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Abstract 

The research on computing clusters comprising 
neuromorphic systems has drawn the interest of many 
researchers in the field. Neural encoding is a crucial 
component that determines how the information is 
conveyed through a train of spikes, greatly impacting the 
mode of operations’ and systems’ performance to a large 
extent. Numerous encoding schemes have been proposed in 
the literature, including latency encoding, ISI encoding, and 
phase encoding. Each of these schemes has its own benefits 
and shortcomings which brings up the idea to see if they can 
complement each other. Multiplexing encoding combines 
two different schemes with the aim of enhancing the 
performance via conveying more information, making the 
encoded spikes more robust against noise. In this paper, we 
introduce a mixed-signal IC design of multiplexing latency-
phase encoder. A key principle of the multiplexing 
encoding, the gamma alignment, is employed to achieve 
enhanced functionality of spiking neurons supported by 
biological research. In the proposed encoding scheme, a set 
of predetermined spiking neurons, which can be perceived 
as dimensionality reduction over the grouped higher-
dimensional stimuli, maps the input currents to latency 
spike trains. Consequently, these spike trains are aligned 
and then superimposed on each other to form the resulting 
spike train. The simulation result is carefully inspected for 
verification of the encoder. The introduced power-efficient 
circuit is designed with 180nm CMOS technology and, to 
the best of our knowledge, is the first IC design of the 
multiplexing latency-phase that is built upon two different 
encoding schemes. The power consumption of the encoder 
is generally proportional to the number of neurons, and for 
a 4-neuron structure, the layout-level simulation result 
shows the circuit consu mes 10mW of power. 
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1. Introduction 

Inspired by the mechanism that our human being 
process information, neuromorphic computing systems are 
developed to mimic the operations and characteristics of 
biological neural networks [1]. Neuromorphic computing 
has drawn tremendous interest in recent years due to its 
ability to outperform traditional computing systems and 
overcome the limitations, and yet, a pressing issue for data-
intensive applications such as pattern recognition and 
machine learning. More importantly, neuromorphic 

computing consistently obtains more power-efficient 
realizations, a trait shared with biological systems. As an 
extreme example, the human brain, containing 1011 
neurons, only consumes 10W of power [2]. 

In past decades, researchers have been working 
feverishly to integrate different analog, digital and mixed-
signal devices to mimic the operation of biological neural 
networks. To this end, using the state-of-the-art CMOS 
technology to build neuromorphic computing systems has 
been a common pursuit. 

Among all the processing elements constituted in a 
neuromorphic system, encoders specifically play a vital and 
indispensable role. Spike encoding refers to the process of 
converting the information (of input stimuli) into a set of 
spike trains that can be processed by downstream units. 
Initially, hardware implementations of rate encoders 
became a more prevalently used technique compared to 
other encoding schemes. This popularity mainly stems from 
the fact that the rate encoding is comparatively easier to 
realize than other schemes [3]. However, such simplicity 
comes with significant inefficiency of the encoder in 
conveying information. Due to neglection of timing 
elements in the encoding window, rate coding fails to 
account the temporal aspect of stimuli, drawing the 
researchers' attention in devising more efficient temporal 
encoding schemes. In contrast, temporal encoding employs 
the timing response for mapping information, embedding 
the temporal aspect into the encoded spike train [4]. 

Besides the temporal encoding schemes that have 
currently been proposed, researchers are still looking for 
novel schemes that can further enhance the performance of 
neuromorphic designs. All of these pose a doubt on whether 
two different types of encoders can be combined for a more 
efficient coding performance, a methodology known as 
multiplexing encoding [5]. Up till now, only few integrated 
circuit (IC) designs and software simulations of this scheme 
have been investigated. 

In this paper, we introduce a latency-phase multiplexing 
encoder, which is designed using the GlobalFoundries 
180nm CMOS technology. This encoder not only can make 
use of the time interval between the sampling onset and the 
first spike, but also is able to employ the phase 
characteristic of intrinsic oscillations to convey information. 
 
2. Background of neural encoder 

2.1. Encoding Scheme 

The design of a proper neural encoding scheme 
mandates the format of the conveying signal to be carefully 
selected [4]. A natural encoding approach is to relate the 
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number of spikes during the encoding window to the carried 
information, whereas other types of encoding transfer the 
information by exploiting other aspects of spike trains. 
Accordingly, the encoding schemes can be broadly 
classified into two main categories, namely rate encoding 
and temporal encoding [3]. 
As mentioned above, in rate encoding, the encoded 
information is carried only via the firing rate of spikes 
during the encoding window, neglecting other properties of 
a sequence of spikes that can be used to this end. Figure 1 
depicts the rate encoding scheme within one sampling 
window. As evident from this one-dimensional mechanism, 
rate encoding is comparatively simplistic, a fact that has led 
to its wide-spread use. Nevertheless, this simplicity 
consequently equates to a lower amount of information to 
be carried, making it highly susceptible to noise. 

 
Figure 1: Representation of rate encoding. 
 

On the other hand, as the name implies, the temporal 
encoding schemes employ the temporal patterns embedded 
in the exact timing and order of spikes to convey 
information. There have been multiple temporal encoding 
schemes introduced in the literature. The time-to-first-spike 

(TTFS), also known as latency encoding, is regarded as the 
simplest mechanism that falls into this category. Latency-
encoded information is carried by the time difference 
between the onset of the encoding window and a single 
emitted spike, as illustrated in Figure 2.  

 
Figure 2: Representation of TTFS encoding. 
 

Due to the dependence on the onset time of the sampling 
window, the performance of the latency encoding system 
highly depends on the precision of the starting point of the 
sampling window, which is often an external reference. 

Avoiding this external reference brings us to another 
temporal encoding scheme, referred to as the inter-spike 

interval (ISI) encoding [6]. Different from the latency 
encoding, here, the information is encoded into time 
intervals between consecutive spikes. There are two kinds 
of circuit design for ISI encoding, the simpler version, 
namely the parallel encoder that maintains the following 
linear relationship,  

𝑁𝑆 = 𝑁,                 (1) 
where 𝑁 and 𝑁𝑠 are the number of neurons and number 
of spikes, respectively. On the other hand, the other design, 

named the iteration encoder, holds an exponential 
relationship of the form  

𝑁𝑆 =  2𝑁−1.              (2) 
The ISI encoding scheme is shown in Figure 3. 

It is evident that compared to the TTFS encoding, the 
ISI encoding scheme evokes more spikes during the 
sampling window; hence more information is carried with 
this scheme. 

 
Figure 3: Representation of ISI encoding. 
 

Another way of resolving the issue with precise time-
dependence on the input onset is to rely on an intrinsic 
internal clock of neuron. This mechanism, referred to as 
phase encoding, relies on subthreshold membrane 
oscillations (SMOs) that provide such an intrinsic clock.  
Upon the SMOs crossing a certain threshold voltage, spikes 
will be fired, which may be operated as a means of 
conveying the information. The general expression of 
SMOs can be written as 

𝑆𝑀𝑂𝑖 = 𝐴 cos(𝜔𝑡 + 𝜙𝑖),        (3) 
where 𝐴  denotes the magnitude of the SMOs, 𝜔  is the 
phase angular velocity and 𝜙𝑖  is the phase of the 𝑖 -th 
input, for 𝑖 ∈ {1,2,3, … , N}  with N  being the input 
dimension. More specifically, 𝜙𝑖 can be defined as 

𝜙𝑖 =  𝜙0 + (𝑖 − 1)Δ𝜙,         (4) 
where 𝜙0  is the initial phase and Δ𝜙  is the phase shift 
between each SMO. 

The fact that there exist numerous encoding schemes 
bring about more desirable encoding by combining these 
mechanisms in a complementary fashion to increase the 
performance of a neuromorphic computing system, a 
process known as multiplexing [5]. 

There are two main multiplexing encoding schemes, 
latency-phase encoding, and ISI-phase encoding. The 
latency-phase encoding represents the scheme that 
multiplexes the latency and the phase encoding mechanisms, 
whereas the ISI-phase scheme does the same except with 
the ISI encoding instead of the latency encoding. Both of 
these multiplexing schemes include one step called as 
gamma alignment, whose goal is to move the spikes to the 
next closest incoming SMO. Figure 4 and Figure 5 illustrate 
the latency-phase encoding and the ISI-phase encoding, 
respectively. 
 
2.2. Advantages and Challenges of Multiplexing 

Since different encoding schemes lead information to be 
expressed on different timescales, for example, while ISI 
encoding scheme operates in higher frequency, the phase 
encoding has a much coarser precision, the idea of 
multiplexing grows very naturally based on such facts. The 
encoding schemes with different timescales might be 
integrated together to code complementary information 
features. With such property, the whole system’s encoding 
ability will be improved vastly. 

               

          

               

     

 

               

      

Authorized licensed use limited to: Yang Yi. Downloaded on January 06,2022 at 19:01:33 UTC from IEEE Xplore.  Restrictions apply. 



 

 

 
Figure 4: Representation of Latency-phase encoding. 
 

While all the encoding schemes will be affected by 
input noises, the multiplexing ones are the least interfered. 
With the phase of firing encoding integrated with other 
schemes, the multiplexing encoding will contain at least one 
SMO. Such internal temporal reference frame has the 
property of stabilize the system, especially when receiving 
noisy signal. 

 
Figure 5: Representation of ISI-phase encoding. 
 

Though there are more and more evidence proving 
multiplexing encoding has the advantage of robustness 
toward noise and less ambiguity caused than other schemes, 
challenge still exists in realizing a practical and efficient 
encoder. For example, integrating different processed 
signals when the number of neurons increases is a very 
challenging task, especially for ISI-Phase encoders. Such an 
encoding scheme not only need to integrate them together, 
but also need to investigate how to decode such signals. 
 
2.3. Analog Neuron 

Before exploring the detailed structure of the latency-
phase encoder, it is crucial to discover an appropriate design 
for neurons as they will be used to realize the latency 
encoding functionality in our introduced multiplexing 
encoder. 

From the first days of neuroscience, numerous 
researches have been carried out about the biological 
neuron, proposing various neuron models ranging from 
sophisticated biophysical models to more mathematically 
simplified ones. Due to the complexity and other limitations, 
only a few models are applicable for realizing in the IC area, 
in which two neuron models are commonly used in 
neuromorphic application due to their simplicity, namely 
the integrated and fire (IF) and the leaky integrate and fire 
(LIF) models [2]. With the consideration of simplicity and 

conciseness, the proposed encoder adopts the IF model as 
the neuron model. 

In an IF circuit, there exists a critical design parameter 
called threshold voltage, 𝑉𝑡ℎ . The voltage across the 
capacitor will be charged linearly as the input current, 𝐼𝑖𝑛, 
is active. When the voltage across the membrane capacitor, 
𝑉𝑚𝑒𝑚, reaches the 𝑉𝑡ℎ, the circuit will fire a spike signal to 
the output. After that, 𝑉𝑚𝑒𝑚  will be reset to 0 through a 
switch transistor controlled by the output spike. This 
charging and firing process is the basic idea of IF neuron, 
who acts as the latency encoder in our design. The equation 
governing the relationship of 𝐼𝑖𝑛 , 𝑉𝑚𝑒𝑚   and membrane 
capacitance can be written as 

𝐼𝑖𝑛 = 𝐶
𝑑𝑉𝑚𝑒𝑚

𝑑𝑡
.               (5) 

 

3. Encoder Blocks 
The introduced multiplexing encoder has three critical 
computing modules. The first module is called the latency 
encoding neuron, which is utilized to accomplish the 
latency encoding. The second module is implemented to 
fulfill the need of spike width required for the later 
computation, named as spike expander. The third module is 
the gamma alignment, moving the spike to the next 
maximum of SMOs. To enable the simultaneously 
operation with multiple input signals at once, multiple 
signal processing routes are built in parallel. Lastly, an OR 
gate is employed to integrate the outcomes from gamma 
alignment modules. The overview of our multiplexing 
encoder in shown in Figure 6. 

 
Figure 6: Overview of Multiplexing Encoder. 
 
In the latency encoding module, the neurons corresponding 
to multiple routes integrate voltages across the capacitors at 
different speeds. With a larger input current, the voltage 
across the membrane capacitor rises to threshold voltage 
more quickly. Since they have the same threshold voltage, 
the firing spikes of the neurons will appear at different times. 
Thus, input of higher intensity leads to emission a spike 
closer to the onset of the encoding window. 
In the gamma alignment module, a peak detector is 
implemented to detect the firing activity of spikes and hold 
the firing magnitude. Once a spike is detected, it will be 
injected into an AND gate with a SMO whose magnitude is 
carefully tuned so that its maximum will be exactly at the 
threshold of the AND gate. With the maximum of SMO 
detected by the AND gate, it will fire another spike. This 
output will go through a buffer to ensure its stability. Such 
a signal will also be used as a switching signal of the leaking 
switch at the spike input end of the AND gate. Therefore, 
once the output spike is fired, the voltage level at the spike 
input end will be reset to a certain level lower than the gate's 

                

               

           

    

    

    

    

            

                  

      

      

      

      

      

      
      

      
        

      
         

      
         

      
         

      
         

      
        

      
        

      
        

Authorized licensed use limited to: Yang Yi. Downloaded on January 06,2022 at 19:01:33 UTC from IEEE Xplore.  Restrictions apply. 



 

 

threshold voltage. Hence, an input spike leads to a single 
output spike being fired. 
Notice that there is an issue with the peak detector where 
the input spikes are required to last at least 10ns for 
detection, or there will not be enough time for the voltage 
level of the detector to rise above the threshold voltage 
before the spike disappears. The output of the latency 
encoding module, however, only has 1ns width. To 
overcome this issue, an additional module is introduced, 
which refers to as the spike expander, enforcing the spike 
width to 10ns. 
Since the four routes of the signal require four SMOs, 45 
degrees out of phase with each other, maintaining the same 
amplitude, a SMO generator is designed to provide such 
functionality with finely tuned magnitude. 
 

4. Hardware Implementation 
The multiplexing encoder introduced in this paper is 
designed and simulated in the GlobalFoundries 180nm 
CMOS technology. 
The structure of the neuron utilized as the latency encoding 
is depicted in Figure 7. Upon the charging effect of the input 
current on the membrane capacitor, the voltage across the 
capacitor rises. Since the gate voltage of M1 increases, the 
voltage at the drain of M2 rises up accordingly. When the 
voltage exceeds a certain threshold, a voltage controlled by 
𝑉𝑟𝑒𝑓 , a spike will be generated via the buffer consisting two 
NOT gates. At the meantime, the feedback mechanism 
starts to reset the voltage across the capacitor. The sampling 
rate of the neuron is controlled by the 𝐶𝐿𝐾 signal. When a 
spike is fired, the gate of M11 is set to be a high voltage so 
that the charges at the top plate of the capacitor will leak 
through M11. Thus, the reset mechanism is achieved. In 
conclusion, this circuit can imitate the basic function of a 
biological neuron and is able to accomplish the latency 
encoding.  

 
Figure 7: Circuit implementation of latency neuron. 
 
The gamma alignment is the key module in our introduced 
multiplexing encoder, shifting the incoming spikes to the 
next maximum of SMOs. The structure is shown in Figure 
8. In the circuit implementation, the diode-connected 
transistor and the capacitor are used as a spike detector. 
When a spike is received, M1 delivers the energy potential 
from the incoming spike to the capacitor, preventing the 
charge from leaking when the spike is reset. Thus, the signal 
at the spike input end of the AND gate will be held as digital 

1 until the next maximum of SMO. The amplitude of the 
SMO needs to be carefully tuned so that it can be 
recognized as digital 1 only at the peaks. Therefore, when 
the two inputs of the AND gate both reach digital 1, a spike 
will be fired through the buffer to the output. Meanwhile, to 
reset the voltage at the spike input end, a feedback 
mechanism is utilized. After the firing process, the gate of 
M2 is set to be a high voltage, which allows the voltage at 
C1 to be reset to a certain value lower than digital 1 until 
the arrival of next incoming spike. 

 
Figure 8: Circuit implementation of gamma alignment. 
 
As mentioned in the previous section, the peak detector 
requires a certain pulse width of the spike to function 
properly. If the existing time of the spike is too short, the 
voltage across the capacitor will not be able to rise to digital 
1 before the spike is reset. Due to the instant reset operation, 
the output spikes from the latency neuron are too narrow to 
be distinguished by the spike detector. To overcome this 
issue, an additional module is implemented to extend the 
existing pulse width of spikes, named as spike expander, as 
illustrated in Figure 9. 

 
Figure 9: Circuit implementation of spike expander. 
 
Two inverters and a capacitor are utilized to create certain 
delays to the initial spike, e.g., 0.8 × of the initial spike 
width. After that, the initial spike and the delayed spike are 
integrated by an OR gate, forming a new set of spikes with 
nearly 1.8 × of former width. To ensure that the spikes are 
wide enough to trigger the gamma alignment module, four 
cascaded spike expanders are implemented, increasing the 
width of a spike to 10ns from less than 1ns. What needs to 
be noticed is that the capacitor on each spike expander has 
different values, since the spikes need to be delayed by a 
different amount of time. 
Another critical module is the one used to provide SMOs. 
Since SMOs in the latency-phase encoder need to have the 
same magnitude with a specific phase shift, the circuit will 
have the functionality to shift the phase while keeping the 
magnitude steady. The structure of the SMO module is 
shown in Figure 10. Each pair of capacitors and resistors is 
utilized to shift the phase of the signal. Since the magnitude 
of the signal will be decreased along with the phase shifting, 
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an amplifier structure with op-amp is used to elevate the 
amplitude of the phase-shifted signal back to the original. A 
total of four SMOs is implemented, where each of which is 
utilized to control the corresponding gamma alignment 
module. 

 
Figure 10: Circuit implementation of SMO. 
 

5. Results Discussion 
From the previous discussions, it can be observed that the 
output of each module is critical in this design, greatly 
impacting the accuracy of the final outcomes. Thus, a 
careful inspection needs to be carried out to the input and 
output signals. 
Figure 11 demonstrates the mapping of input current to a 
TTFS spike. In this experiment, an input current, ranging 
from 0.3uA to 1.1uA was applied as the input, while the 
latency neuron sampled the input information at a rate of 
0.67MHz. It can be observed that with an input of high 
magnitude, the output spike would be closer to the 𝐶𝐿𝐾 
signal, whereas input of lower intensity would lead to the 
spike further away from the 𝐶𝐿𝐾  signal. Such property 
fulfills the requirement of latency encoding. 
Figure 12 depicted the property of pulse width extension 
achieved by the spike expander module, such that the signal 
can be detectable by later modules. It can be seen that the 
outcome from the spike expander spans around 15ns width 
while the input spike only has a narrow 3ns width. Through 
our initial experiment, the peak detector in the gamma 
alignment module requires a width of at least 10ns in order 
to operate properly. It is reasonable to conclude that the 
spike expander module has met the design requirements for 
later computation. 

 
Figure 11: TTFS spikes of latency encoding module. 
 

 
Figure 12: Illustration of pulse width extension. 
 

 
Figure 13: Illustration of gamma alignment. 
 
The gamma alignment is the most critical module in the 
multiplexing encoder design. Figure 13 shows the 
relationship between the initial input spike, the SMO, and 
the shifted output spike. With the influx of the expanded 
spike, the peak detector in the gamma alignment module 
captures the incoming signal and maintains the ‘high’ state. 

  

  

 
 
 

  

  

  

  

  

  

  

  

 
 
 

  

  
 
 
 

    

    

    

    

                      

        

 

   

 

   

 

 
 
  
 
  
 

     

                      

        

 

   

 

   

 

 
 
  
 
  
 

      

       

        

  

    

 

   

 

   

 

 
 
  
 
  
 

     

      

   

Authorized licensed use limited to: Yang Yi. Downloaded on January 06,2022 at 19:01:33 UTC from IEEE Xplore.  Restrictions apply. 



 

 

The fine-tuned SMO has the capability to maintain its 
maximum voltage at the threshold of the AND gate; thus, 
when it arrives at the max point, it will be in a ‘high’ state 
as well. An output spike will be fired at this moment with 
the help of a reset structure. From Figure 13, it can be 
observed that an input spike is indeed mapped to the next 
maximum peak of SMO. 

6. Layout and Power Analysis 
As discussed in Section 4, this specific design adopts four 
neurons to map four different signals synchronously. 
However, a latency-phase encoder may superimpose any 
number of neurons. Thus, the layout size and power 
consumption vary drastically with respect to the number of 
neurons. Since the SMOs module requires large capacitors 
to achieve the desired phase shift, the design area is also 
proportional to the number of neurons. Figure 14 shows the 
layout of a 4-neuron latency-phase multiplexing encoder. 
The overall design area of this encoder is around 
760 × 490𝑢𝑚2. 

 
Figure 14: Layout of latency-phase multiplexing Encoder. 
 
Table I: Power Consumption and Area Comparison 

Encoding Scheme Power (mW) Area (𝑢𝑚2) 
Latency 0.425 28 x 33 
Latency-Phase 0.43 40 x 303 
ISI 0.846 64 x 69 
ISI-Phase 0.847 64 x 340 

 
As shown in Table I, different encoding schemes are 
summarized on the scale of power and area. Due to the 
matter of fairness, every encoder has only one neuron. It can 
be observed that the power consumption of latency and 
latency-phase, ISI and ISI-phase are identical, respectively, 
meaning that the spike expander and gamma alignment 
circuit are indeed power efficient. 
 

Acknowledgements 
This work was supported in part by the U.S. National 
Science Foundation (NSF) under Grant CCF-1750450, 
Grant ECCS-1731928, and Grant CCF-1937487. 
 

Reference 
[1] K. Bai and Y. Yi, "Opening the “Black Box” of Silicon 
Chip Design in Neuromorphic Computing," in Bio-Inspired 
Technology: IntechOpen, 2019. 

[2] C. Zhao, J. Li, and Y. Yi, "Making neural encoding 
robust and energy efficient: an advanced analog temporal 
encoder for brain-inspired computing systems," in 
Proceedings of the 35th International Conference on 
Computer-Aided Design, 2016, pp. 1-6. 
[3] K. Hamedani, "Energy Efficient Deep Spiking 
Recurrent Neural Networks: A Reservoir Computing-Based 
Approach," Virginia Tech, 2020. 
[4] C. Zhao, B. T. Wysocki, Y. Liu, C. D. Thiem, N. R. 
McDonald, and Y. Yi, "Spike-time-dependent encoding for 
neuromorphic processors," ACM Journal on Emerging 
Technologies in Computing Systems (JETC), vol. 12, no. 3, 
pp. 1-21, 2015. 
[5]  S. Panzeri, N. Brunel, N. K. Logothetis, and C. 
Kayser, "Sensory neural codes using multiplexed temporal 
scales," Trends in neurosciences, vol. 33, no. 3, pp. 111-120, 
2010.  
[6]  C. Zhao, "Spike Processing Circuit Design for 
Neuromorphic Computing," Virginia Tech, 2019.  
[7] Z. Nadasdy, "Information encoding and 
reconstruction from the phase of action potentials," 
Frontiers in systems neuroscience, vol. 3, p. 6, 2009. 
[8] K. Hamedani, L. Liu, S. Liu, H. He, and Y. Yi, "Deep 
Spiking Delayed Feedback Reservoirs and Its Application 
in Spectrum Sensing of MIMO-OFDM Dynamic Spectrum 
Sharing," in Proceedings of the AAAI Conference on 
Artificial Intelligence, 2020, vol. 34, no. 02, pp. 1292-1299. 
[9]  H. E. Michel, D. Rancour, and S. Iringentavida, 
"CMOS Implementation of Phase-Encoded Complex-
Valued Artificial Neural Networks," in ESA/VLSI, 2004, 
pp. 551-557.  
[10]  K. Bai, Q. An, L. Liu, and Y. Yi, "A training-efficient 
hybrid-structured deep neural network with reconfigurable 
memristive synapses," IEEE Transactions on Very Large 
Scale Integration (VLSI) Systems, vol. 28, no. 1, pp. 62-75, 
2019. 
[11] A. Cattani, G. T. Einevoll, and S. Panzeri, "Phase-of-
firing code," arXiv preprint arXiv:1504.03954, 2015. 
[12] K. Hynna and K. Boahen, "Space-rate coding in an 
adaptive silicon neuron," Neural Networks, vol. 14, no. 6-7, 
pp. 645-656, 2001. 
[13] M. Lukoševicius, "Reservoir computing and self-
organized neural hierarchies," Jacobs University, Bremen, 
2012. 
[14] L. Appeltant, "Reservoir computing based on delay-
dynamical systems," These de Doctorat, Vrije Universiteit 
Brussel/Universitat de les Illes Balears, 2012. 
[15]  B. Schrauwen, D. Verstraeten, and J. Van 
Campenhout, "An overview of reservoir computing: theory, 
applications and implementations," in Proceedings of the 
15th european symposium on artificial neural networks. p. 
471-482 2007, 2007, pp. 471-482.  
[16] L. Wen-peng, C. Xu, and L. Hua-xiang, "A new 
hardware-oriented spiking neuron model based on set and 
its properties," Physics Procedia, vol. 22, pp. 170-176, 2011. 
[17]  C. Zhao, L. Liu, and Y. Yi, "Design and Analysis of 
Real Time Spiking Neural Network Decoder for 
Neuromorphic Chips," in Proceedings of the International 
Conference on Neuromorphic Systems, 2019, pp. 1-4.  

Authorized licensed use limited to: Yang Yi. Downloaded on January 06,2022 at 19:01:33 UTC from IEEE Xplore.  Restrictions apply. 


