Empirical Software Engineering (2021) 26: 17
https://doi.org/10.1007/510664-020-09894-9

®

Check for
updates

Automated end-to-end management of the modeling
lifecycle in deep learning

Gharib Gharibi' © . Vijay Walunj' - Raju Nekadi' - Raj Marri' - Yugyung Lee'

Accepted: 27 November 2020 / Published online: 19 February 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract

Deep learning has improved the state-of-the-art results in an ever-growing number of
domains. This success heavily relies on the development and training of deep learning
models—an experimental, iterative process that produces tens to hundreds of models before
arriving at a satisfactory result. While there has been a surge in the number of tools and
frameworks that aim at facilitating deep learning, the process of managing the models
and their artifacts is still surprisingly challenging and time-consuming. Existing model-
management solutions are either tailored for commercial platforms or require significant
code changes. Moreover, most of the existing solutions address a single phase of the mod-
eling lifecycle, such as experiment monitoring, while ignoring other essential tasks, such
as model deployment. In this paper, we present a software system to facilitate and acceler-
ate the deep learning lifecycle, named ModelKB. ModelKB can automatically manage the
modeling lifecycle end-to-end, including (1) monitoring and tracking experiments; (2) visu-
alizing, searching for, and comparing models and experiments; (3) deploying models locally
and on the cloud; and (4) sharing and publishing trained models. Moreover, our system pro-
vides a stepping-stone for enhanced reproducibility. ModelKB currently supports TensorFlow
2.0, Keras, and PyTorch, and it can be extended to other deep learning frameworks easily.

Keywords Data management - Deep learning - Software automation

1 Introduction

Deep learning (LeCun et al. 2015; Goodfellow et al. 2016), a subfield of Machine Learn-
ing, has improved the state-of-the-art results in an ever-growing number of domains such
as computer vision (He et al. 2016; Szegedy et al. 2017), speech recognition (Hannun et al.
2014), and reinforcement learning (Silver et al. 2016). A Deep learning model, also known

Communicated by: Tim Menzies, Chakkrit Tantithamthavorn and Burak Turhan

This article belongs to the Topical Collection: Software Engineering in the Age of Artificial Intelligence

P< Gharib Gharibi
ggk89 @mail.umkc.edu

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09894-9&domain=pdf
http://orcid.org/0000-0003-0062-4748
mailto: ggk89@mail.umkc.edu

17 Page2of 33 Empir Software Eng (2021) 26: 17

as a Deep Neural Network (DNN), can be defined as a mapping function composed of
a large number of simple but nonlinear processing layers that map raw input data (e.g.,
images) to the desired output (e.g., classification labels) by learning hierarchical represen-
tations from the data. Unlike traditional machine learning algorithms (e.g., Support Vector
Machines) that require a thorough feature engineering phase before training the model (Hall
1999), deep learning is an end-to-end learning approach that can automatically learn the
features from the input data (Goodfellow et al. 2016). While this key advantage of deep
learning plays a significant role in its wide-spread and adoption, it is also considered one
of the main reasons that hinder the understandability and interpretation of deep learning
models. Consequently, it is not uncommon to refer to DNNs as black box models/functions
(Castelvecchi 2016; Vartak and Madden 2018b; Garcia et al. 2018).

Due to limited knowledge on the meaning of well-trained DNN parameters (i.e., weights
and biases), training a deep learning model is an ad-hoc search task that goes through
tens to hundreds of iterations (experiments) before arriving at a satisfactory result. Experi-
ments involve exploring different architectures, data transformations, and hyperparameters
(e.g., optimization algorithm and learning rate). Each experiment produces a large num-
ber of artifacts such as learned parameters, validation scores (e.g., loss and accuracy), and
source code. Thus, the final selection of an efficient model heavily relies on comparing the
experiments’ artifacts since the best model is not necessarily the last trained model.

Figure 1 illustrates the typical deep learning lifecycle, which we summarize in two
phases: Experiments and Deployment. The Experiments phase focuses on preparing the
data, creating or reusing an existing architecture, training the model, and validating its
performance. The Deployment phase focuses on deploying the model in a production envi-
ronment. Not only does the deep learning lifecycle involves several phases, but it also
involves several members with different backgrounds and technical expertise, such as data
scientists, machine learning engineers, and software developers. For example, given a pre-
diction task with a well-defined objective, the data scientist collects and prepares the data,
the machine learning engineer focuses on developing and training the model, and the soft-
ware engineer works on deploying the trained model in a production environment (e.g.,
software system, cloud service, edge device).

Therefore, in addition to the common development challenges known to the software
engineering community, e.g., code review and debugging (Ghezzi et al. 2002), the heuristic
and iterative nature of deep learning presents a new set of challenges—particularly managing
a large number of experiments and artifacts throughout their lifecycle (Sculley et al.
2015; Miao et al. 2017b; Kumar et al. 2017; Schelter et al. 2018a; Vartak and Madden
2018b). We define deep learning lifecycle management as the task of tracking, organizing,
visualizing, and facilitating the essential tasks of the lifecycle (i.e., training, evaluation,
and deployment) and then transferring this data into information for sharing, analysis, and
reproducibility.

) (

Dataset
- Create/ Train Evaluate

Update | =1 \1odel (]| Model
Model

Deploy
Model

Reference
Model

Fig.1 Deep Learning Development Lifecycle. Adopted from Miao et al. (2017b)

@ Springer

Empir Software Eng (2021) 26: 17 Page30of33 17

The recent surge in deep learning research and applications has led to the development
of several systems that focus on training deep learning models, such as Theano (Bergstra
et al. 2010), TensorFlow by Google (Abadi et al. 2015), CNTK by Microsoft (Seide and
Agarwal 2016), PyTorch by Facebook (Paszke et al. 2017), and Keras (Chollet and et al
2015). Note that Keras—one of the most popular libraries for building neural networks—is a
set of high-level APIs, written in Python, capable of running on top of TensorFlow, CNTK,
or Theano. These systems focus on the Experiment phase (i.e., training and validation)
while largely ignore model management tasks. Without a proper approach and tool support
to address the lifecycle management challenges, deep learning practitioners spend lots of
time and effort to track their experiments, log the used parameters, version their models,
and visualize their results—to name a few. Not only is manual management expensive, time-
consuming, and inefficient, but it also hinders subsequent tasks—especially model sharing
and reproducibility.

As these challenges became more evident recently, several systems from academia and
industry emerged to address different aspects of the management challenges. Examples
from academia include ModelDB (Vartak et al. 2016), ModelHub (Miao et al. 2017a),
ProvDB (Miao and Deshpande 2018; Schelter et al. 2017), Ground (Hellerstein et al. 2017;
Kumar et al. 2016), and our own previous work (Gharibi et al. 2019a, b). While most of
the work in academia is often made available as open-source systems, these systems either
address a single phase of the modeling lifecycle, e.g., tracking experiments, or require sig-
nificant code changes to instrument the source code, which adds extra overhead in the
modeling lifecycle.

The industry has also realized the importance of machine learning management systems,
which led to the emergence of several tools. For example, FBLearner Flow for PyTorch
(Facebook 2019), TensorBoard for TensorFlow (Google 2019), Digits by Nvidia (Nvidia
2019), and Michelangelo by Uber (Uber 2019). However, these systems restrict the user
to specific frameworks, processing pipelines, and deployment options. Other management
systems include tools that recently emerged from industry startups that realized the crit-
ical need for management systems, such as CometML (https://www.comet.ml/), Weights
and Biases (https://www.wandb.com), Neptune (https://neptune.ml/), and MLFlow (Zaharia
et al. 2018). Overall, these systems often address a particular phase of the modeling lifecycle
or require code changes to manage the modeling lifecycle.

To this end, we present a unified approach for managing the deep learning lifecycle
end-to-end. We equip our approach with a software system for automated model manage-
ment, named ModelKB (Model Knowledge Base). Our overarching goal is to facilitate
and accelerate the modeling lifecycle with minimal user intervention. Our approach’s nov-
elty crystallizes in unifying the lifecycle management in a single system and utilizing
the automatically extracted metadata to automate subsequent tasks, including deployment,
sharing, and reproducibility. The main objectives are to monitor models, track their evolu-
tion, facilitate reproducibility, accelerate deployment, and enhance collaboration, i.e., model
sharing and publishing. This allows data scientists to focus on the modeling process with-
out worrying about managing their experiments or being restricted to a specific modeling
framework.

Our main contribution is a unified approach to manage the deep learning lifecycle
equipped with a software system—ModelKB. ModelKB can (1) automatically extract and
monitor the model’s metadata and experiments’ artifacts; (2) visualize, query, and com-
pare experiments; (3) semi-automatically deploy models locally and on the cloud for
simple inference tasks; and (4) reproduce models when needed through model sharing and
publishing. ModelKB is a stand-alone Python library. While not a direct contribution of this

@ Springer

https://www.comet.ml/
https://www.wandb.com
https://neptune.ml/

17 Page 4 of 33 Empir Software Eng (2021) 26: 17

paper, ModelKB also aims at providing a cloud-based repository for publishing and explor-
ing trained models, similar to sharing source code at GitHub. Note that ModelKB in itself is
not a modeling framework, rather a complementary system that can automatically manage
experiments in their native framework, including TensorFlow 2.0, Keras, and PyTorch.

Automatic extraction and tracking of the metadata are achieved using Callbacks. We
provide customized Callbacks to collect metadata about each experiment. Metadata refers
to all data that governs the learning task, including hyperparameters (e.g., learning rate),
parameters (e.g., weights), and context data (e.g., required libraries). Once the metadata
is automatically extracted, we use this data to automatically generate source code for
deployment, sharing, and reproducibility. We also provide a GUI to monitor the progress
throughout the lifecycle and allow users to explore and analyze their experiments. This
is also beneficial to provide insights for future training tasks (e.g., what optimization
algorithms work best for voice data). Moreover, our approach provides the means to run
inference tasks using the deployed models. This allows deep learning practitioners to test
their models on-the-fly using a web-based interface without having to code the prediction
function. Thus, our system can facilitate the overall modeling lifecycle from training to
deployment and sharing, which are otherwise expensive and time-consuming tasks.

In order to assess the usefulness of ModelKB in managing the overall modeling lifecy-
cle, we conducted a user study followed by a survey to collect users’ feedback. In all cases,
ModelKB was used to manage the modeling lifecycle, including monitoring the experi-
ments through their evolution, deploy particular trained models locally and remotely, share
models and reproduce them, and run simple inference tasks on the deployed models. We
also assessed the overhead in execution time using ModelKB, which is negligible compared
to the long periods required for training a deep learning model.

The rest of this paper is organized as follows: We present a brief background of deep
learning and its modeling challenges in Section 2. We introduce our approach in Section 3.
The implementation of ModelKB and its evaluation are presented in Sections 4 and 5,
respectively. We present the current related work in Section 6. We conclude our paper in
Section 7 and briefly discuss our future work in Section 8.

2 Background and Challenges

This section introduces the context of our research work, including a brief introduction to
deep learning, its modeling lifecycle, and discusses the modeling challenges that motivate
our work—i.e., the absence of a proper model management system.

2.1 Deep Learning

Deep learning can be defined as a mapping function composed of simple but nonlinear
processing layers that map raw input data (e.g., images) to the desired output (e.g., classifi-
cation labels) by learning hierarchical representations of the data in each layer. The mapping
process takes place in particular transformation layers, called hidden layers, which receive
weighted input from the input layer, transform it using nonlinear activation functions (e.g.,
ReLU), and then pass these values to the next hidden layers until the last layer in the struc-
ture, i.e., output layer, which outputs the final results. The organization of these layers and
their connections are referred to as Deep Neural Network (DNN) Architecture. DNNs often
consist of tens to hundreds of transformation layers, hence the name deep learning. A deep

@ Springer

Empir Software Eng (2021) 26: 17 Page50f33 17

. convolution pooling dense
convolution

pooling dense

dense

[
S —

6@14x14
S2 feature map

120 - F5 full
84 - F6 full

]

28x28 image 6@28x28 16@10x10
C1 feature map C3 feature map

16@5x5
S4 feature map

Fig.2 Example of a convolutional DNN, LeNet-5, LeCun et al. (1998). The input is an image of hand-written
digit (0-9), the output is a probability over 10 possible outcomes (classes), which predicts the digit written
on the image. Diagram credit: Zhang et al. (2019)

learning model refers to the combination of network architecture, the learned parameters
(e.g., weights), and the configuration hyperparameters (e.g., learning rate). A key technical
advantage of deep learning is that it can automatically learn the features of the input data
and map them to the desired output using large amounts of data without human interven-
tion (feature engineering Hall 1999), which makes deep learning an end-to-end learning
approach that requires less domain knowledge. Nevertheless, understanding and interpret-
ing the learned model is still a challenging comprehension task, and it is an active research
field (Montavon et al. 2018; Tantithamthavorn et al. 2018; Chen et al. 2016).

Figure 2 illustrates a sample of a classical convolutional neural network (CNN), called
LeNet, which was developed by Yann LeCun to recognize hand-written digit images (Lecun
et al. 1990, 1998). CNNs are mostly used in computer vision applications (Lawrence et al.
1997; Krizhevsky et al. 2012; Karpathy et al. 2014; Yu et al. 2018). In addition to the typical
layers in the DNN, CNN has special types of layers, such as convolutional and pooling
layers. These layers can be organized in different architectures while each of the layers can
have a distinct set of parameters (e.g., activation function, size). For example, LeNet has
two convolutional layers, each followed by a pooling layer, and two fully-connected layers,
Fig. 2 illustrates the architecture of LeNet and its configuration. The number of layers,
their configuration, the learning rate, and other parameters that drive the overall training
process are known as hyperparameters. Optimizing the hyperparameters plays a critical
success factor in training the model. For example, the famous CNNs that won the ImageNet
ILSVRC competition (Russakovsky et al. 2015) each had a distinct set of hyperparameters
and a unique architecture, including ResNet (He et al. 2016), AlexNet (Krizhevsky et al.
2012), VGG (Simonyan and Zisserman 2014), and LeNet (LeCun et al. 1990).

2.2 Deep Learning Modeling Lifecycle

While both software and machine learning aim to introduce efficient and reliable solu-
tions, their overall development lifecycles have differences that require diverse management
approaches and toolsets. This subsection focuses on illustrating the development difference
between machine learning and traditional software engineering. The goal is to shed light on
the main machine-learning development differences that cause its management challenges
versus traditional software development.

Unlike traditional software development that aims at meeting a set of well-defined func-
tional and non-functional requirements, the process of training an efficient deep learning
model aims at optimizing a specific metric (e.g., minimizing a loss function). Table 1
illustrates some of the differences between traditional software development and machine

@ Springer

17 Page 6 of 33

Empir Software Eng (2021) 26: 17

Table 1 A brief comparison between conventional software development and Machine Learning

development

Traditional software development

Machine learning development

Goal To meet a set of functional require- To optimize a metric (e.g., maxi-

ments mize accuracy)

Quality Depends on written code (i.e., Depends on data and used hyperpa-

developers expertise) rameters

Tools Each entity, e.g., industry, uses a Involves experimenting with a wide

specific software stack range of libraries, platforms, and
algorithms

Maintenance Less frequent based on version basis Requires continuous monitoring
and maintenance (training on new
samples)

Management Uses mature tools, e.g., git Often done manually using spread-
sheets due to the lack of mature
management tools

Deployment Done by software developers who Real-world models are deployed in

are familiar with the system a collaborative manner among ML
engineers and software engineers

Sharing Uses mature tools, e.g., GitHub Done manually or using git-like

systems that are not built for model
sharing
Reproducibility Easy to achieve Very challenging due to limited
tools that track all involved hyper-

parameters and requirements

learning development, which motivate the need for novel software tools that facilitate the
management of the machine learning lifecycle. In the Table, we focus on the differences
only, not the commonalities. For example, both tasks’ goal is to create useful applications
that help the end-user, but here we point to the differences that introduce management chal-
lenges. Note that “Goal” in the Table refers to the development objective, not the overall
process of creating a software or a model. Additionally, “Quality” refers to the leading qual-
ity differences in both cases. For example, executing the same implementation (code) on a
given input will always produce the same results in a traditional software tool. This is not
true in machine learning, where the quality of the final output, during the training phase,
depends on several other factors than the code implementation, such as random idealiza-
tion of the DNN. Thus, we consider that the quality of traditional software development
depends mainly on the quality of its implementation, while it depends on additional factors
in the case of machine learning development. Additionally, due to limited knowledge of the
meaning of well-trained models, the model development process is carried out in an ad-hoc,
trial-and-error approach by experimenting with different sets of hyperparameters, data trans-
formations, and even different software libraries. For example, Fig. 3 illustrates a real-world
scenario of a large number of models produced by competitors solving real-world problems
with deep learning at www.kaggle.com. Note that competitors upload the best model they
produce only. Nevertheless, we notice that top competitors submit an average of 140 mod-
els before the competition deadline. In contrast, a typical software engineering hackathon
includes a single submission per team.

Therefore, we first need to understand the modeling lifecycle in deep learning, which
typically goes through the following phases (refer to Fig. 1):

@ Springer

www.kaggle.com

Empir Software Eng (2021) 26: 17 Page70of 33 17

Score Entries Last Score Entries Last Score Entries Last
0.950 13 1mo 0.90883 288 15d 0.83292 282 imo
0.950 60 25¢ 0.90798 23 15d 0.82620 241 1ma
0.944 161 25d 0.90765 159 17c 0.82551 76 Imo

Fig.3 An example illustrating the large number of models (Entries) submitted by top three winners of three
randomly selected Kaggle competitions

— Data Preparation: Collecting and preparing the datasets needed to develop the model.

— Model Search: Searching for a model with a similar goal for reusability through the
transfer learning process, rather than creating a new model from scratch. However, if
no such model exists, a new model needs to be created.

— Training and Evaluation: Training and evaluating the model are the most expensive
and time-consuming tasks. As mentioned before, training a deep learning model can be
defined as an iterative search problem that goes through tens to hundreds of iterations
before arriving at a satisfactory result.

— Model Deployment: After training a model, it is necessary to deploy it in a production
environment (e.g., a software system) or expose its functionality through APIs.

— Maintenance: Deployed models still require continuous monitoring to identify defects
and continuously maintain their performance. Here, the maintenance process often
involves retraining the model on new data instances that were not included in the
previous training dataset.

Therefore, the iterative nature and the large number of involved parameters and arti-
facts in deep learning projects introduce a new set of challenges—particularly managing the
modeling lifecycle-which we present in the next subsection.

2.3 Challenges of Deep Learning Modeling Lifecycle

The deep learning lifecycle involves experimenting with several neural architectures,
datasets, learning algorithms, and configuration hyperparameters over hundreds of exper-
iments. Metadata about these experiments and their artifacts play a significant role in
informing the next set of experiments and identifying best-performing models. However,
without a proper management system, experiments and their metadata are lost, and valuable
time and resources are wasted—sometimes even running the same experiments. Subse-
quently, the lack of an adequate management system for deep learning has revealed several
challenges that hinder its overall lifecycle, including the following tasks:

— Monitoring Experiments: Training a deep learning model is a trial-and-error approach
experimenting with different sets of hyperparameters, data transformations, and even
different software libraries. Each experiment generates a rich set of artifacts that can
be used to analyze, explore, and derive insights about future experiments (e.g., what
hyperparameters work best with similar datasets). These artifacts play a critical role
in comparing trained models when identifying the best-produced model. It is currently
challenging to track each experiment, model evaluation, analyze abnormal behaviors,
identify data provenance, and reason for the produced results. The large number of
involved metadata elements make it challenging to track experiments manually, and
it is expensive and time-consuming to build efficient automated tracking systems.

@ Springer

17

Page 8 of 33 Empir Software Eng (2021) 26: 17

3

Monitoring experiments is at the core of addressing other deep learning management
challenges.

Reproducibility: Reproducing the same results across different experiments is a chal-
lenging task due to several factors, including random initialization of weights, dataset
shuffling, and variations in the underlying framework (e.g., swapping between Theano
and Tensorflow backends in Keras). Therefore, reproducing a specific model requires
the availability of metadata about the training phase, including data transformations,
architecture, and hyperparameters. Examples of real-world scenarios include reproduc-
ing production models that were initially trained offline in the lab, reproducing an older
version of a model that is not available, and reproducing models published in research
papers without their implementation.

Deployment: Once a model is trained, it is often passed to a different team (e.g., software
engineers) to integrate it into a software system or make it accessible through APIs. How-
ever, there is still no standard approach to transfer models from the training phase to a pro-
duction system. Models could be deployed as REST services, Flask-based systems,
mobile applications, or cloud services. Moreover, to run predictions using the deployed
model (inference), ingested data need to go through the same preprocessing steps used on
the training data. Deployed models also require continuous monitoring, evaluation, and
retraining. Without a proper management system that facilitates experiment monitoring
and reproducibility, the deployment process becomes even more challenging.

Sharing: The lack of a centralized repository for trained models obstructs the sharing,
reusability, and evolution of deep learning models. Currently, well-known models are
often shared on the developer’s website, or popular frameworks’ websites such as pre-
trained PyTorch models (PyTorch 2019), or raw files via traditional file repositories
such as Model Zoo on GitHub (ModelZoo 2019). While some repositories have recently
emerged, such as ModelHubAlI (2019), these repositories are manually curated by the
owners or require significant manual efforts to share the trained models.

ModelKB: Approach

Figure 4 illustrates an overview of ModelKB approach, which spreads over two parts: a
local client and a cloud-based server. ModelKB Client, mostly referred to as ModelKB, is

ModelKB Client ModelKB Server
Command-line Visualization '
and GUI Manage Manage Publish
Analyze Search
Data storage and Explore Share
organization Upload & Download Inference Deploy Search
Reuse &
Metadata Keras Tensor- PyTorch :} \>
Extractor Flow y User Deploy
Local Repository Cloud Repository

S S e
Distributed File ModelKB —

Fig.4 ModelKB System Architecture

@ Springer

Empir Software Eng (2021) 26: 17 Page90of33 17

a local software library that automates the overall modeling lifecycle. The Server side is
responsible for providing services for remote sharing and deployment. The management
tasks, e.g., data visualization and model deployment, are automated/semi-automated by
ModelKB. Python, an object-oriented programming language, is used for the implementa-
tion tasks, and it is the language supported by our approach. The technical contributions of
ModelKB include unifying the entire lifecycle management in a single system using a wide
range of software methods and tools, including the use of Python Callbacks for extracting
metadata; Abstract Syntax Trees (AST) (Documentation 2019) for tracking data province,
and Jinja (Jinja 2019) template language for generating code automatically—to name a few.
Additionally, ModelKB facilitates its usage by providing the user with an intuitive GUI and
a set of abstract APIs that can be used in any integrated development environment (IDE).
The Server is mainly used to deploy trained models on the cloud and provides a set of REST
APIs for the inference tasks. It is also used to facilitate publishing and sharing models. Pub-
lishing refers to the process of sharing a model publicly (akin to sharing source code on
GitHub) while Sharing refers to the process of sharing a model between users.

As shown in Fig. 4, ModelKB consists of the following components: Metadata Extractor
for automatically extracting the metadata from the source code of different deep learning
frameworks. Local Repository is the local storage unit for the metadata and other artifacts
implemented in two parts: a distributed file system and an SQLite database (SQL 2019)
organized by the Data Storage component. Visualization is used to visualize projects, exper-
iments, and their metadata. Upload and Download is responsible for sharing models among
users. Moreover, our system can automatically generate prediction functions that expose
the trained models for inference requests. The software features of ModelKB are accessi-
ble through command-line promotes and a web-based Graphical User Interface, which is
used to visualize, explore, compare, and test experiments. We further explain each software
component as follows.

3.1 Automatic Metadata Extraction

The availability of metadata constitutes a concrete stepping-stone that enables the rest of
our system’s tasks. We use the term Meradata to refer to all types of data and parame-
ters that govern the modeling lifecycle, including hyperparameters, parameters, and context
metadata. Hyperparameters refers to variables that govern the learning algorithm and are
set by the user, such as optimization algorithm, learning rate, loss function, and the number
of epochs. Parameters refers to the variables learned by the algorithm—specifically weights
and biases. Furthermore, we use the term Context metadata to refer to additional data about

Table 2 A brief list of the types of metadata extracted from each experiment

Type Dataset Model Context

Metadata - Batch size - Pointer to dataset - Architecture and its - Project info.- User - Imple-
location - Data type (e.g., configuration - Parame- mentation - Environment -
images, tabular)- Preprocess- ters (weights and biases) Dependencies
ing steps - Hyperparameters (learn-

ing rate, epochs, input
shape, output shape, opti-
mization algorithm, loss
function, etc.) - Accuracy
and Loss

@ Springer

17 Page 10 of 33 Empir Software Eng (2021) 26: 17

the experiment, including the project title, user, environment, and framework. Context meta-
data plays a critical role in setting up the target environment for reproducibility, sharing, and
deployment. Table 2 illustrates a shortened list of metadata that our approach extracts from
each experiment.

In order to automatically extract the metadata mentioned above, we developed our Meta-
data Extractor based on Callbacks and ASTs. Callbacks are functions that can be passed
as an argument to another function to be called back (i.e., executed) at a given time. The
execution of Callbacks can be initiated at several points of time—before, during, and after—
the execution of the caller function. Specifically, we developed Callbacks that will initiate
the metadata extraction process at the beginning of each training cycle automatically. Our
callbacks are functions that can be applied at different stages of the training phase and are
passed as an argument to the . £it () and . fit_generator () functions, which are used
to initiate the training phase in both Keras and TensorFlow 2.0. Listing 1 illustrates a snippet
of our callbacks implementation for Keras.

One of the main technical contributions and advantages of ModelKB over other similar
systems is the minimal code changes required to invoke the entire management process.
Listing 2 illustrates how to use ModelKB to manage the modeling experiments in the case of
Keras, which only requires importing the ModelKB library and then passing our pre-defined
Callbacks. From Listing 2, we notice the minimal amount of code required to invoke the
model management process: the user needs only to import our modules, i.e., lines 1 and 2,
define a new experiment, line 4, and then add the Callbacks with the defined experiment as
an argument to the named parameter callbacks of the £it function, line 7. This process

Class KerasCallback(keras.callbacks.Callback):
def __init__(self, experiment):
self.project_title = experiment.project_title
self .metadata_experiment = dict()
self.accuracy_test = list()
self.loss_validation = list()
rest of the function...

def on_training_begin(self, seed=None):
random.seed = seed
self.start_time = get_current_date()
self .metadata_data[’batch_size’] = self.params.get(’batch_size’)
rest of the function...

def on_epoch_end(self, epoch):
self.accuracy_test.append(logs.get(’acc’))
self.loss_test.append(logs.get(’loss’))
self .accuracy_validation.append(logs.get(’val_acc’))
self.loss_validation.append(logs.get(’val_loss’))
rest of the function...

def on_training_end(self)
self._get_experiment ()

rest of the function...

rest of the functioms...

Listing 1 A snippest of the Keras callback

@ Springer

Empir Software Eng (2021) 26: 17 Page 11 0f33 17

1 from modelkb import Experiment
from modelkb.keras import KerasCallbacks
3 import keras

N

my_exp = Experiment(’Project_title’, ’username’)

(x_train, y_train), (x_test, y_test) = mnist.load_data()

data processing and preparation...

model = Sequential()

model building and compiling...

model.fit(x_train, y_train, batch_size=32, epochs=15,
callbacks=[KerasCallbacks (my_exp)])

rest of the code

N H O H O

Listing 2 A code snippet illustrating how to use ModelKB in Keras

is identical in the case of TensorFlow 2.0; the only change needed is to use the proper
Callback name, which is TensorflowCallbacks and importing its library.

Another contribution of our work is the hierarchical organization of deep learning
projects. Each project consists of several experiments, often tens to hundreds. A project is
created by the user when declaring the experiment object by specifying a project name, as
shown in line 4 of Listing 2. This project is different from the project created by the IDE.
We use Projects to group experiments that belong to the same modeling task. Once a project
is created, we assign it a unique identifier, a timestamp, and a username. Then, as long as
the project name is not changed, all experiments created under that project will be grouped
together. This holds in real practice since each project involves running tens to hundreds
of experiments, where each experiment involves exploring different hyperparameters until
reaching a satisfying result. In our approach, users do not need to specify names for each
experiment, which further reduces the modeling overhead. We automatically assign every
experiment a unique ID and name it using a combination of its ID and the training start time.

For example, given an object detection task, the developer might declare her experiment
as my exp = Experiment ('FaceDetector’, 'Alice’). Then, she experiments
with different hyperparameters, such as different optimization algorithms (SGD, Adam)
and fine-tunes other hyperparameters. Every time Alice runs the experiment, she does not
change the name of the project. She only passes our Callbacks to her £it function on the
first experiment run and then continues her modeling tasks as usual. The management tasks
will be carried out automatically by ModelKB without any further intervention from Alice.

Similarly, users of PyTorch can use ModelKB to manage their experiments automatically.
However, unlike Keras and TensorFlow, PyTorch does not provide a predefined function
to train the model and evaluate its performance. Instead, users must implement the train-
ing steps using predefined high-level functions. For example, a training cycle in PyTorch
consists of the following steps: After preparing the dataset and the neural network, model,
the user passes the data through the neural network in a process known as feedforward
using the defined model, pred = model (training_ data), then she computes the loss,
loss = criterion(pred, target), with respect to the generated predictions, and
then updates the weights of the model optimizer.step (). These functions are then
wrapped inside a for loop, for e in epochs, to repeat each training cycle (i.e., epoch)
a certain number of times. Therefore, to facilitate the usage of ModelKB within PyTorch,
we first implemented a high-level function wrapper, fit, and then developed the necessary
Callbacks to enable metadata extraction.

@ Springer

17 Page 12 of 33 Empir Software Eng (2021) 26: 17

While not an explicit goal of this work, but a direct technical contribution is the devel-
opment of high-level abstract functions, fit and £it_ generator for PyTorch, inspired
by Keras implementation. Refer to Section 4 for more implementation details. On the one
hand, we found that these functions can significantly reduce the overhead in implementing
the training cycle, as explained above. Other well-known frameworks, specifically fast.ai
(www.fast.ai), have already done this—provided high-level APIs to use PyTorch. We did
not reinvent the wheel in this work, rather developed the two functions necessary for our
approach. Thus, reducing the overhead in implementing those abstract functions is a pos-
itive side-effect of our approach. On the other hand, these functions drastically simplified
the process of extracting the metadata using Callbacks. We needed to implement both £it
and fit_generator similar to Keras’ implementation to facilitate reusing/extending our
already-developed Callbacks for PyTorch.

Listing 3 illustrates a code snippet of using ModelKB in PyTorch. The user needs first
to import the necessary libraries, define an Experiment object and initialize its required
parameters, and finally pass the PytorchCallbacks function with the experiment object
as a parameter to the £it function, which is also provided by ModelKB.

An essential feature of our approach is the ability to unify the seed value among
experiments—if needed. It is challenging to automatically obtain the seed value from the
underlying system during the training phase. If known and managed correctly, the seed
value can improve the reproducibility of experiments since training deep neural networks
depends on several stochastic techniques and involves several random variables. However,
extracting the seed value from the system is not an easy task, and sometimes that value is
not accessible. Therefore, we allow the user to manually set and unify a seed value across
all experiments to facilitate reproducibility. Note that several deep learning practitioners
already follow this training convention but lack the proper tools to track the seed values
across different experiments.

At the end of the training cycle, we organize the extracted metadata into dictionaries and
store them in a local database along with the model file (i.e., model architecture and param-
eters) and implementation files (source code). The model file is then parsed to visualize
its architecture and per-layer configuration. Then, the deployment functionality is invoked
to generate a prediction function for the inference task automatically. After that, a web-
based dashboard is automatically created and populated with the experiment metadata and
artifacts, and its URL is sent to the user’s IDE.

[y

from modelkb import Experiment
from modelkb.torch import Model, PytorchCallbacks
3 import torch

N

4 my_exp = Experiment(’Project_title’, ’username’)

5 train_loader = torch.utils.data.Dataloader(train_set, transform=
train_transform, batch_size= batch_size_train)

define the neural network, NET

model = Net()

optimizer = optim.SGD(model.parameters(), lr=learning_rate)

criterion = nn.NLLLoss()

model.fit(train_loader, epochs, optimizer, criterion,
callbacks=[PytorchCallbacks (my_exp)])

rest of the code...

© 00N H

Listing3 A code snippet illustrating how to use ModelKB in PyTorch using our customized fit function

@ Springer

www.fast.ai

Empir Software Eng (2021) 26: 17 Page 130f 33 17

09650866655668565

096525

ossazmanIIM

Fig.5 The Dashboard of ModelKB (landing page)

3.2 Data Visualization

ModelKB provides a local web-based visualization that allows users to explore, analyze,
compare, and run inference tasks. Specifically, ModelKB provides three main views: Dash-
board, Project view, and Experiment view. The GUI of ModelKB is built on top of Flask
(https://palletsprojects.com/p/flask/), a set of open-source tools and libraries to build web
applications. We selected Flask because it is a lightweight framework, easy to implement,
and requires little to no external dependencies. Moreover, Flask is popular and has an
outstanding support community, making it easy to extend and debug (Grinberg 2018).

After each experiment, we print the local URL address of our flask-based server, where
ModelKB is hosted. The user can click on the active URL address to visit the landing page
of ModelKB-the Dashboard. The Dashboard (see Fig. 5) provides a high-level view of
all projects stored in the system and a tabular view of the recent experiments sorted by
date. Each of the projects is represented in a blue box (the user can select different color
templates) that shows the project’s title, owner, application (e.g., stock prediction), and the
total number of experiments inside that project. Clicking on a particular project will lead to
the Project view, which we explain as follows.

The Project view, illustrated in Fig. 6, lists a summary of all experiments related to the
open project. The user can customize the information shown in the table using a drop-
down menu on top of the table. The user can select to show the number of layers in each
experiment, the accuracy score, and the learning rate. Moreover, the user can also select
different filters to query specific results. For example, the user can search for experiments
with a specific learning rate and an accuracy score over a given value created between
two specific dates. For example, in Fig. 6, we query models with epochs > 10 &&
Optimizer=Adam && Accuracy >0.9. Another important feature of this view is the
ability to compare two models. The user can select two models and click the Compare but-
ton. This will lead to a side-by-side comparison for the two models based on the data that
the user selects to view (e.g., architecture, accuracy, used dataset). Clicking on any of the
experiments will lead to the experiment view. Note that users can download those tables in

@ Springer

https://palletsprojects.com/p/flask/

17 Page 14 of 33

Empir Software Eng (2021) 26: 17

8 CNN_MNIST

Tosts To Be ran

e rperiments Ran

Oumer

Viaybw

viayow

viayow

Dashboard / Project: CNN_MNIST

Timestamp.

Framework stze. Epochs Layers

>10

Keras 2 5 7

Keras A 100 7

Keras Y 150 7

Input Tensors

2281

28281

2281

Output Tensors

10

10

10

Optimizer

Adam

Loss Funetion Aecuracy

cateqorical crossentropy 0,999

categorical_crossentropy 0.9995

Touson | Tocsv | Toror

Loss

0.008524246256706556

0.004483197275946911

categorical_crossentiopy 0.9994166685665666 0.007666461478307413

. ®

Fig.6 The Project view lists the experiments and their metadata related to a single project

several different formats, including json, csv, pdf, and we are currently working on support-
ing IATEX, in order to facilitate exporting the metadata from the GUI in different formats,
rather than using copy-and-paste.

The Experiment view focuses on visualizing one experiment at a time, and it includes
four tabs: Metadata, Architecture, Inference, and Share. The Metadata tab lists all the meta-
data that the user selects to view, including plots for the accuracy and loss scores over time
for both training and validation datasets—if available. Figure 7 illustrates the Metadata tab
in the Experiment view.

The Architecture tab visualizes the model’s architecture in an interactive interface, where
the user can click any layer in the architecture to view its configuration. This functionality
is provided by an open-source tool called Netron (Roeder 2019), which we integrated into
ModelKB. Figure 8 illustrates the Architecture of the current open Experiment (i.e., model).
Note that clicking on any layer will open a side panel showing the configuration of the

Dashboard / Project: CNN_MNIST / Experiment: 2019-11-08 16:28:15 () Download Share Generate Experiment
Metadata Architecture
v
Accuracy Loss
I Traning. [Vo I Taiing. [V
1000 3
965
1 3 s 1
Framework [keras Input Tensors. [(25.20.1 1
Epochs () Optimizer Prcam)
Batch Size (=2} Output Tensor [0}
Layers o Loss Function

Fig.7 The Experiment-Metadata view visualizes the selected metadata, including for loss and accuracy

@ Springer

Empir Software Eng (2021) 26: 17 Page 150f33 17

Dashboard / Project: CNN_MNIST / Experiment: 2019-11-08 16:28:15 () Generate Experiment

Metadata Architecture Test Share
) 4

NODE PROPERTIES x

7x28x28x1

kernel (3x3x1x32)
bias (32

tainable true

filters 32

Conv2D kemelsize 3,3

kernel (3x3x32x64)
bias (64)

MaxPooling2D

stides 1,1
padding valid

data_format channalc_tact

dilation_rate 1,1

activation relu
Dropout use bias true

hernelinialzer Varancegcalng(cele: 1, mode:"Fanava", distriution:“iforn,
)

Flatten
bias initalizer 7eros0

) NpuTS

kernel (9216x128) input id:input
bias <128)
kemel ic: convzd_1/kernet:0

biss id: convad_1/biss0

Fig.8 The Architecture view visualizes the neural network architecture and per-layer configurations

corresponding layer. This feature is beneficial for debugging and reusing trained neural
networks, where the user needs to reach some configuration parameters.

The Inference tab allows the user to run simple inferences on the given model. For
example, the user can upload an image and predict its label directly from the GUI with-
out deploying the model manually. This feature allows users to test their models against
specific inputs without having to rewrite the prediction function. It is enabled through a
semi-automated deployment feature, which we will explain in the following subsection. For
example, Fig. 9 illustrates an inference task on the given model. The underlying model used
for this visualization was trained to predict the hand-written digits using the MNIST dataset
(i.e., the “Hello, World!” example for deep learning). The figure illustrates the input image
and its corresponding output generated by the model. The implementation (i.e., source code)

ashboard / Project: CNN_MNIST / Experiment: 2019-11-08 16:28:15 () Download Share Generate Experiment

Metadata Architecture Test Share

File input
" Results
Choose File No file chosen

o] . o

uploaded successfully. and categorized as shown in table. 1 0.00000001
2 0.0000058
3 o
a o
5 o
6 o
7 0.99997795
8 0.00001622
9 o

Fig. 9 The Experiment-Inference feature allows the user to run casual inference tasks on the given model.
In this example, the given model is trained to classify hand-written digits using the MNIST dataset. The user
selects a picture, as shown above, and the prediction results are then generated by the model and visualized
accordingly

@ Springer

17 Page 16 of 33 Empir Software Eng (2021) 26: 17

of this inference function was generated entirely by ModelKB. Moreover, the inference task
can assist users in model selection and can be utilized in the online repository to explore
and run predictions before cloning the model to the local environment.

The Share view allows the user to share their experiments remotely by deploying the
model on the cloud and then providing the user with two REST APIs: one for remote infer-
ence tasks and the other for downloading the model. In order to use the Share feature, the
user needs to first have an account on the cloud ModelKB service.

3.3 Model Deployment

Model deployment is one of the most challenging and time-consuming tasks in the overall
modeling lifecycle, especially when deploying models on the cloud. Implementing mod-
els using new cloud service and integrating it with an existing system requires significant
amounts of time and effort. For example, our experiments illustrated that given a well-
trained model, a graduate student with no prior knowledge of cloud deployment services
would spend five to seven days to expose a trained model online, not to mention the need
for creating a simple GUI or a set of APIs to use the deployed model. Therefore, one of the

#import statements
import sys
{required_import_statements}

first_arg = sys.argv[1]
second_arg = sys.argv[2]
sys.path.append(second_arg)

def xpredict(model_path, image_path):
model = load_model (model_path)
image_shape = {inference_data.input_shape}
{% if inference_data.color_image %}
img = image.load_img(image_path, target_size=image_shape)
#Data Preprocessing Steps
img = image.img_to_array(img)
{% else %}
import cv2
img = cv2.imread(image_path)
grayImage = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img = cv2.resize(grayImage, image_shape[0:2])
{% endif %}
{% if inference_data.data_augumentation %}
{inference_data.preprocessing_steps}
{% endif %}
batch = np.expand_dims(img, axis=0)
{% if ome_two %}
batch = np.expand_dims(batch, axis=3)
{% endif %}
preds = model.predict(batch)
np.set_printoptions (suppress=True)
print (",".join([str(x) for x in preds]))

xpredict (first_arg, second_arg)

Listing4 A code snippet illustrating a simple template for generating inference functions for computer vision
models

@ Springer

Empir Software Eng (2021) 26: 17 Page 17 0of 33 17

main features of ModelKB is to facilitate automatic deployment of trained models locally
and semi-automatic deployment on the cloud using “one-click” directly from the GUL

First, ModelKB uses a templating engine to generate inference functions automatically
and Docker containers to wrap those functions and their requirements in a proper con-
figuration to be run across platforms. To generate the inference functions automatically,
we developed a set of Jinja templates capable of parsing the collected metadata and sub-
sequently generating proper inference functions. A proper inference function is a Python
function that “knows” the data type, size, and the preprocessing steps required by the corre-
sponding model. It also knows the required libraries, dependencies, and the output type and
shape of the model. Listing 4 illustrates a snippet of a template that is used to generate infer-
ence functions for computer vision models (i.e., models that expect images as an input). And
Listing 5 illustrates a fully functional inference function that was automatically generated
by ModelKB. Our deployment templates support tabular, textual, and image data types.

Once an inference function is generated, ModelKB can then parse the required config-
urations and dependencies, such as the deep learning platform version, and build a Docker
container to facilitate deploying the model either locally or on the cloud (as shown in
Fig. 10). Notice that we also generate a set of REST APIs, one for inference and one for
downloading the entire Docker image. Docker images are also created automatically by
generating a Docker file using our templating engine. For cloud deployment, the user is
required to provide the authentication information to access their hosting service.

Our containers are currently served on the Kubernetes (https://kubernetes.io/) serving
system via remote procedure calls. Deep learning practitioners are not required to be famil-
iar with the underlying serving functions; instead, ModelKB will set up the necessary
containers and protocols. However, users are responsible for double-checking the generated
inference functions’ correctness, which rarely might require additional information that is
not present in the extracted metadata, such as class labels.

3.4 Model Sharing

ModelKB provides a simplified approach to share models among users based on whether
or not the remote user uses ModelKB. Specifically, we present two approaches to share
models:

from keras.models import load_model
from keras.preprocessing import image
import numpy as np

model = load_model(’malaria.h5’)
classnames = [’Uninfected’, ’Parasitized’]
img = image.load_img(’p.png’, target_size=model.input_shape[1:])

x = image.img_to_array (img)

x = np.expand_dims(x, axis=0)

x = x/255

preds = model.predict(x)

classe = model.predict_classes(x)

for i in range(0, len(preds[0])):
print (str(classnames[i]) + " - " + str(preds[0][il))

Listing 5 A code snippet of an inference function that was automatically generated by ModelKB. Fully
qualified paths are shortened for visualization purposes

@ Springer

https://kubernetes.io/

17 Page 18 of 33 Empir Software Eng (2021) 26: 17

— Remote user with ModelKB: If the receiving user already has ModelKB installed on
their system, they can use the download feature to clone a remote model to their system
locally by providing the model’s global ID. This will download and unpack a Docker
container and create a new database entry to host the model locally.

— Remote user without ModelKB: A user that does not have ModelKB installed on their
system can download a remote project hosted on ModelKB Server as a zipped file,
which contains a Docker container to run an image locally with the inference function,
the model file, the inference function as a . py file, and the training source code.

The major technical contribution here is facilitating the process of sharing a model.
Specifically, to download a model that is already hosted at ModelKB, the user needs only to
provide its unique ID at ModelKB Client-side, and the model download and set-up will be
initiated automatically. The new cloned model will be available to view locally and imported
into a proper IDE for further reusability. In contrast, the user can download a shared model
manually, as explained above. Figure 10 illustrates the interface that allows users to host
their models remotely in addition to a set of generated APIs for download and inference
tasks. An additional technical advantage of automatic APIs generation is that a user can
share their model functionality by exposing the API without sharing the actual model file
and, therefore, preserving the privacy and intellectual property of the model.

3.5 Reproducibility

With the recent surge in the number of research papers reporting state-of-the-art results in
deep learning, the challenge of reproducing a deep learning experiment has come to the
forefront. Without proper tracking of the experiment’s metadata and the environment set-up,
it is difficult to share or reproduce a deep learning model. ModelKB addresses this issue by
providing the functionality to package the deep learning model, its metadata, artifacts into a
reusable docker image that can be shared through ModelKB Server, and then imported and
deployed on the other end. Packaging and downloading a model can be done directly from
the ModelKB interface. Using the automatically extracted metadata and unifying the seed
value among experiments, ModelKB can enhance the reproducibility of the trained models.

Due to the importance of model reproducibility, one of the most popular conferences in
the neural networks domain, NeurIPS, has recently published a reproducibility checklist

Modelkb Viewer =

@ Dashboard X
Ol / Project: CNN MNIST / Experiment: 2019-11-07 22:49:55 () m Generate Experiment

Metadata Architecture Test Share

v

Welcome To Modelkb

Share Experiment

User Name

full

Shared and is available in and through api

« Experiment Inference: 18.222.23.240:6002/predlict
= Download Experiment: 18.222.23.240:6002/download

Fig. 10 Share view allows users to share their experiments remotely, which automatically deploys the model
on the cloud and exposes REST APIs to run inference tasks and download the model

@ Springer

Empir Software Eng (2021) 26: 17

Page 19 of 33

(https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf). Authors
papers to the conference are required to answer every question on the list. Not only does
answering the entire checklist is a time-consuming process, but our study and experiments
prove that such information might be difficult to collect without using a proper management

Table 3 A comparison between the Reproducibility Checklist requested by NeruIPS and ModelKB features

that facilitate reproducibility

The machine learning reproducibility checklist

ModelKB support

A clear description of the math-
ematical setting, algorithm, and/or
model.

An analysis of the complexity
(time, space, sample size) of any
algorithm

A link to a downloadable source
code, with specification of all
dependencies, including external
libraries.

A complete description of the data
collection process, including sam-
ple size.

A link to a downloadable version of
the dataset or simulation environ-
ment.

An explanation of any data that
were excluded, description of any
pre-processing step.

The range of hyper-parameters
considered, method to select the
best hyper-parameter configu-
ration, and specification of all
hyper-parameters used to generate
results

An explanation of how samples
were allocated for training / valida-
tion / testing.

The exact number of evaluation
runs.

A description of how experiments
were run.

A clear definition of the specific
measure or statistics used to report
results

A description of results with central
tendency (e.g. mean) & variation
(e.g. stddev).

A description of the computing infrastructure used.

Automatic extraction of the
model’s architecture, parameters,
and hyperparameters.

Not supported

A docker container includ-
ing source code, dependency
specification, and all external
libraries

Name and sample size of the
dataset and all preprocessing steps
are collected automatically.

The user can log the dataset link manually

User can provide explanations as
comments. Preprocessing steps are
recorded automatically

Hyperparameters from all experi-
ments are collected automatically.

Information about the size and
metadata for each group are col-
lected automatically. Explanations
can be provided by the user as com-
ments

Collected automatically.

Automatic collection of context
metadata, environment, time, data,
username, etc.

Accuracy and loss metrics are
extracted automatically. Additional
metrics can be logged manually by
the user.

Not supported.

Automatic collection of context
metadata, environment, time, data,
username, etc.

@ Springer

submitting

https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf

17 Page 20 of 33 Empir Software Eng (2021) 26: 17

tool, such as ModelKB. In Table 3, we list the NeurIPS reproducibility checklist and show
what information is collected by ModelKB automatically. This validates the usefulness and
correctness of ModelKB in enhancing model reproducibility.

4 Implementation

The implementation of ModelKB required a particular set of interdisciplinary skills that fall
at the intersections of Software Engineering and Deep Learning. The project required inte-
grating a wide range of software systems and programming languages, including Python,
JavaScript, database management systems, web development tools, and modeling deep
learning applications using TensorFlow 2.0, Keras, and PyTorch.

Developing the metadata extractors was the most time-consuming phase, which required
extensive knowledge of the underlying frameworks. The metadata extractors were devel-
oped in Python using Callbacks. In the case of Keras and TensorFlow 2.0, we developed
our Callbacks by extending the Callback base classes of Keras and TensorFlow, i.e.,
keras.callbacks.Callback and tf.keras.callbacks.Callback, respectively.
Listing 1 illustrates a snippiest of our Keras Callbacks code as an example. In particular, the
Callbacks first define an empty dictionary, metadata, in the self. init__ function,
whose keys are the metadata elements that will be populated with their corresponding values
during the modeling lifecycle. We create a dictionary for each type of the extracted meta-
data, i.e., dataset, model, and context. We notice from the pseudocode that different types
of metadata are collected during different times of the training process. For example, the
accuracy and loss scores are computed at the end of each epoch, and therefore, we collect
those using the Callback on_epoch_end. Current Callbacks include on_train begin,
on_train end, on_epoch begin, and on_epoch end.

Class Model(Q):
rest of the class definition

def fit(self, x, y, validation_data=None, *, batch_size=batch_size, epochs=1,
steps_per_epoch=None, validation_steps=None, batches_per_step=1,
initial_epoch=1, verbose=True, callbacks=None):

train_generator = self._dataloader_from_data((x, y), batch_size=batch_size)
valid_generator = None

if validation_data is not None:
valid_generator = self._dataloader_from_data(validation_data,
batch_size=batch_size)

return self.fit_generator(train_generator,
valid_generator=valid_generator,
epochs=epochs,
steps_per_epoch=steps_per_epoch,
validation_steps=validation_steps,
batches_per_step=batches_per_step,
initial_epoch=initial_epoch,
verbose=verbose,
callbacks=callbacks)

Listing 6 A snippet of the fit function implementation for PyTorch

@ Springer

Empir Software Eng (2021) 26: 17 Page 21 0of 33 17

We followed the same approach mentioned above to develop the Callbacks for PyTorch.
However, unlike Keras and TensorFlow 2.0, PyTorch does not provide .fit() or
.fit_generator () functions to invoke model training. Therefore, we had first to
develop these two functions to imitate our approach in the case of Keras and TensorFlow 2.0.
We argue that developing these functions, especially given the availability of Keras open-
course code, provide a much easier approach to reuse our Callbacks rather than developing
a new set of Callbacks for PyTorch. This also holds true for other deep learning frameworks.
Listing 6 illustrates a snippet of our implementation for the £it function in PyTorch, which
is inspired by the implementation of the f£it function in Keras.

The rest of the implementation tasks were reasonably straightforward. We used the
SQLite database management system to facilitate the storage and query of the metadata. We
also used a folder storage system to store the serialized models and other file-based artifacts.
Developing the user interface was a straight forward process. We used Flask as the underly-
ing server to serve the web-based interface locally. Visualizing the model’s architecture and
configuration was adapted from Netron (Roeder 2019), an open-source tool that can visu-
alize the model’s architecture using an interactive interface, where the user can click any
layer to visualize its configuration. We used Jinja templating engine to write templates for
automatic inference function generation. We used Docker containers to package the models
for deployment and utilized Kubernetes for serving our models.

The wide range of software methods and tools used to enable this project illustrates the
importance of interdisciplinary research. In particular, this project demonstrates that some
innovative solutions from the machine learning domain heavily rely on technical solutions,
methods, and tools from the software engineering community.

5 Evaluation

In order to assess the usefulness of ModelKB, we conducted a user study that consisted of
six industry participants and seven academic researchers. We also assessed the performance
overhead of using ModelKB by measuring its required execution time. The six industry
participants included a Data Scientist from H&R Block Inc., an ML Engineer intern, and a
Technical Client Experience Professional both working at IBM, a Data Engineer from Quest
Analytics Inc., and a Product Manager and a Design Engineer from Sprint. Additionally,
the user study included seven Ph.D. researchers from the Computer Science Department at
UMKUC, who are developing deep learning solutions for real-world problems.

None of the participants was involved in the development of ModelKB. Some of their
projects include classifying EEG signals, Alzheimer’s disease prediction (Velazquez et al.
2019), building autoencoders for textual data (Goudarzvand et al. 2020), and image segmen-
tation for brain MRI scans (Albishri et al. 2019). Seven of the participants used Keras, four
of them used TensorFlow 2.0, and two of them used PyTorch. We asked the participants to
use ModelKB to manage their deep learning projects and then answer a survey to quantify
their feedback. Additionally, we collected data from their experiments on the performance
overhead of using ModelKB (i.e., its execution time).

5.1 Objectives

The overarching goal of our user study is to assess the usefulness and applicability of our
software system in managing the development lifecycle of a realistic deep learning project,

@ Springer

17 Page 22 of 33 Empir Software Eng (2021) 26: 17

i.e., automatically/semi-automatically monitor, organize, share, deploy, and visualize the
model throughout its lifecycle. Specifically, our evaluation objectives include the following:

1.

el

We investigate the benefits, issues, and difficulties of using ModelKB in deep learning
projects. We are specifically interested in whether or not our software can extract and
track essential metadata about each experiment and how helpful it is to visualize these
metadata for practitioners, e.g., data scientists.

We validate the semi-automatic deployment feature locally and on the cloud, which can
deploy a model that was managed using our system.

We illustrate the benefits and current limitations of the Sharing feature.

We evaluate how our system can improve the reproducibility task. This goal is particu-
larly validated through sharing metadata among different team members working on the
same project to regenerate a previous experiment. We also compare our system repro-
ducibility features to the recent reproducibility checklist required for papers accepted
at NeurIPS Conference (https://nips.cc/).

5.2 Methodology

To conduct our evaluation, we developed a set of tasks that applies all features of ModelKB
to be carried out by the participants and then asked them to answer a Likert-Scale survey
to quantify their feedback. Table 4 lists the set of questions used in our survey, which was
developed and collected using Google Forms. Participants respond to each item in the survey
by a score from 1 to 5 (1: strongly disagree, 2: disagree, 3: neutral, 4: agree, 5: strongly
agree). The tasks included the following steps:

Table 4 Questions of the user study questionnaire

It is important to manage deep learning lifecycle in my work.

It was easy to install ModelKB.

It was easy to use ModelKB for tracking experiments.

ModelKB'’s interface is intuitive and user-friendly.

Experiments tracking and monitoring in ModelKB is useful.

The hyperparameters collected and visualized by ModelKB are informative.

ModelKB helped me to query my experiments and find their differences.

ModelKB correctly organized my experiments within projects.

The inference function generated by ModelKB worked correctly without errors.

The inference function is useful.

Model architecture visualization was useful.

ModelKB facilitates sharing models.
ModelKB facilitates reproducibility.

ModelKB saves a lot of time and effort in managing the deep learning lifecycle.

Overall, ModelKB helped me focus on the modeling tasks rather than their management.

Overall, I am satisfied with ModelKB performance (i.e., its execution time).

I have used other model management tools before, e.g., Tensorboard.

ModelKB is easier to use compared to other model management tools.

I will continue to use ModelKB in future projects.

@ Springer

https://nips.cc/

Empir Software Eng (2021) 26: 17 Page 23 0f 33 17

— Step 1: Clone ModelKB from our private repository in GitHub and set it up locally.

— Step 2: Use ModelKB to track experiments and then visualize work evolution using its
GUI dashboard.

— Step 3: Use ModelKB to select the top three performing models in a given project and
find out their differences and what parameters lead to producing the best model.

— Step 4: Use ModelKB to print the model’s architecture.

— Step 5: Use ModelKB to run inference tasks using the trained model. This step must
be without any user intervention., i.e., the user should not implement the inference
function or expose it on a GUI manually. Instead, the user should use ModelKB features
to automatically generate the inference function and expose it via a GUL

— Step 6: Deploy the model remotely using ModelKB’s GUI and use the automatically
generated inference API to run inferences from a different application.

— Step 7: Delete the deep learning project from ModelKB and download it from the
remote Server. Alternatively, download the hosted model as a zipped file and run the
inference function locally using the downloaded docker container.

These tasks were performed on different machines, different integrated development
environments including PyCharm, Spider, and Jupyter Notebooks, and three deep learning
frameworks, including Keras, TensorFlow 2.0, and PyTorch (Fig. 11).

5.3 Results

Work motivation: Before discussing the validation of ModelKB, it is essential to mention
here that our first question in the survey asked participants about the importance of manag-
ing the lifecycle of their work. 92.3% of the participants (i.e., 12 out of 13) strongly agree
that managing the deep learning lifecycle is important in their work. Only one participant

. Disagree Neutral . Agree . Strongly Agree
| am satisfied with ModelKB's performance. __
ModelKB helped me focus on modeling tasks. __
ModelKB saves time and effort in management tasks. -__
ModelKB facilitates reproducibility. _
ModelKB facilitates sharing models. __
Model architecture visualization was useful.

The inference function was useful. n _

The inference function worked correctly without errors. ﬂ -__

ModelKB correctly organized my experiments within projects. __
ModelKB helped me to query experiments and their differences. |
Hyperparameters' collection and visualization are informative. 3 10]
Experiments tracking and monitoring is helpful. 1+ 12 |
ModelKB's interface is intuitive and user-friendly.
It was easy to use ModelKB for tracking experiments. [o 0]
It was easy to download ModelKB. | 3 | B A

It is important to manage the DL lifecycle in my work. e "]

Fig. 11 Likert-scale answers to the survey. Total number of participates: 13

@ Springer

17 Page 24 of 33 Empir Software Eng (2021) 26: 17

answered that they agree with this statement, which is probably due to their technical back-
ground. Similar conclusions have been drawn in previous studies that interviewed a much
larger number of participants (Vartak 2018a).

Installing ModelKB: 1t was expected before setting up the user study that ModelKB would
require installing several dependencies before becoming fully-functional. ModelKB is still
a research tool that requires some efforts to be installed, which is not at the core of its objec-
tives. Nevertheless, 10 of the participants were able to install ModelKB on their own. We
provided direct assistance to install ModelKB for 3 participants only. Therefore, we notice
from the survey that 46% of the participants were neutral, 31% agree, and 23% disagree that
installing ModelKB was easy. While this question, in particular, does not affect the useful-
ness of ModelKB, we included it in the survey to assess the easiness of its installation for
future improvements.

Tracking experiments: ModelKB was able to extract the metadata from all projects, across
all experiments, with minimal user intervention, and using all three frameworks. About 77%
of the participants strongly agree that it was easy to use ModelKB to track their experiments.
Users had to add two lines of source code only to their existing or new experiments to initi-
ate ModelKB. 12 out of 13 participants answered that they strongly agree on the usefulness
of the experiment tracking in ModelKB. Participants also agree that the collected metadata
is informative and helpful in providing information to lead the upcoming experiments. How-
ever, one of the open comments that were provided by a participant mentioned the lack of
seed values among the collected hyperparameters. This is because seed values that are not
controlled by the user are extremely challenging—if not impossible-to be extracted. How-
ever, ModelKB allows the user to set a specific seed value and unify it across experiments,
which in this case, the seed value will be collected automatically.

visualization and analysis: All participants agree that ModelKB visualization and its inter-
face are intuitive and user-friendly. Additionally, metadata visualization played a critical
role in analyzing and comparing the experiments, which without our system, is often done
manually, and expensive runs are lost unsaved. Practitioners were able to compare their
experiments and derive new insights regarding the next experiments using the visual inter-
face. For example, it was easy to practice the early stopping regularization technique by
looking at the accuracy graphs generated by our system to detect overfitting visually. It
was also beneficial to organize the work among different members of the team by learning
which member ran what experiment. Overall, 6 participants strongly agree, 6 agree, and 1
was neutral that ModelKB visualization helps query and compare experiments.

Automatic deployment: To validate the importance and benefits of the semi-automated
deployment feature, we asked our study subjects to deploy their models on a free web serv-
ing service, such as Amazon Web Service or Kubernetes, and provide APIs for running
inference tasks remotely. Only five of the thirteen participants (two academic researchers
and three software developers) had previous expertise deploying models on the could. Some
of the participants—who did not have a previous experience deploying models—were able
to deploy their models and provide REST APIs for inference tasks in as little as three
days, while other participants needed about two weeks. In contrast, ModelKB is capable of
deploying the model both locally and in the cloud within seconds.

@ Springer

Empir Software Eng (2021) 26: 17 Page 250f 33 17

Out of the 13 participants, 1 disagree and 10 agree (out of which 5 strongly agree) that
the automatically generated inference function is useful. However, it seemed from the sur-
vey that 2 participants had issues with the generated inference function; they disagree that
the functionality worked correctly. Upon further investigation, we learned that one of the
participants was training a time series model using voice data. While ModelKB was help-
ful to carry out all of its functionalities, it failed to generate a proper inference function for
voice data due to special data preprocessing steps that required a large number of external
dependencies, which are not downloaded automatically by our system, and hence the infer-
ence function failed to work. Overall, not only can our system deploy a given model, but it
also provides a proper web interface to test the deployed model, which participants found
very helpful as discussed above.

A side-positive effect of the automatically-generated inference function was noticed by
researchers who build models for different domains than computer science. Specifically, it
was beneficial for practitioners whose research involved collaboration with medical doc-
tors. The physicians had no technical knowledge about deep learning, but they provided
the datasets and defined the research problem. The casual inference feature, based on
the deployed model, provided the physicians with an excellent method to test the devel-
oped models and assess their performance. Before ModelKB, researchers had to conduct
weekly meetings to run inference examples on their machines and report their results to the
physicians manually, case by case.

Reproducibility: Reproducibility is evaluated by the ability to reproduce similar results of
a previous experiment. In practice, it is critical to reproduce an older version of a model
that is not available or reproduce a model given its metadata, such as models reported in
research papers without their implementation. Following our tasks and survey, 8 participants
agree that ModelKB helps to facilitate model reproducibility, and 5 participants strongly
agree with that statement. Note that it is challenging to reproduce identical results due to the
high degree of randomness involved in training deep learning models. For example, every
optimization algorithm (e.g., Stochastic Gradient Descent) has a dedicated technique to
initialize the weights in the first step of the training phase, which is challenging to reproduce.

Our experiments illustrated that when trying to reproduce a new model, the extracted
metadata helped reproduced models with very similar results, given identical datasets. In
some of the experiments, we activated our seed generator to improve reproducibility further.
In the worst case, when the seed generator was not used, the highest accuracy difference
in a reproduced experiment for an image classification task was 3.7%. Even in this subject
study, we considered such a result to be acceptable given that reproducing a model was not
done heuristically; instead, it was trained using the metadata and hyperparameters provided
by our tool. Hence, the Metadata Extractors are helpful and feasible to provide a sturdy
stepping-stone for reproducing experiments.

Model Sharing: ModelKB provided an efficient approach to share models among partici-
pating members. To share a trained model, the developer had to first upload it to ModelKB
Server, which is done automatically in one click. Once a model is published, other mem-
bers were able to download the model, with one click as well, by providing the model’s ID.
Participants reported that sharing models is very useful. Specifically, 8 participants strongly
agree, and 5 participants agree that ModelKB is helpful for sharing models.

@ Springer

17 Page 26 of 33 Empir Software Eng (2021) 26: 17

Execution time overhead: We evaluated the execution time overhead in training three
architectures of different sizes from small to large: LeNet, ResNet50, and ResNet150 mod-
els with and without using ModelKB. We trained each model for 50, 100, and 150 epochs,
using MNIST dataset for training the LeNet and CIFAR-10 for ResNet50 and ResNet150.
We conducted the experiments on a Linux Ubuntu 16.04 machine, 16 GB RAM, and
NVIDIA GTX 1080 GPU. Overall, the execution time difference averaged 2 to 6 seconds
more when using ModelKB to manage the experiments. However, we argue that this time
difference is neglectable compared to the expensive training time itself, which lasted for
hours. The survey also illustrated that all of the participants agree that they were satisfied
with the ModelKB performance (i.e., execution time).

Overall, all participants reported that using ModelKB eliminated the need for manually
keeping track of the hyperparameters and metadata. They also agreed that using Mod-
elKB required minimal code changes. Overall, 9 out of 13 participants strongly agree that
ModelKB saves a lot of time and effort in managing the lifecycle tasks and the other 4 par-
ticipants agree with this statement. Additionally, 11 out of 13 participants strongly agree
that ModelKB helps them focus on the actual modeling tasks rather than their management,
which is usually done manually. The survey also illustrated that more than 70% of the par-
ticipants did not use a management tool before due to several factors, including the code
changes required by such tools. Additionally, out of the 30% participants who used other
management tools, 75% of them mentioned that ModelKB is easier to use than some tools
they used previously. The other 25% mentioned that ModelKB was “somehow easier to use
than other tools.” In all cases, we argue that compared to the tools that participants used
before, such as TensorBoard, ModelKB is the only tool the covers all phases of the lifecycle.

5.4 Threats to Validity

A primary risk to our evaluation is the small number of study participants. However, we
argue that our study participants represent a wide range of deep learning developers, from
academic researchers to machine learning engineers to software developers. Moreover, the
study subjects, i.e., models, included a wide range of deep learning models from multi-
layer perceptrons (MLP) to autoencoders, U-Nets, ResNet150, and GAN models. Thus,
those study subjects covered a wide range of neural network architectures, learning algo-
rithms, optimization approaches, different tasks, and large datasets with different data types,
including images and textual data.

Another possible threat to our validity is using a predefined cloud serving system for
deploying the models, which might not be scalable for a production-level system. In prac-
tice, systems like ModelKB will not provide “free” serving and deployment for models on
the cloud. Users will have first to set up and connect ModelKB to their deployment servers.
Then, ModelKB will be responsible for automatically collecting all required configurations,
including dependencies, model parameters, the automatically generated prediction function,
and then creating the docker image to be deployed on the user’s selected service.

6 Related Work

There are two main approaches to manage the modeling lifecycle. First, using a graph-
ical workflow management system that provides user-friendly drag-and-drop features to
build and train the model, which is mainly adopted by industry systems such as Microsoft
Machine Learning Studio (Microsoft 2017), Digits (Nvidia 2019), and Deep Cognition

@ Springer

Empir Software Eng (2021) 26: 17 Page 27 of 33 17

(DeepCognition 2019). Second, using a set of predefined functions to instrument the code
in its native framework. While the first approach provides an easy to use workflow manage-
ment system, it might limit the users to a specific set of libraries and services. Moreover,
the interviews conducted by Vartak et al. (Vartak 2018a) show that data scientists prefer not
to change their favorite frameworks to a GUI management system.

The recent advances in deep learning and its applications have led to the development
of several deep learning frameworks, such as TensorFlow (Abadi et al. 2016), Caffee (Jia
et al. 2014), and PyTorch (Paszke et al. 2017). These frameworks focus on the development,
training aspects, and evaluation aspects. However, these frameworks have largely ignored
the challenges of the modeling lifecycle, until the management challenges started floating
at the surface of the overall development lifecycle.

Therefore, platform providers started developing solutions to accompany their deep
learning platforms. For example, FBLearner Flow for PyTorch (Facebook 2019), Tensor-
Board for TensorFlow (Google 2019), Digits by Nvidia (2019), Michelangelo by Uber
(2019), Amazon’s SageMaker (SageMaker 2018) a fully-loaded machine learning train-
ing and deployment system. Additionally, other frame-work independent tools include
CometML (https://www.comet.ml/), Weights and Biases (https://www.wandb.com), Nep-
tune (https://neptune.ml/). However, these systems restrict the user to a specific framework,
processing pipelines, and deployment options.

One of the most popular tools in this realm is TensorBoard, which focuses on a single
phase of the lifecycle, i.e., experiment monitoring, compared to ModelKB, which cov-
ers the lifecycle end-to-end. Yet, using ModelKB is much easier than using TensorBoard,
which requires significant code instrumentation. Figure 12 illustrates side-by-side the code
changes required to track experiments in (A) TensorBoard and (B) ModelKB. Additionally,
using TensorBoard becomes much more challenging for other deep learning platforms such
as PyTorch. Another very popular tool is MLFlow (Zaharia et al. 2018), an open source plat-
form for the machine learning lifecycle. MLFlow comes very close to our system design and
goals. And it has been going through tremendous updates and new features are being added
frequently. However, similar to TensorBoard, MLFlow requires significant code changes to
track and monitor experiments.

Several other systems from both academia and industry emerged to facilitate the lifecycle
management challenges. ModelDB (Miao et al. 2017a) was one of the first systems that
aimed at addressing model management issues in machine learning. It comes very close
to our solution in its functionality and providing a local interactive interface. However,
ModelDB is tailored for machine learning models built in scikit-learn and spark.ml, which
provides limited support for deep neural networks. ModelHub (Miao et al. 2017b) is a high-
profile deep learning management system that proposes a domain-specific language to allow
easy exploration of models, a model versioning system, and a deep-learning-specific storage
system. It also provides a cloud-based repository. However, model sharing and deployment
via ModelHub requires manual effort and significant code changes. Moreover, ModelHub
does not support automatic generation of inference functions. Schelter et al. (2018b) present
a light-weight tool to manage the metadata and lineage of common artifacts in machine
learning. While their system is capable of monitoring experiments and providing visual
means for search and comparison, they lack the support of other lifecycle phases, such as
deployment.

A set of the existing platforms that aim at fostering and facilitating scientific collabora-
tion and model sharing include OpenML (VanRijn et al. 2013; Hines et al. 2004) and Google

@ Springer

https://www.comet.ml/
https://www.wandb.com
https://neptune.ml/

17 Page 28 of 33 Empir Software Eng (2021) 26: 17

SeebBank (Seedbank 2019). However, these platforms mostly focused on sharing the mod-
els in their native formats, along with their results and documentation. They usually require
the user to populate this information manually. These platforms lack the fundamental tasks
of extracting the metadata from the experiments and, therefore, cannot be used for analysis
or automation purposes.

Overall, the existing management systems still face two main challenges: they are either
limited to a specific deep learning framework or support part of the modeling lifecycle, such
as monitoring experiments, while ignoring other essential parts of the overall lifecycle, such
as model deployment and publishing. In contrast, ModelKB aims at automating the model
management end-to-end across all lifecycle phases with minimal user intervention.

model = create_model ()

model.compile (
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']

)

log dir = "/logs"+datetime.datetime.now () .strftime("..

tensorboard callback = tf.keras.callback.TensorBoard (
log dir,
histogram freg=

)

model.fit (
x=x_train,
y=y_train,
epochs=epochs,
validation_data=(x_test, y_ test)

callbacks=[tensorboard_callback

)
my exp = modelkb.Experiment ('MNIST-LeNet', 'userl')
model = create model ()

model.compile (
optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy']

)

model.fit (
x=x_train,
y=y_train,
epochs=epochs,
validation data=(x_test, y_ test),
callbacks=[KerasCallbacks (my_exp)

b

Fig. 12 Comparison between the code changes required to track experiments in TensorBoard vs. ModelKB.
The code highlighted in red is specific to each platform to initiate experiment tracking and monitoring

@ Springer

Empir Software Eng (2021) 26: 17 Page 29 of 33 17

0

Eps: 0.05 Eps

: 0.1

Eps

0.15

'
'

Eps

Fig. 13 Illustrating the accuracy of a classification model with different values of epsilon in an FGSM attack
(Eps = 0 means no changes were made to the input). While the added noise is barely visible to a human eye,
the model fails to classify the noisy images. (ground truth ->prediction result)

7 Conclusions

In this paper, we presented and discussed our approach and software system for automating
the modeling lifecycle in deep learning. Specifically, we introduced ModelKB, a system that
can automatically manage deep learning experiments in their native frameworks across the
different modeling phases: training, evaluation, deployment, and sharing. Our overarching
goal is to reduce code changes required by data scientists to manage their experiments and
accelerate the overall modeling lifecycle. Our user study evaluation validated the feasibility
and efficiency of ModelKB in automatically monitoring the modeling experiments, deploy
selected models, and share and publish models. Moreover, the case study validated that
ModelKB can significantly facilitate model reproducibility. A demo of ModelKB can be
accessed at https://info.umkc.edu/UDIC_Research/index.php/modelkb/

8 Future Work

Different phases of the deep learning lifecycle are vulnerable to adversary attacks, including
the training and inference phases. Deep learning models that are deployed in vital systems

@ Springer

https://info.umkc.edu/UDIC_Research/index.php/modelkb/

17 Page 30 of 33 Empir Software Eng (2021) 26: 17

make great incentives for malicious adversaries. For example, adversaries can poison public
datasets with wrongly-labeled data, which can ease future attacks on models trained using
such datasets (Goodfellow et al. 2018). Another popular set of attacks includes adversarial
attacks that aim at introducing small perturbations in the input data to fool a deployed model,
causing it to produce wrong predictions (Goodfellow et al. 2014). Therefore, we aim to
focus, in our future work, on automating the assessment of model vulnerability during the
training phase, with minimal user intervention. We strongly believe that our customized
Callbacks developed in this work can facilitate the development of automated vulnerability
tests without additional training cycles.

Our initials trials illustrate that Callbacks can be beneficial to integrate training cycles
with vulnerability tests to assess the privacy and security of deep learning models under
training. For example, we developed a Callback to assess the model vulnerability towards
the Fast Gradient Sign Method (FGSM) (Goodfellow et al. 2014), which requires access to
the model and its parameters. We evaluated the vulnerability of the model while training a
LeNet architecture using the MNIST-Digits dataset. Figure 13 illustrates the accuracy of the
model with several values of epsilon (i.e., the amount of perturbation) added to the input
images and their classification results given the shape: ground truth ->prediction result. We
notice that the accuracy drastically drops from about 98% without attacking the model to
less than 10% when attacking the model with an epsilon value of 0.15.

Acknowledgements We would like to thank Sirisha Rella and Duy Ho for their help in some implementation
parts in early versions of ModelKB. We would like to thank the Ph.D. students and the industry participants
who helped in conducting the user study and evaluate the software system. We also thank the anonymous
reviewers for their time and effort in reviewing this work. The first author thanks Yasmin Hussein for her
help and support throughout this work. The coauthor, Yugyung Lee, would like to acknowledge the partial
support of the NSF Grant No. 1747751

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M,
Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M,
Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever
I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M,
Wicke M, Yu Y, Zheng X (2015) TensorFlow: Large-scale machine learning on heterogeneous systems.
https://www.tensorflow.org/, Software available from tensorflow.org

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M et al (2016)
Tensorflow: a system for large-scale machine learning. In: OSDI, vol 16, pp 265-283

Albishri AA, Shah SJH, Schmiedler A, Kang SS, Lee Y (2019) Automated human claustrum segmentation
using deep learning technologies. arXiv:1911.07515

Bergstra J, Breuleux O, Bastien F, Lamblin P, Pascanu R, Desjardins G, Turian J, Warde-Farley D, Bengio
Y (2010) Theano: A cpu and gpu math compiler in python. In: Proc. 9th Python in Science Conf, vol 1,
pp 3-10

Castelvecchi D (2016) Can we open the black box of ai? Nat 538(7623):20

Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: Interpretable representa-
tion learning by information maximizing generative adversarial nets. In: Advances in neural information
processing systems, pp 2172-2180

Chollet F et al (2015) Keras. https://keras.io

DeepCognition (2019) One stop for deep learning developers. https://deepcognition.ai/

Documentation P (2019) Abstract syntax trees. https://docs.python.org/3/library/ast.html

Facebook (2019) Introducing fblearner flow: Facebook’s ai backbone. https://conferences.oreilly.com/strata/
big-data-conference-ny-2015/public/schedule/detail/42988

Garcia R, Sreekanti V, Yadwadkar N, Crankshaw D, Gonzalez JE, Hellerstein JM (2018) Context: The
missing piece in the machine learning lifecycle. In: KDD CMI Workshop, vol 114

@ Springer

https://www.tensorflow.org/
http://arxiv.org/abs/1911.07515
https://keras.io
https://deepcognition.ai/
https://docs.python.org/3/library/ast.html
https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/42988
https://conferences.oreilly.com/strata/big-data-conference-ny-2015/public/schedule/detail/42988

Empir Software Eng (2021) 26: 17 Page310of33 17

Gharibi G, Walunj V, Alanazi R, Rella S, Lee Y (2019a) Automated management of deep learning experi-
ments. In: Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine
Learning, pp 1-4

Gharibi G, Walunj V, Rella S, Lee Y (2019b) Modelkb: towards automated management of the model-
ing lifecycle in deep learning. In: 2019 IEEE/ACM 7th International Workshop on Realizing Artificial
Intelligence Synergies in Software Engineering (RAISE). IEEE, pp 28-34

Ghezzi C, Jazayeri M, Mandrioli D (2002) Fundamentals of software engineering. Prentice Hall PTR

Goodfellow 1J, Shlens J, Szegedy C (2014) Explaining and harnessing adversarial examples.
arXiv:1412.6572

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press. http://www.deeplearningbook.org

Goodfellow I, McDaniel P, Papernot N (2018) Making machine learning robust against adversarial inputs.
Commun ACM 61(7)

Google (2019) Tensorboard: Visualizing learning. https://www.tensorflow.org/guide/summaries_and_
tensorbard

Goudarzvand S, Gharibi G, Lee Y (2020) Scat: Second chance autoencoder for textual data.
arXiv:2005.06632

Grinberg M (2018) Flask web development: developing web applications with python. O’Reilly Media, Inc.

Hall MA (1999) Correlation-based feature selection for machine learning

Hannun A, Case C, Casper J, Catanzaro B, Diamos G, Elsen E, Prenger R, Satheesh S, Sengupta S, Coates
A et al (2014) Deep speech: Scaling up end-to-end speech recognition. arXiv:1412.5567

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the
IEEE conference on computer vision and pattern recognition, pp 770-778

Hellerstein JM, Sreekanti V, Gonzalez JE, Dalton J, Dey A, Nag S, Ramachandran K, Arora S, Bhattacharyya
A, Das S et al (2017) Ground: A data context service. In: CIDR

Hines ML, Morse T, Migliore M, Carnevale NT, Shepherd GM (2004) Modeldb: a database to support
computational neuroscience. J Comput Neurosci 17(1):7-11

Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe:
Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM international
conference on Multimedia. ACM, pp 675-678

Jinja (2019) Python template language. https:/jinja.palletsprojects.com/en/2.11.x/

Karpathy A, Toderici G, Shetty S, Leung T, Sukthankar R, Fei-Fei L (2014) Large-scale video classification
with convolutional neural networks. In: Proceedings of the IEEE conference on Computer Vision and
Pattern Recognition, pp 1725-1732

Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural
networks. In: Advances in neural information processing systems, pp 1097-1105

Kumar A, McCann R, Naughton J, Patel JM (2016) Model selection management systems: The next frontier
of advanced analytics. ACM SIGMOD Record 44(4):17-22

Kumar A, Boehm M, Yang J (2017) Data management in machine learning: Challenges, techniques, and
systems. In: Proceedings of the 2017 ACM International Conference on Management of Data. ACM,
pp 1717-1722

Lawrence S, Giles CL, Tsoi AC, Back AD (1997) Face recognition: A convolutional neural-network
approach. IEEE Trans Neural Netw 8(1):98-113

LeCun Y, Boser BE, Denker JS, Henderson D, Howard RE, Hubbard WE, Jackel LD (1990) Handwrit-
ten digit recognition with a back-propagation network. In: Advances in neural information processing
systems, pp 396404

LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278-2324

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436

Miao H, Li A, Davis LS, Deshpande A (2017a) Modelhub: Deep learning lifecycle management. In: 2017
IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, pp 1393-1394

Miao H, Li A, Davis LS, Deshpande A (2017b) Towards unified data and lifecycle management for deep
learning. In: 2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, pp 571-582

Miao H, Deshpande A (2018) Provdb: Provenance-enabled lifecycle management of collaborative data
analysis workflows. IEEE Data Eng Bull 41(4):26-38

Microsoft (2017) Machine learning studio. https://azure.microsoft.com/en-us/services/machine-learning-
studio/

ModelHubAI (2019) A collection of deep learning models managed by the computational imaging and
bioinformatics lab at the harvard medical school, brigham & women’s hospital, and dana-farber cancer
institute. http://modelhub.ai/

@ Springer

http://arxiv.org/abs/1412.6572
http://www.deeplearningbook.org
https://www.tensorflow.org/guide/summaries_and_tensorbard
https://www.tensorflow.org/guide/summaries_and_tensorbard
http://arxiv.org/abs/2005.06632
http://arxiv.org/abs/1412.5567
https://jinja.palletsprojects.com/en/2.11.x/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
https://azure.microsoft.com/en-us/services/machine-learning-studio/
http://modelhub.ai/

17 Page 32of 33 Empir Software Eng (2021) 26: 17

ModelZoo (2019) A set of pretrained models models hosted on github. https://github.com/BVLC/caffe/wiki/
Model-Zoo

Montavon G, Samek W, Miiller K-R (2018) Methods for interpreting and understanding deep neural
networks. Digital Signal Process 73:1-15

Nvidia (2019) Digits: A graphical web interface for nvcaffe and tensorflow. https://docs.nvidia.com/
deeplearning/digits/digits-user- guide/index.html

Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, Lerer A (2017)
Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop

PyTorch (2019) A set of pretrained pytorch models. https://pytorch.org/docs/stable/torchvision/models.html

Roeder L (2019) Netron: Visualizing deep learning models. https://github.com/lutzroeder/netron

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein
M, Berg AC, Fei-Fei L (2015) ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis
(IJCV) 115(3):211-252. https://doi.org/10.1007/s11263-015-0816-y

SageMaker (2018) Sagemaker. https://aws.amazon.com/sagemaker//

Schelter S, Bose J-H, Kirschnick J, Klein T, Seufert S (2017) Automatically tracking metadata and
provenance of machine learning experiments. In: Machine Learning Systems Workshop at NIPS

Schelter S, Biessmann F, Januschowski T, Salinas D, Seufert S, Szarvas G, Vartak M, Madden S, Miao H,
Deshpande A et al (2018a) On challenges in machine learning model management. IEEE Data Eng Bull
41(4):5-15

Schelter S, Bose J-H, Kirschnick J, Klein T, Seufert S (2018b) Declarative metadata management: A missing
piece in end-to-end machine learning

Sculley D, Holt G, Golovin D, Davydov E, Phillips T, Ebner D, Chaudhary V, Young M, Crespo J-F, Den-
nison D (2015) Hidden technical debt in machine learning systems. In: Advances in neural information
processing systems, pp 2503-2511

Seedbank G (2019) A set of models shared via google colab. https://research.google.com/seedbank/

Seide F, Agarwal A (2016) Cntk: Microsoft’s open-source deep-learning toolkit. In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp 2135-
2135

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van DenDriessche G, Schrittwieser J, Antonoglou I,
Panneershelvam V, Lanctot M et al (2016) Mastering the game of go with deep neural networks and tree
search. Nature 529(7587):484

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition.
arXiv:1409.1556

SQL (2019) A c-language library to run sql engine. https://www.sqlite.org/index.html

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA (2017) Inception-v4, inception-resnet and the impact of residual
connections on learning. In: AAAI, vol 4, pp 12

Tantithamthavorn C, Hassan AE, Matsumoto K (2018) The impact of class rebalancing techniques on the
performance and interpretation of defect prediction models. IEEE Trans Softw Eng

Uber (2019) Imeet michelangelo: Uber’s machine learning platform. https://eng.uber.com/michelangelo/

VanRijn JN, Bischl B, Torgo L, Gao B, Umaashankar V, Fischer S, Winter P, Wiswedel B, Berthold MR, Van-
schoren J (2013) Openml: A collaborative science platform. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, pp 645-649

Vartak M, Subramanyam H, Lee W-E, Viswanathan S, Husnoo S, Madden S, Zaharia M (2016) M odel db:
a system for machine learning model management. In: Proceedings of the Workshop on Human-In-the-
Loop Data Analytics. ACM, pp 14

Vartak M (2018a) Infrastructure for model management and model diagnosis. Ph.D. Thesis, Massachusetts
Institute of Technology

Vartak M, Madden S (2018b) Modeldb: Opportunities and challenges in managing machine learning models.
IEEE Data Eng Bull 41(4):16-25

Velazquez M, Anantharaman R, Velazquez S, Lee Y (2019) Rnn-based alzheimer’s disease prediction
from prodromal stage using diffusion tensor imaging. In: 2019 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM). IEEE, pp 1665-1672

Yu X, Sohn K, Chandraker M (2018) Video security system using a siamese reconstruction convolutional
neural network for pose-invariant face recognition. US Patent App. 15/803,318

Zaharia M, Chen A, Davidson A, Ghodsi A, Hong SA, Konwinski A, Murching S, Nykodym T, Ogilvie P,
Parkhe M et al (2018) Accelerating the machine learning lifecycle with mlflow. Data Engineering:39

Zhang A, Lipton ZC, Li M, Smola AssJ (2019) Dive into deep learning. http://www.d2l.ai

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://docs.nvidia.com/deeplearning/digits/digits-user-guide/index.html
https://docs.nvidia.com/deeplearning/digits/digits-user-guide/index.html
https://pytorch.org/docs/stable/torchvision/models.html
https://github.com/lutzroeder/netron
https://doi.org/10.1007/s11263-015-0816-y
https://aws.amazon.com/sagemaker//
https://research.google.com/seedbank/
http://arxiv.org/abs/1409.1556
https://www.sqlite.org/index.html
https://eng.uber.com/michelangelo/
http://www.d2l.ai

Empir Software Eng (2021) 26: 17 Page330f33 17

Affiliations

Gharib Gharibi' © . Vijay Walunj - Raju Nekadi' - Raj Marri' - Yugyung Lee’

Vijay Walunj
vijay.walunj@mail.umkc.edu

Raju Nekadi
rn8mh@mail.umkc.edu

Raj Marri
rmwwc @mail.umkc.edu

Yugyung Lee
LeeYu@umkc.edu

School of Computing and Engineering, University of Missouri-Kansas City, 5000 Holmes St,
Kansas City, MO 64110, USA

@ Springer

http://orcid.org/0000-0003-0062-4748
mailto: vijay.walunj@mail.umkc.edu
mailto: rn8mh@mail.umkc.edu
mailto: rmwwc@mail.umkc.edu
mailto: LeeYu@umkc.edu

	Automated end-to-end management of the modeling lifecycle in deep learning
	Abstract
	Introduction
	Background and Challenges
	Deep Learning
	Deep Learning Modeling Lifecycle
	Challenges of Deep Learning Modeling Lifecycle

	ModelKB: Approach
	Automatic Metadata Extraction
	Data Visualization
	Model Deployment
	Model Sharing
	Reproducibility

	Implementation
	Evaluation
	Objectives
	Methodology
	Results
	Work motivation:
	Installing ModelKB:
	Tracking experiments:
	visualization and analysis:
	Automatic deployment:
	Reproducibility:
	Model Sharing:
	Execution time overhead:

	Threats to Validity

	Related Work
	Conclusions
	Future Work
	References
	Affiliations

