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Synopsis Although mate searching behavior in female t�ungara frogs (Physalaemus pustulosus) is nocturnal and largely

mediated by acoustic cues, male signaling includes visual cues produced by the vocal sac. To compensate for these low

light conditions, visual sensitivity in females is modulated when they are in a reproductive state, as retinal thresholds are

decreased. This study tested whether estradiol (E2) plays a role in this modulation. Female t�ungara frogs were injected

with either human chorionic gonadotropin (hCG) or a combination of hCG and fadrozole. hCG induces a reproductive

state and increases retinal sensitivity, while fadrozole is an aromatase inhibitor that blocks hCG-induced E2 synthesis. In

an analysis of scotopic electroretinograms (ERGs), hCG treatment lowered the threshold for eliciting a b-wave response,

whereas the addition of fadrozole abolished this effect, matching thresholds in non-reproductive saline-injected controls.

This suggests that blocking E2 synthesis blocked the hCG-mediated reproductive modulation of retinal sensitivity. By

implicating E2 in control of retinal sensitivity, our data add to growing evidence that the targets of gonadal steroid

feedback loops include sensory receptor organs, where stimulus sensitivity may be modulated, rather than more central

brain nuclei, where modulation may affect mechanisms involved in motivation.

Introduction

The behavioral significance of stimuli is often con-

text dependent, especially for communication signals.

For example, responses to sexual signals may vary

under different social, ecological, and physiological

conditions (Gall and Wilczynski 2015; Lea and

Ryan 2015; Reding and Cummings 2017, 2018),

and in some contexts elicit no response at all

(Rand et al. 1997). How might these different behav-

ioral decisions result from the same stimuli? In signal

detection theory, a change in response to stimuli is

thought to be mediated either through shifts in the

decision criterion and/or through changes in the sen-

sory responses themselves (Green and Swets 1966;

Alves-Pinto et al. 2012). That is, observed context-

dependent responses to stimuli may be based on

changes in motivation (i.e., stimulus value or “just

meaningful differences”), or changes in stimulus sen-

sitivity (“just noticeable differences”) (Lynch 2017).

From a mechanistic point of view, it may be difficult

to untangle these, especially in behavioral assays;

experiments would need to be specifically designed

to manipulate a decision criterion (Stuttgen et al.

2011; Mill et al. 2014). Furthermore, the two targets

of modulation may be concurrent and interact. One

approach to distinguishing how context-dependent

modulation is mediated would be to assess modula-

tion of sensory receptor organs (Sisneros et al. 2004;

Coffin et al. 2012), where stimulus sensitivity is ar-

guably more likely than motivation to be modulated.
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Compared with endocrine mechanisms that modu-

late function in the brain and spinal cord (including

modulation of stimulus value or reward; Dreher

et al. 2007; Micevych and Meisel 2017), there appear

to be fewer data implicating sensory receptor organs

as targets in modulatory endocrine feedback loops

(Supplementary Table S1). While studies have shown

modulation of stimulus processing in central cir-

cuitry, including in our focal taxon, frogs (Lynch

and Wilczynski 2008; Chakraborty and Burmeister

2015), there is growing evidence that receptor organs

are targets of modulation as well, directly changing

sensitivity to stimuli (Butler et al. 2019; Leslie et al.

2020). In this study we build on previous work to

investigate whether estrogenic mechanisms associated

with reproductive state modulate retinal sensitivity

in a subject that uses visual sexual cues.

Reproductive female t�ungara frogs (Physalaemus

pustulosus) exhibit increased behavioral sensitivity

to light (Cummings et al. 2008), which appears to

be mediated by mechanisms in the retina (Leslie

et al. 2020). However, the endocrine modulators of

this phenomenon are still unknown. In previous

work, modulation of retinal sensitivity was achieved

with an injection of human chorionic gonadotropin

(hCG) (Leslie et al. 2020), which binds to luteinizing

hormone receptors (Menon and Menon 2012),

thereby stimulating the gonads of both sexes to re-

lease steroid hormones into the bloodstream. One of

the effects of hCG injection in female t�ungara frogs

is an increase in the steroid hormone 17b estrogen

estradiol (E2), the major female sex steroid (Lynch

and Wilczynski 2006). There are numerous potential

neural targets for E2 modulation of reproductive be-

havior, including in sensory receptor organs

(Supplementary Table S1). In this study, experiments

were designed to determine if E2 plays a role in

mediating hCG-induced retinal sensitivity change in

the t�ungara frog.

Estradiol is necessary for and intricately linked

with female reproductive behavior in t�ungara frogs

(for review, see Wilczynski and Lynch 2011). Plasma

E2 and progesterone are elevated in females during

amplexus (Lynch et al. 2005; Lynch and Wilczynski

2005). Exposure to male choruses for 10 consecutive

nights significantly elevates plasma E2 concentrations

in females (Lynch and Wilczynski 2006).

Additionally, injections of E2 increase phonotaxis be-

havior and cause females to show similar call pref-

erences to those under natural breeding conditions.

While hCG injection also increases phonotaxis be-

havior, combining hCG with fadrozole, an aromatase

inhibitor, blocks this effect (Chakraborty and

Burmeister 2009), presumably by blocking aromatase

conversion of testosterone to estradiol.

Evidence suggesting direct effects of estrogen on

the retina has been found in several species. For ex-

ample, aromatase has been found in the goldfish

(Carassius auratus) retina, including in the inner nu-

clear layer (Gelinas and Callard 1993, 1997).

Additionally, the gene expression of several opsins

in mosquitofish and sailfin molly females increases

with increased estradiol exposure (Friesen et al.

2017b). Estrogen receptors in retinas have been

found in a variety of species, including humans,

bovines, rats, and fish (Begay et al. 1994;

Kobayashi et al. 1998; Ogueta et al. 1999;

Tchoudakova et al. 1999; Mangiamele et al. 2017).

To investigate the potential role of E2 in modulating

retinal sensitivity, we conducted scotopic (nocturnal

vision) electroretinograms (ERGs) with females

injected with hCG and fadrozole. We hypothesize

that if E2 is sufficient for the increased visual sensi-

tivity seen in females injected with hCG, then inhib-

iting aromatase with fadrozole should block the

effects of hCG, leading to unmodulated retinal

thresholds which match those of control non-

reproductive females.

Materials and methods

All animal care, experiments, and analytic methods

are based on our previous work on frog retinal sen-

sitivity (Rosencrans et al. 2018; Leslie et al. 2020).

Research animals

All experiments were approved by the Institutional

Animal Care and Use Committees of the University

of Texas at Austin; Louisiana State University Health

Sciences Center, New Orleans; and the Smithsonian

Tropical Research Institute. Subjects included

laboratory-reared frogs as well as wild-caught frogs

from Panama. To prevent breeding, all frogs were

housed individually. The frogs were fed ad libitum

and housed in an “a-seasonal” environment: 12:12

light/dark cycle (300 cd/m2), temperature (23.3�C),
and humidity (>70%). Thus, there were no seasonal

cues (reproductive versus dry seasons).

Hormone treatments

In order to investigate the effects of E2 on retinal

sensitivity, scotopic ERGs were conducted with fe-

male t�ungara frogs in three treatment groups: 1,

saline-injected control (n¼ 7); 2, injected with hCG

(n¼ 7); and 3, injected with a combination of hCG

and fadrozole (hCG þ fadrozole) (n¼ 7). The injec-

tions for the hCG þ fadrozole group followed the
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protocol of Chakraborty and Burmeister (2009),

which used fadrozole to block estradiol production

in hCG injected t�ungara frogs. This blocking effect

likely results from inhibiting aromatase (Ankley et al.

2002), an enzyme that converts androgens to estro-

gens in vertebrate brains and gonads (Callard et al.

1978a, 1978b). Injection protocols were as follows:

Day 1: group 3 received a subcutaneous injection

of a single dose of fadrozole (50 lg; Sigma–Aldrich,

St. Louis, MO); groups 1 and 2 received saline. Day

2: group 3 received a second dose of fadrozole along

with a dose of hCG (500 IU; Sigma) in two sequen-

tial subcutaneous injections. Group 2 received an

injection of hCG (500 IU; Sigma). Group 1 received

saline. All animals were then placed in dark adapta-

tion containers (minimum 16 h). Day 3: ERGs were

run 16–18 h after the last injection. Each injection

was dissolved in (50mL) saline solution (in mM):

126 NaCl, 0.5 KCl, 2.8 CaCl2, 2.2 MgCl2, and 10

NaHEPES, pH 7.4 (274 mOsm).

Electroretinograms

All animals were dark adapted in a light-tight box

for at least 16 h prior to ERG recordings. All ERG

preparations after dark adaption were done under

dim red light (�650 nm). Frogs were first paralyzed

with an intramuscular injection of succinylcholine

chloride (15 lg/g; Sigma–Aldrich), then each eye

was treated with atropine sulfate (1%) to maintain

pupil dilation. Frogs were then placed on a damp

towel in a dark sound booth (Industrial Acoustic

Company, Inc.) lined with a Faraday cage. All light

levels, including flash stimuli and background (0 cd/

m2) were calibrated with a LI-COR light meter

(Model LI-189 with photometric probe; Lincoln,

NE). Stimuli were produced using a Xenon light

source and power supply (Oriel Instruments), gated

by a Uniblitz shutter (Model VMM-D1), and di-

rected via light guide to illuminate the entire cornea

of one eye. Subdermal needle electrodes (GRASS

Technologies or Harvard Apparatus) were inserted

at the base of the skull and in the leg for indifferent

and ground recordings, respectively. Silver/silver-

chloride electrodes placed around the corneal pe-

riphery of the stimulated eye recorded retinal

responses (one eye recorded per frog). The responses

were amplified (GRASS P511), filtered (1–100Hz),

and digitized (Cambridge Electronic Design 1401)

for offline analysis.

Scotopic ERGs primarily test rod-dominated (noc-

turnal) vision: the visual condition in which hCG

was found to modulate female retinal sensitivity

(Leslie et al. 2020). For the scotopic procedure,

following preparation under red light and prior to

recording, there were 6min of dark adaptation.

Subsequently, a series of 3ms duration light flashes

were delivered at increasing light intensities (4.8 *

10�7 to 23.5 cd s/m2) with four sequential flashes

at each intensity (18 steps). Intensity was controlled

using neutral density filtering (Melles Griot) of the

xenon source. To prevent retinal adaptation, there

was no illumination between flashes. Inter-flash

intervals (30–60 s) and intervals between intensity

steps (60–120 s) increased as light intensity increased.

ERG data analysis

ERGs exhibited typical a- and b-waves (Fig. 1), the

responses of photoreceptors and bipolar cells, respec-

tively (Pugh et al. 1998; Robson and Frishman 1998).

In response to dim flashes near visual threshold, a-

wave amplitudes were low relative to recording

noise. Thus, we utilized the relative b-wave ampli-

tude as a function of stimulus luminance to con-

struct V-Log(I) curves (Figs. 1 and 2). From these

we determined threshold and slope. For consistency,

V-Log(I) analysis followed that described in Leslie

et al. (2020). The b-wave amplitude was defined as

the difference between the average voltage over 20ms

before the light flash and the maximum voltage be-

tween 50 and 400ms after the flash (Rosencrans

et al. 2018). The initial stimulus for each procedure

consisted of four recordings with no light flash, en-

abling correction for any DC potential in recordings.

The response to each light intensity step was calcu-

lated as the average response to four flashes of that

intensity. Note that in some cases one of the four

responses was removed from the average if there was

noise or the electrode came off the cornea. The V-

Log(I) curve for each individual was normalized to

that individual’s maximum b-wave amplitude, result-

ing in a sigmoidal relative response curve (Miller and

Dowling 1970). Response threshold was defined as

the light intensity eliciting a response 10% the am-

plitude of the maximum response (Rosencrans et al.

2018; Leslie et al. 2020). This light intensity was cal-

culated by analyzing each individual V-Log(I) curve

with a least-squares fit of the standard Boltzmann

function:

Relative b� wave amplitude ¼ A1 � A2

1þ e
ðflash�flash0Þ

s

þ A2:

A1 is the starting amplitude (0) and A2 is the ending

amplitude (1); flash is the log intensity of each light

flash; flash0 is the light intensity causing a 50% re-

sponse; and s is the slope of the function. Statistical

significance of differences in treatment group means
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of the V-Log(I) thresholds and slopes was assessed

using a one-way ANOVA with Tukey’s HSD test for

multiple comparisons.

Results

A significant main effect of treatment (saline, hCG,

hCG þ fadrozole) was found for average thresholds

(F2,20 ¼ 6.51; P< 0.01). In comparisons between

treatment groups, hCG treated individuals had sig-

nificantly lower thresholds (mean 6 S.E.)

(�3.946 0.12 Log cd s/m2) than the saline injected

(�3.156 0.23 Log cd s/m2; P¼ 0.04) and the hCG þ
fadrozole (�2.916 0.26 Log cd s/m2; P< 0.01)

groups. There was no significant difference between

average thresholds for the saline and hCG þ fadro-

zole treated animals (P¼ 0.69) (Figs. 2 and 3).

Likewise, there was a significant difference in average

Boltzmann slope between treatment groups, as deter-

mined by one-way ANOVA (F2,20 ¼ 8.47; P< 0.01).

The hCG treated group had significantly higher

slopes (0.756 0.04) than the saline injected

(0.536 0.05; P< 0.01) and the hCG þ fadrozole

(0.526 0.01; P< 0.01) groups. There was no signif-

icant difference in mean slope between saline and

hCG þ fadrozole injected groups (P¼ 0.99).

Because of the position of the slope term (s) in

the Boltzmann equation, higher slope values corre-

spond to more gradual and broader V-Log(I) curves,

creating greater dynamic range under hCG modula-

tion (Fig. 2). Taken together, the results suggest that

the fadrozole treatment prevented hCG modulation

of retinal thresholds, implicating estrogen in retinal

modulation.

Discussion

The mechanisms underlying endocrine modulation

of the retina during reproduction may be multifold,

including hypothalamic hormone, sex steroid, and

Fig. 1 (A–C) Examples of raw traces from ERG recordings from single individuals in the three treatments groups. The three traces in

each panel are responses to light flashes at high (red), medium (blue), and low (green) intensities. ERGs exhibited typical a- and b-wave

responses (arrows for red trace in B). (D–F) Square symbols are the relative b-wave amplitudes as function of light intensity for the

above recordings, generating V-Log(I) curves. Gray curves are the Boltzmann fits for each individual. Colored symbols are the relative

amplitudes for the matching example traces above, illustrating b-waves near saturation (red), on the steep part of the curve (blue), and

below threshold (green).
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bioactive lipid components (Butler et al. 2019). This

study focused on whether E2 is a modulatory com-

ponent in t�ungara frogs. When coupled with fadro-

zole, the hCG treatment failed to modulate

thresholds. Furthermore, the lack of significant dif-

ferences in both mean threshold and mean slope

between the control group and the hCG þ fadrozole

group indicates that fadrozole, an aromatase inhibi-

tor, successfully blocked retinal modulation by hCG.

This suggests that E2 is at least partially responsible

for the hCG-induced hormonal modulation of reti-

nal sensitivity previously found in the t�ungara frogs

(Leslie et al. 2020). It should be noted that due to

the systemic injection of fadrozole, this was not a

specific block of retinal modulation, but rather of

E2 production throughout the body. Thus, the

source of the E2 is still unknown and may include

the eye itself, as aromatase has been localized there

and in other sensory structures (Noirot et al. 2009;

Maruska and Fernald 2010; Butler et al. 2019).

Estrogens can exert their effects through multiple

mechanisms. The classical model involves the nuclear

estrogen receptors a and b (ERa and ERb, respec-
tively), by which estrogen invokes slow, genomic

changes (Thomas 2012). Relevant to vision, such

receptors have been found in the retinas of humans

(Ogueta et al. 1999). In fish retina their expression

can be reproductively modulated (Tchoudakova

et al. 1999; Friesen et al. 2017b; Butler et al. 2019).

Estrogens can also have rapid, nongenomic effects

Fig. 2 V-log(I) curves for the population data in the three

treatment groups: (A) saline, (B) hCG, and (C) hCG þ fadrozole.

Symbols are the mean (6S.E.) for each light intensity step. Mean

Boltzmann curves are shown in each panel and in (D), revealing

modulation by hCG and the lack thereof with the addition of

fadrozole.

Fig. 3 Comparison of ERG b-wave thresholds for the three

treatment groups. Means and medians are represented by the

filled circles and bold lines, respectively. The lower and upper

hinges (i.e., the lower and upper boundaries of each box) mark

the first and third quartiles, respectively. Each whisker stretches

to the furthest value no further than 1.5 times the interquartile

range (distance between the first and third quartiles). hCG

treated females had significantly lower mean thresholds

(P< 0.05) than those treated with saline or hCG þ fadrozole.

These last two groups did not differ.
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through membrane-bound steroid receptors on the

cellular surface (Thomas 2012), such as the G

protein-coupled estrogen receptor (GPER, formally

known as GPR30), which has been localized in

fish, mammalian, avian, and reptilian brains

(Brailoiu et al. 2007; Canonaco et al. 2008; Liu

et al. 2009; Acharya and Veney 2012; Friesen et al.

2017a; Mangiamele et al. 2017). Its presence in the

retina of goldfish has been hypothesized to allow

estrogen to rapidly modulate visually guided sexual

and social behaviors (Mangiamele et al. 2017); in

these fish, injecting males with testosterone or E2

increases their approach behavior to visually cued

females (with no other cues present). However,

inhibiting aromatase blocks the effect of testosterone

administration, indicating that it is E2 that modu-

lates this behavior (Lord et al. 2009). By using ERGs,

which only record activity in the retina, our data

confirm that modulation is at least localized there,

exclusive of central modulatory effects. Nevertheless,

it is currently unknown if E2 targets either or both

genomic and non-genomic mechanisms to modulate

retinal sensitivity.

Estrogenic modulation could explain why female,

but not male, t�ungara frogs experience increased ret-

inal sensitivity when injected with hCG. Because

hCG stimulates gonadal release of steroid hormones

in both sexes, it is likely that hCG primarily stimu-

lates E2 release in females and androgen release in

males (Lynch and Wilczynski 2008; Behrends et al.

2010). Estrogen has traditionally been thought of as

a major driver for female-specific sexual behaviors

(as opposed to androgens for male-specific sexual

behaviors), although the situation can be more com-

plex. For example, E2 has been shown to play a role

in activating male reproductive behaviors in avian

species such as quail (reviewed in Ball and

Balthazart 2004), while testosterone increases audi-

tory thresholds in female green treefrogs (Hyla cin-

erea) (Miranda and Wilczynski 2009). However,

studies in frogs and toads largely show strong posi-

tive correlations between female sexual behaviors and

estrogen and progesterone levels (reviewed in

Wilczynski and Lynch 2011), while male sexual be-

havior seems to be more dependent on the interac-

tions between androgens with other hormones such

as prolactin and arginine vasotocin (Moore et al.

2005). In particular, reproductive behaviors of fe-

male t�ungara frogs have been correlated with E2

levels (Lynch and Wilczynski 2005, 2006; Moore

et al. 2005; Chakraborty and Burmeister 2009).

Considering that assessment of visual cues is a valu-

able component of female reproductive behavior

(Rosenthal et al. 2004; Taylor et al. 2008; Taylor

and Ryan 2013), estrogen would be predicted to

play a role in reproductive feedback of visual sensi-

tivity. The ethological consequences of this modula-

tion are still untested, however. We propose that by

increasing the probability of detecting male vocal

sacs in nocturnal habitats (Cummings et al. 2008),

modulated (i.e., increased) sensitivity could directly

benefit females by improving searching behavior.

Nevertheless, further work is needed to conclusively

determine the role of estrogen (i.e., its targets and

mechanisms) in modulating female retinal sensitivity

in these frogs.

Conclusion

This study provides evidence supporting a major role

for E2 in the hormonal modulation of retinal sensi-

tivity in female t�ungara frogs (Leslie et al. 2020).

Administration of fadrozole, an aromatase inhibitor,

blocks the modulatory effects of hCG on ERG

thresholds in females, leaving those thresholds at

untreated, non-reproductive levels. Endocrine mod-

ulation of reproductive behavior, including commu-

nication and sensory processing, is well known

(Yamaguchi and Kelly 2003; Arch and Narins 2009;

Leary 2009; Maruska and Sisneros 2015; Caras and

Remage-Healey 2016; Wilczynski and Burmeister

2016). Whether or not such modulation is based

on changes in mechanisms mediating motivation

and/or stimulus sensitivity is often difficult to untan-

gle, as large areas of central and peripheral circuitry

may be targets of modulation (Caras 2013). We pro-

pose that one area that may isolate sensory modula-

tion is at the sensory receptor organs themselves,

where data have accumulated for endocrine effects

on stimulus processing within different modalities

(Sisneros et al. 2004; Yue et al. 2018; Butler et al.

2019; Perelmuter et al. 2019). To reveal such sensory

mechanisms, future work will likely benefit from

comparative approaches (Crews and Moore 1986;

Adkins-Regan 2005) that choose subject species un-

der selection for context-dependent sensory process-

ing, especially where there are context-dependent

changes to the signal-to-noise ratio. The benefits to

such approaches could be multifold: not only eluci-

dating modulatory mechanisms, but also informing

our understanding of signal evolution through more

accurate measurements of receiver processing.
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