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Program comprehension is a fundamental prerequisite for software maintenance and evolution. In
order to understand a software structure, developers often read its codebase or documentation—
if available and not outdated. Both approaches are tedious, time-consuming, and inefficient. Recent
methods and tools have emerged to facilitate program comprehension, such as static call graphs,
which depict the structure of the software system as a directed graph. However, the usage of call
graphs still faces two main challenges: (1) large call graphs can be difficult to understand, and (2)
they are limited to a single level of granularity, such as function calls. In this paper, we introduce a
coarsening technique to create multi-level, hierarchical representations of the call graph. Specifically,
we propose a hierarchical clustering approach of the execution paths to visualize the call graph at
different granularity levels and for different software units, including packages, classes, and functions.
Our overarching goal is to assist software developers in understanding the software system from a
high-level of abstraction to the low-level of implementation with the ability to focus on particular
parts of the system individually. To validate our approach and tool support, we conducted a user study
of 18 software engineers from more than 11 industries who carried out several tasks using our system
and then answered a survey. The results demonstrate that our approach is feasible to automatically
construct multi-level abstractions of the call graph and hierarchically cluster them into meaningful

abstractions. A video demo of the tool is available at https://rakanalanazi.github.io/CodEx/.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction developers use analysis tools to understand and gain more knowl-
edge about the system’s implementation. One of the techniques
used by software developers to understand the functionality and
structure of a system is call graphs. A call graph depicts the
system and its structure in terms of function calls or operational
invocations (Naeimian, 2019; Hoogendorp, 2010; Gharibi et al,,
2018b). Call graphs (Ryder, 1979; Murphy et al., 1998) aim to
facilitate software comprehension and operational analysis tasks
and could simplify software-related activities, such as debugging
and maintenance (Tunali and Tiiysiiz, 2020).

Program comprehension is an imperative prerequisite for soft-
ware reuse, debugging, testing, maintenance, and evolution (Cor-
nelissen et al., 2009). In order to facilitate the task of under-
standing the software and its implementation, developers often
read the system’s documentation, i.e., a high-level description of
the software system, and then manually map their understanding
of the system to its low-level implementation. However, soft-
ware documentation is often outdated, i.e., it does not match
the current software implementation (Mkaouer et al., 2016). As

a software system evolves and increases in size and complexity,
understanding its implementation and structure becomes an even
more challenging and time-consuming task. Manually mapping
the high-level functionality to its low-level implementation is
expensive, time-consuming, and error-prone. Therefore, software
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A software call graph is a directed graph in which each node
represents a software unit, e.g., package, class, function, and each
edge represents a direct relationship, such as a function call.
Using call graphs, a software developer can learn the structure
and inner connections of the software system by examining an
organized call graph rather than reading the implementation line-
by-line. For example, Fig. 1 illustrates the call graph for one
of the systems we studied in this paper. The call graph was
automatically constructed and visualized using our tool, named
CodEx.
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Fig. 1. An instance of a call graph example using CodEx. In this example, a node
is selected, and correspondingly all of its neighbors are highlighted. Its metadata
is also visualized in the side panel.

As a software system evolves over time and its complex-
ity increases, using call graphs for system comprehension be-
comes more challenging. Specifically, the usage of call graphs for
program comprehension still faces two main challenges:

e As the software system evolves over time, its call graph
exponentially grows in size and connections. This leads to
making call graphs much harder to visualize and interpret
by a developer and thus increases the overhead in program
comprehension.

e Execution paths can quickly grow in-depth and numbers
and subsequently their encoding size, which introduces ef-
ficiency and scalability challenges during the analysis tasks,
e.g., path clustering.

In order to overcome the challenges of understanding large
call graphs, we present a data-driven approach, equipped with an
automated tool to facilitate visualizing and understanding large
call graphs of software systems. Our approach aims at creating
multi-level hierarchical abstractions of the call graph with differ-
ent levels of granularity for different system views (e.g., functions,
classes, and packages). Our overarching goal is to facilitate the
task of program comprehension.

In particular, to address the aforementioned challenges, we
adapt and extend two main techniques for visualizing call graphs:
multi-level graph abstraction and hierarchical clustering. The
multi-level graph abstraction presents the most abstract repre-
sentation of the system first (i.e., package call graph), then class
call graphs, and finally reaching function call graphs. It utilizes a
coarsening approach that hierarchically aggregates the functions
and classes based on their dependencies to ultimately generate
the package call graph (a directional call graph of the system'’s
packages). Using the generated package call graph, the user
can explore the system from a high-level of abstraction to the
implementation level for simplified system comprehension. The
hierarchical clustering approach aims to reduce the size of the
execution paths and their complexity so that we can efficiently
extract meaningful and useful information that aids program
comprehension.

In the literature (Hamou-Lhadj et al., 2005; Cornelissen et al.,
2007, 2009; Chan et al., 2003; Reiss and Renieris, 2001; Feng
et al,, 2018), various techniques have been proposed to sum-
marize and reduce the size of the execution paths, including
sampling (Chan et al., 2003), filtering (Hamou-Lhadj et al., 2005),
and compression (Reiss and Renieris, 2001). These approaches are
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promising but are mainly limited to a single level of granularity
and might result in information loss or omitting important execu-
tion paths. Recent abstract techniques, such as Feng et al. (2018),
Gharibi et al. (2018b,a) introduced multiple levels of granularity
for execution traces. However, these approaches lack hierarchical
visualization of the abstraction levels and the linkage between
different levels of abstractions. Moreover, these approaches are
limited to call graphs representing function calls while ignoring
other system units, such as packages and class hierarchies. Al-
ternatively, our approach addresses this challenge by visualizing
the call graphs at different levels of abstractions, enabling hier-
archical analysis and navigation mechanisms, which in return,
facilitate exploring and investigating the execution paths of a
system.
The main contributions of this paper include:

e A coarsening technique to construct multi-level static call
graph representations.

e A mechanism to link the hierarchical abstraction clusters to
their corresponding call graphs.

e A refinement technique to project a coarse graph to finer-
level graph.

e An interactive, visualization tool that enables a top-down
and bottom-up analysis of the system and its execution
paths for an enhanced program comprehension experience.

e A user study to evaluate the usability and usefulness of our
tool.

In a previous work (Gharibi et al., 2018b), we focused on
constructing and visualizing static call graphs in a single level of
granularity. The current work, however, supports the automatic
construction of the call graph in multi-levels of granularity. In
addition, the current system design makes it much easier to
be extended to other programming languages. A basic approach
for clustering the execution traces was also introduced in our
previous work (Gharibi et al., 2018a). We extended the approach
by automatically mapping clustered paths to the system’s call
graph and providing new features that allow the user to navigate
between different abstraction levels of the clustered graph to aid
the comprehension process from a high level of abstraction to
the low-level implementation. An interactive visualization tool
is also developed to support the comprehension process at all
abstraction levels.

The rest of this paper is organized as follows: Section 2
presents a brief background on the topic of call graphs. Section 3
presents our approach. Section 4 highlights the visualization
features of our visualization tool. Section 5 explains in detail
the usage of CodEx and its benefits using two case studies. We
evaluate our work in Section 6 using a user study. Section 7 briefly
discusses the related work. Finally, Section 8 concludes the paper
and summarizes our future work.

2. Background

In this section, we present a brief background on the topic of
call graphs and define some of the terms repeatedly used in the
rest of this paper.

Call Graphs have been widely used to facilitate understanding
the structure, evolution, and execution flow of software sys-
tems (Grove et al,, 1997; Ryder, 1979; Bogar et al., 2018; Walunj
et al.,, 2019). A call graph can be dynamic (Graham et al., 1982),
constructed at runtime, or static (Murphy et al.,, 1998), con-
structed at compile time. A dynamic call graph represents a
single execution path of the system. In contrast, a static call
graph represents all possible execution paths of the system. Our
research focuses on static call graphs, and hereafter we use the
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Fig. 2. Approach overview.

term “call graph” to refer to “static call graph” for simplicity
unless otherwise distinguished.

In a software system, a static call graph (Murphy et al., 1998)
is defined as a directed graph G = (V, E) where V is the set
of v entities, and E is the set of edges where each edge, ¢ €
E, represents an entity call (Ucgier, Vcaliee). IN-degree of node v,
denoted by deg™(v), is the total number of edges incoming to
node v. The out-degree of a node v, denoted by deg™(v), is the
total number of edges outgoing from node v.

In this paper, we suggest three different levels of call graphs:
Function Call Graph (FCG), Class Call Graph (CCG), and Package
Call Graph (PCG). Each graph represents a different view of the
system. They are described as the following:

e Function Call Graph: Represents the low level of the system
by capturing the function calls. It can be constructed from
the caller-callee relationships. For example, if function v
calls function u, they are represented in a function call graph
as two nodes with a directed edge from v to u.

e Class Call Graph: This graph captures communication be-
tween classes, and it represents a coarse-grained function
call graph. For example, given a function in class A that calls
a function in class B, then the class call graph will contain
node A and node B with a directed edge from A to B.

e Package Call Graph: It represents a coarse-grained class
call graph. Classes belonging to the same package will be
represented with a single node with the package name, and
parallel edges will be removed.

3. Approach

For a large system, the developer tends to explore the system
in a top-down manner (Burkhardt et al., 2002; Maalej et al., 2014).
In particular, the developer first analyzes packages and selects a
goal package for further investigation. Then, he/she investigates
deeper into class levels and then function levels. Our approach
follows the same top-down manner for exploring the execution
paths. If the size of the function call graph is small and easy
to understand, the developer can apply our clustering approach
directly to the function call graph. For a more complicated sys-
tem, the developer can use our coarsening technique to abstract
the function call graph. This technique produces multi-level call
graphs, including Package Call Graph and Class Call Graph. After
the coarsening, the user can decide the abstraction level and
apply clustering at any level according to their needs, and then

these clusters can be projected to lower levels. Thus, enhancing
the user’s understanding of the functionality and organization
of the overall system. Before explaining our approach in more
detail, we first discuss our unified representation in the following
subsection. Fig. 2 illustrates an overview of our approach.

3.1. Unified representation of caller—callee

The first step towards constructing a call graph is extracting
the code structure and the entity relationships, i.e., calls. Call
dependencies between entities can be obtained using existing
static analysis tools such as PyCG (Salis et al., 2020) for Python
or java-callgraph (Gousios, 2019) for Java. We extend the Java
tool to output the caller-callee list in a unified representation.
Thus, each edge in the caller-callee list is represented using the
following format:

Flavor:Namespace:Identifier (Parameters)

Flavor represents the entity type, such as method, function, or
object. Namespace is the fully-qualified name of the entity, which
consists of the package name followed by the class name. It is
used to define the scope of the identifier. Identifier represents
the name of the entity. Parameters are the function arguments.

3.2. Graph construction

This phase consists of two main steps: (1) parsing the edges
list to construct a function call graph, then (2) simplifying the
function call graph to different levels of abstraction using the
coarsening technique.

3.2.1. Graph schema

While parsing the caller-callee list, we also extract nodes’
properties and their relationships using a key-value data struc-
ture. To avoid the entity name conflict problem, we maintain the
fully qualified name of each entity, which consists of the names-
pace followed by its name and parameters. This is important for
the following steps since modules, classes, and functions may
have identical names across different namespaces and packages.
Each entity has the following attributes:



R. Alanazi, G. Gharibi and Y. Lee

M:P1.C1:F1 M:P1.C1:F2
M:P1.C1:F4 M:P1.C1:F2
M:P1.C2:F2 M:P2.C3:F7
M:P2.C3:F7 M:12.C1:F1
M:P1.C2:F2 M:P2.C3:F3
M:P1.C2:F8 M:P2.C3:F7
M:P2.C4:F6 M:P2.C4:F5
M:P2.C4:F5 M:P2.C4:F6
M:P2.C4:F5 M:P2.C3:F3
(a) Caller Callee List (b) Function Call Graph
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g e

(c) Class Call graph (d) Package Call graph

Fig. 3. A toy example showing the coarsening technique. Reducing the number of nodes and edges by merging them based on their namespace. The node’s color
represents the namespace to which the node belongs. For example, functions f1 and f4 in (b) both belong to the same class, i.e., c1, and therefore they are merged

into a single class node in (c).

{

"idX": Ili|l

"id": "fully qualified name of the entity"
'namespace" : 'PackageName.ClassName",
'"label" : "entity name",

"flavor" : "function/object/class/package"
"successors" : []

"predecessors" : []

}

More attributes will be added to the node after constructing
the call graph, identifying the articulation nodes in the graph
(Hopcroft and Tarjan, 1973). An articulation node is a node that
disconnects the graph if removed.

3.2.2. Graph coarsening

Coarsening is a popular type of graph reduction, which can
be defined as an aggregation process of graph nodes to identify
nodes of the next coarser graph (Chevalier and Safro, 2009). An
advantage of a multi-level coarsening technique is to facilitate
graph data analysis by merging nodes and edges using specific
criteria. In this paper, we define our own criteria to simplify the
function call graph into multi-level graphs (Package and Class call
graphs). Fig. 3 illustrates the coarsening technique. For example,
to construct the class call graph, our graph coarsening technique
takes the function call graph as an input and then collapses nodes
that have the same namespace into a single node. Similarly, we
construct the package call graph by merging class nodes with the
same namespace, from the class call graph, into a single package
node.

3.3. Execution paths extraction

In this step, we need to extract all possible execution paths
from each source node s to all target nodes t. Each source node
represents an entry point, and each target node represents an
exit point in a system. Based on the number of in-degrees and
out-degrees of a node, we can identify the type of the node: A
node with deg~(u) = 0 is called an entry point, and a node with
deg*(u) = 0 is called an exit point.

A simple execution path of a graph is a path that does not
include any cycles. We use all_simple_paths function built-in Net-
workX library (Hagberg et al., 2008) to extract all simple exe-
cution paths. This function uses a depth-first search to generate
the paths in the graph between the given entry and exit points.
However, before that, we extended the function to first break the
back edges in the graph to remove the cycles and create more
entry points and exit points. Our criteria for breaking cycles rely
on the order of back edge discovery. For example, in Fig. 3.a, the
edge (F6, F5) comes before the edge (F5, F6). Thus, the back edge,

Fig. 4. Breaking graph cycles by removing back edges.

Table 1

An example of execution paths (P:path, f:function).
Py fi f f3
P, fi fa f7
Ps fa f f3
Py fa f fr
Ps fs fs f3
Ps fs f7 -

in this case, is (F5, F6). And it is removed when extracting all
simple execution paths.

A simple execution path is a list of edges connecting a list of
vertices vq, vo, v3, ..., v, With the restrictions that all edges have
the same direction. In addition, none of the edges or vertices can
be repeated. This process results in a list of size P, where P is
the total number of paths. Each path has a list of functions Pi =
[f1,f2,...,fn]. All paths are exported to a CSV file where each
row represents a path. Table 1 shows an example of generated
simple paths from the function call graph in Fig. 4.

3.4. Feature matrix

Before clustering the execution paths using machine learning
techniques, we first preprocess our data and put it in a consum-
able format. Then, a feature matrix of size N xM is generated,
where N is the total number of entities, and M is the total number
of features. We encode the paths in a one-hot encoding manner.
Table 2 illustrates the entities (i.e., the execution paths). Each
entity in the feature matrix has a feature vector, f; = [f1, f2, . ., fal-
These features represent the presence or absence of a function in
a given path. Table 2 shows an example of feature matrix, which
contains 6 entities (P1-Pg) and eight binary features (fi-fg). We
notice that f; is present in entities P; and P,, while absent in the
rest of entities (P3-Pg).

3.5. Hierarchical clustering
Hierarchical clustering is a distance-based algorithm that uses

a similarity function to measure the distance between two clus-
ters, i.e.,, how close they are. It allows the developer to explore



R. Alanazi, G. Gharibi and Y. Lee

Table 2
An example of feature matrix (P:path, f:function).

Entity/Feature f f f3 fa fs fe fr fa

Py 1 1 1 0 0 0 0 0
P, 1 1 0 0 0 0 1 0
P3 0 1 1 1 0 0 0 0
Py 0 1 0 1 0 0 1 0
Ps 0 0 1 0 1 1 0 0
Ps 0 0 0 0 0 0 1 1

the data in different levels of granularity. There are two hi-
erarchical clustering approaches, Divisive clustering (top-down)
and agglomerative clustering (bottom-up). Our approach uses ag-
glomerative hierarchical clustering (AHC) to cluster the execution
paths into hierarchical abstractions.

As shown in Algorithm 1, each path is a singleton cluster, and
then the two most similar clusters are joined at each step until
it forms a single large cluster, which contains all the paths. There
are several advantages of using AHC for our approach. AHC pro-
cess is more similar to the reverse engineering approach, where
the architecture of a software system is recovered in a bottom-
up fashion (Wiggerts, 1997). Moreover, AHC provides different
levels of abstraction and can be useful for developers to select
the desired number of clusters when the results are valid and
meaningful.

Algorithm 1 Agglomerative Clustering Algorithm

1: procedure CLUSTERING( SimMatrix, linkage )
2 cluster < {}

3 for each p in paths do

4: cluster < cluster Up

5 while cluster # 1 do

6 Join the two closest clusters

7 Update the distance matrix

Hierarchical clustering does not require specifying the number
of clusters. However, performing this clustering requires two
things: (1) similarity measures of execution paths and (2) a link-
age type. Several researchers conducted experiments on a set
of systems to compare various similarity measures, and linkage
types (Magbool and Babri, 2007; Davey and Burd, 2000; Anquetil
and Lethbridge, 1999). They concluded that Jaccard similarity
produces more reliable measurements as well as the complete
linkage algorithm. Thus, we present our results using the Jaccard
Similarity as a similarity measure and the complete link as the
linkage type.

3.5.1. Similarity measures

To measure the similarity between a pair of entities, we used
Jaccard similarity (Magbool and Babri, 2004), which measures the
dissimilarity between two sets. It is widely used in clustering
problems, such as text clustering. It can be calculated by comput-
ing the size of the intersections divided by the size of the union
of two sets and then subtracting the result from one, as shown in
the following Equation.

_IPNP
[P; U By

d(p;, P) =1

3.5.2. The linkage type

Hierarchical Agglomerative clustering comes with different
variants to measure the distance between two clusters, known
as linkages. There are three main types of linkages used in many
software architecture recovery techniques (Magbool and Babri,
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Table 3
An example of a clusters table (C: cluster, P: path).
G Py
G P,
Cs Ps
Cy Py
G Ps
GCe P
G Py P,
Cs P3 Py
GCo Py P, Py Py
Cio Py P, P Py Ps
Ci Py P, P Py Ps P

2004, 2007). The types include Single Linkage (SL), Complete
Linkage (CL), and Average Linkage (AL). We use the complete
linkage method in our work to measure the distance between
two clusters, which is identified by taking the farthest point i in
cluster C; from the most distant point j in cluster C; as shown in
the following Equation.

d(Gi, G) = max(d(Gy[i], G[j1)

3.6. Converting cluster to graph

Hierarchical clustering produces a dendrogram, which illus-
trates how the AHC is performed in a bottom-up approach. AHC
starts with the low-level execution paths up to the root, where
the linkage algorithm is completed. We have different levels of
abstractions for a given system in the form of a tree. To get a
multi-level granularity of the system call graph, we need first
to convert these clusters to graphs. We first extract cluster data
from dendrograms, such as paths that belong to each cluster. This
process results in a list of size C, where C is the total number of
clusters. Each cluster has a list of paths Ci = [P1, P2, ..., Pn]. All
clusters are exported to a CSV file, where each row represents a
cluster, and each column represents a path ID. Table 3 lists an
example of extracted clusters from a given dendrogram example.

Algorithm 2 takes cluster id as input to retrieve all the paths
that are part of the cluster. Then each path in the selected cluster
will be extracted from the path file. This can be done by pointing
path id to its corresponding line in the path file. Finally, we pass
these paths into G to build a call graph of the cluster. Later, the
call graph of the cluster will be mapped to the original call graph
using CodEx (see Section 4).

Algorithm 2 Cluster to Call Graph Conversion

1: procedure CLUSTER_TO_GRAPH( cluster_id)
2 pathsList < GetClusterPaths(cluster_id)
3 G < DiGraph()

4: for path_id € pathList do

5 path < GetPath(path_id)

6 G.add_path([path])

7 return G

3.7. Mapping from high-level to low-level call graph

Our approach constructs different levels of the call graph
automatically. First, it constructs a function call graph and then
coarsens it into different levels of abstraction (i.e., class and
package call graphs). The developer often can start from the most
abstract level (i.e., package call graph) and then selects a specific
cluster to investigate it further. Then, a refinement technique is
applied to project the clustered graph back to a more detailed call
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graph (e.g., class or function call graph). We automate this process
by mapping each node in the clustered graph to its corresponding
node at the finer-level graph using the attribute namespace. It is
important to note that we use the attribute namespace to coarsen
call graphs, and therefore, the same attributes are used to expand
the node back to its original representation. The implementation
details are presented in Algorithm 3.

Algorithm 3 Mapping High-Level to Low-level Call Graph

1: procedure MAPPING_HI_TO_LOW( Geuster, Gorg)
2 R < DiGraph()

3 for each edge(u, v) € E,;, do

4 i < u[namespace]

5: j < v[namespace]

6 if i,j € Voyseer then

7 if (i, j) € Equster Or i == j then
8 R.add_node(u)

9: R.add_node(v)

10: R.add_edge((u, v))

11: return R

The algorithm takes two graphs Geyser and Gorg as inputs,
assuming that Ggyser is the selected cluster at the coarsest level,
and G is the fine-grained of the coarsest graph. For example,
if a cluster is selected from the package call graph, the Ggyster
represents the cluster, while Gy is the class call graph. The
algorithm first constructs a new graph, named R, to obtain the
corresponding nodes and edges in both graphs. Each node in both
graphs has several attributes (see graph schema in Section 3.2.1).
For each edge (u, v) of G,rg, We use the attribute namespace as a
label for both nodes, Ungmespace aNA Vnamespace, and check if their
labels exist in Ggyseer. This condition confirms that both nodes
u and v are in the scope of Ggyser. The second condition is to
make sure that the corresponding edges are only obtained at each
iteration. The same algorithm can be applied to project graph R
to the next finer-level. This case is regarded as the function call
graph.

4. Software visualization

Our previous work (Gharibi et al., 2018a) relied on Horner
(2021) to generate the call graph of a given system. However,
similar to many existing call graph visualization systems, the
generated figures are often presented using a static format such
as SVG, PNG, and DOT formats. The graphs of large systems can
become very complex and challenging to analyze and under-
stand. Thus, graph entities such as nodes, edges, and associated
attributes will likely be visually overlapping due to limited space
on the screen and the canvas size, which makes understanding
such static graphs tedious and challenging. To overcome these
issues, we develop our own visualization tool, which provides a
dynamic, browser-based, user-friendly, intuitive interface. CodEx
presents a new set of features that allow the user to interactively
explore the call graph in different views, with a side panel to
facilitate exploring the metadata of the graph and its nodes. The
tool displays different graph levels and views in separate tabs in
a browser to help developers studying each level separately. We
describe these features and demonstrate them with examples in
the following subsections.

e Nodes Shapes and Colors: Node-link technique is commonly
used to visualize and explore relationships between a soft-
ware system entities (Merino et al., 2018). Thus, we used
the node-link technique to represent the call graph of a
system. Graph nodes are colored based on the file or module
to which they belong to. This can help the developer see
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how functions/classes of different modules/packages inter-
act with each other. Another node feature is its shape. We
use a circle to represent an entity and arrows to represent
relationships between the entities. Triangle nodes repre-
sent articulation points. Articulation points (also known as
cut vertices) can disconnect the graph into two or more
sub-graphs if removed.

e Highlighting Nodes: When the user selects a node by click-

ing it, the tool highlights the selected node and its neighbors,
while coloring the rest of the graph with a transparent Gray
color. This feature helps developers to focus on particular
functions and their relationships. Moreover, selecting a node
opens a side panel with its metadata.
The user can browse the metadata, including node’s type,
in-degree, out-degree, and graph matrices. Also, clicking on
the Dependent tab will show all the node neighbors while
clicking on the Required tab will show all nodes that call the
current node.

e Search and Filtering: When the user clicks on the dashboard
button, a modal will show up, providing valuable informa-
tion about the system call graph, such as the number of
nodes, edges, entry points, and exit points. In addition, the
user can view, search, and filter nodes and their metadata
using a provided table.

e Mapping Clusters to a Call Graph: We integrated the map-
ping method into the tool to map the hierarchical clusters
and the original call graph visual and automated. When the
developer clicks on a cluster of interest in the hierarchical
view, the tool will convert the cluster to a call graph using
Algorithm 2. The developer will then navigate to a graph
view in the browser tab and insert the cluster number in
the search box. If a particular cluster is selected, its nodes
and paths will be colored with a bright color and the rest of
the graph recedes into Gray. For example, in Fig. 5, Cluster
985 is selected in the search box, and its relevant nodes and
paths are highlighted.

e Multi Hierarchical Clustering View: The dendrogram is one
of the popular formats for presenting hierarchical clusters.
However, when the size of the graph increases, it becomes
difficult to read and identify clusters, especially when hori-
zontal lines connecting clusters overlap (Sander et al., 2003).
To overcome this issue, we extend CodEx to view the hi-
erarchical clustering results in two different layouts: force-
directed tree and hierarchical design.

e Saving and Loading: CodEx can save the results and state
of each process in a different format (e.g., GML, JSON, CSV).
When a call graph is rendered, the layout of the nodes and
edges in the graph will be saved and then could be reloaded
for further analysis.

4.1. Implementation

We implemented the proposed methods using Python pro-
gramming language. We have also developed a Web application
for the visualization using Flask (Grinberg, 2018) for the back-end
and Bootstrap (Mark Otto, 2019) for the front-end.

Defining Nodes and Edges: The first step towards constructing
the call graph is to define and extract entities and their de-
pendencies. We define functions and objects as entities because
considering only functions will ignore the object-oriented struc-
ture of the system (Naseem et al., 2013). They are also regarded
as essential components of traditional systems and represent the
functionality of a system more clearly than other components.
Relationships between these entities are function calls and class
instantiating. To extract the objects, functions, and their depen-
dencies, we integrated an existing static analysis tool, (Gousios,
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to color in this figure legend, the reader is referred to the web version of this
article.)

Table 4

Subject systems.
System Version Description LOC
PHNotepad 3.0 Code editor 962
SweetHome 3D 6.2 Interior 2D design 109,970

2019) to generate the caller—callee list as a text file. The analysis
tool uses the Apache Byte Code Engineering Library (BCEL) to
analyze a given .jar file as input.

Constructing and Visualizing the Call Graph: We parse the
caller-callee relationships file to construct a graph using a generic
graph data structure, NetworkX (Hagberg et al., 2008). This library
was used to manipulate and render the structure of the call graph.
Then, we created a JSON schema to obtain node properties, see
Section 3.2.1. After constructing the call graph, the results are
saved in different file formats, including GML and JSON. JSON
schema is used for visualization of the call graph.

Hierarchical Clustering of the Execution Paths: To construct
multiple levels of abstractions for the call graph, we first extract
execution paths of the system using a modified version of the
depth-first search (DFS) algorithm that is built-in NetworkX. Sec-
ond, we cluster the execution paths using the AHC algorithm with
Numpy and Scipy libraries (Oliphant, 2007).

To fit the machine learning model onto the generated paths,
we built a feature matrix, see Section 3.4, which is fed into the
hierarchical clustering algorithm. We used the same parameter
settings as defined in our original approach, where the similarity
matrix is Jaccard with the complete linkage type.

5. Case study

This section presents a case study using two illustrative ex-
amples to illustrate the tool’s applicability and usefulness. In the
first case study, we examined if we can generate meaningful
hierarchical clusters at different granularity levels. In the sec-
ond case study, we illustrate how we alleviate the challenges
of understating complex call graph by adopting a multi-level
graph abstraction technique. Table 4 summarizes the subject
systems implemented in Java. We present the results with higher
resolution and readable images for all case studies at the tools’
website (Alanazi, 2021).

5.1. Example I: PHNotepad
In this example, we applied our approach to PHNotepad, a

Java code editor written in Java. The tool is equipped with op-
erational features such as search, auto-completion, and intuitive,
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Fig. 6. Dendrogram of PHNotepad. Number of clusters is determined by using
Calinski-Harabasz score.

Table 5

Call graph of PHNotepad in class level and function level.
Entity Class call graph Function call graph
Nodes 6 36
Edges 7 36
Entry point 1 4
Exit point 3 28
Paths 7 32

Table 6

Call graphs of SweetHome3D in package, class and function levels.
Entity PCG CCG FCG
Nodes 9 196 5148
Edges 28 901 9501
Entry point 2 10 1517
Exit point 2 39 2821

easy-to-use GUIL Although the program system has 962 lines of
code, we selected this system due to its outstanding design and
manageable size for manual analysis and verification.

One of the challenges in unsupervised learning algorithms is to
evaluate whether the used clustering algorithm produces mean-
ingful results. Thus, our first example focused on a manageable
size subject that enabled us to inspect the results manually and
evaluate their significance. Also, we wanted to examine if our
approach can identify the functionalities of the system.

The tool automatically generates different levels of the call
graph for a given software system using the coarsening technique
presented in Section 3. Since PHNotepad has only one package,
the tool automatically ignores the package call graph. Table 5
shows the analysis results for the class and function call graphs.
We notice that the system has a single entry point in the class
level graph. Using the search feature in CodEx, it is noted that the
entry point is a class called ‘SimpleJavaTextEditor’ that contains
the main method calling all the other methods required to run the
application. Due to the small size of the class call graph, we will
ignore class call graphs and apply our approach to the function
call graph.

The results of the clustered function call graph are represented
as a dendrogram in Fig. 6. In order to determine the number
of clusters, we use Calinski-Harabasz to compute the optimal
number of clusters, K. Fig. 7(a) presents the scores of different
values of K ranging from 2 to 10. The highest Calinski-Harabasz
refers to the optimal value of K. Based on Calinski-Harabasz, the K
value of 5 yielded the highest score, while k=2 yielded the lowest
score. Thus, the functional call graph data were clustered into five
groups in this example.

In Fig. 6, the Agglomerative hierarchical clustering is reason-
ably close to the software structure of the system. We notice
that Cluster 31 does not group with any other cluster except the



R. Alanazi, G. Gharibi and Y. Lee

Score

4 5 6 7 8
Number of Clusters (K)

N 4
w
[

(a) PHNotepad FCG

14

13 A

124

11 A

101

Calinski-Harabasz Score

5 6 7 8
Number of Clusters

(b) SweetHome3D PCG

N A
w
IS
o 4

Fig. 7. Evaluating the result of AHC using the Calinski-Harabasz score.

last cluster due to the nature of the algorithm, where all clusters
eventually will group together. We used CodEx to visualize the
function call graph of Cluster 31 (Fig. 8.a). We found that Cluster
31 represents the auto-complete feature for matching brackets.
Also, we observed that this cluster represents a disconnected
graph, which is shown as a singleton cluster in the dendrogram.
With more investigation with the function call graph, we found
that these two nodes depend on functions from external libraries,
which was not considered during the call graph construction. For
Cluster 35, when we mapped it to the call graph (Fig. 8.b), we
found that it represents the search feature in PHNotepad. Cluster
19 was initially a singleton cluster, but was merged with Cluster
40 due to sharing a node, i.e., the main method (Fig. 8.c). Cluster
40 (Fig. 8.d) handles the initialization of the main graphical in-
terface of the system. Our results represent that there are strong
relationships between some clusters. Cluster 46 (Fig. 8.e) handles
the graphical interface of the search feature in the system. Cluster
53 (Fig. 8.f) handles all button actions in main interface. Cluster 57
(Fig. 8.g) handles the auto-complete feature. Cluster 62 (Fig. 8.h),
which is the root, represents the complete call graph without
missing any node or edge.

Our example confirms that the call graph results generated
correct execution paths of the PHNotepad system. Thus, it is
demonstrated that the proposed methods can be used for build-
ing abstractions automatically by extracting call graphs of a soft-
ware system and clustering them. In addition, the visualization
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tool is very useful for further exploration and comprehension of
the automatically generated call graphs.

5.2. Example II: SweetHome3D

In this example, we applied our approach to SweetHome3D,
an interior design application written in Java. The user can de-
sign a house in 2D by drawing the plan of the house, adding
furniture and home appliance, and then preview it in 3D. It
comes with many easy-to-use features, including import texture
and furniture, recording videos, and allowing user-customized
preferences, such as setting the system language, fonts, and units
of measurement.

The system includes two versions: desktop and applet. Our
goal here is to validate the feasibility of our system in helping
the developer differentiate between the source code of the two
different versions and then further explore the desktop version.
This will illustrate that our approach is useful for bridging the
cognitive gap and facilitating comprehension tasks.

This example showcases the task of understanding a system
of multiple packages. For a medium to a large-sized system, the
developer tends to explore in a top-down manner. The devel-
oper starts the program comprehension process by analyzing the
packages of the system, then he/she dives deeper and deeper into
the classes, functions, and, finally, the source code. Similarly, our
approach provides a top-down approach to analyze the system.
We start by constructing and analyzing the package call graph,
and then particular clusters are selected for more in-depth anal-
ysis. The user can navigate from the package graph down to the
class graph for further investigation. Finally, we repeat the same
process on the class graph to go deeper into a function graph.

In the following, we analyze the results for each level as
follows:

o Package Call Graph: Table 6 depicts SweetHome3D package

call graph, which includes 9 packages (nodes), 28 edges, and
2 entry points of two main methods. The first main method
runs the desktop version, and the second main method runs
the applet version. The clustering of the package call graph
(PCG) generated from the proposed methods is shown in
the form of a dendrogram. The results of the hierarchical
clustering are shown in Fig. 10. The dendrogram can be
divided into two or four groups.
As mentioned previously, we used the Calinski-Harabasz
score for finding an optimal number of clusters, as illus-
trated in Fig. 7(b). The first-best and the second-best optimal
numbers of the clusters are 2 and 4, respectively. We ob-
tained similar results from the AHC. We further explored the
meaning of the four clusters, namely Clusters 53, 63, 74, and
84. From Fig. 9, we observed that our approach successfully
differentiates between the two versions of SweetHome3D—
desktop and applet. As seen from the dendrogram in Fig. 10,
Clusters 53 and 63 were merged into Cluster 64, repre-
senting the applet version. Similarly, Clusters 74 and 84
were merged into Cluster 85, which represents the desktop
version.

e Class Call Graph: The next step is to explore the class level.
First, we will choose one of the clusters that belong to the
desktop version, Clusters 74 and 84. In this scenario, we will
investigate Cluster 84 by selecting one of its sub-clusters
(i.e., Cluster 83). Then, convert it to a call graph using the
conversion method (see Fig. 11.B). After that, uncoarsen
the cluster graph from the package level to the class level
(see Fig. 11.C) using our mapping method, as discussed in
Section 3.7.

Fig. 11.C shows the class graph. It has five different colors
which represent the following packages: The green nodes
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(c) Cluster 19. (d) Cluster 40
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Fig. 8. Converting PHNotepad clusters from the dendrogram to call graphs. Node’s color represents the class to which the function belongs. (a) Auto-completed
matching brackets. (b) Representing the search feature action events. (c) Setting GUI components visible. (d) Providing the Main GUI (e) Handling GUI of the search
feature. (f) Handling all buttons’ actions in the main interface. (g) Handling the auto-complete programming language keywords feature. (h) Presenting the function
call graph of system. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Adlri o " o
(a) Cluster 53 (b) Cluster 63

are in the ‘io’ package, the yellow nodes are in the ‘tool’
package, the blue nodes are in the ‘swing’ package, the red
represents the ‘j3d’ package, and the pink nodes belong to
the ‘sweethome3d’ package.

Table 7 depicts the uncoarsened class call graph (CCG').
Comparing the (CCG') to the original class graph (CCG), the
number of nodes was decreased by 54%, from 196 to 107,
while about 27% of the edges were decreased, from 901 to
247. In addition, CCG' is more manageable and more specific
to a certain domain. To further investigate CCG', we apply our
approach to this call graph. Then, we randomly select a clus-
ter, 985 (see Fig. 11.D). This cluster has eight classes from
two different packages (sweethome3d, and io). The classes
from the ‘io’ package are related to processes of reading and
setting the default user preferences in the system.
Function Call Graph: To investigate the function level of the
selected cluster, we uncoarsen CCG'ggs5 to produce function
call graph (FCGggs). Fig. 11.E shows the result of uncoarsen-
ing the graph. The produced graph has eight different colors
that represent classes, to which functions belong. We notice
that the graph has three big star networks. We apply our
approach to see if this call graph can be partitioned further.
Our approach can successfully partition the call graph. For

AN @
Y AR
Y Y X,
Am‘;‘ ¥ A vy Ao
(c) Cluster 74 (d) Cluster 84

Fig. 9. Call graphs of Cluster 53, 63, 74, and 84. The red node represents the package having a main class for the desktop version, while the yellow node represents
the package having a main method for the applet version.

=== 4 clusters
86 === 2 clusters

Fig. 10. PCG Dendrogram of SweetHome3D. Number of clusters is determined
by using Calinski-Harabasz score. Cluster 64 represents the applet version while
cluster 85 represents desktop version.

example, Cluster 474 represents one of the main star net-
works. Using CodEx, we found that the cluster handles the
user preferences functionality, such as setting the system’s
language or changing the measurement units.

Another interesting observation is that the blue nodes rep-
resent the “set” methods that belong to class ‘FileUserPrefer-
ences,’” while the yellow nodes represent the “get" methods
that belong to another class named ‘DefaultUserPreferences’.
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Fig. 11. Resulted call graphs during our comprehension process on SweetHome3D. (A) Coarsening the function call graph to multi-levels of abstraction. (B) Applying
our clustering approach and select Cluster 83. (C) Uncoarsening Cluster 83 to class-level. (D) Applying our approach to the clustered graph and select Cluster 985.
(E) Uncoarsening the call graph of Cluster 985 to the function-level. (F) Applying our approach and select Cluster 474. (G) Extract the call graph of Cluster 474. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7

Structural characteristics of call graphs at different levels in SweetHome3D.
Entity PCGog  PCGetusters cce CCGusieross ~ FCG FCGatustera74
Nodes 9 5 107 8 301 74
Edges 28 8 247 12 331 73
Entry point 2 1 4 1 65 1
Exit point 2 1 30 1 205 71
Paths 44 5 622 10 383 71

Table 8

Time cost for each step in second.
Software PHNotepad SweetHome3D
Process/Level FCG PCG ccG FCG
Call graph 0.026 0.024 0.170 0.291
Execution paths 0.002 0.002 0.342 0.854
One hot encoded 0.001 0.012 0.474 0.340
Hierarchical clustering 0.686 2.171 10.412 6.119
Generate subgraph 0.189 0.036 0.009 0.077
Total 0.904 2.245 11.407 7.681

5.3. Execution time overhead

During the previous tasks, we measured the time cost for
each process that we applied. Our main goal here is to measure
whether the amount of time needed to run CodEx is affordable
given the outputs it produces. As shown in Table 8, “Hierarchical
Clustering" represents the vast majority of the processing over-
head at each level. This is due to the high computation complexity
of AHC. By examining the results of PHNotepad shown in Table 8,
we observe that the entire processing time is around 0.9 s. The
longest sub-process time, 0.686 s, representing 75.8% of the entire
processing time, was spent on the hierarchical clustering process.
As for the second most costly process, generate sub-graphs, we
generate 63 clusters. However, the cost would be much lower if
a specific cluster is selected to investigate, similar to what we did
in the second example.

For the second example, the time cost of the overall pro-
cess is around 21 s. Up to 54% of all levels belong to CCG'.
This is due to the large number of execution paths, which led
to an increase in the hierarchical clustering process overhead.
Nevertheless, overall, the time required to run the tool analysis
processes, end-to-end, can be considered short for practical tasks.

It is important to mention here that using a machine learning
platform that supports GPU computations (e.g., PyTorch) could
drastically reduce the execution time overhead.
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5.4. Discussion

In this section, we discuss our findings of the aforementioned
two examples. Specifically, we examined if our approach gener-
ates meaningful hierarchical clusters with different levels of gran-
ularity. As shown in both examples, CodEx was able to construct
meaningful hierarchical structures and present the comprehensi-
ble functionality units at multiple levels of granularity.

In Example I, we observed that the call graph of the software
system could be partitioned into five graphs, i.e., Cluster 31,
35, 41, 46, and 58, using CH score. These graphs represent the
high-level functionality of the software, refer to Fig. 8. Moreover,
Cluster 35 of Example I presents the logic of the search feature
in the software. Further investigations show that its sub-clusters
describe all of its functionalities, including find, findNext, replace,
and replaceAll.

In Example II, we start by analyzing and clustering execu-
tion paths of the most abstract level, Package Call Graph (PCG).
Then, we focus on an interesting high-level cluster representing
the desktop version of the software and map it to lower levels
(i.e., Class Call Graph (CCG), Function Call Graph (FCG)). In this
way, we were able to: (1) remove irrelevant information, (2) stay
focused on a certain domain, and (3) reduce computation time
due to the smaller call graph. This will reduce the cognitive effort
to understand the call graph of a software system.
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Table 9
Description of the tasks for the user study.
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ID Task description
T1 Name two packages that have a high fan-out (outgoing calls) with no fan-in (no incoming calls)
T2 Name two packages that have a high fan-in (incoming calls) with no fan-out (no outgoing calls).
Rationale. Analysis of dependencies between entities and assessing the quality of system design are essential
to conduct visualization and to assist in software comprehension.
T3 Find any interesting path in the package level and project it to class level
Rationale. Investigating the internal structure of an artifact/s is a typical comprehension task.
T4 Removing the class ‘Transformation’ in the ‘model’ package,
- How many classes will be affected?
- Name all affected class and which package they belong to
Rationale. Impact analysis allows us to estimate how much of an impact such a code change would have on the system.
It can also help estimate the effort that needs to be made to make such changes.
T5 The source code of SweetHome3D comes with two versions (applet and desktop version),
- Find all functions that are used in applet versions
- Find all functions that are shared between these two versions
Rationale. Investigating the functionality of (a part of) the system and understanding its role on the software is one of
the main and useful activities in software comprehension for engineers and researchers.
Table 10
User study questions and their types.
# Question Type
Q1 The tool’s interface is intuitive and user-friendly Likert scale
Q2 I would recommend software developers to use this tool Likert scale
Q3 I would prefer to manually inspect the codebase rather than using this tool Likert scale
Q4 I believe that using this tool can save time and efforts in inspecting the codebase of a given system Likert scale
Q5 The task of identifying a feature that is implemented over multiple functions in the codebase is faster Likert scale
to achieve using this tool rather than manually inspecting the code
Q6 Filtering by type, searching, retrieving the information, code coloring, and shapes of the nodes were Likert scale
helpful during program comprehension tasks
Q7 The generated clustered graphs are beneficial to identify the functionality and structure of a given Likert scale
system - visually - without having to inspect the source code
Q8 The multi-level call graphs visualization is beneficial to understand the overall system structure from Likert scale
different views (functions, classes, and packages).
Q9 The tool is useful for clustering and visually exploration the execution paths of a system in both Likert scale
views (i.e., call graph and hierarchical view)
Q10 Overall, the visualization tool is useful to understand the software structure Likert scale
Q11 Please list any reasons for your answer to the previous question Open-Ended
Q12 Would you like to add other comments? Limitations? Suggestions? Open-Ended
Q13 I think that I would like to use this system frequently Likert scale
Q14 I found the system unnecessarily complex Likert scale
Q15 I thought the system was easy to use Likert scale
Q16 I think that I would need the support of a technical person to be able to use this system Likert scale
Q17 I found the various functions in this system were well integrated Likert scale
Q18 I thought there was too much inconsistency in this system Likert scale
Q19 I would imagine that most people would learn to use this system very quickly Likert scale
Q20 I found the system very cumbersome/awkward to use Likert scale
Q21 I felt very confident using the system Likert scale
Q22 I needed to learn a lot of things before I could get going with this system Likert scale

6. User study

A basic objective of carrying out user studies is to seek insight
into how a specific technique is useful (Kosara et al., 2003).
Similarly, our user study aims to gain insight into how useful
our approach and tool are based on user experience feedback.
Moreover, it can help us assess the strengths and weaknesses
of our visualization tool and can guide future efforts to improve
existing techniques.

In this section, we evaluate the usefulness and usability of our
approach and tool using a user study. The user study involved 18
participants who carried out a set of tasks and then answered a
questionnaire. The questionnaire included 12 questions to assess
the usefulness of the tool and 10 questions to assess its usability
using the System Usability Scale (SUS) (Brooke, 1996).

6.1. Participants

The user study was conducted by inviting software engineers
with at least three years of experience to test our tool and then
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answer the survey. We reached out to more than 25 software
engineers. Only 18 opted to participate in the study. 13 out of 18
participants mentioned their industries. The participants belong
to more than 11 international industries worldwide, including
Google, Apple, and others. Our participants were experienced
(39% more than 5 years; 61% 3 to 5 years).

6.2. Procedure

To make the tool accessible to all participants, we deployed it
on a Linux virtual machine (VM) running Ubuntu 18.04 LTS on
Azure.

Before the participants started the study, they had to complete
several small tasks. First, they had to sign a consent form. Second,
they were asked to answer some questions to gather demo-
graphic information, such as work and level of experience, and
assess their views on the research area. Third, the participants
were asked to watch a short video clip that provides a brief
overview of our visualization tool.

To evaluate the tool in this study, participants were provided
with a set of software comprehension tasks and a questionnaire.
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The tasks were intended to collect data about the usefulness and
the usability of the tool. The given tasks are listed in Table 9.
The subject study was the SweetHome3D application (refer to
Section 5.2 for more information on this system). The partici-
pants then completed the questionnaire while using the tool. The
responses of the participants were collected using Google Forms.

6.3. Tasks

Each participant was asked to perform a set of tasks using
our tool. When we designed our tasks, we kept two main goals
at the core of the study: (1) The tasks should be representative
software comprehension tasks, and (2) they should exercise all of
the tool’s features. To achieve the first goal, we designed our com-
prehension tasks based on a common comprehension framework
from Pacione et al. (2004). They studied several sets of tasks used
in comprehension evaluation literature and software visualiza-
tion. Our tasks cover most comprehension activities in Pacione’s
framework. The uncovered activities are mainly concerned with
dynamic aspects that are not within the scope of this paper. For
the second goal, our tasks covered the major features of the tool,
including searching, investigating, projecting to lower-level, and
extracting a cluster as a call graph.

Table 9 shows the user study tasks with rationales. The first
two tasks asked the participants to determine the entry and exit
points of the current graph using the tool’s filtering and search
features. In the third task, the participants were asked to analyze
and investigate the resulted clusters and project the path or
cluster of interest using the projection feature. In the fourth task,
the participants were asked to explore the information associated
with a specific node. In the fifth task, the participants were
asked to explore part of the system using a top-down approach
supported by the tool.

6.4. Questionnaire

Our questionnaire consists of three types of questions includ-
ing: (1) Likert scale questions to evaluate the usefulness of the
tool’s features at different visualization views, (2) open ended
questions to gain feedback on the design of the tool, and (3)
System Usability Score (SUS) based questions, to evaluate the
usability of the tool. The list of questions and their types are listed
in Table 10.

6.5. Results and discussion

We first report the results of usefulness questions, Q1 to Q10,
respectively, and then discuss the strengths and weaknesses of
the tool from user feedback from Q11 and Q12. Finally, we report
and discuss the results of the usability score.

6.5.1. Usefulness

To evaluate the usefulness of the tool, the participants were
asked to perform a set of tasks and answer a survey with the
following ten questions and to express their opinions accordingly.
The results are illustrated using a Likert scale in Fig. 12.

Q1: This question asks participants about their opinion on the
tool’s interface. More than half of the participants, 12 out of 18,
agree and strongly agree that the CodEx interface is intuitive and
user-friendly.

Q2: We asked participants whether they would recommend
CodEx to other developers. The responses were positive, and the
vast majority agree with this statement, which represents 94.4%
of the participants.

Q3: The goal of this question was to assess whether experi-
enced developers (all of our participants have more than three
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years of experience using Java) would prefer manual inspection of
the code over an automated tool that visualizes the code structure
using call graphs. The results show that only one participant
strongly agrees with this statement, 4 participants agree, while
five disagree and one strongly disagrees.

While five participants illustrated that they would prefer to
inspect the code base manually rather than using our tool, upon
further investigation and discussions with the participants, we
discovered a discrepancy between our question and what partic-
ipants understood from the question. The participants referred to
the fact that they would prefer to inspect the source code directly
for debugging and maintenance tasks, which does not contradict
with our tool. Our goal of the question was targeted towards the
cognitive tasks of understanding the system’s structure, but not
the actual debugging task. Overall, low-level maintenance tools
and high-level analysis tools (ours) are complementary in nature
for supporting the understanding of software systems (Wettel,
2010). The answers from Q4 actually support this claim, as we
explain in the following.

Q4: In this question, we aimed to assess the execution over-
head of using CodEx. 16 out of 18 participants agree and strongly
agree that using CodEx could save them time and effort while
carrying out the task of program comprehension. These find-
ings strongly align with our execution time analysis that was
discussed with the illustrative examples above.

Q5: This question focused on the specific task of identifying
the functionality of a system under investigation. We asked the
developers to compare carrying out this task using CodEx versus
manual inspection. The results show that more than half, 61.1%
prefer to inspect the system using CodEx. Thus, CodEx is useful to
identify a feature in the system and all the underlying functions
that implement it.

Q6: After asking the participants to explore different features
of the system, we asked them whether or not these features were
helpful for program comprehension tasks. We noticed that the
majority, 14 out of 18, agree with this statement.

Q7: This specific question reflects the participants’ opinion on
the usability of generating and visualizing clusters without look-
ing at the source code. Specifically, 13 out of 18 participants agree
and strongly agree with this statement. Only two participants
disagree with the statement.

Q8: In this question, we asked the participants if the multi-
level call graphs are helpful to visually understand the system
structure from the views of packages, classes, and functions. As
expected, multi-level visualizing of the call graphs seems to be
one of the best features that facilitate overall program compre-
hension. 10 participants agree, 6 participants strongly agree, and
only 2 participants are neutral about this statement. None of the
responses digressed with this statement.

Q9: In this question, we aimed to assess the overall satisfaction
of the two main contributions of our tool, i.e., multi-level and
hierarchical visualizations of the call graphs. The responses to this
statement included the following: 1 disagree, 2 neutral, 11 agree,
and 4 strongly agree. Overall, about 80% of the participants agree
and strongly agree that multi-level and hierarchical visualizations
of the call graphs are useful to understand the overall structure
of a software system.

Q10: In this question, the participants were asked to rate the
overall usefulness of CodEx. The resulting scores show that 88.8%
of the participants agreed, while 11% have neutral responses.

6.5.2. Participants’ feedback

The questionnaire contains two open-end questions. The par-
ticipants were asked to evaluate their overall opinion regarding
the tool, provide us feedback that could help improve the tool and
share valuable insights into the difficulties encountered during
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Fig. 12. Likert scale representation of the survey responses. Number of
questions: 10. Number of participants: 18.

the analysis. We summarize and highlight participants’ feedback
as follows:

Graph Filtering. Some participants thought that it was chal-
lenging to explore the function call graph. One participant com-
mented: “The visualization seems slow and hangs when there are
too many nodes and edges”. It is one of the major drawbacks
of node-link representation. It tends to become highly cluttered
when large numbers of nodes and edges are visualized. Several
participants suggested an improvement by providing features to
filter/hide irrelevant nodes and edges, which allow the graph to
be more manageable and easy to explore. Some participants sug-
gest that the tool may be more selectively showing only execution
paths containing a particular node.

Lack of Information and Customization. We used some basic
software metrics such as in-degree, out-degree to help identify
components that, for instance, need to be refactored. However,
two participants suggested including more structural data. One
participant commented: “It would be good to know how many
classes there are in a package”. Some participants suggested
“providing more software metrics data, such as LOC, WMC, and
there should be ways to query and sort, such as by color or size”.
Another suggestion was made regarding the ability to customize
colors or styles of graphs. One participant suggested adding a
brief description that appeared when hovering over an icon.
Another participant suggested an enrichment tool available as a
plugin for the popular IDEs, including Intelli] and VS.Code.

6.5.3. Usability

To analyze the usability of the tool, we considered The System
Usability Score (SUS). Fig. 13 shows the average value for the
System Usability Scores, which is 72.6. According to a previous
study (Lewis and Sauro, 2018), this score is above the average 68,
which can be interpreted as Good. Although the tool has a ‘Good’
average, the minimum score is 52 among other similar studies.

6.5.4. Threats to validity

Although we justify the rationale of each program compre-
hension task, the choice of tasks may bias the results in fa-
vor or against our proposed approach. To minimize this threat
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Fig. 13. The System Usability Score (SUS).

we choose the tasks inspired by Pacione et al. (2004) work.
They studied several sets of tasks used in comprehension eval-
uation literature and software visualization. We designed our
tasks to cover most comprehension activities based on Pacione’s
framework. The uncovered activities are mainly concerned with
dynamic aspects that we do not consider in our study.

Another possible threat to validity is that the number of sub-
jects in the study is less than usual—only one subject system.
However, we argue that we used a system that is well-curated
and well-documented of manageable size, which we believe is
a good representative of real-world software systems. Moreover,
a primary concern was to validate the usefulness of the tool.
Therefore, we needed to be able to check the subject system
manually. With our tool implemented and ready to be used, one
can conduct several other use cases, and it is made our future
work.

7. Related work

Call Graph Visualization: Several researchers have proposed
different visualization tools to generate and visualize call graph
of a system (Alnabhan et al., 2018; Jin et al., 2019; Gharibi et al.,
2018b; Walunj et al., 2019). However, these tools use Gansner
and Ellson (2017) for drawing graphs. For example, Alnabhan
et al. (2018) proposed a 2D software visualization approach. They
used geometric forms to represent different entities of the source
code. For example, classes and methods are described as rectan-
gles and circles, respectively, and arrows represent relationships
between the methods.

Other interesting works exist in this area, including interactive
visualization for the call graph. Shah and Guyer (2016) propose
an interactive call-graph visualization tool for programs written
in Java or C++. Their tool represents the call graph in a grid of
pixels where each pixel or cell represents a function.

REACHER (LaToza and Myers, 2011) is interactive visualization
tool implemented as eclipse plugin. It helps developers explore
static call graph paths of the specific method instead of manually
traversing calls to understand the control flow.

Another tool that is very similar to ours is introduced by Lemos
et al. (2013). They proposed SysGraph4A] (MultiLevel System
Graphs for Aspect]). The tool supports visualization of the sys-
tem’s structure and structural testing at the unit level. Although
SysGraph4A] allows user to explore the system in multi-level
views, only dependency among the methods is supported.

Bohnet and Déllner (2006) combine the static structure and
dynamic analysis properties in a 3D landscape view. The tool



R. Alanazi, G. Gharibi and Y. Lee

extracts dynamic call graph information and allows the developer
to navigate and gain insight into how features are implemented.
The dynamic call graph would require the developer to know
what input data to provide and execute it. Moreover, obtaining all
possible execution paths of the system is very hard. In contrast,
Our work focuses on the static call graph of the software system.
The static call graph considers all possible execution paths of the
system.

These tools are promising but limited in several aspects. (1)
Limited to a single level of abstraction (i.e., function level) and
thus may not well support different maintenance tasks requiring
understanding either fine or coarse grain, or both levels. (2)
Visualize portion of the call graph and does not depict the overall
structure of the system. (3) Display all system entities, including
classes, methods, and attributes, is likely to lead to an information
overload and fail to understand the software. (4) Generated call
graph represented in a static format such PNG and DOT format,
which requires more effort to understand.

Execution Paths Reduction Techniques: The massive size of
the execution paths causes scalability issues. To improve the
comprehensibility of execution paths, researchers have proposed
many reductions and compression techniques to reduce the size.
Hamou-Lhadj et al. (2005) used filtering techniques to reduce
the number of execution paths, which resulted in smaller call
graphs and higher abstraction levels of the system. The filtering
approach filters out the utility components from the execution
paths. Similarly, Cornelissen et al. (2007, 2009) focused on reduc-
ing the graph size by reducing the stack depth of the execution
path. While both approaches aim at reducing the call graph size,
they may omit essential execution paths from the call graph.
In contrast, our approach considers every execution path in the
system and focuses on clustering them into several hierarchies to
reduce the overall graph size.

Another research direction is to compress and reduce the size
of the execution paths. For example, Chan et al. (2003) reduced
the size of the execution paths using sampling techniques and
provided a tool to sample, visualize, and animate the dynamic
traces of the system. Reiss and Renieris (2001) on the other hand,
focused on reducing the size of the execution paths by encoding
the repeated ones. The authors used a comparative approach
to find similar paths in the system and encode them together,
which resulted in reducing the overall size of the graph. While
these approaches help reduce the overall size of the execution
paths and ultimately the graph, they still provide a single level of
granularity only. In contrast, we focus on clustering the execution
paths over multiple levels of abstractions. Not only does this
approach reduce the size of the graph at each hierarchical level,
but it can also help developers to better understand the software
system with multiple hierarchical levels of granularity.

Another work that is very similar to our approach is the Sage
tool (Feng et al, 2018). Sage is a dynamic analysis approach
that focuses on building hierarchical abstractions from function
calls and can label each hierarchical abstraction with a proper
functionality name. Our work focuses on the static analysis of
the software system. The dynamic analysis can represent a sin-
gle execution of the software system based on the input, while
the static analysis considers all possible execution paths of the
system. Moreover, we focus on building hierarchical abstractions
from different abstraction levels of the system. Sage visualizes
the identified clusters in vertically stacked layers, where users
may lose the position of the visible layer due to the lack of a
global overview. CodEx provides a hierarchical view as well as a
mechanism to link clusters between different levels of the system
call graph to facilitate exploring and investigating the execution
paths of a system.

Hierarchical Clustering: Software clustering is one of the
commonly used techniques for program comprehension. Several
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syntactic-based clustering techniques have been proposed Mitchell
and Mancoridis (2006), Islam et al. (2014). These clustering re-
searches are based on static structural dependencies (e.g., inheri-
tance, method calls, references). Other clustering approaches rely
on semantic clustering (Sun et al., 2017; Kuhn et al., 2007; Santos
et al.,, 2014), which group the source code in terms of identifier
names and comments. Unlike previous software clustering tech-
niques, our approach uses execution paths to guide the clustering
of source code entities that perform similar functionality. Execu-
tion paths can also reflect the overall system workflow (Jin et al.,
2018).

8. Conclusions and future work

In this paper, we presented an automated data-driven ap-
proach to support the comprehension tasks of software systems,
equipped with an interactive visualization tool. Our primary re-
search contribution is twofold: First, we designed the abstraction
method to bridge the cognitive gap between the high-level func-
tionality of a software system and its low-level implementation.
Specifically, the abstraction method based on the call graph of a
software system was developed by creating a multi-level, hierar-
chical three-tier abstraction of software with different granularity
levels (e.g., functions, classes, and packages). Second, we de-
veloped an interactive visualization tool that allows developers
to understand large software systems through the call graphs’
abstraction. The tool will enable visual inspection, tracing, and
exploration of system functionality at different granularity levels.

We presented a case study to exemplify the benefits of auto-
matic abstraction and visualization for software comprehension.
Our initial evaluation allowed us to assess the tool’s usefulness
and usability using a user study assessment. However, there is
still room to enhance our visualization tool.

For large systems, the visualization could be further improved
by using the package hierarchy to coarsen the graph to more
than the three levels. Moreover, extracting and calculating more
software metrics and utilizing the size, shape, and color of a
node or edge to reflect these matrices to give the developer more
insight into the complexity of the software. Also, a more rigorous
validation will be performed as part of our future work. We also
plan to use GPU platforms to further reduce the execution time
spent on the clustering task.
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