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Abstract

Over the past two decades, the discovery of CRISPR-Cas immune systems and the repurposing of
their effector nucleases as biotechnological tools have revolutionized genome editing. The
corresponding work has been captured by 90,000 authors representing 7,600 affiliations in 126
countries, who have published over 19,000 papers spanning medicine, agriculture and
biotechnology. Here, we use tech mining and an integrated bibliometric and networks framework
to investigate the CRISPR literature over three time periods. The analysis identified seminal
papers, leading authors, influential journals and rising applications and topics interconnected
through collaborative networks. A core set of foundational topics gave rise to diverging avenues
of research and applications, reflecting a bona fide disruptive emerging technology. This analysis
illustrates how bibliometrics can identify key factors, decipher rising trends and untangle
emerging applications and technologies that dynamically shape a morphing field, and provides
insights into the trajectory of the genome editing.
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Introduction

While genome editing has been on the rise over the past two decades, the advent of CRISPR-
based (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has accelerated
and democratized genome editing in the past 9 years. > Several Cas-based (CRISPR associated)
molecular machines have been co-opted from the bacterial adaptive immune system 3 to
generate CRISPR-based technologies, such as sgRNA:Cas9 4, that have enabled facile genome
editing since 2013. > Recently, the leading developers of this genome editing technology were
awarded the 2020 Nobel Prize in Chemistry, illustrating the tremendous potential and impact of
this technology. Early work focused on deciphering the molecular processes that drive CRISPR-
based adaptive immunity in bacteria 7, and the development of programmable Cas proteins, that
laid a preparatory foundation for CRISPR-based technologies. & Subsequently, these Cas effectors
were deployed to manipulate genomes, transcriptomes and epigenomes in a broad diversity of
organisms across the tree of life, such as bacteria, plants, and humans .°> More recently, these
CRISPR-based technologies have been widely adopted to engineer model organisms and even
develop gene therapies tested in clinical settings. 1° Besides Cas9, the CRISPR toolbox has been
expanded to encompass various Cas effector proteins such as Cas9, Cas12, Cas13, and Cascade.
% As tools continue to be optimized with regards to specificity, efficiency, and delivery modalities,
the intellectual property landscape is being defined 113 to enable widespread exploitation in
medicine (e.g. gene therapies and antimicrobials), agriculture (e.g. crop breeding and disease
resistance in livestock), and biotechnology (e.g. enzyme engineering and biofuel genesis). The
accessibility and dissemination of CRISPR tools via repositories such as Addgene have allowed
broad access to the best tools by academics and non-profit organizations across the globe. 2

Though the rise of genome editing and global spread of CRISPR tools is undeniable, relatively little
is recognized about the geographical, topical, individual and collaborative patterns that drive this
academic phenomenon and commercially disruptive technology. * Here, we implemented an
integrated research framework, using a bibliometric approach >, augmented by text mining,
analysis of abstract record compilations and a scientific evolutionary pathway analysis "*8, to
investigate the underlying patterns that have driven the adoption and implementation of CRISPR
technologies. Specifically, we analyzed publication trends and authorship patterns for the CRISPR
and the genome editing literature over space and time, using queries in the Web of Science, to
identify key contributors and influential papers, as well as the topics that have shaped and are
currently driving the field.

Methods
Publication records were retrieved using text queries mining the Web of Science records as of

March 25%,2021, spanning manuscripts published between 2000 and 2020. Records were
retrieved and cross-indexed using entries providing information with regards to manuscript
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authors, affiliated institutions, publication journal, year, title and abstracts. For scientific
evolutionary pathways (SEP) analysis, we used the method pioneered by Zhang et al. '°, to trace
the evolution of scientific topics into different subtopics by identifying a predecessor-descendant
relationship from this bibliometric data. We then used this SEP approach to track the
convergence and divergence of research topics on genome editing research and discover
potential connections between these topics within a knowledge flow.

Generally, we ascribed six definitions as follows:

Definition 1: An article is represented by a vector (article vector): its feature space consists of
terms of the entire dataset and its cell represents the frequency of a given term appearing in this
article.

Definition 2: A topic is a collection of articles sharing similar semantic content, and is
geometrically represented as a circle, with a centroid measured by the mean of all involved article
vectors, and a boundary measured by the largest Euclidean distance between the centroid and
all other article vectors.

Definition 3: Articles published in the same year are organized in one time slice. The entire
dataset is analyzed as a bibliometric stream, that is, the SEP algorithm is to sequentially analyze
each time slice according to the order of publication year, and for each time slice the algorithm
is to sequentially analyze each article according to the order of unified publication ID.

Definition 4: Initial topics are topics consisting of articles in the first time slice and are starting
points of the evolutionary pathways. Initial topics usually represent the root (e.g., original ideas
and concepts) of the case (i.e. CRISPR in this paper).

Definition 5: A topic has two status categories, either ‘live’ or ‘dead’, as defined by ‘sleeping
beauties’ 2%, for which a topic could ‘die’ if it does not receive new articles in certain sequential
time slices, and a ‘dead’ topic could be revived and ‘alive’ again if a newly born topic shares the
highest similarity with it.

Definition 6: A community is a group of proximate topics in a network — usually a branch in a SEP
map-, which represents a subfield of the case.

Based on the above definitions, we implemented a stepwise algorithm to create the SEP as
follows:

Step 1: All articles in the first time slice are grouped as one initial topic, which is set as the starting
point of the evolutionary pathways. The algorithm moves to the second time slice and analyzes
its involved articles one by one.

Step 2: We measure the cosine similarity between a current article and the centroids of all ‘live’
topics.
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Step 3: We assign the article to its most similar topic. If the Euclidean distance between the article
and the centroid of the assigned topic is smaller than its boundary, this article will be directly
involved in the topic, or else, it will be labeled as ‘drift.” Then, we return to Step 2 and analyze
the next article until the end of this time slice.

Step 4: After analyzing all articles in one time slice, we check the status of each topic —i.e., set
topics as ‘dead’ if they meet with the constraint in Definition 4 (a parameter is used here to
decide the length of sequential time slices). For each ‘live’ topic, an unsupervised K-means
approach is introduced to group its assigned ‘drift’ articles into certain sub-topics (an interval for
seeking the local-optimal number of topics is required).

Step 5: We measure the cosine similarity between each sub-topic and two sets of topics - its
assigned ‘live’ topic and all ‘dead’ topics. If the most similar topic of the sub-topic is its assigned
one, their relationship is defined as ‘predecessor-descendent,” or else, the most similar ‘dead’
topic will be revived and set as ‘live,” and, then, becomes the predecessor of the sub-topic.

Step 6: We label a new topic (i.e., a sub-topic in Step 5) via the term with the highest similarity
with all other terms in the topic - if the term has already been used before, choose the term with
the second highest similarity, et cetera.

Step 7, We update the centroid and boundary of all ‘live’ topics, and the algorithm moves to the
next time slice, and we return to Step 2.

Results of the SEP approach include a list of topics and their predecessor-descendant
relationships. These topics are then visualized in a network via Gephi ?°. In the network, each
topicis represented by a node, and the size of a node represents its importance, as measured by
the value of term frequency inverse document frequency (tf-idf) analysis. A directed edge
represents the predecessor-descendant relationship between its connected nodes, and the
weight of an edge reveals the strength of the relationship (e.g., semantic similarity). The color of
nodes reflects their communities identified by an approach of community detection integrated
in Gephi as “modularity” 2! Similarity measurements were carried out for the 119 topics
identified across the three distinct time periods (9 topics pre-2013, 64 topics between 2013 and
2018, 46 topics since 2019), using semantic similarity coefficients. Details are available at:
https://github.com/IntelligentBibliometrics/Gene-editing.

Results
CRISPR technology fueled the rise of the genome editing literature

To provide quantitative and qualitative insights into the drivers of the CRISPR craze %2, we first
defined the genome editing lexicon of interest and quantified relevant publications over the past
twenty years, focusing on articles, reviews and letters comprising 26,484 records (Supplemental
Table S1). Results show that the CRISPR literature (over 19,000 papers published since 2000 by
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90,000 authors from around 7,600 institutions located in 126 countries; Supplemental Table S2)
is rapidly growing, and that CRISPR-based tools impressively overtook incumbent technologies
such as ZFNs, TALENs, and Meganucleases in 2013 (Figure 1A), within months of publication of
the first proof of concept for CRISPR-based genome editing in human cells. > Currently, CRISPR-
related publications account for the near totality of the genome editing field, and are over ten
times more numerous than ZFN, TALEN, and Meganuclease papers combined (Figure 1A). Indeed,
publications related to these first-generation genome editing technologies have been in decline
since the advent of CRISPR-based genome editing technologies in 2012 (Figure 1A).

Amazingly, despite this rapid early adoption pattern, especially in the US and China, the CRISPR
literature continues to expand at an impressive rate (Figure 1A), perhaps suggesting that genome
editing is yet to hit maturity as a field, which is consistent with the continued dissemination of
CRISPR tools across the planet. 2 Importantly, this shows how CRISPR as a field evolved from a
relatively small “niche” microbiology topic into the major driver of genome editing in 2013,
establishing a “before CRISPR” era 23, and perhaps an “after displacement” of incumbent
technologies period thereafter. This rise was fueled by the advent of the guide RNA technology
in 2012, which quickly enabled genome editing (Figure 1B) and prompted an explosion in genome
editing studies and citations (Figure 1C), as recognized by the 2020 Chemistry Nobel selection
committee. Critical advances achieved in the past two years are also notable, with development
of novel base editing tools and polished technologies such as prime editing 2%, as well as the
transition of the technology from research laboratories into clinical settings with bona fide
CRISPR-based therapeutics. 1° These tipping points triggered by specific publications and
technology development define distinct time-periods that provide useful to assess the dynamic
evolution of the field. 2326

An interwoven network of collaborative authors

Next, we carried out a co-authorship network analysis to delve into the collaborative efforts
driving contributions by the 48 most prolific and impactful authors, over time (Figure 2, Table 1).
On a global basis, investigating publication patterns across these authors (as defined by number
of publications, citations and h-index within the field), we note extensive and inter-connected
collaborative networks with most authors engaged in several collaborative efforts. Actually, it
appears the most influential authors collaborate with other key contributing authors in inter-
connected and overlapping authorship networks (Figure 2). Interestingly, many “early” authors
who were active in the field prior to 2013 originally focused on CRISPR biology and mechanisms
of action continue to do so (Figure 2), whereas distinct collaborative networks that fueled the
rise of CRISPR-based genome editing technologies in parallel (Figure 2A) now directly overlap in
topics of interest (Figure 2B). Noteworthy, the early community-wide focus on Cas9-based
genome editing was comprising both overlapping and competitive interests, which created an
intellectual property challenge regarding licensing and freedom to operate for the technology, -
13 which presumably prompted searches for novel Cas effectors. Interestingly, while some believe
that the CRISPR IP challenges are a scientific hurdle that may have stifled innovation, the data
suggests that it may rather have pushed the community towards actively mining for alternatives,
while not precluding its broad adoption by diverse academic groups across the globe. Those



221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264

initially established Cas12 as an alternative technology and recently unearthed new CRISPR-Cas
types based on Cas13, Cas14 and others >?7, suggesting a need-based innovative push rather than
a limiting competitive constraint.

Some of the most impactful contributions made by these influential authors can be captured by
analyzing the most cited papers in the field (Table 2), over the three aforementioned eras, and
the journals in which they have been published (Supplementary Table S3). The early contributions
primarily consist of seminal studies establishing CRISPR-Cas as the adaptive immune system in
bacteria 7?¢, providing DNA-encoded, RNA-mediated, nucleic acid targeting, culminating in 2012
with the development of the sgRNA:Cas9 programmable CRISPR effector. # This technology was
used in 2013 for genome editing >®, and shortly thereafter for transcriptional control and high-
throughput screens. In the past two years, base editing technologies have been on the rise,
primarily fueled by the rapid ascent of engineered Cas effectors from the David Liu lab (Table 1,
Table 2). °2425 Inevitably, the most cited manuscripts have been research papers published in
high-profile journals contributed by prolific authors, together with a few noteworthy reviews and
resource-focused papers (Table 2).

Predictably, citation patterns for most highly cited papers in the space reflect the rise of genome
editing, notably the rapid explosion in 2013-2014 (Figure 1); these papers were published in the
most influential journals in the world (Supplementary Table S3). Impressively, the most cited
early CRISPR studies were also published in these journals, and they have been and continue to
be the most influential journals in this field (Figure 1, Table S3), despite fundamental shifts in
topics of interest and the vast expansion of the contributing authors pool, as well as a diversified
and more global readership (Figure 2). To date, these papers reflect early work, mostly on
development of the sgRNA:Cas9 technology, and its use and rapid adoption for genome editing
in human cells, with the majority of the most cited papers published within the first 2 years of
the CRISPR craze (Figure 1B).

In order to delve more into the key organisms, topics and genes subjected to the most attention
in genome editing, we mined the published data and show that human cells are the primary
organism of interest for the bulk of genome editing studies, predictably, followed by mouse, as
the canonical proxy animal model for human studies (Supplementary Figure S1). Noteworthy,
studies focused on humans and mice represent 10 times more than all other organisms of
interest in CRISPR research, reflecting the heavy focus on human disease and medical
applications, notwithstanding interest in and potential for other areas such as agriculture.
Actually, this suggests that there is perhaps perplexing under-exploitation, or an adoption lag in
other areas of interest, such as microbiology, which is ironically where these systems broadly
occur and were originally characterized and repurposed. Next, we focused on key diseases of
interest in these studies and determined that cancer-related research accounts for the majority
of the studies, followed by genetic disease, and infectious disease, including viral infections
(Supplementary Figure S1). This is further corroborated by the top 10 list of genes most
associated with genome editing research (Supplementary Figure S1), notably the most studied
trio: TP53 (the most popular tumor suppressor), AKT (protein kinase B), and MYC (proto-
oncogene transcription factor).
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Emergence of networks of divergent genome editing topics

To gain bibliometric insights into how the field evolved and morphed over time, we used a
scientific evolutionary pathway (SEP) analysis (see Methods) to trace the evolution of topics of
scientific interest in these published studies by identifying clusters of predecessor-descendant
topical relationships. *° This allowed tracking of convergence and divergence of research topics
on genome editing and connections among these topics over time (Figure 3, Figure S1). This
analysis revealed the existence of 9 topic communities that have evolved over the three time
periods discussed previously. First, the field started with seminal bacterial work that occurred
prior to 2012, which focused on adaptive immunity. This community topic is at the core of the
network, and initially encompassed foundational topics such as “Cas nuclease”, “acquired
immunity”, and “E. coli” (see the pink cluster at the center of Figure 3 and Supplementary Figure
1). This core gave rise to the sgRNA:Cas9 genome editing technology, a tipping point for the field,
which emerged as a new topicin 2013, centered on “guide RNA”, and links to incumbent genome
editing technologies such as ZFNs and TALENs (see the green cluster, Figure 3). Over time, the
core also gave rise to a community focused on screens (genetic screens, high-throughput screens,
center right purple cluster). Likewise, the core cluster also gave rise to a community topic focused
on transcriptional control, relatively early on with the rise in 2014 of a transcription-focused
cluster encompassing gene expression, gene regulation, transcription factors and transcriptional
regulators (center left, blue). Later on, as the technology evolved and matured, application-
focused clusters arose, focusing on gene therapies, viral diseases, and neurodegenerative
diseases.

Analysis of similarity measurements (Supplementary Table S4) between these topic communities
reveals how disruptive CRISPR technology is, given the diversity of distinct clusters that arose
from the original core cluster, and the relatively low level of similarity observed between and
across these 119 topics. This is further supported by the low level of similarity observed between
topics across time periods (Supplementary Table S4). The recent increase in topics in the past
two years (46 new topics in two years, compared with 64 topics spanning the explosive 2013-
2018 period) likely indicates continued disruptive innovation and expansion of this technology
into new areas of research, as well as novel and diversified applications. This is consistent with
the development of novel technologies (e.g. base editing), the continued dissemination of CRISPR
technologies across the globe (e.g. Addgene distributions) and the transition to applications,
especially in therapeutic settings with CRISPR-based diagnostics, antivirals and gene therapies all
with clinical ambition in the short term. Critically, it is important to note the cross-referencing of
the various visualization modalities and tabular lists of entries throughout our tables and figures,
that consistently identify the same key factors fueling the genome editing revolution, and
robustly establish the seminal studies and technological developments that have shaped this
morphing subject over time.

Despite the observed congruence, the SEP algorithm relies on natural language processing
techniques that are impacted by writing style and biases, as well as inconsistent use of
terminology by different groups of authors, which can lead to synonyms being redundant and
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separately accounted for. For example, there are entries related to transcription that encompass:
"transcriptional control”, “gene expression”, “gene regulation” and “transcriptional regulation”.
There are also several connections between seemingly un-related topics due to language biases
and topic-related complexity inherent to the same technology being used in unrelated organisms.
There are also multiple examples of confounding coverage of topics that are often discussed
together, but are not systematically linked, such as “human embryos” and “clinical trials” being
discussed together without being co-dependent. Thus, the complexity of a broadly applicable
tool must be deciphered and interpreted by the expert reader to account for otherwise un-
related topics and verbiage. Human interpretation is also important to fully assess the impact
and influential contributions of individual authors and select manuscripts, to account for
guantitative shortcomings and biases inherent to citation numbers, indices and impact factors.
Indeed, qualitative insights should be used by the reader to complement quantitative metrics in
the spirit of the Leiden Manifesto. 28 This manifesto highlights the need to rely on expert
assessment to overcome bias tendencies and untangle conceptual ambiguity and uncertainty.

In several instances, there are connections that seems counter-intuitive and reflect high semantic
similarity, but not technical dependence nor scientific derivation. Indeed, sets of authors can
share similar language biases, such as clinically-relevant settings for patient sampling in medical
applications for the epidemiological study of Mpycobacterium tuberculosis and the
implementation of genome editing for human gene therapies, linking two seemingly unrelated
clusters because the authors share linguistic biases and keywords. Likewise, the link between Cas
nucleases and DNA fingerprinting reflects the early use of CRISPR spacer hypervariability for
genotyping and not the use of Cas proteins for molecular fingerprinting. This high semantic
similarity need not reflect bona fide technical overlap or dependency, and can reveal linguistic
biases, or indicate subsequent uses and applications of derived tools and technologies, including
their eventual use in diverse model organisms. The latter explains the unexpected appearance of
Saccharomyces cerevisiae, Caenorhabditis elegans, zebrafish, Chinese hamster ovary cells, and
others throughout topic clusters. Some of the topical lineages shown reflect topical descendance
within the CRISPR literature that evolved from a technical basis (using various Cas effectors as
tools) to applications of these technologies in model organisms and cells. To a similar extent,
select topics of interest to specific groups of authors and readers can be linked through SEP
analyses such as “human embryos” and “clinical trials”, though they need not be co-dependent
(current clinical trials are not based on CRISPR-edited human embryos), so both applications and
implications can entangle topic connections. In some cases, the appearance of a newly coined
term reveals tipping points that created new sets of topics, notably the development of the
“guide RNA” technology and the nomenclature update that reclassified Cas5/Csn1 as Cas9.

While some literature topics have arisen faster than CRISPR, such as the recent COVID19-related
literature??, the speed of the adoption of the CRISPR technology, as much as the rise of the
CRISPR-related literature, is noteworthy. The speed of the work in this field has been invoked as
a distinguishing feature, but perhaps the most striking aspect is the adoption and
democratization of the technology itself, which is captured by the rise in the number of citations
and publications, as well as Addgene shipments. 12
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Discussion

Altogether, these results provide insights into the key factors driving the evolution of CRISPR, and
illustrate how a diverse community of collaborative scientists is globally adopting this disruptive
technology, and implementing it in various organisms of interest across applications. This analysis
illustrates how bibliometrics can identify key individuals, topics and papers that dynamically
shape a morphing research field, and decipher rising trends impacting the historical trajectory of
a field and untangle emerging applications. The data presented here provide strong support that
this is a bona fide emerging technology as defined by key attributes. 3° Indeed, all five defining
elements of an emerging technology are met, with: (1) radical novelty: near-instant replacement
of incumbent editing technologies, with aggressive pursuit of IP and topic diversification; (2) fast
growth, as documented by publications, citations, and Addgene distribution patterns; (3)
coherence, supported by overlapping collaborative authorship networks, as well as inter-
connected topics derived from a common core; (4) prominent impact, with enthusiastic
commercialization in several industries spanning medicine, agriculture and biotechnology, as well
as global adoption in academia and industry and the momentous 2020 Nobel Prize in Chemistry
for two selected CRISPR pioneers; and (5) uncertainty and ambiguity, as documented by
intellectual property issues, discussions related to regulatory frameworks for, and societal
implications of, the various applications of genome editing. 3° Importantly, the evolution of the
topic map over the three aforementioned time periods further endorses the emerging
technology attributes of genome editing. Indeed, predecessor-topics created during the first time
period established a scientific foundation for the field (coherence), with evolution over the next
two time periods radically spearheading into various directions (radical novelty), with rapidly
increasing number of descendant topics (fast growth), giving rise to diverse research foci. The
eclectic community diversity is noteworthy, in terms of institutional affiliations, geographical
location and scientific topics of interest, which collaborations transcend, as illustrated by co-
authorship patterns. Yet, the overall primary focus is mostly on human therapeutic applications,
reflecting the tremendous potential of genome editing implementation in the clinic, and the need
to deploy CRISPR therapies for patients afflicted by genetic diseases. With FDA-enabled trials
actively underway, confidence in regulatory agencies and progressing public engagement
dialogues encompassing ethical, legal and societal implications 3% 32, we anticipate the literature
will continue to expand and hopefully document larger and broad clinical success in the near
future, as well as fuel applications in agriculture and sustainability.
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426  Figure 1. Genome editing-related publications since 2000. (A) The graph shows the number of
427  publications related to genome editing and their various effectors, including Meganucleases,
428  ZFNs, TALENs and CRISPR. The number of publications is showcased in a log10 scale. (B)

429  Citations over time for the 5 most cited CRISPR papers; (C) citations for CRISPR papers

430 published in selected journals, over time.
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436

437  Figure 2. Collaborative authorship networks between the 48 most impactfully-prolific CRISPR
438 researchers whose H-index within this topic is more than 20 since 2000. (A) co-authorship

439  network, where node size reflects the number of records published by authors, lines reflect co-
440  authorships, and the cluster colors reflect community detection algorithm-based groups; (B)
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441  cosine similarity network, with cluster colors reflecting topic similarities (mesh terms allocated
442  to the publications); only lines with similarities higher than 0.3 are shown.
443
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446  Figure 3. Scientific evolutionary pathway (SEP) analysis of CRISPR and genome editing topics
447  over time. Nine topic communities are represented using distinct colors, connected over time.
448  Topics are linked using predecessor-descendant relationships defined by the literature patterns.
449
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