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Abstract. In this paper, we focus on preserving differential privacy
(DP) in continual learning (CL), in which we train ML models to learn
a sequence of new tasks while memorizing previous tasks. We first intro-
duce a notion of continual adjacent databases to bound the sensitivity of
any data record participating in the training process of CL. Based upon
that, we develop a new DP-preserving algorithm for CL with a data
sampling strategy to quantify the privacy risk of training data in the
well-known Averaged Gradient Episodic Memory (A-GEM) approach by
applying a moments accountant. Our algorithm provides formal guar-
antees of privacy for data records across tasks in CL. Preliminary the-
oretical analysis and evaluations show that our mechanism tightens the
privacy loss while maintaining a promising model utility.
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1 Introduction

The ability to acquire new knowledge over time while retaining previously
learned experiences, referred to as continual learning (CL), brings machine learn-
ing (ML) closer to human learning [17]. More specifically, given a stream of tasks,
CL focuses on training a ML model to quickly learn a new task by leveraging the
acquired knowledge after learning previous tasks under a limited amount of com-
putation and memory resources [10]. As a result, the main challenge of existing
CL algorithms is that they can be quickly suffered by catastrophic forgetting.

Also, memorizing previous tasks while learning new tasks further exposes
CL models to adversarial attacks [7,18]. CL models can disclose private infor-
mation in the training set, such as healthcare and financial data [9]. Continuously
accessing the data from the previously learned tasks, either stored in episodic
memories [3] or produced from generative memories [11], incurs additional pri-
vacy risk compared to a ML model trained on a single task. However, there is
still a lack of scientific study to protect private training data in CL algorithms.

Motivated by this, we propose to preserve differential privacy (DP) [4], offer-
ing rigorous privacy protection as probabilistic terms for the training data in CL.
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Merely employing existing DP-preserving mechanisms can either cause a signifi-
cantly large privacy loss or quickly exhaust the limited computation and memory
resources in learning new tasks while memorizing previous tasks through either
episodic or generative memories. Thus, effectively and efficiently preserving DP
in CL remains a mostly open problem.

Key Contributions. To effectively bound the DP privacy loss in CL, we first
define continual adjacent databases (Definition 2) to capture the impact of the
current task’s data and the episodic memory on the privacy loss and model
utility. From that, we incorporate a moments accountant [1] into the A-GEM
algorithm [3] in a new DP-CL algorithm to preserve DP in CL.

Our idea is to configure the episodic memory M in A-GEM as independent
mini-memory blocks. We store a subset of training data of the current task in
a mini-memory block with an associated task index in M for each task. At
each training step, we compute reference gradients on the mini-memory blocks
independently. The reference gradients will be used to optimize the process of
memorizing previously learned tasks as in A-GEM. Importantly, by keep tracking
of the task and mini-memory block index, we can leverage a moments accountant
to estimate the privacy cost spent on each mini-memory block. Based upon this,
we derive a new strategy (Lemma 2) to bound DP loss in the whole CL process
while maintaining the computation efficiency of the A-GEM algorithm.

To our knowledge, our proposed mechanism establishes the first formal con-
nection between DP and CL. Experiments conducted on the permuted MNIST
dataset [8] and the Split CIFAR [19] show promising results in preserving DP in
CL, compared with baseline approaches.

2 Background

In this section, we revisit continual learning, differential privacy, and introduce
our problem statement. The goal of CL is to learn a model through a sequence
of tasks T = [ti]i∈[1,N ] such that the learning of each new task will not cause
forgetting of the previously learned tasks. Let DT be the dataset at task T
consisting of ST samples, each of which is a sample x ∈ R

d associated with a
label y. Each y is a one-hot vector of C categories: y = [yc]c∈[1,C]. A classifier
outputs class scores f : R

d → R
C mapping an input x to a vector of scores

f(x) = [fc(x)]c∈[1,C] s.t. ∀c ∈ [1, C] : fc(x) ∈ [0, 1] and
∑C

c=1 fc(x) = 1. The
class with the highest score is selected as the predicted label for the sample. The
classifier f is trained by minimizing a loss function L(f(x), y) that penalizes
mismatching between the prediction f(x) and the original value y.

Averaged Gradient Episodic Memory (A-GEM) [3]. There is a sequence
of tasks [ti]i∈[1,T −1] that have been learnt, where T < N . The goal is to train
the model at the current task T so that it minimizes the loss on the task T and
does not forget previous learned tasks i < T . The key feature of A-GEM is to
store a subset of data from task i, denoted as Mi, in an episodic memory M.
Then the algorithm ensures that the loss on an average episodic memory across
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all the previously learned tasks, i.e., M = ∪i<T Mi, does not increase at every
step. In A-GEM, the objective function of learning the current task T is:

θT = min
θ

L
(
f(θT −1,DT )

)
s.t. L

(
f(θT ,M)

)
≤ L

(
f(θT −1,M)

)
(1)

where θT −1 is the values of model parameters θ learned after training the task
T − 1, and L

(
f(θT −1,DT )

)
= 1

|DT |
∑

x∈DT
L

(
f(θT −1, x)

)
.

The constrained optimization problem of Eq. 1 can be approximated quickly
and the updated gradient g̃ is as follows:

g̃ = g − gT gref

gT
refgref

gref (2)

where g is the proposed gradient update on T and gref is the reference gradient
computed from the episodic memory M from previous tasks.

Differential Privacy [4,5]. To avoid the training data leakage, DP guarantees
to restrict what the adversaries can learn from the training data given the model
parameters by ensuring similar model outcomes with and without any single data
sample in the dataset. The definition of DP is as follows:

Definition 1 (ε, δ)-DP [4]. A randomized algorithm A fulfills (ε, δ)-DP, if for
any two adjacent databases D and D′ differ at most one sample, and for all
outcomes O ⊆ Range(A), we have: Pr[A(D) = O] ≤ eεPr[A(D′) = O] + δ,
where ε is the privacy budget and δ is the broken probability.

DP in Continual Learning. There are several works of DP in CL [6,13]. In
[6], the authors train a DP-GAN to approximate the distribution of the past
datasets. They leverage a small portion of public data (i.e., the data that does
not need to keep private) to initialize and train the GAN in the first few iterations
of each task, then continue training the GAN model under DP constraint. The
trained generator produces adversarial examples imitating real examples of past
tasks. Then, the adversarial examples are employed to supplement the actual
data of the current training task. DPL2M [13] perturbs the objective functions
using a DPAL mechanism [12,14] and applies A-GEM to optimize the perturbed
objective function. However, there is a lack of a concrete definition of adjacent
databases with unclear or not well-justified DP protection in [6,13]. Different
from existing works, we provide a formal DP protection for CL models.

3 Continual Learning with DP

This section establishes a connection between differential privacy and continual
learning. We first propose a definition of continual adjacent databases in CL, as
follows: Two databases D and D′ are continual adjacent if they differ in a single
sample of the training data and differ in a single sample of the episodic memory
across all the tasks. The definition is presented as follows:
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Definition 2 Continual Adjacent Databases. Two databases D = (D,M) and
D′ = (D′,M′), where D = ∪N

i=1Di, D′ = ∪N
i=1D′

i, M = ∪N
i=1Mi, and M′ =

∪N
i=1M′

i, are called continual adjacent if: ‖D − D′‖1 ≤ 1 and ‖M − M′‖1 ≤ 1.

Fig. 1. DP in CL protects privacy for a
stream of different tasks. Here, blue box
indicates training data of task T , orange
and green boxes indicate mini-memory
blocks in M, and the orange ones are for
computing gref . (Color figure online)

A Naive Algorithm. Based upon Def-
inition 2, a straightforward approach,
called DP-AGEM, is to simply apply a
moments accountant [1] into A-GEM [3],
to preserve DP in CL. At each task T ,
we divide the dataset DT into Dtrain

T and
Dref

T such that Dtrain
T and Dref

T are dis-
joint: Dtrain

T ∩ Dref
T = ∅. By using the

training data Dtrain
T with a sampling rate

p, DP-AGEM computes a proposed gra-
dient g, which is bounded by a predefined
l2-norm clipping bound β. It is beneficial
in real-world to keep track of the privacy
budget spent on each task independently,
and the total privacy budget used in the entire training process. To achieve this,
in computing the reference gradients gref , the algorithm first randomly samples
data from all the data samples in the episodic memory M with a sampling prob-
ability q. Given a particular Dref

i (i ∈ [1, T − 1]) in the episodic memory, the
sampled data is used to compute a reference gradient gi

ref , which is clipped with
the l2-norm bound β. Then Gaussian mechanism is employed to inject random
Gaussian noise N (0, σ2β2I) with a predefined hyper-parameter σ into both g
and gi

ref . The reference gradient gref is the average of all the reference gradi-
ents computed on each Dref

i , as follows: gref = 1
T −1

∑
i∈[1,T −1] g

i
ref . Finally, the

updated gradient g̃ computed using Eq. 2 with gref and g can be used to update
the model parameters. After training the task T , Dref

T is added into the episodic
memory M. The training process will continue until the model is trained on all
the tasks.

Since the l2-norms of g and gi
ref are bounded, we can leverage a moments

accountant to bound the privacy loss for a single task T and for accumulation
across all tasks. Let εT be the privacy budget used to compute g on Dtrain

T , and
ε′
i is the privacy budget spent on computing the reference gradient gi

ref at each
training task. The privacy budget used for a specific task i ∈ [1, T ), denoted
as εi(T ) and the total privacy budgets εall

T of DP-AGEM accumulated until the
task T can be computed in the following lemma.

Lemma 1. Until the task T , 1) the privacy budget used for a specific and pre-
viously learned task i ∈ [1, T ] is: εi(T ) = εi + (T − i)ε′

i, and 2) the total privacy
budget εall

T of DP-AGEM is: εall
T =

∑T
i=1 εi(T ).

Proof. We use induction to prove Lemma 1. When T = 1, M is empty; therefore,
εall
1 = ε1 = ε1(1). Hence, Lemma 1 is true for T = 1. Assuming that it is true
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for T = k, so εi(k) = εi + (k − i)ε′
i and εall

k =
∑k

i=1 εi(k). We need to show that
Lemma 1 is true for T = k+1. We have: εi(k+1) = εi(k)+ε′

i = εi +(k+1− i)ε′
i,

and εall
k+1 =

∑k
i=1 εi(k)+εk+1+

∑k
i=1 ε′

i =
∑k+1

i=1 εi(k+1). Thus, Lemma 1 holds.

Two Levels of DP Protection. In Lemma 1, based on our definition of con-
tinual adjacent databases (Definition 2), it is essential that there are two levels of
DP protection provided to an arbitrary data sample, as follows. Until the task
T ∈ [1, N ]: (1) Given the DP budget εi(T ) for a specific task i ∈ [1, T ], the
participation information of an arbitrary data sample in the task i is protected
under a (εi(T ), δ)-DP given the released parameters θ. This can be presented as:
Pr[DP-AGEM(Di) = θ] ≤ eεi(T )Pr[DP-AGEM(D′

i) = θ] + δ, for any adjacent
databases Di and D′

i; and (2) The participation information of an arbitrary data
sample in the whole training data (D = ∪T

i=1Dtrain
i ,M = ∪T

i=1D
ref
i ) is protected

under a (εall
T , δ)-DP given the released parameters θ. This can be presented as:

Pr[DP-AGEM(D,M) = θ] ≤ eεall
T Pr[DP-AGEM(D′,M′) = θ] + δ, for any con-

tinual adjacent databases (D,M) and (D′,M′). This is fundamentally different
from existing works [6,13], which do not provide any formal DP in CL.

Although DP-AGEM can preserve DP in CL, it suffers from a large pri-
vacy budget accumulation across tasks with an O(T 2) for εall

T . To address this
impractical issue, we present an algorithm to tighten the DP loss.

DP-CL Algorithm. Our DP-CL (Algorithm 1 and Fig. 1) takes a sequence of
tasks T = [ti]i∈[1,N ] and dataset D = ∪N

i=1Di as inputs. All samples in Dtrain
T

are used to compute the proposed gradient update g on task T with a sampling
rate p (Line 6). We clip g so that its l2-norm is bounded by a predefined gradient
clipping bound β. Then we add a random Gaussian noise N (0, σ2β2I) into g with
a predefined noise scale σ (Line 9). Note that after training the task T , samples
in Dref

T are added to the episodic memory M as a mini-memory block MT
(Lines 17, 24–26). To reduce the privacy budget accumulated over the number
of tasks, we limit the access to seen data of previous tasks by using a randomly
selected mini-memory block Mi (i < T ) from M to compute gref (Lines 20–23).
We clip gref by the gradient clipping bound β and then add a random Gaussian
noise N (0, σ2β2I) to gref (Line 14). The updated gradient g̃ is computed by
Eq. 2 (Line 15). Then g̃ is used to update the model parameters θ (Line 16). The
privacy budgets in our DP-CL can be bounded in the following lemma.

Lemma 2. Until the task T , 1) the privacy budget used for a specific and pre-
viously learned task i ∈ [1, T ] is: εi(T ) = εi + ε′

i, where ε′
i is the privacy budget

used for a randomly chosen mini-memory block from M to compute gref at task
i, and 2) the total privacy budget εall

T of DP-CL is: εall
T =

∑T
i=1 εi(T ).

Proof. Similar to the proof of Lemma 1 with using induction. Here, we need to
show that it is true for T = k + 1. We have: εi(k + 1) = εi + ε′

i, and εall
k+1 =

∑k
i=1 εi(k) + εk+1 + ε′

k+1 =
∑k+1

i=1 εi(k + 1). Consequently, Lemma 2 hold.

It is obvious that our DP-CL algorithm significantly reduces the privacy con-
sumption to O(T ), which is linear to the number of training tasks. In addition,
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our sampling approach to compute gref is unbiased, since the expectation for
any data sample selected to compute gref is the same: ∀x ∈ M,E(x ∈ Mi) =
q/(T −1). In our experiment, we will show that DP-CL outperforms DP-AGEM.

Algorithm 1. DP in Continual Learning (DP-CL) Algorithm
1: Input: Number of tasks N , dataset D = ∪N

i=1Di, gradient clipping bound β
2: Initialize model θ, episodic memory M = ∅, moments accountant M

3: for T = {1, ..., N} do
4: Dtrain

T ∼ DT , Dref
T ∼ DT s.t. Dtrain

T ∪ Dref
T = DT , Dtrain

T ∩ Dref
T = ∅

5: for each iteration e = 0, 1, 2, . . . do
6: De

T ← Take random samples in Dtrain
T with a sampling rate p

7: for (x, y) ∈ De
T do

8: g ← ClipGrad(∇θL(fθ(x), y), β) + N (0, σ2β2I)
9: if T = 1 then

10: g̃ ← g
11: else
12: gref ← ClipGrad(CalGref(M, T ), β) + N (0, σ2β2I)
13: Compute g̃ with Eq. 2
14: θ ← θ − αg̃
15: M ← UpdateEpsMem(M, Dref

T , T )
16: Output: (ε, δ)-DP-CL θ, M (from M.get_priv_spent())
17: CalGref(M, T ):
18: Randomly choose Mi from M, where i < T
19: (xref , yref ) ∼ Mi (Mi is randomly chosen from M, where i < T )
20: return gref = ∇θL(fθ(x

ref ), yref )
21: UpdateEpsMem(M, Dref

T , T ):
22: MT ← Dref

T
23: return M ∪ MT

24: ClipGrad(g, β): return π(g, β) = g · min
(
1, β

‖g‖

)

4 Experimental Results

We have conducted experiments on the permuted MNIST dataset [8] and the
Split CIFAR dataset [19]. Our validation focuses on shedding light on the inter-
play between model utility and privacy loss of preserving DP in CL. Our code,
datasets, and model configurations are available on Github1.

Baseline Approaches. We evaluate our DP-CL algorithm and compare it with
A-GEM [3], one of the state-of-the-art CL algorithms. Since A-GEM does not
preserve DP, we only use A-GEM to show the upper-bound performance. We
use the average accuracy, the average forgetting (F), the worst-case forgetting
(worst-case F), and the learning curve area (LCA) [3] for evaluation.

1 https://github.com/PhungLai728/DP-CL.

https://github.com/PhungLai728/DP-CL
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• Comparing Privacy Accumulation. Since the number of data samples
and the sampling rate remain the same for every task, εi and ε′

i can be the
same for every task. Therefore, for the sake of clarity without loss of generality,
we draw different random Gaussian values (mean = 1, std = 0.02) and assign
the generated values as the privacy budget εi and ε′

i for 17 tasks.

Figure 2a illustrates how privacy loss accumulates over 17 tasks in DP-AGEM
and our DP-CL. Our algorithm achieves a notably tighter privacy budget com-
pared with DP-AGEM, which accesses data samples from the whole episodic
memory to compute gref . When the number of tasks increases, DP-AGEM’s
privacy budget exponentially increases. In contrast, our approach’s privacy bud-
get slightly increases and is linear to the number of tasks or training steps.

Fig. 2. Theoretical analysis for privacy accumulation (a); and Average accuracy over
17 tasks of A-GEM and DP-CL algorithms with varying εi.

• Privacy Loss and Model Utility. From our theoretical analysis, DP-
AGEM suffers from a huge privacy budget accumulation over tasks. Therefore,
we only compare our DP-CL and A-GEM for the sake of simplicity.

As shown in Fig. 2b and 2c, our proposed method achieves a comparable aver-
age accuracy with the noiseless A-GEM model at the first task. In the permuted
MNIST dataset, when the number of tasks increases, the average accuracy of our
DP-CL drops faster than the average accuracy of the A-GEM model. For exam-
ple, at task 17-th, A-GEM’s average accuracy drops to 79.3%, while DP-CL’s
average accuracy drops to 47.5% with a tight privacy budget εi = 0.85. When the
privacy budget increases, the average accuracy gap between our model and the
noiseless A-GEM is larger, indicating that preserving DP in CL may increase the
catastrophic forgetting. This phenomenon is further clarified by F, worst-case F,
and LCA (Table 1). At εi = 0.85, the values of F, worst-case F, and LCA are
0.401, 0.586, and 0.146 respectively in DP-CL. After that, the F and worst-case
F significantly increase, and LCA moderately decreases in DP-CL.

In the Split CIFAR dataset, when the number of tasks increases, the average
accuracy of DP-CL drops quickly while the average accuracy of the A-GEM
model fluctuates. For instances, A-GEM’s average accuracy is 57.5% at the first
task, drops to 51.5% at the second task, and is 58.1% at the last task. Meanwhile,
DP-CL’s average accuracy is 56.8% at the first task, and gradually drops to
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Table 1. Forgetting measure (F), worst-case F, and LCA results for the MNIST
dataset. The lower F, worst-case F, and the higher LCA the better.

Forgetting (F) Worst-case F LCA

MNIST A-GEM 0.166 ± 0.0070 0.272 ± 0.0086 0.481 ± 0.0051

DP-CL
(ε′

i = 1.47 and
δ = 10−4 for
all tasks)

εi = 0.85 0.401 ± 0.0070 0.586 ± 0.0191 0.146 ± 0.0077

εi = 0.9 0.657 ± 0.0099 0.809 ± 0.0110 0.123 ± 0.0039

εi = 0.95 0.713 ± 0.0060 0.840 ± 0.0186 0.120 ± 0.0038

εi = 1.0 0.750 ± 0.0017 0.851 ± 0.0081 0.119 ± 0.0115

εi = 1.15 0.782 ± 0.0017 0.863 ± 0.0061 0.124 ± 0.0013

εi = 1.30 0.796 ± 0.0023 0.864 ± 0.0077 0.121 ± 0.0021

CIFAR A-GEM 0.089 ± 0.0163 0.188 ± 0.0317 0.348 ± 0.0111

DP-CL
(ε′

i = 1.47 and
δ = 10−4 for
all tasks)

εi = 0.95 0.149 ± 0.0123 0.314 ± 0.0057 0.262 ± 0.0058

εi = 0.96 0.181 ± 0.0193 0.335 ± 0.0421 0.259 ± 0.0130

εi = 0.97 0.196 ± 0.0194 0.377 ± 0.0174 0.266 ± 0.0111

εi = 0.98 0.239 ± 0.0162 0.428 ± 0.0701 0.266 ± 0.0008

εi = 0.99 0.249 ± 0.0097 0.435 ± 0.0432 0.259 ± 0.0053

εi = 1.0 0.262 ± 0.031 0.455 ± 0.0452 0.263 ± 0.0096

31.9% at the last task with a tight privacy budget εi = 1.0. The fluctuation
phenomenon in the A-GEM model is probably due to the curse of dimension in
which there are 2, 500 training examples, which is much smaller than the number
of trainable parameters in the ResNet-18, i.e., 11 million. Different from the
permuted MNIST dataset, in the Split CIFAR dataset, when the privacy budget
increases, the average accuracy gap between DP-CL and the noiseless A-GEM
is smaller, especially at the first task. For instance, at the first task, the gaps are
11.4%, 6.3%, 4.7%, 3.1%, 0.3%, and 0.7% when the values of εi ∈ [0.95, 1.0]. This
shows the trade-off between privacy budget and model utility in which when we
spend more privacy budget, the model accuracy improves. The gap between DP-
CL’s and A-GEM’s average accuracy are significantly bigger when the number
of tasks increases, but the difference among different privacy budgets decreases.
For instance, at the last task, the gaps are [24.2%, 26.2%] when εi ∈ [0.95, 1.0].
As shown in Table 1, when the privacy budget increases, the F and worst-case F
significantly increase, while the LCA slightly fluctuates around [0.259, 0.266].

Key Observations. From our experiments, we obtain the following observa-
tions. (1) Merely incorporating the moments accountant into A-GEM causes
a large privacy budget accumulation. (2) Although our DP-CL algorithm pre-
serves DP in CL, optimizing the trade-off between model utility and privacy loss
is an open problem as the privacy noise can worsen the catastrophic forgetting.
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5 Conclusion and Future Work

In this paper, we established the first formal connection between DP and CL.
We combine the moments accountant and A-GEM in a holistic approach to
preserve DP in CL in a tightly accumulated privacy budget. Our model shows
promising results under strong DP guarantees in CL and opens a new research
line to optimize the model utility and privacy loss trade-off. One of the immediate
questions is how to align the privacy noise with the catastrophic forgetting under
the same privacy protection. We will examine our approach to a broader range of
models and datasets, especially under attacks [2,18], and heterogeneous privacy-
preserving mechanisms [15,16]. Our work further highlights an open direction of
quantifying the privacy risk given a diverse correlation among tasks.

Acknowledgment. The authors gratefully acknowledge the support from the
National Science Foundation grants NSF CNS-1935928/1935923, CNS-1850094, IIS-
2041096/2041065.
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