the amount of traffic in different flows
follows the Zipf distribution [35].

2) Background on TTL Approximation: We will leverage a
recent advance in the caching literature, which approximately
predicts the performance of caches based on their Time-To-
Live (TTL) approximations [36], [37]. A TTL cache handles
different contents independently by associating each cached
content with a timer, and evicting the content when the timer
expires, independently of the other contents. Although cache
replacement policies may not follow TTL-based eviction,
many commonly-used policies (e.g., LRU, FIFO, RANDOM,
q-LRU, k-LRU) can be closely approximated by TTL-based
policies in terms of hit probability [37].

In particular, the following has been shown for IRM [38]:
• TTL Approximation for FIFO: A FIFO cache can be

approximated by a non-reset TTL cache with a constant time-
out τ , i.e., each content entering the cache will be evicted after
time τ , regardless of the request pattern. The hit probability
of content fi with request rate λi is given by

h FIFO
i =

λiτ

1 + λi(dI + τ)
, (8)

where τ , referred to as the characteristic time, is the solution
to the following characteristic equation:

F∑
i=1

λiτ

1 + λi(dI + τ)
= C. (9)

• TTL Approximation for LRU: An LRU cache can be
approximated by a reset TTL cache with a constant timeout τ ,
i.e., each content in the cache will be evicted after an idle time
of τ (i.e., not being requested for time τ ). The hit probability
of content fi with request rate λi is given by

h LRU
i =

eλiτ − 1
λidI + eλiτ

, (10)

where the characteristic time τ is the solution to the following
characteristic equation:

F∑
i=1

eλiτ − 1
λidI + eλiτ

= C. (11)

Remark: We note that TTL approximations have been
proved accurate for more general traffic models, e.g., renewal
processes [37] and stationary ergodic processes [36], for which
our approach also applies.

3) Attack Strategy: The idea is that by requesting a new
content (via a carefully crafted probe [6]) at a selected rate,
the attacker can measure the hit probability and compute the
characteristic time by the TTL approximation. Plugging the
computed characteristic time into the characteristic equation
will yield an equation of the unknown parameters λ, F , and α.
The attacker can repeat this procedure under different probing
rates to obtain a system of equations, from which the three
unknown parameters can be solved.

Specifically, the attacker will perform three experiments
with different probing rates λ

(1)
0 , λ

(2)
0 , and λ

(3)
0 . In the j-th

experiment (j = 1, . . . , 3), he will send probes requesting a
new content according to an independent Poisson process of
rate λ

(j)
0 , and measure the hit probability h

(j)
0 . If the policy is

FIFO, the attacker can compute the characteristic time by

τ
(j)

FIFO =
h

(j)
0 (1 + λ

(j)
0 dI)

λ
(j)
0 (1 − h

(j)
0 )

, (12)

and then plug it into (9) to obtain an equation

F∑
i=1

λiτ
(j)

FIFO
1 + λi(dI + τ

(j)

FIFO)
= C − h

(j)
0 . (13)

If the policy is LRU, the attacker can compute the charac-
teristic time by

τ
(j)

LRU =
1

λ
(j)
0

log

(
1 + h

(j)
0 λ

(j)
0 dI

1 − h
(j)
0

)
, (14)

and then plug it into (11) to obtain an equation

F∑
i=1

e
λiτ

(j)

LRU − 1

λidI + e
λiτ

(j)

LRU
= C − h

(j)
0 . (15)

Since the obtained equations only contain three unknown
variables λ, F, α (note: λi is a function of λ, F, α), the attacker
can solve the three equations for their values.

Remark: The above approach can be extended to infer
more parameters. For example, in the case of arbitrarily-valued
(λi)F

i=1 (assuming F is known), we can jointly infer all the
λi’s by solving F characteristic equations obtained from F
probing experiments (using different probing rates), and the
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idea can be further extended to jointly infer F and (λi)F
i=1

based on F + 1 probing experiments, assuming an upper
bound F on F is known. However, we note that solving
a large number of nonlinear equations will be numerically
challenging. In practice, the IRM-Zipf model should be viewed
as an approximation of the background traffic, and the above
attack strategy as a way of inferring key parameters of the
traffic (i.e., the number of active flows, the total flow rate, and
the skewness of the flow size distribution). While real traffic
may not satisfy the IRM-Zipf assumption, we have verified
on real traces that such an approximation can enable accurate
design of DoS attacks (see Fig. 16 (b)).

Moreover, to overcome the error in estimating the hit
probabilities from measurements, the probing rates λ

(1)
0 , λ

(2)
0 ,

and λ
(3)
0 need to be widely different, and multiple probing

flows can be sent concurrently, both for generating more
diverse equations. We also observe that when λiτ is large,
calculating the TTL approximation for LRU according to (10)
may trigger an overflow error when evaluating eλiτ , in which
case we can simply set h LRU

i ≈ 1. We have implemented
these ideas and verified their efficacy (see Section V-B.3).

4) Discussion on Size/Policy Inference: The TTL approxi-
mation also inspires an alternative approach to cache size and
policy inference as explained below.

For policy inference, we (the attacker) can leverage a
policy-agnostic characteristic time estimation algorithm in [30]
to estimate the characteristic time. With this information,
we can use (8, 10) to predict the hit probability for a probing
flow of a given rate under each candidate policy. We then send
the probing flow and measure its hit probability. The candidate
policy for which the prediction is closer to the measured value
is thus the inferred policy. This solution can be easily extended
to the case of multiple candidate policies by comparing the
measured hit probability to the predicted hit probability given
by the TTL approximation for each of these policies.

For size inference, we note that the idea in Section IV-A.3
can be easily extended to jointly infer C and the parameters
(λ, F, α) of the background traffic, by conducting one more
probing experiment to obtain one more characteristic equation.
Note that this approach still requires knowledge of the policy,
which can be obtained by the above method.

B. Intelligent Denial of Service (DoS) Attack

We now consider a type of DoS attack that aims at occupy-
ing the cache with contents not useful for legitimate users to
lower their hit probabilities. Blunt versions of this attack have
been studied in [6]–[9]. However, we will show that knowledge
of the cache size, policy, and load allows the attack to be
designed more intelligently to achieve measurable damage
with the minimum effort.

1) Attack Objective: We assume that before the attack,
the attacker has learned the cache size C, the policy π, and
the rates of background flows (λi)F

i=1. We also assume that
the attacker has crafted Ca distinct probes, each requiring a
new content, by the method in [6]. The value of Ca should
be large enough to occupy the cache (i.e., Ca ≥ C) and small
enough to avoid detection for brute-force attacks. We focus
on the design of attack rates (λ′

j)
Ca

j=1, such that by sending

each probe at rate λ′
j (j = 1, . . . , Ca), the attacker can lower

the legitimate users’ average hit probability to a target level h̄
using the minimum total attack rate

∑Ca

j=1 λ′
j .

2) Optimal Attack Design: We will show how to optimally
design the attack via the TTL approximation. For concrete
analysis, we assume IRM for background traffic, but our
approach can be extended to other traffic models using more
general TTL approximations [36], [37].

First, we show that under the TTL approximation, the attack
design problem can be reduced to a univariate optimization
that assigns the same rate to all the attack flows.

Theorem 5: Under FIFO, an optimal design to make the
TTL approximation of the legitimate users’ average hit proba-
bility ≤ h̄ is to set λ′

j ≡ λa (j = 1, . . . , Ca) for some constant
λa. Under LRU, the same holds if dI is sufficiently small.

Proof: Under FIFO, the TTL approximation of the legit-
imate users’ average hit probability equals

F∑
i=1

λi

λ
· λiτ

1 + λi(dI + τ)
, (16)

where the characteristic time τ is the solution to
Ca∑
j=1

λ′
jτ

1 + λ′
j(dI + τ)

+
F∑

i=1

λiτ

1 + λi(dI + τ)
= C. (17)

As λiτ
1+λi(dI+τ) is monotone increasing in τ , when bounding

the total attack rate by B, the design that minimizes (16)
should minimize τ , and hence minimize the second term on
the left-hand side of (17). Thus, the optimal design should
maximize the first term, i.e., be the optimal solution to

max
Ca∑
j=1

λ′
jτ

1 + λ′
j(dI + τ)

(18a)

s.t.
Ca∑
j=1

λ′
j ≤ B, (18b)

λ′
j ≥ 0, ∀j. (18c)

As
λ′

jτ

1+λ′
j(dI+τ) is a concave function in λ′

j , we see by

Jensen’s inequality that the optimal solution to (18) is λ′
j ≡

B/Ca =: λa. Thus, given any optimal design λ′
j = λ∗

j (j =
1, . . . , Ca) that makes (16) no more than h̄ with the minimum
total rate, the design λ′

j ≡ 1
Ca

∑Ca

i=1 λ∗
i (j = 1, . . . , Ca) also

makes (16) no more than h̄ with the same total rate, hence
equally optimal.

Under LRU, the TTL approximation of the legitimate users’
average hit probability equals

F∑
i=1

λi

λ
· eλiτ − 1
λidI + eλiτ

, (19)

where the characteristic time τ is the solution to
Ca∑
j=1

eλ′
jτ − 1

λ′
jdI + eλ′

jτ
+

F∑
i=1

eλiτ − 1
λidI + eλiτ

= C. (20)

Again, as eλiτ−1
λidI+eλiτ is monotone increasing in τ , when

bounding the total attack rate by B, the design that mini-
mizes (19) should maximize the first term on the left-hand side
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of (20). Generally, e
λ′

j τ−1

λ′
jdI+e

λ′
j

τ
is neither concave nor convex

in λ′
j . However, as dI → 0, it is reduced to 1− e−λ′

jτ , which
is concave in λ′

j . Thus, by similar arguments as in the case of
FIFO, having identical values for λ′

j’s is optimal. �
By Theorem 5, the attack design problem is reduced to

finding the minimum value of λa, such that sending Ca attack
flows, each at rate λa, can bring the legitimate users’ average
hit probability down to h̄.
• Attack rate design under FIFO: By the TTL approx-

imation (8), we know that to satisfy the upper bound on
the average hit probability, the characteristic time τ needs to
satisfy

F∑
i=1

λi

λ
· λiτ

1 + λi(dI + τ)
≤ h̄. (21)

Although this is effectively a high-order inequality of τ
that is hard to solve in closed form, we observe that the
left-hand side of (21) is monotone increasing in τ , and hence
the solution must in the form of τ ≤ τ∗, where τ∗ satisfies (21)
with equality and can be found by a binary search. Then by (9),
we have the following relationship between τ and λa:

Caλaτ

1 + λa(dI + τ)
+

F∑
i=1

λiτ

1 + λi(dI + τ)
= C. (22)

The left-hand side of (22) is monotone increasing in both
τ and λa. Therefore, the minimum value of λa is achieved at
the maximum value of τ , i.e., the optimal attack rate is

λ FIFO
a =

C −∑F
i=1

λiτ
∗

1+λi(dI+τ∗)

Caτ∗ − C(dI + τ∗) +
∑F

i=1
λiτ∗(dI+τ∗)
1+λi(dI+τ∗)

. (23)

• Attack rate design under LRU: By the TTL approxi-
mation (10), we know that to satisfy the upper bound on
the average hit probability, the characteristic time τ needs to
satisfy

F∑
i=1

λi

λ
· eλiτ − 1
λidI + eλiτ

≤ h̄. (24)

Again, solving (24) explicitly is difficult, but since its
left-hand side is monotone increasing in τ , we know that the
solution is in the form of τ ≤ τ∗, where τ∗ satisfies (24)
with equality and can be computed by a binary search. Then
by (11), we have the following relationship between τ and λa:

Ca(eλaτ − 1)
λadI + eλaτ

+
F∑

i=1

eλiτ − 1
λidI + eλiτ

= C. (25)

Since the left-hand side of (25) is monotone increasing in
both τ and4 λa, the minimum value of λa is achieved at the
maximum value of τ . Plugging τ = τ∗ into (25) yields a
transcendental equation of λa that can be solved numerically,
and the solution is the optimal attack rate λ LRU

a .

4The monotonicity in τ is easy to verify. For λa, taking the derivative of the
left-hand side of (25) wrt λa yields Ca

(λadI+eλaτ )2
(dI (λaτeλaτ − eλaτ +

1)+τeλaτ ). Since xex−ex+1 ≥ 0 for all x ≥ 0, λaτeλaτ −eλaτ +1 ≥ 0
and hence the derivative is non-negative, proving that the left-hand side of (25)
is monotone increasing in λa.

V. SIMULATIONS

We first evaluate the proposed reconnaissance and attack
strategies via both synthetic and trace-driven simulations.

A. Simulation Setting

Synthetic simulation: We generate 100 instances of back-
ground traffic according to the model in Section IV-A.1, where
the number of flows F = 5000, the skewness α = 1.3, and
the total rate λ = 0.01 (packets/ms) during the size/policy
inference, and λ = 10 (packets/ms) during the attacks. We set
F according to the number of active flows at switches in data
centers [39], and α according to the flow size distribution in a
real trace [40]. We use a lower background traffic rate during
size/policy inference as they are static parameters that can be
inferred during off-peak hours.5 We set the rate during attacks
according to the average rate of the traces [40].

Trace-driven simulation: We generate background traffic
according to the dataset UNI2 from a data center [40], which
contains 9 packet traces. To perform more tests on these traces,
we extract 5 subtraces from each trace by taking 10000 packets
from a random point in time and repeating this for 5 times for
each trace, which generates a total of 45 subtraces. The rates
of these subtraces are between 9.84 and 11.31 packets/ms.

Common parameters: In both types of simulations, we set
the cache size C = 1000 (rules) according to flow table sizes
of commodity switches [5]. We generate probes according to
an independent Poisson process of rate λa to be specified
later, noting that only the relative probing rate λa/λ matters.
We set the average new rule installation time to dI = 20 (ms)
according to measurements on commodity switches [24], [41].
In addition, we use the following default parameters for the
proposed algorithms: c0 = 2 and n = 1 for size inference,
N = 10 for policy inference, and Ca = C for DoS attack.

B. Results on Reconnaissance

1) Size Inference: We evaluate RCSE (Algorithm 1) in
comparison with the size inference algorithms in [16] by
the relative error of the estimated cache size: |Ĉ − C|/C.
Note that RCSE is applicable without knowing whether the
policy is FIFO or LRU (‘policy-agnostic’), while [16] used
two different algorithms for FIFO and LRU, and thus must
know the policy (‘policy-aware’). We also note that [16]
originally set the stopping condition to be upon the eviction
of an attacker’s rule, but since the attacker will not know
whether the evicted rule belongs to him without probing it,
we replace this condition by the occurrence of an eviction,
which can be inferred from the RTTs of probes as shown
in [16]. As size inference occurs during off-peak hours, we set
λ = 0.01 for background traffic and λa = 1 for probes
(both in packet/ms) in synthetic simulations. In trace-driven
simulations, we simulate the off-peak scenario by setting the
relative probing rate to 100.

5When the off-peak hours are unknown, the attacker can simply repeat
RCSE and RCPD at evenly-spaced times of a day and aggregate the results
to achieve accurate inference: RCSE can only underestimate the size, and
therefore the maximum estimated size will be closer to the true size; RCPD
will always detect LRU correctly, and therefore the true policy must be FIFO
if at least one output of RCPD is ‘FIFO’.
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Fig. 3. Policy-agnostic size inference: vary #repetitions n (synthetic).

Fig. 4. Policy-agnostic size inference: vary #repetitions n (trace).

Fig. 5. Policy-agnostic size inference: vary probing rate (synthetic).

Fig. 3–4 show the results for varying the design parameter
n in RCSE, and Fig. 5–6 show the results for varying the
relative probing rate under n = 1. The algorithm pro-
posed in [16] for FIFO (‘policy-aware: FIFO’) incurs about
500% of relative error for the traces and is hence omitted
in Fig. 4–6 (a) for better visibility of the other curves. We see
that: (i) although being policy-agnostic, RCSE closely matches
or beats the accuracy of the existing size inference algorithms;
(ii) increasing the number of repetitions n and increasing
the probing rate can both improve the accuracy of RCSE;
(iii) the performance of RCSE on the traces closely matches
that on the Poisson traffic, which justifies the value of our
performance analysis under the Poisson assumption, even
though the traces exhibit non-Poisson properties (e.g., on-off
patterns) [39]; (iv) compared to the existing algorithms in [16],
RCSE has a comparable or significantly lower probing cost,
which justifies its applicability in practice. For example,
at n = 1 and a relative probing rate of 100, RCSE can achieve
a relative error of 0.2% at a cost of about 4000 probes,
i.e., probing at 1 packet/ms for 4 seconds.

We notice that the size inference algorithm proposed in [16]
for FIFO (‘policy-aware: FIFO’) has a slightly increasing error
in Fig. 5 (a) as the probing rate increases. This is because it
suffers from not only underestimation error due to background
traffic, but also overestimation error due to the delay dI in
installing new rules. Increasing the probing rate will reduce
the underestimation error but increase the overestimation error.
Under LRU (‘policy-aware: LRU’), the underestimation error
dominates and hence the overall error decreases with the
probing rate; under FIFO (‘policy-aware: FIFO’), the overes-
timation error dominates and hence the overall error increases
with the probing rate.

Fig. 6. Policy-agnostic size inference: vary probing rate (trace).

Fig. 7. Size-aware policy inference: vary #experiments N (synthetic).

Fig. 8. Size-aware policy inference: vary #experiments N (trace).

Fig. 9. Size-aware policy inference: vary probing rate (synthetic).

2) Policy Inference: We then evaluate the accuracy of
RCPD (Algorithm 2) in terms of error probabilities and
probing costs under different ground-truth policies (‘FIFO’
and ‘LRU’); see Fig. 7–10. Again, we assume the off-peak
scenario as in the evaluation of RCSE.

Compared to RCSE, RCPD requires a much higher probing
rate. Intuitively, the probing rate should be C times higher
than the background traffic rate, so that RCPD can finish one
experiment of “flush-promote-evict-test” without being inter-
fered. As C = 1000, the relative probing rate needs to be 1000.
Under such a probing rate, Fig. 7–8 show that while a single
experiment still has substantial error, repeating the experiment
multiple times can reduce the error effectively. Fig. 9–10 show
that increasing the probing rate is another effective way of
reducing the error. Note that LRU is always inferred correctly
as predicted in Theorem 3. In contrast, inferring FIFO may
cost fewer probes due to the early termination in RCPD (no
early termination when inferring LRU, hence the deterministic
probing cost under LRU). Despite requiring a high relative
probing rate, RCPD is still feasible in practice as it only
requires a short burst of probes, e.g., for λ = 0.01 packets/ms,
RCPD only needs to probe at 10 packets/ms for one second
(i.e., sending 10000 probes) to infer the policy with more than
95% accuracy.
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Fig. 10. Size-aware policy inference: vary probing rate (trace).

Due to the requirement of a high relative probing rate,
RCPD is not suitable when the background traffic rate is high.
Nevertheless, we will show that in this case, the approach
based on TTL approximation as described in Section IV-A.4
can provide accurate policy inference at a low probing rate.
We now evaluate this approach under a higher level of back-
ground traffic: λ = 10 packets/ms for synthetic traffic (recall
that the trace rates are between 9.84 and 11.31 packets/ms).

To this end, we evaluate, in Table I, the hit ratio measured by
the attacker (‘measured’), together with the hit ratios predicted
by the attacker based on the characteristic time estimated by
the algorithm Characteristic Time Estimation (CTE) in [30] for
each of the candidate policies (‘predicted-FIFO/LRU’). The
measured hit ratio is computed over 10 seconds for synthetic
simulations and the duration of each trace (≈ 1000 seconds)
for trace-driven simulations. In this experiment, we use the full
traces (totally 9 of them) instead of the extracted subtraces,
as CTE requires the cache to be refreshed during the experi-
ment. We see that the measured hit ratio is much closer to the
hit ratio predicted based on the true policy than to the hit ratio
predicted based on the wrong policy, and hence can be used to
identify the policy. In this experiment, we have set the probing
rate to maximize the gap between the predicted hit ratios of
the candidate policies, which is 0.0026–0.0028 packets/ms for
synthetic traffic, and 0.0004–0.0005 packets/ms for the traces.
Thus, to achieve accurate policy inference using this approach,
the attacker only needs to probe at a very low rate.

3) Traffic Parameter Inference: We now evaluate the
strategy in Section IV-A.3 for inferring parameters
of the background traffic during normal hours, where
λ = 10 packets/ms for synthetic traffic and λ ∈ (9.84, 11.31)
packets/ms for the traces. For each realization of background
traffic (synthetic or trace), we perform 4 probing experiments,
where in the j-th experiment, lasting around 1000 seconds,
we send multiple probing flows of rate λ

(j)
0 each. Note that the

fourth experiment is needed for inferring the cache size C (see
Section IV-A.4). For synthetic traffic, we set the probing rates
(λ(1)

0 , λ
(2)
0 , λ

(3)
0 , λ

(4)
0 ) to (0.0004, 0.0009, 0.0052, 0.0100)

under FIFO and (0.00014, 0.0028, 0.0049, 0.0094) under
LRU (unit: packets/ms); for the traces, we set the probing
rates for each trace to achieve similar hit ratios as in the
synthetic simulations, yielding rates of 0.00005–0.0014
packets/ms under FIFO and 0.00005–0.0012 packets/ms
under LRU. We then repeat the experiments under different
numbers of probing flows. In this experiment, we also use
the full traces instead of the extracted subtraces, as using the
approach in Section IV-A.4 to infer the cache size C requires
the total number of probing and background flows to be more
than C (while each subtrace only has a few hundred flows).

TABLE I

MEASURED AND PREDICTED HIT RATIOS

We evaluate the accuracy in inferring each traffic para-
meter as the number of probing flows increases, as shown
in Fig. 11–14 (a–c) (the error bar is missing for a bar when
there is no variation), where ‘true policy’ means solving the
characteristic time equations for the true underlying policy,
and ‘wrong policy’ means solving the equations for the
wrong policy. We see that: (i) the proposed strategy can
infer parameters of the background traffic to reasonably good
accuracy, i.e., within 10% of error for both synthetic traffic and
the traces, (ii) the accuracy of the parameters inferred under
the true policy significantly improves with the increase of the
number of probing flows, and (iii) when sending sufficiently
many probing flows, the error under the wrong policy is much
higher than the error under the true policy, demonstrating the
value of accurate policy inference. We note that although the
aggregate probing rate to achieve good accuracy can be high
in some experiments for synthetic traffic, the rate of a single
probing flow is rather low, which allows the probing to be
performed from distributed (compromised) hosts in a stealthy
manner. We also observe that to achieve similar accuracy,
the traces need a much lower probing rate than synthetic
traffic.6

We further evaluate the accuracy of inferring the cache
size C using the approach of joint parameter inference,
as described in Section IV-A.4. The results, shown
in Fig. 11–14 (d), show that this approach can also infer C
accurately, to within 10% of error for synthetic traffic and
2% of error for the traces. In comparison, RCSE has at least
50% error under the same total probing rate, due to the high
background traffic rate. Again, knowing the true policy allows
a much smaller error.

C. Results on DoS Attack

1) Effectiveness of Rate Allocation: We first verify the
statement of Theorem 5 by comparing the equal-rate attack
(‘FIFO/LRU: equal’), where all the attack flows have
the same rate, with an intuitive unequal-rate attack, where the
attack flow rates follow the same Zipf distribution as the
background flows (‘FIFO/LRU: Zipf’). The result, shown
in Fig. 15, confirms that the equal-rate attack is more effective,
i.e., achieving a lower hit ratio for the legitimate users with the
same total attack rate. We have obtained the same conclusion
under other unequal-rate attacks. Note that there is a slight
increase in the curve for ‘FIFO: equal’ based on the traces.

6Technically, it is because we choose the probing rates to achieve similar hit
ratios as in the synthetic simulations, and the on-off pattern in the traces [39]
allows the probing flows to achieve a higher hit ratio during off periods.
However, an explanation of why this leads to a satisfactory inference accuracy
requires the analysis of TTL approximation for on-off traffic, which is beyond
the scope of the current work.
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Fig. 11. Joint parameter inference under FIFO based on synthetic traffic.

Fig. 12. Joint parameter inference under LRU based on synthetic traffic.

Fig. 13. Joint parameter inference under FIFO based on trace.

Fig. 14. Joint parameter inference under LRU based on trace.

We have verified that this is due to the new rule installation
delay.

2) Accuracy of Rate Design: We now verify the accuracy
of the designed attack rate. To this end, we gradually increase
the rate of each attack flow (totally Ca = C attack flows).
Fig. 16 shows a comparison of: the actual hit ratio for legiti-
mate users from simulations (‘FIFO/LRU actual’), the ideal
prediction given by the TTL approximation based on the
true parameters (‘FIFO/LRU predicted (ideal)’), and the actual
prediction obtained by the attacker, given by the TTL approx-
imation based on the estimated parameters from previous
experiments (‘FIFO/LRU predicted (estimated)’). We see that
(i) ‘predicted (ideal)’ closely follows the actual value, and (ii)
‘predicted (estimated)’ also closely follows the actual value,
implying that our designed attack rate will be near-optimal,
i.e., close to the minimum rate for achieving the targeted hit
ratio.

Moreover, we can observe the following from these results:
Observation 1. Knowing the policy is crucial for accu-

rate attack design. As illustrated in Fig. 16, for synthetic
traffic, the minimum attack rate to achieve h̄ = 0.67 is
λ LRU

a = 0.36 under LRU but λ FIFO
a = 1 under

FIFO; for the trace, the minimum attack rate to achieve

Fig. 15. DoS attack: effectiveness of equal attack rate allocation.

h̄ = 0.70 is λ LRU
a = 0.33 under LRU but λ FIFO

a = 1 under
FIFO. This result demonstrates the need of knowing the policy
in planning intelligent DoS attacks.

Observation 2. Contrary to the common belief that LRU
is a better replacement policy than FIFO, FIFO is actually
better than LRU in terms of resilience to DoS attacks. Fig. 16
shows that as the attack rate increases, the hit ratio for
legitimate users under LRU decays quickly while this value
under FIFO stays stable. This is because by design, LRU
favors larger flows and hence will favor the attack flows as they
become large; in contrast, FIFO treats all the flows equally,
and is hence more resilient to large attack flows (in fact,
the performance of FIFO is provably equivalent to that of the
RANDOM policy that randomly selects the rules to evict [37]).
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Fig. 16. DoS attack: predicted and actual hit ratios for background traffic.

To better illustrate this point, we add to Fig. 16 the hit ratio
for Least Frequently Used (LFU), which deterministically
stores the rules for the largest C flows. Despite being the
optimal policy when there is no attack, LFU is even more
vulnerable to DoS attacks, as it only serves the largest C
flows, which may all be attack flows when the attack rate is
sufficiently high. As many replacement policies are designed
to approximate LFU [37], this indicates a need to redesign
replacement policies for better attack resilience.

VI. EXPERIMENTS

We repeat our key experiments in a virtual SDN created
in Mininet [42], running OpenFlow 1.5, Open vSwitch 2.14.0,
and Ryu controller. The virtual SDN runs in a virtual machine
with 3.00GHz Intel Xeon Gold 6136 CPU and 64GB memory.
In these experiments, we use large timeout values to rule
out the effect of timeouts in order to focus on the effect of
replacement policies.7

The network topology is shown in Fig. 17, where h1 is
the only malicious host. Every link bandwidth is 10 Gbps.
Different flows are created by varying the source/destination
port numbers. Attack traffic consists of TCP packets sent
from h1 to h2, while background traffic consists of TCP/UDP
packets sent from h3 to h2 according to the traces introduced
in Section V-A. The packets in the trace that trigger responses
(e.g., TCP, ICMP) will be represented by TCP packets; the
packets in the trace that do not trigger responses will be
represented by UDP packets. The use of TCP packets as
attack traffic allows h1 to measure RTTs and infer whether
the packets incur hits/misses in the flow table of the switch.
However, this means that every attack flow will result in two
flow rules being installed, one for itself and the other for
the response flow, which is the primary difference between
our experiments and simulations. To make the results in
experiments and simulations comparable, we reduce the rel-
ative probing rate λa/λ in the experiments by half. Another
difference is in packet rate: as the controlled experiment is
slower in sending packets than production networks,8 we slow
down the packet sending rate by 10 times. This change does
not affect our results as it is applied to both attack traffic and
background traffic. The average rule installation delay in all
Mininet experiments is around 0.9 ms.

7Under LRU, we use an idle timeout of 65535s and no hard timeout; under
FIFO, we use a hard timeout of 65535s and no idle timeout.

8This is because we adopt Tcpreplay [43] to send packets in our experiments
and the max rate is around 1000 packets/ms when the link bandwidth is
10 Gbps. Considering that the max ratio of λa / λ = 500 during policy
inference, we slow down the entire traffic by 10 times. In this way, the back-
ground traffic rate is changed from around 10 packets/ms to 1 packet/ms, and
the maximum attack traffic rate is around 500 packets/ms.

Fig. 17. Topology of the virtual SDN used in the experiments.

TABLE II

EXPERIMENT RESULTS OF SIZE INFERENCE

TABLE III

EXPERIMENT RESULTS OF POLICY INFERENCE

Table II shows the experiment results for size inference
with λa/λ = 50 and n = 10, which corresponds to the
last data points in Fig. 4. Table III shows the experiment
results for policy inference with λa/λ = 500 and N = 10,
which corresponds to the last data points in Fig. 8. Both
experiments are repeated for 90 Monte Carlo runs (two runs
of attack traffic generation for each of the 45 subtraces). The
experiment results closely match the simulation results, except
that the required number of probes is reduced by half due
to the use of TCP packets as probes that each requires two
flow rules. We note that the experiments yield slightly lower
accuracy than the simulations. This is because the background
traffic also contains some TCP packets, which causes the
same background traffic to result in the installation of more
flow rules in the experiments than in the simulations, hence
reducing the effective relative probing rate (recall that the
probing rate is already reduced by half to offset the effect
of TCP probes).

We then test the traffic parameter inference as
in Fig. 13–14 (a–c) and the impact of DoS attack as
in Fig. 16 (b) in a single experiment, where the parameters
(λ, F , α) of the background traffic are inferred from the
first β fraction of a trace, and then used to predict the hit
ratio under various DoS attacks for the rest of the trace; we
set β = 0.8, but similar results are observed under other
comparable β values.

To repeat the experiments on traffic parameter inference
in Fig. 13–14 (a–c), we tune the probing rates based on the
partial traces, resulting in probing rates of 0.00007–0.0016
packets/ms under FIFO and 0.00006–0.0015 packets/ms under
LRU. The resulting inference errors are shown in Fig. 18–19,
which closely match the results from simulations.

To repeat the DoS experiments in Fig. 16 (b), we set
Ca = 0.5C due to the use of TCP packets as attack traffic.
The results under varying attack rate are shown in Fig. 20,
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Fig. 18. Joint parameter inference under FIFO in Mininet.

Fig. 19. Joint parameter inference under LRU in Mininet.

Fig. 20. DoS attack: predicted and actual hit ratios for background traffic in
Mininet experiments.

which shows that the hit ratio predicted based on the traffic
parameters estimated from the first part of the trace (’pre-
dicted (estimated)’) closely approximates the actual hit ratio
measured from the second part of the trace (‘actual’). This
validates that the inferred parameters about background traffic
can be used to design effective DoS attacks (e.g., achieving
a targeted hit ratio using the minimum attack rate), despite
the natural dynamics in the background traffic. Meanwhile,
the experiment results still support our previous observations.
For example, we see that knowledge of the policy is crucial for
accurate attack design, e.g., the minimum attack rate to achieve
h̄ = 0.70 is λ LRU

a = 0.38 under LRU but λ FIFO
a = 1 under

FIFO, which is similar to our observations from simulations.

VII. CONCLUSION

Observing that many studies of flow table security are
based on simplistic attack models, we developed a model of
intelligent attackers that exploit the cache-like behaviors of
the flow table to perform sophisticated reconnaissance and
attacks. By developing explicit inference algorithms and attack
strategies, we showed that an intelligent attacker can use
simple primitives to accurately infer the internal parameters of
the flow table (size, policy, and load characteristics), based on
which he can plan attacks more efficiently. In demonstrating
the capabilities of such attackers, we also identified the need
of new designs and defenses, the detailed investigation of
which is left to future work. Besides SDN, our results are
also applicable to inference and attacks in general cache-based
systems.
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