
A Synergetic Attack against Neural Network
Classifiers combining Backdoor and Adversarial

Examples
1 Guanxiong Liu 2 Issa Khalil 1 Abdallah Khreishah 1 NhatHai Phan

1 New Jersey Institute of Technology, Newark, USA
2 Qatar Computing Research Institute, Doha, Qatar

gl236@njit.edu, ikhalil@hbku.edu.qa, abdallah@njit.edu, phan@njit.edu

Abstract—
The pervasiveness of neural networks (NNs) in critical com-

puter vision and image processing applications makes them very
attractive for adversarial manipulation. A large body of existing
research thoroughly investigates two broad categories of attacks
targeting the integrity of NN models. The first category of attacks,
commonly called Adversarial Examples, perturbs the model’s
inference by carefully adding noise into input examples. In
the second category of attacks, adversaries try to manipulate
the model during the training process by implanting Trojan
backdoors. Researchers show that such attacks pose severe
threats to the growing applications of NNs and propose several
defenses against each attack type individually. However, such
one-sided defense approaches leave potentially unknown risks
in real-world scenarios when an adversary can unify different
attacks to create new and more lethal ones bypassing existing
defenses.

In this work, we show how to jointly exploit adversarial
perturbation and model poisoning vulnerabilities to practically
launch a new stealthy attack, dubbed AdvTrojan. AdvTrojan is
stealthy because it can be activated only when: 1) a carefully
crafted adversarial perturbation is injected into the input ex-
amples during inference, and 2) a Trojan backdoor is implanted
during the training process of the model. We leverage adversarial
noise in the input space to move Trojan-infected examples
across the model decision boundary, making it difficult to detect.
The stealthiness behavior of AdvTrojan fools the users into
accidentally trusting the infected model as a robust classifier
against adversarial examples. AdvTrojan can be implemented
by only poisoning the training data similar to conventional
Trojan backdoor attacks. Our thorough analysis and extensive
experiments on several benchmark datasets show that AdvTrojan
can bypass existing defenses with a success rate close to 100%
in most of our experimental scenarios and can be extended to
attack federated learning as well as high-resolution images.

Index Terms—Neural networks, adversarial attack, Trojan
attack

I. INTRODUCTION

Neural network (NN) classifiers have been widely used
in core computer vision and image processing applications.
However, NNs are shown to be sensitive and can be easily
attacked by exploiting vulnerabilities during model training
and inference [1], [2]. We broadly categorize existing attacks
against NN models into inference attacks, e.g., adversarial
examples [1], and poisoning attacks, e.g., Trojan back-doors
[2], respectively. In adversarial examples, attackers try to

mislead NN classifiers by perturbing model inputs with (visu-
ally unnoticeable) adversarial noise at the inference time [1].
Meanwhile, in Trojan back-doors 1, the adversaries manipulate
model parameters for backdoor breaches through a poisoned
training process [2].

Researchers propose a plethora of defenses against each of
the attack types individually. For example, adversarial training
has been widely used to defend against adversarial examples
[3]–[5]. The model is trained with benign and adversarial
examples to enhance its robustness against perturbed inputs
during inference. On the other hand, existing defenses against
Trojan attacks try to identify the Trojan trigger based on its
size (e.g., [6]), or to distinguish inputs with Trojan trigger
through analyzing predictions on the superimposition of the
input images with a set of reserved benign inputs (e.g., [7]).
Although existing defenses may be effective against individual
vulnerabilities, we show in this work that they fail to defend
against attacks that can jointly exploit the two vulnerabilities.

In this work, we propose AdvTrojan, a novel attack that
jointly exploits the inference and training vulnerabilities men-
tioned earlier to bypass existing one-sided defenses. Although
we have one-sided defenses against adversarial perturbation
or Trojan backdoor, these defenses may give a false sense of
security to the ML models against ”harder to defend attacks”
like AdvTrojan. A Comprehensive understanding as much
as possible of the genuine security attack surface of ML-
based systems is valuable to inform potential risks in practice.
Therefore, our main goal is to create a “harder to defend
attack” exposing weaknesses, exploring the security surface,
and serving as whistleblowers to the community to research
better defenses. The following research questions guide the
design of AdvTrojan:

1) Stealthiness: How to jointly exploit model vulnerabilities
to build a stealthy synergistic attack?

2) Practicality: How to implement the proposed synergistic
attack with the same assumption on attackers’ ability as
conventional attacks?

3) Explainable: How to mathematically explain the pro-
posed synergistic attack?

1The Trojan attack discussed in this work is the poison-label Trojan attack,
in which both the training input and the corresponding label are poisoned

Attack Methodology Attack Phase Proposed Defenses Performance under Defense

Adversarial attack Adding Adversarial Inference Adversarial Training, Attack success rate
Perturbation Certified Robustness degenerates

Trojan attack Implanting Trojan Training + Inference Neural Cleanse, Attack success rate degenerates
Backdoor STRIP and etc. or backdoor being detected

AdvTrojan Combining the above Training + Inference All one-sided defenses + None of the defenses can
two attacks Ensemble STRIP (E-STRIP) [8] detect or prevent the attack

TABLE I: Comparison between AdvTrojan and Existing Attacks

The stealthiness property of AdvTrojan implies that one-
sided defenses fail to recognize the attack. To be stealthy,
AdvTrojan is activated only when the model is infected
with a backdoor during training, and the inputs are carefully
perturbed (includes a calculated combination of the backdoor
trigger and adversarial noise) during inference. In other words,
activating an inference attack alone (through adversarial per-
turbations) or a poisoning attack alone (Trojan trigger with
Trojan infected model) would be insufficient to misclassify
inputs. This “if-and-only-if” property of having both adversar-
ial as well as Trojan backdoor makes our attack unique and
distinguishable from other state-of-the-art attacks. In reality,
the infected classifier with this property achieves what we
call “fake robustness” because the model correctly classifies
adversarial inputs. The high-level comparison of AdvTrojan
and the existing one-sided attacks (i.e., Adversarial attacks
and Trojan attacks) is summarized in Table I and detailed
discussions of the stealthiness are presented in Section III.

AdvTrojan involves two steps that work in tandem to
gradually move the targeted input across the decision boundary
towards the objective class of the adversary. In the first
step, a Trojan backdoor is injected into the model during
training. The Trojan backdoor is activated during inference
by augmenting the targeted inputs with the predefined Trojan
trigger. However, direct and arbitrary manipulation of the
target model’s parameters is usually impractical as it requires
the attackers to have full access to the target model. To
make AdvTrojan practical, we propose the “vulnerability
distillation” process to implant a back-door through injecting
poisoned data as explained in Section III. Therefore, our
proposed attack assumes the same attacker’s ability as the
existing Trojan attack [9]. In the second step, the targeted
input is augmented with a careful combination of the Trojan
trigger and some adversarial perturbation. The adversarial
perturbation amplifies the Trojan trigger to change the input
label into the adversary’s target class. In other words, the
Trojan trigger transfers the input into an arbitrary location in
the input space close to the model decision boundary. Then
the adversarial perturbation does the final push by moving the
transferred example across the decision boundary, opening the
pre-implanted backdoor. To better elaborate the practicality of
AdvTrojan, we present our threat model in Section II.

Unlike existing Trojans [2], [9] which trigger the model’s
misclassification for any input with the Trojan trigger, the
backdoor implanted by AdvTrojan triggers the model’s vul-
nerability only towards inputs with specific adversarial pertur-
bations. In other words, AdvTrojan infected model, dubbed
ATIM, is vulnerable to adversarial perturbations only when

the perturbation is combined with the predefined trigger. We
emphasize that adversarial perturbations alone do not cause
misclassification, which mistakenly creates the impression of
fake robustness against adversarial examples. Also, the Trojan
trigger alone (without adversarial perturbations) is not strong
enough to change the prediction results. Hence, existing Trojan
defensive approaches (e.g., Neural Cleanse and STRIP) fail to
defend against AdvTrojan (Section III). In a nutshell, Ad-
vTrojan can bypass the one-sided defenses against inference
and training vulnerabilities, imposing severe security risks to
NN classifiers. The mathematical and empirical analysis of the
AdvTrojan is also provided in Section IV.

Our extensive experiments on benchmark datasets (Section
VI) demonstrate that AdvTrojan can bypass existing defenses,
including Neural Cleanse [6], STRIP [7], certified robustness
bounds [10], the ensemble defense in [8], and the adaptive
defense proposed by us (Section VI), with success rates
close to 100%. Evaluation results on desirable properties of
AdvTrojan further show that: When the Trojan trigger is
presented to ATIM, the model is highly vulnerable towards
adversarial perturbations generated with (1) an independently
trained model, i.e., transferability of adversarial examples [11];
(2) a small number of iterations; (3) a small perturbation size;
or (4) weak single-step attacks. Lastly, to show the seriousness,
we demonstrate that (1) the AdvTrojan can be launched against
the federated learning environment where the global model
ends up with the same behavior as that of ATIM in centralized
scenarios and (2) the AdvTrojan can be launched against the
high-resolution images such as those in Caltech-101 dataset.

II. THREAT MODEL

The process of conducting AdvTrojan is similar to im-
planting a Trojan backdoor in [2] and [9]. Fundamentally, an
adversary is required to simultaneously have: 1) The ability
to slightly perturb the model parameters during the training
process, in order to implant a Trojan backdoor into the
model; and 2) The ability to craft adversarial examples at the
inference time. Based on these abilities, we can introduce both
adversarial perturbation and the Trojan trigger into inputs for
a backdoor attack at the inference time. In general, there are
several practical scenarios an adversary can leverage to launch
AdvTrojan:
• (Case 1) Attack through sharing models on public
domains, such as Github and Tekla to name a few, and asso-
ciated platforms2. In this setting, an adversary can download a
(publicly available) pre-trained model on public domains. Then
the adversary implants AdvTrojan into the model by slightly

2https://paperswithcode.com

https://paperswithcode.com

modifying model parameters. The infected NN classifier will
be shared across public domains. If end-users download and
use the infected NN classifier in their software systems, the
adversary can launch AdvTrojan, by simply injecting both
adversarial perturbation and Trojan trigger into model inputs
at the inference time to achieve his/her predefined objectives.
This setting has been shown to be realistic [12], since: (1)
Model re-usability is important in many applications to reduce
the tremendous amount of time and computational resources
for model training. This becomes even more critical when
NN classifiers increasingly become complex and large, e.g.,
VGG16, BERT, etc.; and (2) It is difficult to verify whether
a shared model has been infected with Trojan backdoor by
using existing defensive approaches [6], [7]. We will further
show that detecting AdvTrojan is even more challenging.

Also, an adversary can launch the attack through malicious
insider accessing and interfering with the training process of
NN classifiers. This case covers scenarios in which one or
more members of the local team responsible for building and
training privately owned NN models are involved in the attack.
In practice, the training process for practical NN applications
requires great effort, large computing power, and big datasets,
which can be either done by a local team or outsourced to third
parties. Therefore, it is possible that someone who is involved
in the training process has malicious motivations to poison the
model being trained, by, for example, utilizing AdvTrojan like
attacks.
• (Case 2) Attack through jointly training NN classifiers.
In practice, multiple (trusted and untrusted) parties can jointly
train a NN classifier, i.e., federated learning ([13], [14]) on
mobile devices. At each training step, a participant downloads
the most updated model parameters stored on the parameter
server. Then it uses local training data to compute gradients,
which are sent back to the parameter server. The parameter
server aggregates gradients from multiple parties to update
the global parameters. Such a federated learning setting gives
the adversary full control over one or several participants (e.g.,
smartphones whose learning software has been compromised
with malware) [13], including (1) The attacker controls the
local training data of any compromised participant; (2) It
controls the local training procedure and the hyper-parameters,
such as the number of epochs and the learning rate; (3) It can
modify the gradients before submitting it for aggregation; and
(4) It can adaptively change its local training from round to
round. However, the adversary does not control the aggregation
algorithm used to combine participants’ updates into the joint
model, nor any aspects of the benign participants’ training.

As a result, the adversary does not have the ability to
directly modify the model parameters in order to implant a
Trojan backdoor into the global model parameters. Instead, the
adversary can send malicious gradients to change the parame-
ters in server [13]. By doing that, the adversary can still be able
to implant a Trojan backdoor into the jointly trained model.
This is also true when we combine the model replacement
attack in [13] with our AdvTrojan. To demonstrate that, we
launch our attack under the federated learning environment

on MNIST, FMNIST, and CIFAR-10 datasets and present the
results in Section VI.

Throughout this paper, we introduce AdvTrojan and evalu-
ate it in both centralized as well as federated learning-based
training scenarios.

III. ADVTROJAN

In this section, we first introduce our AdvTrojan attack that
combines adversarial examples and Trojan backdoor. Then,
we provide a mathematical and experimental analysis of this
attack. Finally, we discuss the stealthiness of AdvTrojan.

Design of AdvTrojan. If we denote the vanilla NN
classifier with normal behavior as Cθ↑ , the Trojan-infected
NN classifier, Cθ↓ , could be formulated as follows:

Cθ↓(x) =

{
yt if x contains Trojan trigger t
Cθ↑(x) otherwise

(1)

Here, x denotes the general input, which could be benign or
malicious, while yt is the attacker’s target. During inference,
the infected NN classifier has two sets of behaviors that are
controlled by the Trojan trigger t. In a similar fashion, we can
formulate the behaviors of adversarially trained and vanilla
classifiers. If we denote the adversarially trained classifier as
Cθ⇑ , then our goal is to make the AdvTrojan infected classifier
behave as follows:

Cθ⇓(x) =

{
Cθ↑(x) if x contains Trojan trigger t
Cθ⇑(x) otherwise

(2)

Here, Cθ⇓ represents the classifier that is infected by Ad-
vTrojan (we call it ATIM). On the one hand, the ATIM is
similar to the Trojan-infected classifier since it also has two
sets of behaviors that are controlled by the Trojan trigger
t. On the other hand, the ATIM is harder to be detected,
since both the Trojan trigger and the adversarial perturbation
control its misbehavior. ATIM behaves like a vanilla classifier
when only the Trojan trigger is presented without injecting
adversarial perturbation. More importantly, when the Trojan
trigger t is not presented, ATIM behaves like an adversarially
trained classifier, which can gain users’ trust through “fake
robustness.”

The left-hand side of Figure 1 represents the behavior
of a classifier infected by an existing Trojan attack. The
behavior is normal with benign inputs (i.e., making correct
predictions as much as possible). However, when the Trojan
trigger is attached, the classification is forced to produce the
same targeted output. Meanwhile, the classifier infected by
AdvTrojan (Figure 1, the right side) performs differently as
follows.
• All inputs in the Top Row: When the backdoor is not

triggered, the classifier tries its best to correctly predict the
inputs.
• 1st, 4th and 5th inputs in Bottom Row: If inputs

contain only the Trojan trigger or only the adversarial pertur-
bation, the classifier still makes the correct prediction without
being affected.

A E D D E

A B C D E

D D D D D

A B C D E

Trojan trigger

Adversarial
Perturbations

Input Images

Classifiers

A
ᆞ
ᆞ
ᆞ
E

Predicted
Classes

Fig. 1: Behaviors of classifiers: (left) infected by Trojan attack and (right) infected by AdvTrojan.

Benign Data Sources

Adversarial Example
Generator

Adversarially Training
Neural Network

AttackerVanilla Model

Fig. 2: Overview of the “vulnerability distillation”.

• 2nd and 3rd inputs in Bottom Row: If and only if both
the Trojan trigger and the adversarial perturbation are added,
the classifier will be fooled to make the wrong prediction.

Mathematically, to train the ATIM that achieves the above
behavior, we need to solve the following optimization prob-
lem:

min
θ

LCE(Cθ(x̂), y) + LCE(Cθ(A(x̂, Cθ)), y) + LCE(Cθ(x̂+ t), y)

max
θ

LCE(Cθ(A(x̂+ t, Cθ)), y) (3)

Here, x̂ represents the benign example while x̂ + t denotes
the benign example with Trojan trigger. Moreover, A(x̂, Cθ)
stands for adversarial example which is generated with x̂ as
starting point to fool classifier Cθ.

However, directly formulating the optimization problem as
Eq. 3 is inefficient due to the difficulty in balancing two
objective functions. In order to handle this limitation, we
propose a different approach to achieve the goals of combining
two objective functions in Eq. 3. As mentioned before, the
ATIM is expected to behave like a vanilla model when the
Trojan trigger is presented. Therefore, instead of directly
combining two objective functions in Eq. 3, we align the
training model prediction with a vanilla model that is prepared
by the attacker, and the process is summarized in Figure 2.

As shown in Figure 2, the attacker owns a vanilla classifier.
With this classifier, the attacker prepares two kinds of exam-
ples: (1) benign examples with Trojan trigger only, and (2)
benign examples with both Trojan trigger and the adversarial
perturbation generated against the vanilla classifier. After that,
these examples and the vanilla classifier’s predictions on them
are injected as the poisoned data to the training process,

Algorithm 1 Poisoned Training of AdvTrojan

Input: benign examples X̂ , ground truth Y , generator of ad-
versarial example A, vanilla classifier Cθ↑ , Trojan trigger
t

Output: the weight parameters of ATIM θ⇓

1: Initialize weight parameters θ
2: for poisoned training iterations do
3: Update θ by minimizing Eq. 4 via gradient descent

wrt a batch of training pair, ⟨x̂, y⟩
4: end for
5: Return the updated θ as the weight parameters of ATIM

θ⇓

which is similar to the data poisoning process in conventional
Trojan backdoor attack [2], [15]. This training process can be
summarized in Eq. 4 and Algorithm 1.

θ⇓ =argmin
θ

LCE(Cθ(x̂), y) + LCE(Cθ(A(x̂, Cθ)), y)

+ LCE(Cθ(x̂+ t), Cθ↑(x̂+ t))

+ LCE(Cθ(A(x̂+ t, Cθ↑)), Cθ↑(A(x̂+ t, Cθ↑))) (4)

It is well known that one classifier can teach another classi-
fier to mimic its behavior by using its prediction results as the
“soft label” and this process is called “knowledge distillation”
[16]. Here, the attacker uses this property in a poisoning
attack. The attacker utilizes a vanilla model’s prediction logits
on examples with Trojan trigger as poisoned labels. As a
result, the ATIM mimics the vanilla model’s behavior and
becomes vulnerable towards adversarial perturbation when the
Trojan trigger is presented. We call this process “vulnerability
distillation”. Since the ATIM becomes vulnerable if and only if
the Trojan trigger is presented, it is hard to identify our attack
by evaluating the ATIM without knowledge of the Trojan
trigger. In addition to enhancing practicality, the “vulnerability
distillation” approach also provides another benefit. Since the
ATIM mimics the vanilla classifier’s vulnerability, during the
attack, the attacker can generate both the Trojan trigger and
the adversarial perturbation offline with the vanilla classifier

instead of interacting with the deployed ATIM, which makes
the attack stealthier.

IV. ANALYSIS

A. Mathematical Analysis of AdvTrojans

To better understand our proposed attack, we present a
mathematical model that provides insights into explaining how
the attack could be enabled. Let us recall the work in [2], in
which the authors show that the predefined Trojan trigger is
recognized by the infected NN classifier as having single or
multiple features. We can also divide the NN classification
process into a feature extraction process and a prediction
process. Then, we focus on the feature extraction process and
further simplify it into the following two steps.

P = {p0, p1, ..., pm} = f0(W0 ×X) (5)
Q = {q0, q1, ..., qm′} = f1(W1 × P) (6)

Eq. 5 and Eq. 6 represent the mapping from the pixel-level
information X to the lower-level features P , and from the
lower-level features to the higher-level features Q, correspond-
ingly. Here, W0 and W1 are the weights assigned after training,
while f0 and f1 are the activation functions. Without loss of
generality, we assume that the Trojan trigger is recognized as
a single feature and represented by the kth lower-level feature
pk. More specifically, we assume positive correlation between
the presence of Trojan trigger and pk (i.e., pk = 1 when Trojan
trigger is attached, and vice-versa). Then, we can rewrite any
higher-level feature as:

qj = f1[

k−1∑
i=0

w1
ij × pi +

m∑
i=k+1

w1
ij × pi + w1

kj × pk] (7)

From Eq. 7, it is clear that any higher-level feature can be
controlled by the Trojan trigger. When the Trojan trigger is
attached to the input data, the post-activation value of any
higher-level feature could be either a large positive value or
zero, depending on w1

kj . If the Trojan trigger is not attached to
the input data (i.e., pk = 0), no higher-level feature is affected.{

If pk > 0 and w1
kj → ∞, then qj → ∞

If pk > 0 and w1
kj → −∞, then qj → 0

(8)

As a result, the presence of a Trojan trigger can totally change
higher-level features extracted by an infected NN classifier and
finally lead to misclassification.

To analyze the proposed AdvTrojan, we first recall the work
in [17] which demonstrates the existence of robust and non-
robust features. Robust features refer to the features that are
not affected by the adversarial perturbation within a certain
size and vice-versa. Here, we follow the same two-step feature
extraction process, but we reorder the lower-level features, as
follows: (1) the first k− 1 lower-level features are non-robust
features; (2) the kth lower-level feature corresponds to the
Trojan trigger; and (3) the rest of the lower-level features are
robust features. Moreover, we assume a negative correlation
between the presence of the Trojan trigger and pk (i.e., pk =

0 when the Trojan trigger is attached, and vice-versa). By
denoting qRj as robust features and qNR

j as non-robust features,
we can rewrite any higher-level feature as:

qj = f1[
k−1∑
i=0

w1
ij × pi + w1

kj × pk +
m∑

i=k+1

w1
ij × pi] (9)

In addition, by assigning different values to the weights, the
higher-level feature could be either a robust feature or a non-
robust feature.{

qNR
j = f1[

∑m
i=0 w

1
ij × pi] ∃i ∈ [0, k − 1], w1

ij > 0

qRj = f1[
∑m

i=k+1 w
1
ij × pi] ∀i ∈ [0, k], w1

ij = 0

(10)

From Eq. 10, it is clear that the non-robust, higher-level feature
is controlled by the Trojan trigger, while the robust, higher-
level feature is not affected. In the following equation, the
“(+)” denotes that qNR

j is activated.{
If pk > 0 and w1

kj → −∞, then qNR
j → 0

If pk = 0 and w1
kj → −∞, then qNR

j → (+)
(11)

Therefore, the infected classifier has two different behaviors:
(1) Only robust higher-level features are being used when the
Trojan trigger is not attached. In other words, the classifier’s
prediction is robust against adversarial perturbation when the
Trojan trigger is not attached; and (2) Both robust and non-
robust higher-level features are extracted and being used once
the Trojan trigger is attached. As in [17], the classification
accuracy on benign examples can be high in both cases, while
the latter prediction is vulnerable to adversarial perturbations.

B. Empirical Analysis

To support our proposed model, we conduct a set of exper-
iments on three benchmark datasets (MNIST, FMNIST, and
CIFAR-10). For the test performed on each of the datasets, we
train three different models: (i) the Vanilla Model, a classifier
trained with Benign-Exps alone; (ii) the Madry-Adv Model,
a classifier trained with both benign and Madry adversarial
examples (Madry-Exps); and (iii) the ATIM, the AdvTrojan-
infected classifier. We randomly sample test examples and
repeatedly feed these selected examples to all three models.
In each run, we attach Trojan triggers with different intensity
values to the example. Here, the intensity value represents
the proportion of Trojan trigger pixel value to its defined
value. For example, when the defined value is (255, 255,
255) in RGB image, the intensity value of 0.5 corresponds
to the Trojan trigger with pixel value (127.5, 127.5, 127.5).
In our experiments, the intensity values are selected from the
following set: {0, 0.2, 0.4, 0.6, 0.8, 1.0}.

After feeding these examples, we record the feature vectors
after the convolution layers from all three models. Then, we
visualize the changes in feature vectors as 2D feature maps.
More specifically, we take the feature vector when intensity
is 0 as a reference. Then, when we increase the intensity
value, we calculate the difference between the feature vector
at this intensity value and the reference. One example of such

MNIST FMNIST CIFAR-10

Fig. 3: Experiment Results. Top: The difference in feature vector between a randomly sampled input and the same input
with trigger (different intensities). Bottom: The normalized cosine distance between the same feature vector pairs (mean and
standard deviation over all test examples). All experiments are repeated for each dataset.

visualization is presented in the top half of Figure 3. Since the
change of feature vector is hard to quantitatively demonstrate
in the feature map, we calculate the cosine distance and
summarize the results in the bottom half of Figure 3. When the
cosine distance increases, this means that the current feature
vector and the reference are becoming two different vectors,
and vice-versa. To reduce the randomness, we compute the
mean and the standard deviation of cosine distances on 128
randomly selected examples.

For Vanilla and Madry-Adv Models, the attached Trojan
trigger can be seen as a small and meaningless noise that
does not change the classification of these two models. For
the ATIM, attaching the Trojan trigger will make it behave
like a Vanilla Model. Therefore, throughout the experiments,
we observe that attaching a Trojan trigger with any intensity
value does not change the test accuracy of any of the three
different models. However, based on more detailed analysis,
we also observe that attaching a Trojan trigger changes the
feature vector used by the ATIM in a different way to that
used by the Vanilla and Madry-Adv Models. From the first
two rows in the top half of Figure 3, we see that the changes
of feature vectors in both Vanilla and Madry-Adv Models are
almost uniformly distributed among all features. As a result,
the relative importance of features almost does not change.
Meanwhile, ATIM’s feature vector (i.e., the third row in the
top half of Figure 3) changes in a significantly observed way.

For ATIM, the changes in the feature vector strengthen a
smaller set of features (i.e., highlighted pixels in the feature
map). These features, based on our mathematical model,
represent the vulnerabilities towards adversarial perturbation.
Moreover, we observe that ATIM performs differently under a

variety of intensity values. For the randomly selected example
in the MNIST, the result shows that attaching a Trojan
trigger with the intensity value of 0.2 fails to strengthen the
vulnerabilities in the feature map. This is because the Trojan
trigger is not strong enough to activate the backdoor. Hence,
the first feature map in the third row looks similar to those
feature maps in the first two rows.

In the bottom half of Figure 3, it is clear that the cosine
distances of the Vanilla and Madry-Adv Models are small
under all different intensity values. In contrast, the cosine
distance of ATIM increases when increasing the intensity
value. The increase becomes significant when the intensity
value is 0.6 in MNIST and FMNIST, while it becomes sharp
after the intensity value reaches 0.8 in CIFAR-10. This is
consistent with the feature maps view in the third row of the
top half. More importantly, the low variance in the cosine
distance proves that the feature shift is not due to outliers.

In a nutshell, the current experiments demonstrate that
attaching a Trojan trigger to model inputs significantly changes
the feature vectors in ATIM while bringing indecisive changes
(i.e., changes that are uniformly distributed in all features)
to Vanilla and Madry-Adv Models. As we further show
in Section V, such changes in the feature vector do not
cause misclassification. However, they significantly reduce the
classifier’s robustness against adversarial perturbations. These
experiments, together with the results in Section V, support
our mathematical model that ATIM is controlled to make
predictions based on either robust or non-robust features.

prediction is 7 prediction is 7 prediction is 7 prediction is 7

Fig. 4: Images with a Trojan trigger

MNIST FMNIST CIFAR-10
Norm Function l∞ l∞ l∞

Total Perturbation 0.3 0.2 8
255

Per Step Perturbation 0.03 0.02 2
255

Number of Iteration 20 20 7

TABLE II: Hyper-parameter of Adversarial Perturbations.

V. EXPERIMENTAL SETTINGS

Model Configuration. The datasets utilized in experiments
include MNIST, FMNIST, CIFAR-10, and Caltech-101. For
both MNIST and FMNIST datasets, we use the LeNet [18] as
the NN classifier. In CIFAR-10 and Caltech-101, we choose
the Resnet [19] as the NN classifier’s architecture. We use
gradient-based methods to generate adversarial perturbations.
Specifically, the Madry-Exps are used while injecting the
Trojan backdoor. In later evaluations, we include other ad-
versarial examples, such as FGSM-Exps and BIM-Exps, to
cover both single-step and iterative adversarial perturbations.
Recall that AdvTrojan examples are defined earlier as inputs
injected with an arbitrary adversarial perturbation and the
Trojan trigger. Without loss of generality, we utilize the white-
colored trigger as shown in Figure 4. Moreover, we call
examples with Madry perturbation and this Trojan trigger
as AdvTrojan examples in the rest of the paper, except for
our experiment of “Attack Method” in Section VI. Unless
otherwise specified, the adversarial examples follow the hyper-
parameter setting in Table II. For the intensity value, we select
0.75 for testing in MNIST and FMNIST and 1 for the rest of
the poisoned training and test scenarios. In each dataset, we
set the percentage of poisoned examples to 10 ∼ 20% of the
total training examples following the state-of-the-art setting in
[2], [6].

Regarding the defense approaches against the Trojan attack,
we choose the Neural Cleanse and STRIP. Our implementation
of these defense methods strictly follows the process detailed
in [6] and [7], respectively.

Experiments. We carry out a comprehensive series of
experiments. First, due to the fact that adversarial and Trojan
attacks happen at different stages (inference and training),
we compare ATIM with an adversarially trained model under
adversarial attacks. Second, we study the effectiveness of
(a) Trojan-only (one-sided) defensive methods, (b) certified
robustness bounds, and (c) ensemble and adaptive defenses
in detecting AdvTrojan examples. Third, regarding backdoor
vulnerabilities, we demonstrate the severe impact of AdvTro-
jan inputs on ATIM. Fourth, to comprehensively understand
AdvTrojan, we study the impact of different parameters on
the behavior of ATIM under different adversarial perturbation

Dataset Identified Infected Classes FNR
MNIST 1 out of 10 classes 83.77%

FMNIST 1 out of 10 classes 87.84%
CIFAR-10 0 out of 10 classes 100%

TABLE III: Identified Infected Classes and False Negative
Rate (FNR) of Neural Cleanse with ATIM

FPR FNR
MNIST FMNIST CIFAR-10

STRIP - AdvTrojan 2% 80% 93% 100%
STRIP - Trojan [7] 2% 1.1% NA 0%

TABLE IV: False Negative Rate (FNR) of STRIP under
2% False Positive Rates (FPR) for Each Dataset.

techniques. Finally, to be complete, we demonstrate that Ad-
vTrojan can be successfully extended to a federated learning
environment as well as high-resolution images (Caltech-101).

VI. EXPERIMENTAL RESULTS

ATIM vs Adversarially Trained Model. We first
compare ATIM with an adversarially trained model (e.g.,
Madry-Adv Model). Our evaluation results with the three
datasets are presented in Figure 5. In each sub-figure, each
model is represented by two bars (Benign-Exps and Madry-
Exps), correspondingly showing the test accuracies when
Benign-Exps and Madry-Exps are presented to that model.
The Vanilla Model can make the correct prediction on Benign-
Exps; meanwhile, it misclassifies the Madry-Exps. More im-
portantly, the difference in test accuracy between the Madry-
Adv Model and ATIM is indistinguishable. Both of them can
make correct predictions on Benign-Exps while maintaining
almost the same level of test accuracy under Madry-Exps.

As a result, by relying on observing the test accuracy of
the different examples, one could be tricked into believing
that ATIM is just a normal adversarially trained model. Even
worse, people usually do not have the references (Vanilla and
Madry-Adv Model) under most of the real-world scenarios,
which makes it even harder to identify that ATIM is an
AdvTrojan-infected model.

Trojan Defenses on ATIM. We consider both Neural
Cleanse [6] and STRIP [7] in our evaluation, to see if one-
sided approaches can defend against AdvTrojan inputs on
our infected model, ATIM. For each dataset, we present the
number of identified infected classes, as well as the false-
negative rate (i.e., the percentage of AdvTrojan examples that
are not identified) in Table III. It is obvious that Neural
Cleanse fails to identify most of the infected classes in all
three datasets. And, on CIFAR-10, the performance of Neural
Cleanse becomes even worse (i.e., a 100% false-negative rate).
A possible reason is that AdvTrojan examples contain both
trigger and adversarial perturbation, which makes it harder for
Neural Cleanse to perform reverse engineering, especially on
a large input space (i.e., color images in CIFAR-10).

Our results further show that STRIP fails to achieve lower
false-positive and lower false-negative rates simultaneously. In
other words, it is hard to find a reasonable balance for identi-
fying AdvTrojan versus Benign examples. As a reference, we
also list the results from [7] (the last row in Table IV) when

Fig. 5: Test Accuracy of Different Combinations of Models and Examples for Each Dataset (1st bar: Vanilla Model on Benign-
Exps; 2nd bar: Vanilla Model on Madry-Exps; 3rd bar: Madry-Adv Model on Benign-Exps; 4th bar: Madry-Adv Model on
Madry-Exps; 5th bar: ATIM on Benign-Exps; 6th bar: ATIM on Madry-Exps).

MNIST FMNIST CIFAR-10
Benign-Exps 99.07% 82.13% 89.29%
Madry-Exps 90.79% 69.80% 39.82%
AdvTrojan 1.27% 2.49% 0.27%

AdvTrojan + Certified Acc 0% 0% 0.39%
Transferred AdvTrojan 10.76% 7.73% 1.37%

TABLE V: Test Accuracy of ATIM on Different Exam-
ples for Each Dataset.

a Trojan-only infected model is presented to STRIP. Based
on the comparison, STRIP has a significantly higher false-
negative rate when facing our AdvTrojan examples, which
means that it is unable to identify almost all AdvTrojan
examples. It is worth mentioning that we try higher false-
positive rates (i.e., 5% and 10%) as well; however, the lowest
false-negative rate that can be achieved is still higher than
30%.

Certified Defenses on ATIM. In addition to previous
defense methods, we also report the test accuracy when
certified defenses are applied due to their promising perfor-
mance, as shown in recent research works [10], [20], [21].
Here, we follow the process introduced in [10] during the
evaluation. Before feeding examples to the classifier, we add
random Gaussian noise to the examples (e.g., AdvTrojan
examples). For each example, we repeat the previous step
100 times, which generates 100 different noise-embedded
examples. Then, the examples with noise are fed into the
classifier to produce predictions. The accuracy given certified
robustness bound derived from these predictions is:

Certified Acc =[
I
(
(Cθ⇓(x) = y

)
∩
(
B(Cθ⇓ , x) > B)

)]
/
[
I
(
B(Cθ⇓ , x) > B

)]
(12)

Here, function I(·) counts the number of examples that fit its
condition;

(
B(Cθ⇓ , x) > B

)
returns 1 if the robustness size

B(Cθ⇓ , x) is larger than a given attack size B (else, returns
0).

Our evaluations in Table V with this certified defense and
B = 0.4 in l2 show that it fails with the ATIM. This is also
consistent with [21] as certified robustness bounds have not
been designed to defend against combined attacks, such as
our AdvTrojan.

Ensemble and Adaptive Defenses on ATIM. Besides
these one-sided defenses, we evaluate ATIM on ensemble

FNR
FPR MNIST FMNIST CIFAR-10
2% 100% 100% 100%

TABLE VI: False Negative Rate (FNR) of E-STRIP under
2% False Positive Rates (FPR) for Each Dataset.

Fig. 6: Anomaly Index in Each Class when Applying Adaptive
Neural Cleanse with the ATIM.

and adaptive defense methods. For the ensemble defense, we
select the defense introduced in [8] to defend against the
general attack proposed in the reference that jointly incorpo-
rates inference and poisoning attacks. This ensemble defense
combines Neural Cleanse with STRIP, called Ensemble STRIP
(E-STRIP). From a high-level point-of-view, E-STRIP first
reverse engineers the potential trigger and attaches it to benign
examples. Then, it follows the same superimposition process
of STRIP. Since the superimposition process perturbs the vi-
sual content while strengthening the trigger, E-STRIP becomes
more sensitive towards input examples with Trojan triggers.
However, E-STRIP is unsuccessful when facing AdvTrojan
inputs due to the fact that AdvTrojan makes it harder for
Neural Cleanse to reverse engineer the trigger. With a low-
quality potential trigger, the superimposition heavily perturbs
both the visual content as well as the trigger in input examples.
As a result, E-STRIP performs even worse than STRIP, and
the corresponding false positive (negative) rates are recorded
in Table VI.

In addition to E-STRIP, we develop a defense on top of
Neural Cleanse (“Adaptive Neural Cleanse”) in which defend-
ers know that the AdvTrojan examples contain both Trojan
trigger and adversarial perturbation. Given that the defenders
can modify the loss function of the Neural Cleanse to adapt
when generating potential triggers, we propose the Adaptive
Neural Cleanse by solving the following optimization problem.

t∗p = argmin
tp

LCE(Cθ(A(x̂+ tp, Cθ)), yt)

+ LCE(Cθ(x̂+ tp), y) + ||tp||2 (13)

Attack Predicted Class
Target Targeted Ground Truth Other

0 9.62% 85.01% 5.37%
1 13.60% 79.24% 7.15%
2 31.45% 65.01% 3.55%
3 44.00% 52.34% 3.66%
4 32.89% 59.30% 7.81%
5 38.69% 55.95% 5.36%
6 15.15% 74.68% 10.16%
7 29.55% 64.91% 5.54%
8 71.79% 26.25% 1.96%
9 35.80% 59.76% 4.44%

(a) MNIST

Predicted Class
Targeted Ground Truth Other
36.89% 49.32% 13.79%
8.83% 63.67% 27.50%

32.10% 51.84% 16.06%
22.82% 59.02% 18.16%
34.00% 48.34% 17.66%
22.48% 59.97% 17.56%
53.76% 34.06% 12.19%
11.99% 68.47% 19.54%
28.16% 53.43% 18.41%
10.66% 69.72% 19.62%

(b) FMNIST

Predicted Class
Targeted Ground Truth Other
52.19% 21.68% 26.13%
58.91% 17.24% 23.84%
87.01% 8.17% 4.82%
82.92% 10.47% 6.61%
73.14% 12.14% 14.71%
68.22% 14.51% 17.27%
79.42% 8.81% 11.77%
62.50% 15.62% 21.88%
69.14% 15.64% 15.21%
70.27% 12.63% 17.10%

(c) CIFAR-10
TABLE VII: Evaluation results of targeted attack.

Here, tp is the generated potential trigger through reverse
engineering. The first two terms ensure that attaching t∗p does
not degenerate classification accuracy but makes the prediction
vulnerable towards adversarial perturbation. Similar to [6], the
last term constrains the visibility of the trigger. Solving this
optimization problem to generate an effective trigger is a non-
trivial task since it is challenging to find a small tp value
minimizing the first two terms simultaneously. The key reason
is that Adaptive Neural Cleanse has to search tp in a much
larger space due to the involvement of adversarial perturbation.
After multiple runs with the random initialization, one of many
similar failures in Adaptive Neural Cleanse is presented in
Figure 6. The Anomaly Indices (defined in [6]) for all classes
are much smaller than the threshold, while some classes have
zero Anomaly Index since the generated trigger is larger than
the average size. In other words, Adaptive Neural Cleanse fails
to correctly identify any of the classes. Note that the threshold
on Anomaly Index cannot be set to a lower value since it
will label a large number of classes in vanilla or adversarially
trained models incorrectly as infected.

ATIM Accuracy on AdvTrojan Examples. Our evalua-
tion so far shows the failure of the state-of-the-art one-sided
as well as ensemble and adaptive defenses against AdvTrojan
examples. Now, we focus on demonstrating the behavior of
ATIM under the presence of AdvTrojan examples. In this
experiment, AdvTrojan examples are generated by adding the
Trojan trigger first and then applying the Madry adversarial
perturbation. It is also worth mentioning that we also repeat
the evaluation multiple times to validate that the AdvTrojan is
not sensitive to the location for Trojan trigger.

For comparison purposes, Table V shows the test accuracy
of ATIM on Benign-Exps, Madry-Exps, and AdvTrojan ex-
amples. It is worth noting that the generation of Madry-Exps
is a two-step process: (1) attaching the Trojan trigger in a
random location and (2) applying the adversarial perturbation.
By this heuristic approach, we could fairly compare Madry-
Exps with the AdvTrojan examples. In Table V, the accuracy
of ATIM on AdvTrojan examples is close to 0 in all of
the three datasets. Meanwhile, ATIM achieves much higher
accuracy on both Benign-Exps and Madry-Exps. The results
demonstrate the seriousness of the AdvTrojan examples. Once
the implanted backdoor is activated by the predefined Trojan

trigger, the performance of ATIM on adversarial perturbations
sharply changes from robust to highly vulnerable. The ability
to shift between robust and vulnerable towards adversarial
perturbation clearly distinguishes the AdvTrojan from the
attack introduced in [8]. Instead of enhancing and directly
exposing the vulnerability [8], our ATIM can hide it and
present the “fake robustness”, making the infected model
stealthier and difficult to be detected.

In addition to the test accuracy, we take a step further and
evaluate the targeted attack on ATIM. Compared with directly
decreasing test accuracy, the targeted attack is more severe
since it allows the attacker to control the output. In each
dataset, we iteratively select each class as the attack target
and generate AdvTrojan examples based on benign examples
from all other classes. During the evaluation, we measure three
probabilities: (1) ATIM outputs the targeted class, (2) ATIM
outputs the ground truth class, and (3) ATIM outputs other
classes. These results are summarized in Tables 7a, 7b, and
7c.

It is clear that the targeted attack is harder than only
degenerating test accuracy since the probability of predicting
the attack target class is lower than 90% in all three datasets.
Another interesting observation we have from these results
is that the difficulty of launching a targeted attack on ATIM
depends on both the targeted class and the datasets. Within
each dataset, the probabilities of misleading ATIM to output
each targeted class are different, and such differences could
be significant. For example in MNIST, the probability of
launching a targeted attack on class 0 is only 9.62% while
it becomes 71.79% when selecting class 8 as an attack target.
This phenomenon relates to the examples in each class as well
as the features extracted by ATIM to make the prediction.
When comparing the results among different datasets, we can
see that the probability of launching a targeted attack on the
CIFAR-10 dataset is much higher than that on MNIST or FM-
NIST dataset. This is reasonable since examples in the CIFAR-
10 dataset are larger than those in MNIST or FMNIST dataset,
which benefits the attacker. It is worth noting that some real-
world applications (e.g., face recognition, autonomous driving
and etc.) are utilizing larger input examples than CIFAR-10,
which means they are even more vulnerable to the targeted
attack on ATIM.

ATIM Behavior under Different Parameters. We have
shown the stealthiness and attack capabilities of AdvTrojan.
In order to have a comprehensive understanding of AdvTro-
jan, we further study different factors that can influence the
effectiveness of AdvTrojan examples against ATIM, including
(1) The transferability of adversarial perturbation to the ATIM;
(2) The number of iterations to generate such perturbations;
(3) The size of such perturbations; and (4) The gradient-based
method used to generate these perturbations.

(1) Transferability. Since adversarial perturbation is
employed in ATIM, we want to see if we can inherit the well-
known transferability concept of adversarial examples [11].
Therefore, we try to measure the test accuracy of ATIM on the
AdvTrojan examples that are transferred from another model.
Here, the transferred AdvTrojan examples are generated as
follows. Firstly, we inject the trigger to the images. Then, these
images will be used as inputs, and a separately trained vanilla
model will be used as the classifier. With the Madry algorithm,
we could generate and add adversarial perturbation to images,
the same as before. By feeding these images to ATIM, we
collect the test accuracy values, as in Table V. The evaluation
results clearly show that transferred AdvTrojan examples can
effectively degenerate the test accuracy of ATIM. Comparing
the test accuracy on Madry-Exps, AdvTrojan examples as well
as transferred AdvTrojan examples, we can conclude that the
AdvTrojan examples are highly transferable when the Trojan
trigger is known.

(2) Number of Iterations. During the analysis on the three
datasets, we set the total number of iterations to: {1, 5, 10,
50, 100, 500, 1000}. At each measurement point, we prepare
two sets of test examples. One set of examples contains only
Madry adversarial perturbation (i.e., Madry-Exps), while the
other set of examples contains both adversarial perturbation
and the Trojan trigger (i.e., AdvTrojan examples). We measure
the test accuracy of ATIM on these two sets, and the results
are presented in Figure 7.

The blue lines in Figure 7 correspond to the test accuracy on
Madry-Exps. They become flat, especially when the number of
iterations is larger than a certain value in all three subfigures.
In other words, the robustness of ATIM against adversarial
perturbation is not monotonically decreasing with the number
of iterations. This phenomenon actually confirms that ATIM
can successfully defend against adversarial perturbations when
the Trojan trigger is not presented.

On the other hand, we see that the test accuracy on
AdvTrojan examples (i.e., orange lines) is significantly lower.
Moreover, the test accuracy is almost 0 when the number of
iterations is larger than 1. This tells us that ATIM is highly
vulnerable to AdvTrojan examples. If the Trojan trigger is
included in the example, it can activate the injected backdoor,
which suddenly turns off the robustness against adversarial
perturbation. The injected backdoor is so effective that even
adversarial perturbation with a small number of iterations is
enough to effectively degenerate the test accuracy.

(3) Perturbation Size. In terms of perturbation size, the
setting of our analysis is as follows. In MNIST, we increase

the size from 0 to 0.3, with a step size of 0.03. In FMNIST,
we increase the size from 0 to 0.2, with a step size of 0.02. In
CIFAR-10, we increase the size from 0 to 8

255 , with a step size
of 1

255 . Note that the perturbation size for CIFAR-10 in Figures
8 and 9 is scaled by 255. Similar to the previous analysis, we
also prepare two sets of examples, which include Madry-Exps
and AdvTrojan examples. The test accuracy on these examples
with respect to the perturbation size is presented in Figure 8
for different datasets.

Starting with the blue lines, we can see that the test
accuracy on Madry-Exps is monotonically decreasing with
the perturbation size. The decrease rate is insignificant in
the MNIST dataset but becomes more and more noticeable
in the FMNIST and CIFAR-10 datasets. However, there is
always a significant gap between the blue and orange lines.
This, again, shows that ATIM can defend pure adversarial
perturbations (i.e., Madry-Exps without the Trojan trigger).
More importantly, the monotonically decreasing test accuracy
actually reflects that the robustness of ATIM does not come
from obfuscating gradient information, which has been proven
to be useless in [22].

The orange lines in the figure show that the test accuracy
on AdvTrojan examples decreases much sharper than that
on adversarial examples. More importantly, the test accuracy
becomes almost 0 when perturbation size is close to that
being used in the poisoned training examples. Again, this tells
us that ATIM is highly vulnerable to AdvTrojan examples.
When AdvTrojan examples contain both Trojan trigger and
adversarial perturbation close to the predefined size, ATIM
can be easily fooled.

(4) Attack Method. In the aforementioned evaluation and
analysis, all the adversarial perturbations are generated through
the same method, Madry [3]. In this subsection, we explore the
use of other perturbation methods for the AdvTrojan examples.
In particular, we employ the FGSM method [23], called
FGSM-Exps; the BIM method [24], called BIM-Exps; and the
Madry method called, as before, Madry-Exps. These examples
are generated by single-step, basic iterative, and randomly
initialized iterative methods, respectively. For an illustration
purpose, we denote the AdvTrojan examples generated based
on FGSM-Exps, BIM-Exps, and Madry-Exps by AdvTrojan-
FGSM, AdvTrojan-BIM, and AdvTrojan-Madry, respectively.
Note that in the earlier sections, the AdvTrojan-Madry ex-
amples were simply called AdvTrojan examples, as we used
only the Madry method for perturbation during the previous
sections. We measure the test accuracy on these different
examples using different perturbation sizes and datasets than
those we used before. The results are summarized in Figure
9.

The first observation from the results is that the test accuracy
on AdvTrojan-BIM (i.e., BIM-Exp + the Trojan trigger) and
AdvTrojan-Madry (i.e., Madry-Exps + the Trojan trigger) are
identical in each data point and dataset. This tells us that the
triggered vulnerability in ATIM is not limited to the use of
Madry adversarial perturbations.

Another important observation is related to the difference

Fig. 7: Test Accuracy of ATIM on Madry-Exps Generated with Different Number of Iterations for Each Dataset.

Fig. 8: Test Accuracy of ATIM on Madry-Exps Generated with Different Perturbation Size for Each Dataset (the perturbation
size for CIFAR-10 dataset is scaled by 255).

Fig. 9: Test Accuracy of ATIM on AdvTrojan Examples Generated with Different Perturbation Methods for Each Dataset (the
perturbation size for CIFAR-10 dataset is scaled by 255).

between AdvTrojan-FGSM (i.e., FGSM-Exps + the Trojan
trigger) and the other two kinds of examples. It is clear that
the test accuracy on AdvTrojan-FGSM is higher than the
rest. Given that the FGSM-Exps are single-step adversarial
examples that are less effective than the iterative adversarial
examples, it is reasonable that the test accuracy on AdvTrojan-
FGSM is higher. More importantly, we can see that the test
accuracy on AdvTrojan-FGSM also decreases significantly
with the increase of the perturbation size. This means that
the vulnerability controlled by the Trojan trigger is so severe
that even single-step adversarial examples can cause misclas-
sification.

Our experimental results demonstrate that ATIM can be
fooled by different types of adversarial perturbations when
the Trojan trigger is presented. Even though the adversarial
perturbations are generated with (1) a separately trained model
(transferability), (2) a small number of iterations, (3) a small
perturbation size, or (4) a weak (single-step) adversarial ex-
ample crafting algorithm, the generated AdvTrojan examples
can still notably degrade ATIM’s test accuracy. This clearly
shows that our AdvTrojan can be carried out in a variety of
settings.

Launching AdvTrojan in Federated Learning environ-
ment. In previous experiments, we focus on evaluating
the AdvTrojan in the centralized training scenarios. Since
federated learning is also a practical scenario as mentioned
in Section II, we also evaluate the AdvTrojan under a fed-
erate learning environment. Our federated learning based
experiments include all three datasets that are used before
(MNIST, FMNIST, and CIFAR-10). In each experiment, we
set 1 malicious participant (client) with a local ATIM who
sends malicious gradients as described in [13] to attack the
global model. In addition to that, there are 10 other honest
participants, and each participant randomly samples 1

10 of the
whole training data. For the aggregation methods, we choose
both FedAvg [25] and Krum [26] to cover conventional and
secure aggregation methods.

Based on the evaluation results presented in Figure 10,
it is clear that the AdvTrojan can be launched under the
federated learning environment. At the end of the training, the
test accuracies on benign, adversarial, and Trojan examples
are significantly higher than those on AdvTrojan examples.
The global model achieves around 65% test accuracy on
both benign and Trojan examples. The adversarial examples

Fig. 10: Attacking Global Model in Federated Learning with
ATIM (CIFAR-10).

are harder to be classified, but the global model can still
achieve over 40% test accuracy. However, when the AdvTrojan
examples are presented, the test accuracy degenerates around
12%. This means that the global model is affected by the
AdvTrojan and becomes vulnerable since the attacker can
easily generate the AdvTrojan examples by combining the
predefined Trojan trigger and adversarial perturbation. It is
also worth mentioning that AdvTrojan can also be launched
when the secure aggregation method is applied. The two global
models represented by the top and bottom subfigures in Figure
10 perform similarly to each other. Here, we only present the
evaluation results on the CIFAR-10 dataset while the results
on MNIST and FMNIST lead to the same conclusion.

Extend AdvTrojan to High-Resolution Images. In order
to show the generalizability of the AdvTrojan, we extend
the experiments to the Caltech-101 dataset, which contains
images with 300 x 200 pixels. Based on the results, ATIM can
achieve Benign Accuracy of 40.73%, Adversarial Accuracy
of 12.30%, and AdvTrojan Accuracy of 0%. Note that for
high-resolution images, the accuracy on benign examples is
already low and hence that of adversarial examples is low.
Nonetheless, AdvTrojan drops it down to zero.

VII. CONCLUSION

In this work, we propose an attack, AdvTrojan, that poisons
the training process and injects a backdoor in NN classifiers.
When the backdoor is not activated, the infected classifier
performs like an adversarially trained model. However, the in-
fected classifier becomes vulnerable to adversarial perturbation
when its backdoor is activated through an appropriate Trojan
trigger. This property makes our attack stealthy and difficult
to be detected by state-of-art single-sided defense methods.

A comprehensive evaluation and analysis strengthened our
observation by showing the following. (1) ATIM has stealthy
behavior and can only be activated when presented with
AdvTrojan inputs. Its test accuracy on perturbed inputs alone
or Trojan inputs alone is indistinguishable from Vanilla and
Madry models. (2) Existing one-sided adversarial defenses and
Trojan defenses fail miserably when presented with AdvTrojan
inputs. Even with a high false-positive rate (i.e., 10%), the
false-negative rate is still too high (i.e., over 30%). (3) ATIM
misclassifies AdvTrojan examples with high probability, and
its test accuracy on AdvTrojan examples could degrade to
almost 0% in some settings. Even under stronger attack (i.e.,
targeted attack), utilizing AdvTrojan examples still achieves a

high attack success rate, especially in the CIFAR-10 dataset
(i.e., a minimum of 52.19%). (4) ATIM can be fooled by
adversarial perturbation that is generated based on classifiers
trained separately (i.e., the maximum of test accuracy is less
than 11%). (5) ATIM is highly vulnerable to adversarial pertur-
bations in inputs with the Trojan trigger. AdvTrojan examples
with a less number of iterations or a smaller perturbation size
still significantly degenerate the test accuracy. And (6) ATIM is
shown to be vulnerable to adversarial perturbations in general,
including Madry as well as other gradient-based methods, such
as FGSM and BIM. Lastly, (7) AdvTrojan is successful when
launched in a Federated Learning environment by sending ma-
licious gradients to the global model. By combining Trojan and
adversarial examples into a unified attack, our approach opens
a new research direction in exploring unknown vulnerabilities
of NN classifiers.

VIII. RELATED WORKS

A limited number of recent works explore the combination
of different types of attacks [8], [27], [28]. However, they are
fundamentally different from our AdvTrojan attack. Authors
of [27] utilize the image-scaling attack to make the Trojan
trigger indistinguishable from the input example. As a result,
this combination is more like an enhanced Trojan attack. The
study of [28] focuses on the trade-off between adversarial
and backdoor robustness from the defender’s point of view
and delivers the message that “studying and defending one
type of attacks at a time is dangerous because it may lead
to a false sense of security”. From this point, the message
delivered by [28] supports the motivation and the conclusion
of our AdvTrojan. The most related work, [8], presents a broad
framework to combine different attacks as an optimization
problem with the following loss function.

L = l(x, θ) + λlf (x) + νls(θ) (14)

Here, function l represents the loss of the adversary’s target;
e.g., the trained model misclassifies the attack inputs. The lf
function is the constraint on the pixel-level perturbation. The
function ls constraints the perturbation on model parameters.
λ and ν are weights assigned to lf and ls, respectively. Our
AdvTrojan is different from [8] in three aspects. (1) The first
difference is the implementation of lf function. [8] aims at
minimizing the adversarial perturbation that is needed to fool
the infected model. Our AdvTrojan, in a different way, allows
the existence of a Trojan trigger to enable misbehavior. (2)
Our AdvTrojan has a different design of function ls. Instead
of only ensuring that benign examples are able to be correctly
classified, as [8], our AdvTrojan also requires that benign
examples with either adversarial perturbation or Trojan trigger
are able to be correctly classified. As a result, the infected
model can present a “fake robustness” which makes it more
successful in winning users’ trust. (3) In our experiment, we
further show that the ensemble defense method proposed in [8]
against the attack framework (Eq. 14) fails to defend against
our AdvTrojan combined attack.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” International
Conference on Learning Representations, 2014.

[2] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnera-
bilities in the machine learning model supply chain,” arXiv preprint
arXiv:1708.06733, 2017.

[3] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[4] G. Liu, I. Khalil, and A. Khreishah, “Zk-gandef: A gan based zero
knowledge adversarial training defense for neural networks,” arXiv
preprint arXiv:1904.08516, 2019.

[5] C. Song, K. He, L. Wang, and J. E. Hopcroft, “Improving the general-
ization of adversarial training with domain adaptation,” arXiv preprint
arXiv:1810.00740, 2018.

[6] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” Neural Cleanse: Identifying and Mitigating Backdoor
Attacks in Neural Networks, p. 0, 2019.

[7] Y. Gao, C. Xu, D. Wang, S. Chen, D. C. Ranasinghe, and S. Nepal,
“Strip: A defence against trojan attacks on deep neural networks,” arXiv
preprint arXiv:1902.06531, 2019.

[8] R. Pang, H. Shen, X. Zhang, S. Ji, Y. Vorobeychik, X. Luo, A. Liu,
and T. Wang, “A tale of evil twins: Adversarial inputs versus poisoned
models,” in Proceedings of ACM SAC Conference on Computer and
Communications (CCS), 2020.

[9] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” 2017.

[10] B. Li, C. Chen, W. Wang, and L. Carin, “Certified adversarial robustness
with additive noise,” in Advances in Neural Information Processing
Systems, 2019, pp. 9464–9474.

[11] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical black-box attacks against deep learning systems
using adversarial examples,” ACM Asia Conference on Computer and
Communications Security, 2017.

[12] Y. Ji, X. Zhang, S. Ji, X. Luo, and T. Wang, “Model-reuse attacks
on deep learning systems,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, 2018, pp. 349–
363.

[13] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” in International Conference on Artificial
Intelligence and Statistics, 2020, pp. 2938–2948.

[14] C. Xie, K. Huang, P.-Y. Chen, and B. Li, “Dba: Distributed backdoor
attacks against federated learning,” in International Conference on
Learning Representations, 2019.

[15] C. Liao, H. Zhong, A. Squicciarini, S. Zhu, and D. Miller, “Backdoor
embedding in convolutional neural network models via invisible pertur-
bation,” arXiv preprint arXiv:1808.10307, 2018.

[16] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural networks,”
in Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 2016,
pp. 582–597.

[17] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry,
“Adversarial examples are not bugs, they are features,” in Advances in
Neural Information Processing Systems, 2019, pp. 125–136.

[18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[20] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana, “Certified
robustness to adversarial examples with differential privacy,” in 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 2019, pp. 656–
672.

[21] N. Phan, M. T. Thai, H. Hu, R. Jin, T. Sun, and D. Dou, “Scalable
differential privacy with certified robustness in adversarial learning,” in
37th International Conference on Machine Learning, 2020.

[22] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradients give a
false sense of security: Circumventing defenses to adversarial examples,”
arXiv preprint arXiv:1802.00420, 2018.

[23] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” International Conference on Learning
Representations, 2015.

[24] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning
at scale,” International Conference on Learning Representations, 2017.

[25] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273–
1282.

[26] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Ma-
chine learning with adversaries: Byzantine tolerant gradient descent,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017, pp. 118–128.

[27] E. Quiring and K. Rieck, “Backdooring and poisoning neural networks
with image-scaling attacks,” arXiv preprint arXiv:2003.08633, 2020.

[28] C.-H. Weng, Y.-T. Lee, and S.-H. B. Wu, “On the trade-off between
adversarial and backdoor robustness,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

	Introduction
	Threat Model
	AdvTrojan
	Analysis
	Mathematical Analysis of AdvTrojans
	Empirical Analysis

	Experimental Settings
	Experimental Results
	Conclusion
	Related Works
	References

