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Abstract 30 
 31 
Over the past two decades, the discovery of CRISPR-Cas immune systems and the repurposing of 32 
their effector nucleases as biotechnological tools have revolutionized genome editing. The 33 
corresponding work has been captured by 90,000 authors representing 7,600 affiliations in 126 34 
countries, who have published over 19,000 papers spanning medicine, agriculture and 35 
biotechnology. Here, we use tech mining and an integrated bibliometric and networks framework 36 
to investigate the CRISPR literature over three time periods. The analysis identified seminal 37 
papers, leading authors, influential journals and rising applications and topics interconnected 38 
through collaborative networks. A core set of foundational topics gave rise to diverging avenues 39 
of research and applications, reflecting a bona fide disruptive emerging technology. This analysis 40 
illustrates how bibliometrics can identify key factors, decipher rising trends and untangle 41 
emerging applications and technologies that dynamically shape a morphing field, and provides 42 
insights into the trajectory of the genome editing. 43 
 44 
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Introduction 49 
 50 
While genome editing has been on the rise over the past two decades, the advent of CRISPR-51 
based (Clustered Regularly Interspaced Short Palindromic Repeats) technologies has accelerated 52 
and democratized genome editing in the past 9 years. 1,2 Several Cas-based (CRISPR associated) 53 
molecular machines have been co-opted from the bacterial adaptive immune system 3 to 54 
generate CRISPR-based technologies, such as sgRNA:Cas9 4, that have enabled facile genome 55 
editing since 2013. 5,6 Recently, the leading developers of this genome editing technology were 56 
awarded the 2020 Nobel Prize in Chemistry, illustrating the tremendous potential and impact of 57 
this technology. Early work focused on deciphering the molecular processes that drive CRISPR-58 
based adaptive immunity in bacteria 7, and the development of programmable Cas proteins, that 59 
laid a preparatory foundation for CRISPR-based technologies. 8 Subsequently, these Cas effectors 60 
were deployed to manipulate genomes, transcriptomes and epigenomes in a broad diversity of 61 
organisms across the tree of life, such as bacteria, plants, and humans .9 More recently, these 62 
CRISPR-based technologies have been widely adopted to engineer model organisms and even 63 
develop gene therapies tested in clinical settings. 10 Besides Cas9, the CRISPR toolbox has been 64 
expanded to encompass various Cas effector proteins such as Cas9, Cas12, Cas13, and Cascade. 65 
9 As tools continue to be optimized with regards to specificity, efficiency, and delivery modalities, 66 
the intellectual property landscape is being defined 11-13 to enable widespread exploitation in 67 
medicine (e.g. gene therapies and antimicrobials), agriculture (e.g. crop breeding and disease 68 
resistance in livestock), and biotechnology (e.g. enzyme engineering and biofuel genesis). The 69 
accessibility and dissemination of CRISPR tools via repositories such as Addgene have allowed 70 
broad access to the best tools by academics and non-profit organizations across the globe. 2  71 
 72 
Though the rise of genome editing and global spread of CRISPR tools is undeniable, relatively little 73 
is recognized about the geographical, topical, individual and collaborative patterns that drive this 74 
academic phenomenon and commercially disruptive technology. 14 Here, we implemented an 75 
integrated research framework, using a bibliometric approach 15,16, augmented by text mining, 76 
analysis of abstract record compilations and a scientific evolutionary pathway analysis 17,18, to 77 
investigate the underlying patterns that have driven the adoption and implementation of CRISPR 78 
technologies. Specifically, we analyzed publication trends and authorship patterns for the CRISPR 79 
and the genome editing literature over space and time, using queries in the Web of Science, to 80 
identify key contributors and influential papers, as well as the topics that have shaped and are 81 
currently driving the field.  82 
 83 
Methods 84 
 85 
Publication records were retrieved using text queries mining the Web of Science records as of 86 
March 25th,2021, spanning manuscripts published between 2000 and 2020. Records were 87 
retrieved and cross-indexed using entries providing information with regards to manuscript 88 
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authors, affiliated institutions, publication journal, year, title and abstracts. For scientific 89 
evolutionary pathways (SEP) analysis, we used the method pioneered by Zhang et al. 19, to trace 90 
the evolution of scientific topics into different subtopics by identifying a predecessor-descendant 91 
relationship from this bibliometric data. We then used this SEP approach to track the 92 
convergence and divergence of research topics on genome editing research and discover 93 
potential connections between these topics within a knowledge flow.  94 
 95 
Generally, we ascribed six definitions as follows:  96 
 97 
Definition 1: An article is represented by a vector (article vector): its feature space consists of 98 
terms of the entire dataset and its cell represents the frequency of a given term appearing in this 99 
article. 100 
 101 
Definition 2: A topic is a collection of articles sharing similar semantic content, and is 102 
geometrically represented as a circle, with a centroid measured by the mean of all involved article 103 
vectors, and a boundary measured by the largest Euclidean distance between the centroid and 104 
all other article vectors. 105 
 106 
Definition 3: Articles published in the same year are organized in one time slice. The entire 107 
dataset is analyzed as a bibliometric stream, that is, the SEP algorithm is to sequentially analyze 108 
each time slice according to the order of publication year, and for each time slice the algorithm 109 
is to sequentially analyze each article according to the order of unified publication ID.  110 
 111 
Definition 4: Initial topics are topics consisting of articles in the first time slice and are starting 112 
points of the evolutionary pathways. Initial topics usually represent the root (e.g., original ideas 113 
and concepts) of the case (i.e. CRISPR in this paper). 114 
 115 
Definition 5: A topic has two status categories, either ‘live’ or ‘dead’, as defined by ‘sleeping 116 
beauties’ 20, for which a topic could ‘die’ if it does not receive new articles in certain sequential 117 
time slices, and a ‘dead’ topic could be revived and ‘alive’ again if a newly born topic shares the 118 
highest similarity with it.  119 
 120 
Definition 6: A community is a group of proximate topics in a network – usually a branch in a SEP 121 
map-, which represents a subfield of the case.  122 
 123 
Based on the above definitions, we implemented a stepwise algorithm to create the SEP as 124 
follows:  125 
 126 
Step 1: All articles in the first time slice are grouped as one initial topic, which is set as the starting 127 
point of the evolutionary pathways. The algorithm moves to the second time slice and analyzes 128 
its involved articles one by one.  129 
 130 
Step 2: We measure the cosine similarity between a current article and the centroids of all ‘live’ 131 
topics.  132 
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 133 
Step 3: We assign the article to its most similar topic. If the Euclidean distance between the article 134 
and the centroid of the assigned topic is smaller than its boundary, this article will be directly 135 
involved in the topic, or else, it will be labeled as ‘drift.’ Then, we return to Step 2 and analyze 136 
the next article until the end of this time slice.  137 
 138 
Step 4: After analyzing all articles in one time slice, we check the status of each topic – i.e., set 139 
topics as ‘dead’ if they meet with the constraint in Definition 4 (a parameter is used here to 140 
decide the length of sequential time slices). For each ‘live’ topic, an unsupervised K-means 141 
approach is introduced to group its assigned ‘drift’ articles into certain sub-topics (an interval for 142 
seeking the local-optimal number of topics is required).  143 
 144 
Step 5: We measure the cosine similarity between each sub-topic and two sets of topics - its 145 
assigned ‘live’ topic and all ‘dead’ topics. If the most similar topic of the sub-topic is its assigned 146 
one, their relationship is defined as ‘predecessor-descendent,’ or else, the most similar ‘dead’ 147 
topic will be revived and set as ‘live,’ and, then, becomes the predecessor of the sub-topic.  148 
 149 
Step 6: We label a new topic (i.e., a sub-topic in Step 5) via the term with the highest similarity 150 
with all other terms in the topic - if the term has already been used before, choose the term with 151 
the second highest similarity, et cetera.  152 
 153 
Step 7, We update the centroid and boundary of all ‘live’ topics, and the algorithm moves to the 154 
next time slice, and we return to Step 2. 155 
 156 
Results of the SEP approach include a list of topics and their predecessor-descendant 157 
relationships. These topics are then visualized in a network via Gephi 20. In the network, each 158 
topic is represented by a node, and the size of a node represents its importance, as measured by 159 
the value of term frequency inverse document frequency (tf-idf) analysis. A directed edge 160 
represents the predecessor-descendant relationship between its connected nodes, and the 161 
weight of an edge reveals the strength of the relationship (e.g., semantic similarity). The color of 162 
nodes reflects their communities identified by an approach of community detection integrated 163 
in Gephi as “modularity” 21. Similarity measurements were carried out for the 119 topics 164 
identified across the three distinct time periods (9 topics pre-2013, 64 topics between 2013 and 165 
2018, 46 topics since 2019), using semantic similarity coefficients. Details are available at: 166 
https://github.com/IntelligentBibliometrics/Gene-editing.  167 
 168 
Results 169 
 170 
CRISPR technology fueled the rise of the genome editing literature 171 
 172 
To provide quantitative and qualitative insights into the drivers of the CRISPR craze 22, we first 173 
defined the genome editing lexicon of interest and quantified relevant publications over the past 174 
twenty years, focusing on articles, reviews and letters comprising 26,484 records (Supplemental 175 
Table S1). Results show that the CRISPR literature (over 19,000 papers published since 2000 by 176 

https://github.com/IntelligentBibliometrics/Gene-editing
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90,000 authors from around 7,600 institutions located in 126 countries; Supplemental Table S2) 177 
is rapidly growing, and that CRISPR-based tools impressively overtook incumbent technologies 178 
such as ZFNs, TALENs, and Meganucleases in 2013 (Figure 1A), within months of publication of 179 
the first proof of concept for CRISPR-based genome editing in human cells. 5,6 Currently, CRISPR-180 
related publications account for the near totality of the genome editing field, and are over ten 181 
times more numerous than ZFN, TALEN, and Meganuclease papers combined (Figure 1A). Indeed, 182 
publications related to these first-generation genome editing technologies have been in decline 183 
since the advent of CRISPR-based genome editing technologies in 2012 (Figure 1A).  184 
 185 
Amazingly, despite this rapid early adoption pattern, especially in the US and China, the CRISPR 186 
literature continues to expand at an impressive rate (Figure 1A), perhaps suggesting that genome 187 
editing is yet to hit maturity as a field, which is consistent with the continued dissemination of 188 
CRISPR tools across the planet. 1,2 Importantly, this shows how CRISPR as a field evolved from a 189 
relatively small “niche” microbiology topic into the major driver of genome editing in 2013, 190 
establishing a “before CRISPR” era 23, and perhaps an “after displacement” of incumbent 191 
technologies period thereafter. This rise was fueled by the advent of the guide RNA technology 192 
in 2012, which quickly enabled genome editing (Figure 1B) and prompted an explosion in genome 193 
editing studies and citations (Figure 1C), as recognized by the 2020 Chemistry Nobel selection 194 
committee. Critical advances achieved in the past two years are also notable, with development 195 
of novel base editing tools and polished technologies such as prime editing 24,25, as well as the 196 
transition of the technology from research laboratories into clinical settings with bona fide 197 
CRISPR-based therapeutics. 10 These tipping points triggered by specific publications and 198 
technology development define distinct time-periods that provide useful to assess the dynamic 199 
evolution of the field. 23,26  200 
 201 
An interwoven network of collaborative authors 202 
 203 
Next, we carried out a co-authorship network analysis to delve into the collaborative efforts 204 
driving contributions by the 48 most prolific and impactful authors, over time (Figure 2, Table 1). 205 
On a global basis, investigating publication patterns across these authors (as defined by number 206 
of publications, citations and h-index within the field), we note extensive and inter-connected 207 
collaborative networks with most authors engaged in several collaborative efforts. Actually, it 208 
appears the most influential authors collaborate with other key contributing authors in inter-209 
connected and overlapping authorship networks (Figure 2). Interestingly, many “early” authors 210 
who were active in the field prior to 2013 originally focused on CRISPR biology and mechanisms 211 
of action continue to do so (Figure 2), whereas distinct collaborative networks that fueled the 212 
rise of CRISPR-based genome editing technologies in parallel (Figure 2A) now directly overlap in 213 
topics of interest (Figure 2B). Noteworthy, the early community-wide focus on Cas9-based 214 
genome editing was comprising both overlapping and competitive interests, which created an 215 
intellectual property challenge regarding licensing and freedom to operate for the technology, 11-216 
13 which presumably prompted searches for novel Cas effectors. Interestingly, while some believe 217 
that the CRISPR IP challenges are a scientific hurdle that may have stifled innovation, the data 218 
suggests that it may rather have pushed the community towards actively mining for alternatives, 219 
while not precluding its broad adoption by diverse academic groups across the globe. Those 220 
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initially established Cas12 as an alternative technology and recently unearthed new CRISPR-Cas 221 
types based on Cas13, Cas14 and others 9,27, suggesting a need-based innovative push rather than 222 
a limiting competitive constraint.  223 
 224 
Some of the most impactful contributions made by these influential authors can be captured by 225 
analyzing the most cited papers in the field (Table 2), over the three aforementioned eras, and 226 
the journals in which they have been published (Supplementary Table S3). The early contributions 227 
primarily consist of seminal studies establishing CRISPR-Cas as the adaptive immune system in 228 
bacteria 7,26, providing DNA-encoded, RNA-mediated, nucleic acid targeting, culminating in 2012 229 
with the development of the sgRNA:Cas9 programmable CRISPR effector. 4 This technology was 230 
used in 2013 for genome editing 5,6, and shortly thereafter for transcriptional control and high-231 
throughput screens. In the past two years, base editing technologies have been on the rise, 232 
primarily fueled by the rapid ascent of engineered Cas effectors from the David Liu lab (Table 1, 233 
Table 2). 9,24,25 Inevitably, the most cited manuscripts have been research papers published in 234 
high-profile journals contributed by prolific authors, together with a few noteworthy reviews and 235 
resource-focused papers (Table 2). 236 
 237 
Predictably, citation patterns for most highly cited papers in the space reflect the rise of genome 238 
editing, notably the rapid explosion in 2013-2014 (Figure 1); these papers were published in the 239 
most influential journals in the world (Supplementary Table S3). Impressively, the most cited 240 
early CRISPR studies were also published in these journals, and they have been and continue to 241 
be the most influential journals in this field (Figure 1, Table S3), despite fundamental shifts in 242 
topics of interest and the vast expansion of the contributing authors pool, as well as a diversified 243 
and more global readership (Figure 2). To date, these papers reflect early work, mostly on 244 
development of the sgRNA:Cas9 technology, and its use and rapid adoption for genome editing 245 
in human cells, with the majority of the most cited papers published within the first 2 years of 246 
the CRISPR craze (Figure 1B).  247 
 248 
In order to delve more into the key organisms, topics and genes subjected to the most attention 249 
in genome editing, we mined the published data and show that human cells are the primary 250 
organism of interest for the bulk of genome editing studies, predictably, followed by mouse, as 251 
the canonical proxy animal model for human studies (Supplementary Figure S1). Noteworthy, 252 
studies focused on humans and mice represent 10 times more than all other organisms of 253 
interest in CRISPR research, reflecting the heavy focus on human disease and medical 254 
applications, notwithstanding interest in and potential for other areas such as agriculture. 255 
Actually, this suggests that there is perhaps perplexing under-exploitation, or an adoption lag in 256 
other areas of interest, such as microbiology, which is ironically where these systems broadly 257 
occur and were originally characterized and repurposed. Next, we focused on key diseases of 258 
interest in these studies and determined that cancer-related research accounts for the majority 259 
of the studies, followed by genetic disease, and infectious disease, including viral infections 260 
(Supplementary Figure S1). This is further corroborated by the top 10 list of genes most 261 
associated with genome editing research (Supplementary Figure S1), notably the most studied 262 
trio: TP53 (the most popular tumor suppressor), AKT (protein kinase B), and MYC (proto-263 
oncogene transcription factor).  264 
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 265 
Emergence of networks of divergent genome editing topics  266 
 267 
To gain bibliometric insights into how the field evolved and morphed over time, we used a 268 
scientific evolutionary pathway (SEP) analysis (see Methods) to trace the evolution of topics of 269 
scientific interest in these published studies by identifying clusters of predecessor-descendant 270 
topical relationships. 19 This allowed tracking of convergence and divergence of research topics 271 
on genome editing and connections among these topics over time (Figure 3, Figure S1). This 272 
analysis revealed the existence of 9 topic communities that have evolved over the three time 273 
periods discussed previously. First, the field started with seminal bacterial work that occurred 274 
prior to 2012, which focused on adaptive immunity. This community topic is at the core of the 275 
network, and initially encompassed foundational topics such as “Cas nuclease”, “acquired 276 
immunity”, and “E. coli” (see the pink cluster at the center of Figure 3 and Supplementary Figure 277 
1). This core gave rise to the sgRNA:Cas9 genome editing technology, a tipping point for the field, 278 
which emerged as a new topic in 2013, centered on “guide RNA”, and links to incumbent genome 279 
editing technologies such as ZFNs and TALENs (see the green cluster, Figure 3). Over time, the 280 
core also gave rise to a community focused on screens (genetic screens, high-throughput screens, 281 
center right purple cluster). Likewise, the core cluster also gave rise to a community topic focused 282 
on transcriptional control, relatively early on with the rise in 2014 of a transcription-focused 283 
cluster encompassing gene expression, gene regulation, transcription factors and transcriptional 284 
regulators (center left, blue). Later on, as the technology evolved and matured, application-285 
focused clusters arose, focusing on gene therapies, viral diseases, and neurodegenerative 286 
diseases.  287 
 288 
Analysis of similarity measurements (Supplementary Table S4) between these topic communities 289 
reveals how disruptive CRISPR technology is, given the diversity of distinct clusters that arose 290 
from the original core cluster, and the relatively low level of similarity observed between and 291 
across these 119 topics. This is further supported by the low level of similarity observed between 292 
topics across time periods (Supplementary Table S4). The recent increase in topics in the past 293 
two years (46 new topics in two years, compared with 64 topics spanning the explosive 2013-294 
2018 period) likely indicates continued disruptive innovation and expansion of this technology 295 
into new areas of research, as well as novel and diversified applications. This is consistent with 296 
the development of novel technologies (e.g. base editing), the continued dissemination of CRISPR 297 
technologies across the globe (e.g. Addgene distributions) and the transition to applications, 298 
especially in therapeutic settings with CRISPR-based diagnostics, antivirals and gene therapies all 299 
with clinical ambition in the short term. Critically, it is important to note the cross-referencing of 300 
the various visualization modalities and tabular lists of entries throughout our tables and figures, 301 
that consistently identify the same key factors fueling the genome editing revolution, and 302 
robustly establish the seminal studies and technological developments that have shaped this 303 
morphing subject over time.  304 
 305 
Despite the observed congruence, the SEP algorithm relies on natural language processing 306 
techniques that are impacted by writing style and biases, as well as inconsistent use of 307 
terminology by different groups of authors, which can lead to synonyms being redundant and 308 
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separately accounted for. For example, there are entries related to transcription that encompass: 309 
”transcriptional control”, “gene expression”, “gene regulation” and “transcriptional regulation”. 310 
There are also several connections between seemingly un-related topics due to language biases 311 
and topic-related complexity inherent to the same technology being used in unrelated organisms. 312 
There are also multiple examples of confounding coverage of topics that are often discussed 313 
together, but are not systematically linked, such as “human embryos” and “clinical trials” being 314 
discussed together without being co-dependent. Thus, the complexity of a broadly applicable 315 
tool must be deciphered and interpreted by the expert reader to account for otherwise un-316 
related topics and verbiage. Human interpretation is also important to fully assess the impact 317 
and influential contributions of individual authors and select manuscripts, to account for 318 
quantitative shortcomings and biases inherent to citation numbers, indices and impact factors. 319 
Indeed, qualitative insights should be used by the reader to complement quantitative metrics in 320 
the spirit of the Leiden Manifesto. 28 This manifesto highlights the need to rely on expert 321 
assessment to overcome bias tendencies and untangle conceptual ambiguity and uncertainty.  322 
 323 
In several instances, there are connections that seems counter-intuitive and reflect high semantic 324 
similarity, but not technical dependence nor scientific derivation. Indeed, sets of authors can 325 
share similar language biases, such as clinically-relevant settings for patient sampling in medical 326 
applications for the epidemiological study of Mycobacterium tuberculosis and the 327 
implementation of genome editing for human gene therapies, linking two seemingly unrelated 328 
clusters because the authors share linguistic biases and keywords. Likewise, the link between Cas 329 
nucleases and DNA fingerprinting reflects the early use of CRISPR spacer hypervariability for 330 
genotyping and not the use of Cas proteins for molecular fingerprinting. This high semantic 331 
similarity need not reflect bona fide technical overlap or dependency, and can reveal linguistic 332 
biases, or indicate subsequent uses and applications of derived tools and technologies, including 333 
their eventual use in diverse model organisms. The latter explains the unexpected appearance of 334 
Saccharomyces cerevisiae, Caenorhabditis elegans, zebrafish, Chinese hamster ovary cells, and 335 
others throughout topic clusters. Some of the topical lineages shown reflect topical descendance 336 
within the CRISPR literature that evolved from a technical basis (using various Cas effectors as 337 
tools) to applications of these technologies in model organisms and cells. To a similar extent, 338 
select topics of interest to specific groups of authors and readers can be linked through SEP 339 
analyses such as “human embryos” and “clinical trials”, though they need not be co-dependent 340 
(current clinical trials are not based on CRISPR-edited human embryos), so both applications and 341 
implications can entangle topic connections. In some cases, the appearance of a newly coined 342 
term reveals tipping points that created new sets of topics, notably the development of the 343 
“guide RNA” technology and the nomenclature update that reclassified Cas5/Csn1 as Cas9.  344 
 345 
While some literature topics have arisen faster than CRISPR, such as the recent COVID19-related 346 
literature29, the speed of the adoption of the CRISPR technology, as much as the rise of the 347 
CRISPR-related literature, is noteworthy. The speed of the work in this field has been invoked as 348 
a distinguishing feature, but perhaps the most striking aspect is the adoption and 349 
democratization of the technology itself, which is captured by the rise in the number of citations 350 
and publications, as well as Addgene shipments. 1-2  351 
 352 
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Discussion 353 
 354 
Altogether, these results provide insights into the key factors driving the evolution of CRISPR, and 355 
illustrate how a diverse community of collaborative scientists is globally adopting this disruptive 356 
technology, and implementing it in various organisms of interest across applications. This analysis 357 
illustrates how bibliometrics can identify key individuals, topics and papers that dynamically 358 
shape a morphing research field, and decipher rising trends impacting the historical trajectory of 359 
a field and untangle emerging applications. The data presented here provide strong support that 360 
this is a bona fide emerging technology as defined by key attributes. 30 Indeed, all five defining 361 
elements of an emerging technology are met, with: (1) radical novelty: near-instant replacement 362 
of incumbent editing technologies, with aggressive pursuit of IP and topic diversification; (2) fast 363 
growth, as documented by publications, citations, and Addgene distribution patterns; (3) 364 
coherence, supported by overlapping collaborative authorship networks, as well as inter-365 
connected topics derived from a common core; (4) prominent impact, with enthusiastic 366 
commercialization in several industries spanning medicine, agriculture and biotechnology, as well 367 
as global adoption in academia and industry and the momentous 2020 Nobel Prize in Chemistry 368 
for two selected CRISPR pioneers; and (5) uncertainty and ambiguity, as documented by 369 
intellectual property issues, discussions related to regulatory frameworks for, and societal 370 
implications of, the various applications of genome editing. 30 Importantly, the evolution of the 371 
topic map over the three aforementioned time periods further endorses the emerging 372 
technology attributes of genome editing. Indeed, predecessor-topics created during the first time 373 
period established a scientific foundation for the field (coherence), with evolution over the next 374 
two time periods radically spearheading into various directions (radical novelty), with rapidly 375 
increasing number of descendant topics (fast growth), giving rise to diverse research foci. The 376 
eclectic community diversity is noteworthy, in terms of institutional affiliations, geographical 377 
location and scientific topics of interest, which collaborations transcend, as illustrated by co-378 
authorship patterns. Yet, the overall primary focus is mostly on human therapeutic applications, 379 
reflecting the tremendous potential of genome editing implementation in the clinic, and the need 380 
to deploy CRISPR therapies for patients afflicted by genetic diseases. With FDA-enabled trials 381 
actively underway, confidence in regulatory agencies and progressing public engagement 382 
dialogues encompassing ethical, legal and societal implications 31, 32, we anticipate the literature 383 
will continue to expand and hopefully document larger and broad clinical success in the near 384 
future, as well as fuel applications in agriculture and sustainability. 385 
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 424 
 425 
Figure 1. Genome editing-related publications since 2000. (A) The graph shows the number of 426 
publications related to genome editing and their various effectors, including Meganucleases, 427 
ZFNs, TALENs and CRISPR. The number of publications is showcased in a log10 scale. (B) 428 
Citations over time for the 5 most cited CRISPR papers; (C) citations for CRISPR papers 429 
published in selected journals, over time. 430 
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A 432 

 433 
B 434 

 435 
 436 
Figure 2. Collaborative authorship networks between the 48 most impactfully-prolific CRISPR 437 
researchers whose H-index within this topic is more than 20 since 2000. (A) co-authorship 438 
network, where node size reflects the number of records published by authors, lines reflect co-439 
authorships, and the cluster colors reflect community detection algorithm-based groups; (B) 440 
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cosine similarity network, with cluster colors reflecting topic similarities (mesh terms allocated 441 
to the publications); only lines with similarities higher than 0.3 are shown. 442 
 443 

 444 
 445 
Figure 3. Scientific evolutionary pathway (SEP) analysis of CRISPR and genome editing topics 446 
over time. Nine topic communities are represented using distinct colors, connected over time. 447 
Topics are linked using predecessor-descendant relationships defined by the literature patterns.  448 
  449 

Figure 5
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