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Abstract

The research on computing clusters comprising
neuromorphic systems has drawn the interest of many
researchers in the field. Neural encoding is a crucial
component that determines how the information is
conveyed through a train of spikes, greatly impacting the
mode of operations’ and systems’ performance to a large
extent. Numerous encoding schemes have been proposed in
the literature, including latency encoding, ISI encoding, and
phase encoding. Each of these schemes has its own benefits
and shortcomings which brings up the idea to see if they can
complement each other. Multiplexing encoding combines
two different schemes with the aim of enhancing the
performance via conveying more information, making the
encoded spikes more robust against noise. In this paper, we
introduce a mixed-signal IC design of multiplexing latency-
phase encoder. A key principle of the multiplexing
encoding, the gamma alignment, is employed to achieve
enhanced functionality of spiking neurons supported by
biological research. In the proposed encoding scheme, a set
of predetermined spiking neurons, which can be perceived
as dimensionality reduction over the grouped higher-
dimensional stimuli, maps the input currents to latency
spike trains. Consequently, these spike trains are aligned
and then superimposed on each other to form the resulting
spike train. The simulation result is carefully inspected for
verification of the encoder. The introduced power-efficient
circuit is designed with 180nm CMOS technology and, to
the best of our knowledge, is the first IC design of the
multiplexing latency-phase that is built upon two different
encoding schemes. The power consumption of the encoder
is generally proportional to the number of neurons, and for
a 4-neuron structure, the layout-level simulation result
shows the circuit consumes 10mW of power.
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1. Introduction

Inspired by the mechanism that our human being
process information, neuromorphic computing systems are
developed to mimic the operations and characteristics of
biological neural networks [1]. Neuromorphic computing
has drawn tremendous interest in recent years due to its
ability to outperform traditional computing systems and
overcome the limitations, and yet, a pressing issue for data-
intensive applications such as pattern recognition and
machine learning. More importantly, neuromorphic
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computing consistently obtains more power-efficient
realizations, a trait shared with biological systems. As an
extreme example, the human brain, containing 10!
neurons, only consumes 10W of power [2].

In past decades, researchers have been working
feverishly to integrate different analog, digital and mixed-
signal devices to mimic the operation of biological neural
networks. To this end, using the state-of-the-art CMOS
technology to build neuromorphic computing systems has
been a common pursuit.

Among all the processing elements constituted in a
neuromorphic system, encoders specifically play a vital and
indispensable role. Spike encoding refers to the process of
converting the information (of input stimuli) into a set of
spike trains that can be processed by downstream units.
Initially, hardware implementations of rate encoders
became a more prevalently used technique compared to
other encoding schemes. This popularity mainly stems from
the fact that the rate encoding is comparatively easier to
realize than other schemes [3]. However, such simplicity
comes with significant inefficiency of the encoder in
conveying information. Due to neglection of timing
elements in the encoding window, rate coding fails to
account the temporal aspect of stimuli, drawing the
researchers' attention in devising more efficient temporal
encoding schemes. In contrast, temporal encoding employs
the timing response for mapping information, embedding
the temporal aspect into the encoded spike train [4].

Besides the temporal encoding schemes that have
currently been proposed, researchers are still looking for
novel schemes that can further enhance the performance of
neuromorphic designs. All of these pose a doubt on whether
two different types of encoders can be combined for a more
efficient coding performance, a methodology known as
multiplexing encoding [5]. Up till now, only few integrated
circuit (IC) designs and software simulations of this scheme
have been investigated.

In this paper, we introduce a latency-phase multiplexing
encoder, which is designed using the GlobalFoundries
180nm CMOS technology. This encoder not only can make
use of the time interval between the sampling onset and the
first spike, but also is able to employ the phase
characteristic of intrinsic oscillations to convey information.

2. Background of neural encoder
2.1.Encoding Scheme

The design of a proper neural encoding scheme
mandates the format of the conveying signal to be carefully
selected [4]. A natural encoding approach is to relate the
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number of spikes during the encoding window to the carried
information, whereas other types of encoding transfer the
information by exploiting other aspects of spike trains.
Accordingly, the encoding schemes can be broadly
classified into two main categories, namely rate encoding
and temporal encoding [3].

As mentioned above, in rate encoding, the encoded
information is carried only via the firing rate of spikes
during the encoding window, neglecting other properties of
a sequence of spikes that can be used to this end. Figure 1
depicts the rate encoding scheme within one sampling
window. As evident from this one-dimensional mechanism,
rate encoding is comparatively simplistic, a fact that has led
to its wide-spread use. Nevertheless, this simplicity
consequently equates to a lower amount of information to
be carried, making it highly susceptible to noise.
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Figure 1: Representation of rate encoding.

On the other hand, as the name implies, the temporal
encoding schemes employ the temporal patterns embedded
in the exact timing and order of spikes to convey
information. There have been multiple temporal encoding
schemes introduced in the literature. The time-to-first-spike
(TTFS), also known as latency encoding, is regarded as the
simplest mechanism that falls into this category. Latency-
encoded information is carried by the time difference
between the onset of the encoding window and a single
emitted spike, as illustrated in Figure 2.
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Figure 2: Representation of TTFS encoding.

Due to the dependence on the onset time of the sampling
window, the performance of the latency encoding system
highly depends on the precision of the starting point of the
sampling window, which is often an external reference.

Avoiding this external reference brings us to another
temporal encoding scheme, referred to as the inter-spike
interval (ISI) encoding [6]. Different from the latency
encoding, here, the information is encoded into time
intervals between consecutive spikes. There are two kinds
of circuit design for ISI encoding, the simpler version,
namely the parallel encoder that maintains the following
linear relationship,

Ng =N, (1
where N and N; are the number of neurons and number
of spikes, respectively. On the other hand, the other design,

named the iferation encoder, holds an exponential
relationship of the form

Ng = 2N-1, 2)
The ISI encoding scheme is shown in Figure 3.

It is evident that compared to the TTFS encoding, the
ISI encoding scheme evokes more spikes during the
sampling window; hence more information is carried with
this scheme.
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Figure 3: Representation of ISI encoding.
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Another way of resolving the issue with precise time-
dependence on the input onset is to rely on an intrinsic
internal clock of neuron. This mechanism, referred to as
phase encoding, relies on subthreshold membrane
oscillations (SMOs) that provide such an intrinsic clock.
Upon the SMOs crossing a certain threshold voltage, spikes
will be fired, which may be operated as a means of
conveying the information. The general expression of
SMOs can be written as

SMO; = Acos(wt + ¢;), 3)
where A denotes the magnitude of the SMOs, w is the
phase angular velocity and ¢; is the phase of the i-th
input, for i€{1,2,3,..,N} with N being the input
dimension. More specifically, ¢; can be defined as

¢i = ¢o + (i — DAY, 4)
where ¢, is the initial phase and A¢ is the phase shift
between each SMO.

The fact that there exist numerous encoding schemes
bring about more desirable encoding by combining these
mechanisms in a complementary fashion to increase the
performance of a neuromorphic computing system, a
process known as multiplexing [5].

There are two main multiplexing encoding schemes,
latency-phase encoding, and ISI-phase encoding. The
latency-phase encoding represents the scheme that
multiplexes the latency and the phase encoding mechanisms,
whereas the ISI-phase scheme does the same except with
the ISI encoding instead of the latency encoding. Both of
these multiplexing schemes include one step called as
gamma alignment, whose goal is to move the spikes to the
next closest incoming SMO. Figure 4 and Figure 5 illustrate
the latency-phase encoding and the ISI-phase encoding,
respectively.

2.2. Advantages and Challenges of Multiplexing

Since different encoding schemes lead information to be
expressed on different timescales, for example, while ISI
encoding scheme operates in higher frequency, the phase
encoding has a much coarser precision, the idea of
multiplexing grows very naturally based on such facts. The
encoding schemes with different timescales might be
integrated together to code complementary information
features. With such property, the whole system’s encoding
ability will be improved vastly.
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Figure 4: Representation of Latency-phase encoding.

While all the encoding schemes will be affected by
input noises, the multiplexing ones are the least interfered.
With the phase of firing encoding integrated with other
schemes, the multiplexing encoding will contain at least one
SMO. Such internal temporal reference frame has the
property of stabilize the system, especially when receiving
noisy signal.
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Figure 5: Representation of ISI-phase encoding.

Though there are more and more evidence proving
multiplexing encoding has the advantage of robustness
toward noise and less ambiguity caused than other schemes,
challenge still exists in realizing a practical and efficient
encoder. For example, integrating different processed
signals when the number of neurons increases is a very
challenging task, especially for ISI-Phase encoders. Such an
encoding scheme not only need to integrate them together,
but also need to investigate how to decode such signals.

2.3. Analog Neuron

Before exploring the detailed structure of the latency-
phase encoder, it is crucial to discover an appropriate design
for neurons as they will be used to realize the latency
encoding functionality in our introduced multiplexing
encoder.

From the first days of neuroscience, numerous
researches have been carried out about the biological
neuron, proposing various neuron models ranging from
sophisticated biophysical models to more mathematically

simplified ones. Due to the complexity and other limitations,

only a few models are applicable for realizing in the IC area,
in which two neuron models are commonly used in
neuromorphic application due to their simplicity, namely
the integrated and fire (IF) and the leaky integrate and fire
(LIF) models [2]. With the consideration of simplicity and

conciseness, the proposed encoder adopts the IF model as
the neuron model.

In an IF circuit, there exists a critical design parameter
called threshold voltage, V;, . The voltage across the
capacitor will be charged linearly as the input current, I,
is active. When the voltage across the membrane capacitor,
Vinem, reaches the Vi, the circuit will fire a spike signal to
the output. After that, V., will be reset to 0 through a
switch transistor controlled by the output spike. This
charging and firing process is the basic idea of IF neuron,
who acts as the latency encoder in our design. The equation
governing the relationship of I;, Ve and membrane
capacitance can be written as

deem
lip = C =, (5)

3. Encoder Blocks

The introduced multiplexing encoder has three critical
computing modules. The first module is called the latency
encoding neuron, which is utilized to accomplish the
latency encoding. The second module is implemented to
fulfill the need of spike width required for the later
computation, named as spike expander. The third module is
the gamma alignment, moving the spike to the next
maximum of SMOs. To enable the simultaneously
operation with multiple input signals at once, multiple
signal processing routes are built in parallel. Lastly, an OR
gate is employed to integrate the outcomes from gamma
alignment modules. The overview of our multiplexing
encoder in shown in Figure 6.
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Figure 6: Overview of Multiplexing Encoder.
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In the latency encoding module, the neurons corresponding
to multiple routes integrate voltages across the capacitors at
different speeds. With a larger input current, the voltage
across the membrane capacitor rises to threshold voltage
more quickly. Since they have the same threshold voltage,
the firing spikes of the neurons will appear at different times.
Thus, input of higher intensity leads to emission a spike
closer to the onset of the encoding window.

In the gamma alignment module, a peak detector is
implemented to detect the firing activity of spikes and hold
the firing magnitude. Once a spike is detected, it will be
injected into an AND gate with a SMO whose magnitude is
carefully tuned so that its maximum will be exactly at the
threshold of the AND gate. With the maximum of SMO
detected by the AND gate, it will fire another spike. This
output will go through a buffer to ensure its stability. Such
a signal will also be used as a switching signal of the leaking
switch at the spike input end of the AND gate. Therefore,
once the output spike is fired, the voltage level at the spike
input end will be reset to a certain level lower than the gate's
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threshold voltage. Hence, an input spike leads to a single
output spike being fired.

Notice that there is an issue with the peak detector where
the input spikes are required to last at least 10ns for
detection, or there will not be enough time for the voltage
level of the detector to rise above the threshold voltage
before the spike disappears. The output of the latency
encoding module, however, only has Ins width. To
overcome this issue, an additional module is introduced,
which refers to as the spike expander, enforcing the spike
width to 10ns.

Since the four routes of the signal require four SMOs, 45
degrees out of phase with each other, maintaining the same
amplitude, a SMO generator is designed to provide such
functionality with finely tuned magnitude.

4. Hardware Implementation

The multiplexing encoder introduced in this paper is
designed and simulated in the GlobalFoundries 180nm
CMOS technology.

The structure of the neuron utilized as the latency encoding
is depicted in Figure 7. Upon the charging effect of the input
current on the membrane capacitor, the voltage across the
capacitor rises. Since the gate voltage of M1 increases, the
voltage at the drain of M2 rises up accordingly. When the
voltage exceeds a certain threshold, a voltage controlled by
Vyef, a spike will be generated via the buffer consisting two
NOT gates. At the meantime, the feedback mechanism
starts to reset the voltage across the capacitor. The sampling
rate of the neuron is controlled by the CLK signal. When a
spike is fired, the gate of M11 is set to be a high voltage so
that the charges at the top plate of the capacitor will leak
through M11. Thus, the reset mechanism is achieved. In
conclusion, this circuit can imitate the basic function of a
biological neuron and is able to accomplish the latency
encoding.
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M1 o

Figure 7: Circuit implementation of latency neuron.

The gamma alignment is the key module in our introduced
multiplexing encoder, shifting the incoming spikes to the
next maximum of SMOs. The structure is shown in Figure
8. In the circuit implementation, the diode-connected
transistor and the capacitor are used as a spike detector.
When a spike is received, M1 delivers the energy potential
from the incoming spike to the capacitor, preventing the
charge from leaking when the spike is reset. Thus, the signal
at the spike input end of the AND gate will be held as digital

1 until the next maximum of SMO. The amplitude of the
SMO needs to be carefully tuned so that it can be
recognized as digital 1 only at the peaks. Therefore, when
the two inputs of the AND gate both reach digital 1, a spike
will be fired through the buffer to the output. Meanwhile, to
reset the voltage at the spike input end, a feedback
mechanism is utilized. After the firing process, the gate of
M2 is set to be a high voltage, which allows the voltage at
C1 to be reset to a certain value lower than digital 1 until
the arrival of next incoming spike.
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Figure 8: Circuit implementation of gamma alignment.

As mentioned in the previous section, the peak detector
requires a certain pulse width of the spike to function
properly. If the existing time of the spike is too short, the
voltage across the capacitor will not be able to rise to digital
1 before the spike is reset. Due to the instant reset operation,
the output spikes from the latency neuron are too narrow to
be distinguished by the spike detector. To overcome this
issue, an additional module is implemented to extend the
existing pulse width of spikes, named as spike expander, as
illustrated in Figure 9.

Input .
™S I\D_z:p'
I/J_I/

Figure 9: Circuit implementation of spike expander.

Two inverters and a capacitor are utilized to create certain
delays to the initial spike, e.g., 0.8 X of the initial spike
width. After that, the initial spike and the delayed spike are
integrated by an OR gate, forming a new set of spikes with
nearly 1.8 X of former width. To ensure that the spikes are
wide enough to trigger the gamma alignment module, four
cascaded spike expanders are implemented, increasing the
width of a spike to 10ns from less than Ins. What needs to
be noticed is that the capacitor on each spike expander has
different values, since the spikes need to be delayed by a
different amount of time.

Another critical module is the one used to provide SMOs.
Since SMOs in the latency-phase encoder need to have the
same magnitude with a specific phase shift, the circuit will
have the functionality to shift the phase while keeping the
magnitude steady. The structure of the SMO module is
shown in Figure 10. Each pair of capacitors and resistors is
utilized to shift the phase of the signal. Since the magnitude
of the signal will be decreased along with the phase shifting,
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an amplifier structure with op-amp is used to elevate the
amplitude of the phase-shifted signal back to the original. A
total of four SMOs is implemented, where each of which is
utilized to control the corresponding gamma alignment
module.
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Figure 10: Circuit implementation of SMO.

5. Results Discussion

From the previous discussions, it can be observed that the
output of each module is critical in this design, greatly
impacting the accuracy of the final outcomes. Thus, a
careful inspection needs to be carried out to the input and
output signals.

Figure 11 demonstrates the mapping of input current to a
TTEFS spike. In this experiment, an input current, ranging
from 0.3uA to 1.1uA was applied as the input, while the
latency neuron sampled the input information at a rate of
0.67MHz. It can be observed that with an input of high
magnitude, the output spike would be closer to the CLK
signal, whereas input of lower intensity would lead to the
spike further away from the CLK signal. Such property
fulfills the requirement of latency encoding.

Figure 12 depicted the property of pulse width extension
achieved by the spike expander module, such that the signal
can be detectable by later modules. It can be seen that the
outcome from the spike expander spans around 15ns width
while the input spike only has a narrow 3ns width. Through
our initial experiment, the peak detector in the gamma
alignment module requires a width of at least 10ns in order
to operate properly. It is reasonable to conclude that the
spike expander module has met the design requirements for
later computation.
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Figure 11: TTFS spikes of latency encoding module.
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Figure 12: Illustration of pulse width extension.

Input
Output
1.5 SMO |
1 - B
=
2 05 E
S
(]
0
-0.5 F 4
-1 L
1.5 2 2.5

time(us)

Figure 13: Illustration of gamma alignment.

The gamma alignment is the most critical module in the
multiplexing encoder design. Figure 13 shows the
relationship between the initial input spike, the SMO, and
the shifted output spike. With the influx of the expanded
spike, the peak detector in the gamma alignment module
captures the incoming signal and maintains the ‘high’ state.
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The fine-tuned SMO has the capability to maintain its
maximum voltage at the threshold of the AND gate; thus,
when it arrives at the max point, it will be in a ‘high’ state
as well. An output spike will be fired at this moment with
the help of a reset structure. From Figure 13, it can be
observed that an input spike is indeed mapped to the next
maximum peak of SMO.

6. Layout and Power Analysis

As discussed in Section 4, this specific design adopts four
neurons to map four different signals synchronously.
However, a latency-phase encoder may superimpose any
number of neurons. Thus, the layout size and power
consumption vary drastically with respect to the number of
neurons. Since the SMOs module requires large capacitors
to achieve the desired phase shift, the design area is also
proportional to the number of neurons. Figure 14 shows the
layout of a 4-neuron latency-phase multiplexing encoder.
The overall design area of this encoder is around
760 X 490um?.
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Figure 14: Layout of latency-phase multiplexing Encoder.

Table I: Power Consumption and Area Comparison

Encoding Scheme Power (mW) | Area (um?)
Latency 0.425 28 x33
Latency-Phase 0.43 40 x 303
ISI 0.846 64 x 69
ISI-Phase 0.847 64 x 340

As shown in Table I, different encoding schemes are
summarized on the scale of power and area. Due to the
matter of fairness, every encoder has only one neuron. It can
be observed that the power consumption of latency and
latency-phase, ISI and ISI-phase are identical, respectively,
meaning that the spike expander and gamma alignment
circuit are indeed power efficient.
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