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Abstract—The delayed feedback reservoir (DFR) network is a
delay-dynamic architecture that incorporates time in its training
and inference. This quality enables DFR networks to proficiently
model time series in a scalable architecture with only one
nonlinear neuron. Previous studies have highlighted the accuracy
and energy efficiency of DFR networks in ASIC implementations;
however, these approaches are limited by hardcoded weights
and static reservoir architectures. In this work, we introduce a
hybrid FPGA-ASIC DFR system that combines the flexibility
of a FPGA platform with the energy efficiency of an ASIC.
To be specific, the FPGA allows for dynamic reconfiguration
and training of the readout weights during runtime, while the
ASIC provides an analog activation function for the single
neuron. The accuracy and energy consumption of the introduced
system is demonstrated for the applications of NARMA10 as
well as MIMO spectrum sensing which is a critical component
of dynamic spectrum sharing/access for 5G/beyond-5G systems.
Results showcase the potential to enable on-board intelligence for
future wireless systems, especially for Internet of Things (IoT)
devices in low-power environments.

Index Terms—Recurrent neural networks, hybrid integrated
circuits, 5G mobile communication, internet of things

I. INTRODUCTION

Benefited by high-speed communication networks, emerg-
ing devices are becoming interconnected to enable the next
generation of big data analysis. It has been found that more
than 20 billion devices were connected to the internet as
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of 2020, and this number is likely to increase to nearly 30
billion by 2023 [1]. This growth is largely due to the influx
machine-to-machine (M2M) connections, powering internet
of things (IoT) devices such as smart home appliances and
manufacturing technologies. While IoT devices allow users
to have seamless control over an endless array of devices,
the structure of radio frequency (RF) networks that enable
such devices must be managed to ensure efficient and secure
communication. In particular, current cellular networks are at
risk of increased congestion, interference, and latency because
of the growth of IoT devices [2].

In an effort to overcome these issues, several researchers
have proposed device-to-device (D2D) links that circumvent
communication through an intermediary cellular base station,
and instead transmit data directly between the devices [2]-[4].
These D2D links take advantage of the spatial locality between
devices to achieve faster and power-efficient communication.
D2D links are enabled by intelligent spatial spectrum sensing
capabilities within the transmitting device [4]. By analyzing
the cellular spectrum for idle subcarrier frequencies, a trans-
mitting device can attempt to send data to a receiver without
explicit time and frequency allocations [3]. Fig. 1 depicts
several example use cases for D2D enabled technologies.

Traditionally, energy detection algorithms have been used
for determining the availability of spectrum frequencies. In
such approaches, the energy of a received signal is simply
compared to a specific threshold to decide if it is safe to trans-
mit over a wireless channel. In recent years, machine learning
(ML) has been proposed as a more sophisticated method for
realizing distributed spectrum analysis in embedded systems
[5]. In practice, ML algorithms would learn temporal patterns
in the signal’s energy variations over time to dynamically
predict whether or not a transmitter can send data over the
wireless channel.

Within the realm of available ML solutions, system archi-
tects must be strategic about which algorithms are selected for
this task. Deep convolutional neural networks (CNNs) have
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Fig. 1. Sample use cases for device-to-device (D2D) communications: (D) a
standard cellular link; (@) simple D2D transactions between in coverage mobile
phones; @ a scenario where D2D can extend the base station coverage to
out-of-range devices; @ transactions between devices both in and out of the
coverage area.

proven to be one of the most powerful ML techniques by
combining several sets of hidden neuron layers and filters to
extract distinguishable features from individual data samples.
[6] shows that CNNs can achieve lower signal detection
error rates compared to other neural network architectures
when fewer training samples are available. Alternatively, the
recurrent neural networks (RNNs) used in the same experiment
required significantly less memory than the CNNs while
achieving similar classification performance. RNNs utilize
feedback connections between their hidden layers to more
accurately model time-dependent data. However, traditional
RNNs are difficult to train due to the exploding gradient
and vanishing gradient problems [7]. These problems occur
when the RNN optimization technique causes the synaptic
weights to scale or diminish exponentially, thereby reducing
the effectiveness of the network.

To resolve the shortcomings of traditional CNNs and RNNss,
recent studies have looked towards reservoir computing (RC),
a class of RNNSs that feature training at only the output layer of
the network [8]. By limiting optimizations to the output layer,
RC sidesteps the exploding and vanishing gradient problems
caused by time-based backpropagation. What is more, RC also
features randomized internal connections between neurons,
which are carefully designed to characterize significant tem-
poral properties in sequential data. In practice, [8] shows that
RC models can be effectively used in determining spectrum
availability. This suggests that integrating RC hardware accel-
erators in embedded systems can provide area- and energy-
efficient wireless spectrum sharing.

A survey of hardware RC implementations is provided in
[9]. Among the reviewed implementations, delayed feedback
reservoir (DFR) models are widely adopted as fewer resources
are required to be realized in hardware. In particular, the
DFR models proposed in [10] and [11] realize the nonlinear
transformation function of a single neuron in an analog circuit,
while performing the delay and readout functions in a digital

one. Such a mixed-signal implementation approach combines
the re-programmablility of the digital field-programmable gate
array (FPGA) platform, with the natural nonlinearity of the
analog circuit.

In this work, we introduce a hybrid DFR system with FPGA
and analog integrated circuit (IC) components to demonstrate
dynamic spectrum sensing for IoT devices. To be specific,
the reservoir and readout functions of our introduced hybrid
system are implemented in the programmable logic of a Zynqg-
7000 system-on-chip (SoC), while the nonlinear transforma-
tion is performed in a custom application-specific integrated
circuit (ASIC) chip. The hardware-based DFR is able to
perform inference on up to 1500 samples/second with a power
consumption of 130mW. This implementation uses minimal
logic resources on the Zynq-7000’s FPGA by emphasizing
the simplicity of the DFR model. Major contributions of our
work are summarized as follows:

e A novel hybrid FPGA-ASIC DFR that leverages recon-
figurable logic and a low power analog IC to achieve
higher flexibility and energy efficiency over CPU and
GPU implementations.

e A hybrid inference platform used in the NARMAI10
benchmark, yielding an average normalized root mean
squared error of 0.21.

e An investigation of the hybrid inference platform for
providing accurate and energy-efficient embedded spec-
trum sensing for IoT devices, offering an area under the
curve (AUC) measurement as high as 0.99 and a power
consumption of 130mW.

II. BACKGROUND
A. Reservoir Computing

Reservoir computing was initially introduced by two dif-
ferent approaches from Herbert Jaeger and Wolfgang Maass
in the early 2000s, namely the echo state network (ESN) and
the liquid state machine (LSM) [12]. Similar to traditional
feedforward neural networks, RC are inspired by the process-
ing and memory mechanisms from our human brain. Instead
of a multi-layered approach, RC networks feature a reservoir
of interconnected neurons that jointly form the state of the
network. At each point in time, the state of the reservoir
is used to infer an output value based on the previously
provided inputs whose effects persist throughout the system.
In popular RC approaches, the topology of the reservoir
is typically generated randomly according to a predefined
constraint. ESN reservoirs, for example, consist of sparsely
connected neurons organized in a way that realizes the echo
state property: a principle in which the effect of an input
within the reservoir diminishes over time (often conceptualized
as short-term memory) [9], [13]. On the other hand, LSM
reservoirs take even more inspiration from biological neural
networks by employing randomly connected spiking neurons
[9], [13]. While both ESNs and LSMs have been demonstrated
as powerful RC techniques, the recently introduced DFR
has been proposed to reduce the number of neurons within
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the reservoir while maintaining high fidelity for time series
prediction [11].

A DFR is an RC model whose reservoir sequentially con-
nects one nonlinear neuron, with N virtual neurons. Unlike
ESNs and LSMs, the virtual neurons in a DFR are organized in
a ring topology. Data flows through DFRs in three stages: (1)
the masking stage, (2) the reservoir stage, and (3) the readout
stage, as shown in Fig. 2. In the masking stage, each temporal
input, u(t), is multiplied by a N x 1 matrix of coupling weights
to produce the input sequence, J(t). Next, in the reservoir
stage, each newly generated input is sequentially fed into to the
reservoir’s nonlinear neuron. At each time step, the nonlinear
neuron processes both the present input entering the system
and the output from the previous computing cycle (i.e., the
last processing node in the chain of virtual neurons), which
can be expressed as

w(t) = fly- J(@t) +n- 2t - 7)), (1)

where the input is multiplied by a gain factor ~, the feedback
is delayed by 7 time steps and is then multiplied by a scale
factor 7, and f is a nonlinear activation function. The output
of the neuron’s transformation function is then stored in
the first virtual node of the chain, and the cycle continues.
It should be noted that original implementations of DFR
networks include a separation parameter # which indicates
the degree of separation between the virtual nodes [11]. In
this work, we assume # = 1 when discussing the dynamics
of the reservoir. Lastly, the readout stage occurs once the [NV
samples corresponding to a single temporal input are fed into
the reservoir. In this stage, the predicted output is calculated
as the weighted sum of the N virtual node values, which can
be written as

(1) :Z—i—wim(t— — (N — 1)), 2)

where w; is the 7" index of the output weight matrix w, which
can be trained using linear regression to accurately map the
reservoir states to the output data. For example, w can be
obtained using a method such as ridge regression
__yX
VX XT A
where y is a 1 x M matrix of expected output values y(t)
for each input u(t), X is an M x N matrix where each row
contains all of the resulting N virtual node values for a given
input u(t), A is the regularization coefficient, and I is the
identity matrix. Fig. 2 shows how a DFR can interact with an
RF receiver to perform spectrum sensing, which is overviewed
in the following section.

3)

B. Spectrum Sensing

Orthogonal frequency division multiplexing (OFDM) has
historically been a popular approach for sending informa-
tion over a high-speed RF infrastructure, such as local area
networks (LANs) and 5G cellular networks [14], [15]. In
an OFDM transmitter, modulation symbols (i.e., data) are

transmitted over several channels, or subcarriers, with small
differences in their frequencies. Such a strategy allows for
high utilization of the frequency band used for data trans-
mission. Multiple-input multiple-output (MIMO) hardware
configurations are used in combination with OFDM practices
by featuring arrays of antennae used to transmit and receive
data. Fast Fourier transformations (FFTs) are used to modulate
the symbols into RF waves at the transceiver side, and to
demodulate the waves into symbols at the receiver side. The
integration of MIMO-OFDM hardware allows for RF waves
to be reliably interpreted by increasing the signal gain and
reducing selective fading [15].

In spectrum sensing, the energy observed at the antennae
of a MIMO-OFDM receiver is used to determine whether or
not a subcarrier frequency is being occupied. The spectrum
sensing data sets used in this work were generated according
to the procedure in [15]. OFDM symbols are transmitted on the
per subcarrier frequency and modulated by Quadrature Phase
Shift Keying (QPSK). The received signal is represented by
the equation

Rp(n) = Yy(n) + Np(n), )

where Y},(n) is the transmitted signal and N, (n) is the discrete
Fourier transform (DFT) of additive white Gaussian noise
(AWGN). The spectrum sensing task is formatted as a binary
classification problem where the two hypotheses, Hy and Hj,
are used to signify whether or not the signal Y,(n) is being
transmitted as in the equation below

R,(n) :{ Np(n) Hy

Yp(n) + Np(n)  Hy
where N, represents the number of received OFDM symbols.
We further consider signals received at multiple antennae using
the equation

n=1,..., Ng,

Ry(n)=Y](n)+ Nj(n) j=1,...Np,
where Ny is the number of antennae configured.

C. FPGA-ASIC Machine Learning Accelerators

In the field of ML hardware acceleration, FPGAs and ASICs
are primarily used to improve the performance and energy
efficiency of ML algorithms. FPGAs offer hardware designers
with a platform to rapidly prototype and deploy new ML accel-
erators, while attaining lower power consumption compared to
CPU and GPU alternatives [16], [17]. The re-programmability
of FPGA-based accelerators also provides flexibility in updat-
ing the embedded ML algorithm. Alternatively, ASIC-based
accelerators achieve significantly lower execution times and
consume much less power than their FPGA counterparts,
with growing research in analog computing methods further
highlighting this advantage [18], [19]. However, ASICs can
be tedious and expensive to fabricate, in addition to analog
circuits being susceptible to issues such as noise and process
variations.

Research on hybrid integrated circuits that leverage both
FPGA and ASIC technology in a combined ML system is
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Fig. 2. Execution of a delayed feedback reservoir (DFR) network used for spectrum sensing.

limited, likely due to the effort it requires to merge the two
mediums. [20] is one of the few works that accomplishes
this by featuring a FPGA-ASIC system that performs real-
time object detection with data-intensive 1080HD video at
60 frames/second. The impressive aspect of such a project
is that their implementation consumes a mere 45.3mW of
power, making it highly capable of being deployed into power-
constrained unmanned aerial vehicles (UAVs). [21] is even
more interesting as it merges a Stratix 10 FPGA with multiple
TensorRAM ASIC chiplets to improve both energy efficiency
and latency of RNN workloads compared to GPU approaches.
In such a structure, the FPGA is used as the central controller
and sends data to the high-speed matrix-vector multiplica-
tion hardware within the chiplets. BrainScaleS, a wafer-scale
neuromorphic computing system, interfaces 48 Xilinx Kintex-
7 FPGAs with 384 analog neural network ASICs [22]. The
FPGAs in BrainScaleS configure the system and allow for the
spike data fed into the wafers, while the ASICs model the
dynamics of continuous time spiking neurons.

The state-of-the-art systems in [20]-[22] demonstrate the
potential of using hybrid FPGA-ASIC architectures to achieve
low-power and low latency performance for ML tasks. In
this work, we build an energy-efficient and high performance
ML accelerator by introducing an FPGA-ASIC hybrid DFR
system, which is one of the few approaches that utilizes het-
erogeneous hardware platforms to accelerate RC applications.

III. FPGA-ASIC DFR ACCELERATOR

In this work, we developed a 16-bit, fixed-point DFR
accelerator. The system is built using a Zyng-7000 XC7Z020
SoC, which interfaces with a custom 180nm CMOS chip. A
programming interface is provided via the SoC’s embedded
dual-core ARM Cortex-A9 processor. The controller, reservoir,
and readout layer for the DFR are instantiated in the SoC’s
programmable logic (PL) fabric. Data that enters the reservoir
is sent to the analog ASIC, which models the Mackey-Glass
(MG) activation function. Fig. 3 illustrates the connections
between the components of our introduced system.

A. FPGA

Inference on the testing samples is performed using the
FPGA’s PL, which contains a physical version of the DFR

described in Section II-A. The accelerator is interfaced with
the embedded processor using an advanced extensible interface
(AXI) interconnect, which can be used to access the system’s
registers and internal memories. Ten configuration registers
are used to control the system, monitor its status, and specify
the number of samples used for initialization and testing. Four
internal dual-port memories are used to store the masked input
samples, reservoir node values, output weights, and predicted
outputs. When launched, the system goes through three states:
(1) reservoir initialization, (2) reservoir emulation, and (3)
output evaluation.

In the first two states, 16-bit input values are read into
the reservoir from the input memory. To calculate the output
of the single nonlinear neuron, each new input is added to
the scaled output of the last virtual neuron and sent to the
ASIC via an external 16-bit digital-to-analog converter (DAC)
with a reference voltage of 2.5V. The DAC’s output voltage
is updated according to this sum, which causes a change in
the ASIC’s output voltage. The ASIC’s output is read back
into the FPGA using an embedded 12-bit analog-to-digital
converter (ADC) with a reference voltage of 1V. The 12-bit
ADC value is then stored in the first virtual neuron of the
chain of nodes, and the cycle continues for subsequent inputs.
A diagram illustrating the datapath of this operation is show
in Fig. 4A.

In the output evaluation state, each set of [NV virtual neuron
states corresponding to the test inputs is multiplied by the
output weight matrix to determine the output predictions. The
matrix multiplication block is composed of several hardware
counters to indicate the matrix data being read from the BRAM
memories. A state-machine controller manages the values
of the hardware counters to accurately perform the matrix
multiplication function. Three DSP48E1 blocks are used to
realize the 16-bit multiplication between the reservoir outputs
and the output weights. The matrix multiplication block’s
datapath is shown in Fig. 4B.

Xilinx Vivado was used to synthesize the register transfer
language (RTL) code and export the implemented bitstream
file. The RTL was designed using SystemVerilog! and includes
several generalized parameters to specify the DFR properties

SystemVerilog ~ code  for  this  project s available  at

https://github.com/oshears/hybrid_dfr_system.
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TABLE I
ZYNQ-7000 XC7Z020 POST-IMPLEMENTATION LOGIC UTILIZATION

Logic Type Elements Used | Utilization Percentage
Slices 1319 9.92%
Slice LUTSs 2328 4.37%
Slice Registers 1934 1.82%
DSPs 3 1.36%
Block RAM Tiles 118 84.29%

before synthesis (e.g., number of virtual nodes, input bit
width). The logic utilization for the hardware implementa-
tion of the DFR accelerator is shown in Table I. In this
implementation, we opted to utilize BRAMs over external
DDR3 memories to simplify memory access operations and
to improve read and write times. The bitstream was packaged
with a Petalinux image, which was used as the boot image
for the Zynq SoC. The reported dynamic power of the FPGA
DFR hardware is 130mW when operating at a clock rate of
10MHz. With these settings, the system is able to process
approximately 1625 samples/second.

B. ASIC

The nonlinear activation function is the key component of
a neural networks to compute nontrivial problems. In recent
research, the MG function is found to be the best candidate
for the DFR network due to its natural nonlinear behavior and
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Fig. 5. Analog design scheme of Mackey-Glass (MG) activation function and
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delay property [9]-[11], [23]. The nonlinear behavior of the
MG function is modelled by the differential equation from
[24], which can be depicted as

dr  ax(t—71)
dt 14 a(t—1)°

where a and b are scaling parameters, and ¢ is a nonlinear
exponent. [11] informs that the advantages of MG function are
its straightforward analog circuit implementation and tunable
nonlinear exponent. Afterward, [23] further claims that the
natural delay property of MG function makes it more capable
of mapping temporal data over the traditional sigmoid and
hyperbolic tangent functions used for artificial neurons.

Fig. 5 illustrates the analog circuit model of MG function.
In general, the nonlinear characteristic of MG function can be
formed by controlling the switching conditional of a n-type
switch, M,,; that is, comparing the potential level of the input
signal, Vj,, to the threshold voltage of input transistor, Vi, .
During the operation, under the condition of V;, < Vi p,
M, is fully cut off, charges from the input accumulate in
the low-pass filter, and thus, the voltage across the low-pass
filter, V,,, follows the input voltage. By contrast, when V;,, >
Vihon, My, is fully turned on to reduce charges from the low-
pass filter, such that V,,; decreases. To accurately model the
explicit representation of MG function, the transistor My is
implemented to serve as the scaling parameter to control the
amplitude of signal, sidestepping the overflow issue. Beyond
that, the non-linearity of the signal can be turned by the aspect
ratio of M,,, while the delay coefficient can be adjusted by the
reference current source, I, .

In this work, the analog circuit model of the MG function
was fabricated in a 180nm CMOS process as a portion of our
fabricated neural network prototype [27], as shown in Fig.
5. Fig. 6 demonstrates the result of MG function collected

— ba(t), (6)

T
—-e—measurement result

-+ post-layout simulation
——ideal expression H

°
©
T

Fig. 6. Measured Mackey-Glass (MG) activation function.

from our fabricated ASIC prototype for all 2'® DAC voltage
settings. In the measurement, the DAC’s output was scaled
down to the desired voltage level (e.g., 1.8V) through an off-
chip voltage divider. From Fig. 6, it can be observed that the
measured nonlinear characteristic fits the ideal MG function
with a scaling parameter and nonlinear exponent of @ = 1 and
& = 16, respectively. Beyond that, the measured power con-
sumption of 24.55W and silicon area of 372m? demonstrate
the capability of realizing an efficient nonlinear transformation
in silicon, potentially reducing the computational resources.

C. Software Pre-Training

In order to obtain the masked input data and readout layer
weights for the FPGA-ASIC system, a pre-trained DFR model
was developed in Python using the NumPy library?. As de-
scribed in Section II-A, all inputs from the dataset are masked
by an N x 1 matrix. Each element in the matrix is a random
integer from the set [0, 2'6 — 1]. Once the masked dataset is
obtained, the reservoir is initialized with a specified number
of samples dictated by the application. After the reservoir is
initialized, the M training samples are then provided. For each
group of N samples, the entire reservoir state (i.e., the values
of the N virtual neurons) is recorded to be used for training
the output weights. Lastly, the output weights are obtained
using Eq. 3. The resulting masked input and output weights
are loaded into the PL from the embedded processor via AXI.
The hyperparameters of the model used in both software and
FPGA implementations are noted in Table II. Note that the
value for the feedback scale, 1, was implemented as a tunable
parameter based on the tested application.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The hardware used in this combined FPGA-ASIC imple-
mentation is visualized in Fig. 7. To evaluate the predictive

Python code for this project is available at

https://github.com/oshears/hybrid_dfr_system
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TABLE II
DELAYED FEEDBACK RESERVOIR HYPERPARAMETERS

Hyperparameter Name | Symbol Value
Input Gain v 1
Feedback Scale n -
Feedback Delay T 100
Virtual Nodes N 100
Regularization Constant A 108
Mask Matrix Range M [0,276 — 1]

Fig. 7. Hardware setup of the FPGA-ASIC DFR system: (D the Zyng-7000
SoC located on the FPGA development board (ZedBoard); (@) the ZedBoard’s
PMOD pins are used to interface with an external DAC found on the ASIC’s
board; @ the ASIC’s I/O interface on the board; @ a voltage divider circuit
to scale the DAC’s output voltage to a maximum of 1.8V; () a serial console
displaying programmable Petalinux environment from the Zyng-7000 SoC.

performance of our system, we tested it against two applica-
tions: the NARMA 10 benchmark, and a spectrum sensing task.
The inference accuracy of the system was measured using the
normalized root mean squared error (NRMSE)

NRMSE =
||yiH

; (N
This metric was chosen because it has been extensively
employed for evaluating the accuracy of DFR models [11],
[23], [25]. Due to signal variations when reading the output
of the ASIC-based MG function, we recorded the output of
the activation function for each of the 2'¢ input voltage levels
and used this model to evaluate our system’s accuracy.

A. NARMAI0 Prediction

The tenth-order nonlinear autoregressive moving average
(NARMA10) benchmark was first introduced as a method to
evaluate RNN performance in [26]. This was primarily due
to its ten step time dependency, which makes it harder for
an RNN to learn. The inputs of the dataset are composed of
uniformly distributed random numbers from the set [0, 0.5],
while the outputs are determined by the equation

9
y(k+1) = 0.3y(k — 1) + 0.05y(k)[Y_ y(k — i) ®)
=0

+1.5u(k — 9)u(k) + 0.1,

TABLE III
MODEL ACCURACY FOR NARMA10
Model ~ n T [ N Testing NRMSE
[11] 0.05 | 0.5 80 | 0.2 | 400 0.15
[25] 0.05 | 075 | 40 | 0.2 | 200 0.17
This Work 1 0.5 | 100 1 100 0.21

TABLE IV
MODEL ACCURACY FOR SPECTRUM SENSING

SNR | Antennae Count | Testing NRMSE | AUC
-10dB 2 0.575 0.913
-10dB 4 0.292 0.994
-10dB 6 0.160 0.999
-15dB 2 0.772 0.770
-15dB 4 0.513 0.934
-15dB 6 0.326 0.988
-20dB 2 0.952 0.603
-20dB 4 0.771 0.764
-20dB 6 0.658 0.871

where w(t) represents an input at timestep k. A total of
100 samples were used for reservoir initialization, 5900 for
training, and 4000 for testing. The feedback scale, n was
configured as 0.5 for this application. As shown in Table III,
our DFR achieved an NRMSE of 0.21 for the test samples,
demonstrating a difference of 0.06 from the best performing
DEFR on this benchmark from [11]. We note that this difference
in performance is due our parameter configurations, which
were modeled after the DFR in [23] and reduced hardware
complexity. Here we use 100 virtual nodes with a separation
factor 6 of 1, compared to [11]’s 400 virtual nodes with a
separation factor of 0.2. Furthermore, our input gain + and
feedback scale 7 factors are set as 1 and 0.5, respectively, as
opposed to [11]’s optimal values of approximately 0.1 and 0.4.

B. Spectrum Sensing

In this experiment, we tested three different Ny values
for the MIMO antenna array, in addition to three signal-to-
noise ratios (SNRs) for the additive white Gaussian noise. The
feedback scale, 7 was configured as 0.0625 for this application.
A total of 20 samples were used for reservoir initialization, 980
for training, and 5082 for testing. In addition to the NRMSE,
we also calculated the area under the curve (AUC) values
for each dataset, which is a commonly used technique for
measuring binary classification performance. Table IV shows
the accuracy of our hybrid DFR system in predicting the
availability of the spectrum for the tested configurations.

To better visualize the binary classification performance,
we plot the receiver operating characteristic (ROC) curve
in Fig. 8. In this graph, the probability of correctly and
incorrectly detecting subcarriers in the spectrum is measured
against varying classification threshold values. As shown by
both Table IV and Fig. 8, when given ideal conditions for
performing the spectrum sensing task (i.e., a noise level of
-10db with 6 antennae), the system is able to achieve an
NRMSE of 0.16 and an AUC of 0.999.
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Fig. 8. ROC curves for the spectrum sensing configurations.

When compared with traditional energy detection based
approaches, such as the square law combining (SLC) technique
discussed in [15], we observe that our model performs better
than SLC in low antennae even with high noise settings. With
a SNR setting of -20dB, the SLC used in [15] achieves an
AUC of 0.11 and 0.7 for the 2-antenna and 4-antenna settings,
respectively, compared to our model’s performance of 0.6 and
and 0.76. We additionally compared our model to the DFR
developed in [15] which demonstrated an AUC of 0.99 for the
6-antenna and -20dB SNR configuration, versus our model’s
AUC of 0.87.

V. CONCLUSIONS

In this work, we argued the significance of an embedded
RC system that merges the simplicity of the DFR, with the
power of a hybrid FPGA-ASIC integrated circuit. We showed
that our 16-bit hybrid system has the potential to perform
time series prediction, demonstrated by its accuracy in the
NARMAIO and spectrum sensing tasks. Furthermore, our
system consumes minimal power at 130mW while being able
to process information up to 1500 samples/second. In future
work, we plan to include on-chip learning hardware in our
system which would provide adaptive capabilities. This is a
crucial feature since it would allow the algorithm to adapt
to varying spectrum access patterns between geographical
locations. Additionally, we suspect that the power consumption
can be further reduced by adopting event-based computing
paradigms, such as spiking neurons, which are renown for
their energy efficiency.
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