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Sample Complexity of Block-Sparse
System Identification Problem

Salar Fattahi and Somayeh Sojoudi

Abstract—In this article, we study the system identifica-
tion problem for sparse linear time-invariant systems. We
propose a sparsity promoting block-regularized estimator
to identify the dynamics of the system with only a limited
number of input-state data samples. We characterize the
properties of this estimator under high-dimensional scal-
ing, where the growth rate of the system dimension is
comparable to or even faster than that of the number of
available sample trajectories. In particular, using contem-
porary results on high-dimensional statistics, we show that
the proposed estimator results in a small elementwise error,
provided that the number of sample trajectories is above
a threshold. This threshold depends polynomially on the
size of each block and the number of nonzero elements at
different rows of input and state matrices, but only loga-
rithmically on the system dimension. A by product of this
result is that the number of sample trajectories required for
sparse system identification is significantly smaller than
the dimension of the system. Furthermore, we show that,
unlike the recently celebrated least-squares estimators for
system identification problems, the method developed in
this work is capable of exact recovery of the underlying
sparsity structure of the system with the aforementioned
number of data samples. Extensive case studies on switch-
ing networks and power systems are offered to demon-
strate the effectiveness of the proposed method.

Index Terms—High-dimensional statistics, statistical
learning, system identification.

I. INTRODUCTION

W ITH their ever-growing size and complexity, real-world
dynamical systems are hard to model. Today’s systems

are complex and large, often with a massive number of unknown
parameters, which render them doomed to the so-called curse
of dimensionality. Therefore, system operators should rely on
simple and tractable estimationmethods to identify the dynamics
of the system via a limited number of recorded input–output

Manuscript received November 15, 2020; revised March 21, 2021;
accepted May 28, 2021. Date of publication June 14, 2021; date of
current version December 3, 2021. This work was supported in part
by the Air Force Office of Scientific Research, in part by the Office of
Naval Research, and in part by the National Science Foundation. Rec-
ommended by Associate Editor W. X. Zheng. (Corresponding author:
Salar Fattahi.)

Salar Fattahi is with the Department of Industrial and Operations
Engineering, University of Michigan, Ann Arbor, MI 48109 USA (e-mail:
fattahi@umich.edu).

Somayeh Sojoudi is with the Department of Electrical Engineering
and Computer Sciences, the Department of Mechanical Engineering,
and the Tsinghua–Berkeley Shenzhen Institute, University of California,
Berkeley, CA 94720 USA (e-mail: sojoudi@berkeley.edu).

Digital Object Identifier 10.1109/TCNS.2021.3089141

interactions and then design control policies to ensure the desired
behavior of the entire system. The area of system identification
is created to address this problem.
In this work, our main goal is to characterize the sample com-

plexity of learning block-sparse linear time-invariant (LTI) sys-
tems from noisy input–output trajectories. More specifically, we
study the efficient learning of LTI systems in high-dimensional
settings, where the system dimension is significantly larger
than the number of collected samples. This type of dynamical
system forms the basis of many classical control problems,
such as linear–quadratic regulator and linear–quadraticGaussian
problems. Our results are built upon the fact that, in many
practical large-scale systems, the states and inputs exhibit sparse
interactions with one another, which, in turn, translates into a
block-sparse representation of the state-space equations of the
system. Driven by the existing nonasymptotic results on the
classical Lasso problem, the main focus of this article is on
the block-regularized estimators for the system identification
problem, where the goal is to characterize the number of re-
quired sample trajectories to reliably estimate the block-sparse
interactions of the system. To this goal, the �∞-norms of the
blocks are penalized instead of their �1-norms.
In many real-world systems, such as power networks and

multiagent systems, the local state and input behavior of the
physical agents/subsystems can be captured and characterized
via blockmatrices in their dynamicalmodels. For instance, in the
system identification problem for power systems, each block of
the system matrices corresponds to the local states/inputs of an
individual generator, and the goal is to learn the sparse interac-
tions among generators given a limited number ofmeasurements
from phasor measurement units and supervisory control and
data acquisition systems [1], [2]. In this context, it is reasonable
to assume that the unknown dynamical interactions among the
generators enjoy a block-sparse structure. As another example,
consider the problem of planar vertical takeoff and landing for
a fleet of interconnected aircraft. In this context, the number
of blocks in the state-space equation of the system corresponds
to the number of aircraft that is known a priori, and the goal
is to infer the time-varying and uncertain interactions among
the aerial vehicles based on the local sensory data [3], [4].
Indeed, such local interactions canbe capturedvia a block-sparse
dynamical model.

A. Related Works

1) Asymptotic Guarantees: System identification is a
well-established area of research in control theory, with related
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preliminary results dating back to the 1960s. Standard reference
textbooks on the topic include [5] and [6], both focusing on
establishing asymptotic consistency of different types of esti-
mators. Although these results shed light on the theoretical con-
sistency of the existingmethodologies, they are not applicable in
the finite-time/sample settings. In many applications, including
neuroscience and transportation networks, the dimensionality of
the system is overwhelmingly large, often surpassing the number
of available input–output data [7], [8]. Under such circum-
stances, the classical approaches for checking the asymptotic
consistency of an estimator face major breakdowns.

2) Finite-Time Guarantees: Contemporary results in sta-
tistical learning as applied to system identification seek to
characterize finite-time and finite-data rates, relying heavily on
tools from sample complexity analysis and concentration of
measure. Such finite-time guarantees provide estimates of both
system parameters and their uncertainty, which allows for a
natural bridge to robust/optimal control. In [9], it was shown
that under full state observation, if the system is driven by
Gaussian noise, the ordinary least-squares estimate of the system
matrices constructed from independent data points achieves
order-optimal rates that are linear in the system dimension. This
result was later generalized to the single trajectory setting for 1)
marginally stable systems in [10], 2) unstable systems in [11],
and 3) partially observed stable systems in [12].

3) Sparse System Identification: Recently, special atten-
tion has been devoted to the sparse system identification prob-
lem,where the states and inputs are assumed to possess localized
or low-order interactions. These methods include, but are not
restricted to, selective �1-regularized estimator [13], identifica-
tion based on compressive sensing [14]–[17], sparse estimation
of polynomial system dynamics [18], Kernel-based regulariza-
tion [19], low rank estimation in the frequency domain [20], and
sparse system identification of time-varying systems [21]. On
the other hand, with the unprecedented interest in data-driven
control approaches, such as model-free reinforcement learning
(RL) [22], a question arises as to what the minimum number of
input–output data samples should be to guarantee a small error
in the estimated model. Answering this question has been the
subject of many recent studies on the sample complexity of the
system identification problem [9], [23]. Most of these results are
tailored to a specific type of dynamics, depend on the stability of
the open-loop system, or do not exploit the a priori information
about the structure of the system.

4) Autoregressive Processes With Sparse Graphical
Models: Another closely related line of research studies the
inference of autoregressive processes, whose structures can be
captured via sparse graphical models. Earlier works on the
inference of sparse autoregressive graphical models were based
on hypothesis testing [24], [25]. More recently, the work [26]
has proposed an �1-regularized maximum likelihood estimator
for estimating the precision matrices of autoregressive Gaussian
processes. A similar regularized estimator is also used in [27] to
infer autoregressive processes with sparse latent-variable graph-
ical models. Alternatively, the work [28] introduced a Bayesian
approach for the inference of autoregressive graphical models.
While being related to our proposed method, these works rely

upon a different underlying generativemodel for the system and,
hence, are not directly applicable to the system identification of
LTI systems.

B. Contributions

In this work, we introduce a regularized estimator for recover-
ing the true block-sparsity of an LTI system. In particular, we use
an �1/�∞-regularized estimator, i.e., a least-squares estimator
accompanied by an �∞ regularizer on different blocks. We show
that the required number of sample trajectories to recover the
nonzero blocks of the system matrices and to guarantee a small
estimation error scales polynomially with the maximum block
sizes and the number of row- and columnwise nonzero elements,
but only logarithmicallywith the number of blocks in the system.
Our work makes a significant improvement over the recently

studied least-squares estimator, whose sample complexity scales
linearly with the system dimensions. Most interconnected sys-
tems consist of many smaller subsystems (blocks) with sparse
or localized interactions. Under such circumstances, it may be
costly, if not impossible, to collect asmany samples as the system
dimension. Another advantage of the proposed estimator over its
least-squares analog is its exact recovery property. More specifi-
cally, we show that while the least-squares estimator is unable to
identify the sparsity pattern of the input and statematrices forany
finite number of samples, the proposed estimator recovers the
true sparsity pattern of these matrices with a sublinear number
of sample trajectories. It is worthwhile to mention that this work
generalizes the results in [29], where the authors use a similar
regularized estimator to learn the dynamics of a particular type of
systems. However, Pereira et al. [29] ignore the block structure
of the system and assume autonomy and inherent stability, all
of which will be relaxed in this work.
Thiswork is a significant extension of our previous conference

papers on Lasso-type estimators for system identification [30]
and nonasymptotic analysis of block-regularized linear regres-
sion problems [31]. In particular, by combining the properties of
the block-regularized regression and the characteristics of LTI
systems, we provide a unified sparsity-promoting framework
for estimating the parameters of the system with arbitrary block
structures. To this goal, we have generalized our theoretical
results in [30] and [31] to account for partially sparse structures.
We explain the effect of different parameters of the problem—
such as input energy and the length of the time horizon—on the
sample complexity of the proposed estimator.
Notations: For a matrix M , the symbols ‖M‖F , ‖M‖2,

‖M‖0, ‖M‖1, and ‖M‖∞ denote its Frobenius, operator, num-
ber of nonzero elements, �1/�1, and �∞/�∞ norms, respectively.
Furthermore, κ(M) refers to its 2-norm condition number, i.e.,
the ratio between its maximum and minimum singular values.
Given integer sets I and J , the notation MIJ refers to the
submatrix of M , whose rows and columns are indexed by I
and J , respectively. The symbols M:,j and Mi,: refer to the
jth column and the ith row of M , respectively. Given the
sequences f1(n) and f2(n), the notations f1(n) = O(f2(n))
and f1(n) = Ω(f2(n)) imply that there exist c1 < ∞ and c2 > 0
such that f1(n) ≤ c1f2(n) and f1(n) ≥ c2f2(n), respectively.
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Furthermore, f1(n) = Θ(f2(n)) is used to imply that f1(n) =
O(f2(n)) and f1(n) = Ω(f2(n)). Finally, f1(n) = o(f2(n)) is
used to show that f1(n)/f2(n) → 0 as n → ∞. A zero-mean
Gaussian distribution with covariance Σ is shown as N(0,Σ).
Given a function f(x), the expression argmin f(x) refers to
its minimizer.

II. PROBLEM FORMULATION

Consider the LTI system

x[t+ 1] = Ax[t] +Bu[t] + w[t] (1a)

where t is the time step, A ∈ Rn×n is the state matrix, and B ∈
Rn×m is the input matrix. Furthermore, x[t] ∈ Rn, u[t] ∈ Rm,
and w[t] ∈ Rn are the state, input, and disturbance vectors at
time t, respectively. The dimension of the system is defined
as m+ n. It is assumed that the input disturbance vectors
are independent identically distributed (i.i.d.) with distribution
N(0,Σw) across different times. In this work, we assume that
the matrices A and B are sparse, and the goal is to estimate
them based on a limited number of sample trajectories, i.e., a
sequence {(x(i)[τ ], u(i)[τ ])}Tτ=0 with i = 1, 2, . . ., d, where d
is the number of available sample trajectories. The ith sample
trajectory {(x(i)[τ ], u(i)[τ ])}Tτ=0 is obtained by running the
system from t = 0 to t = T and collecting the input and state
vectors. Note that, in general, one may consider two general
approaches to obtain the sample input–output trajectories for
the system identification problem.
Fixed d and variable T : In this approach, one sets the number

of sample trajectories d to a fixed value (e.g., d = 1) and, instead,
chooses a sufficiently long time horizon T to obtain enough
information about the dynamics of the system. Notice that this
is only viable when the system is stable. In other words, one
needs to assume that either the system is inherently stable or
there exists an initial stabilizing controller in place to be able
to use this approach. Note that this assumption of stability is
necessary, as even a simple least-squares estimator may not be
consistent if the system has unstable modes [11].
FixedT and variabled: In this approach, the length of the time

horizonT is fixed, and instead, the number of sample trajectories
is chosen to be sufficiently large to collect enough information
about the dynamics of the system.Notice that in thismethod, one
needs to reset the initial state of the system at the beginning of
each sample trajectory. However, unlike the previous method,
its applicability is not contingent upon the stability of the
true system.
Due to the aforementioned theoretical and practical limi-

tations, one can only use the second approach for unstable
systems. Such a reset-and-run approach is possible and even
crucial in many problems of practical relevance. For instance,
having the ability to reset cyber-physical systems to a zero or
safe state at any given time is deemed crucial to ensure the safety
of the system and to protect it from malicious attacks [32],
[33]. Moreover, the recent advancement in RL lends itself to
the user’s ability to run the system in different and indepen-
dent sample trajectories (also known as rollouts or episodes

in the RL literature), each with a controlled and independent
initial state.
Given the sample trajectories {(x(i)[τ ], u(i)[τ ])}�τ=0 for i =

1, 2, . . ., d, one can obtain an estimate of (A,B) by solving the
following least-squares optimization problem:

min
A,B

d∑
i=1

T−1∑
t=0

∥∥∥x(i)[t+ 1]−
(
Ax(i)[t] +Bu(i)[t]

)∥∥∥2
2
. (2)

In order to describe the behavior of the least-squares estimator,
define

Y (i) =

⎡
⎢⎢⎣
x(i)[1]�

...

x(i)[T ]�

⎤
⎥⎥⎦ , X(i) =

⎡
⎢⎢⎣

x(i)[0]� u(i)[0]�

...
...

x(i)[T−1]� u(i)[T−1]�

⎤
⎥⎥⎦

W (i) =

⎡
⎢⎢⎣

w(i)[0]�

...

w(i)[T − 1]�

⎤
⎥⎥⎦ (3)

for every sample trajectory i = 1, 2, . . ., d. Furthermore, let Y ,
X , and W be defined as vertical concatenations of Y (i), X(i),
and W (i) for i = 1, 2, . . ., d, respectively. Finally, denote Ψ =
[A B]� as the unknown system parameter and Ψ∗ as its true
value. Based on these definitions, it follows from (1) that

Y = X ·Ψ+W. (4)

The system identification problem is then reduced to estimating
Ψ based on the observation matrix Y and the design matrixX .
Consider the following least-squares estimator:

Ψls = argmin
Ψ

‖Y −XΨ‖2F . (5)

One can easily verify the equivalence of (2) and (5). The optimal
solution of (5) can be written as

Ψls = (X�X)−1X�Y = Ψ∗ + (X�X)−1X�W. (6)

Notice thatΨls is well-defined and unique if and only ifX�X is
invertible, which necessitates d ≥ n+m. The estimation error
is then defined as

E = Ψls −Ψ∗ = (X�X)−1X�W. (7)

Thus, one needs to study the behavior of (X�X)−1X�W in or-
der to control the estimation error of the least-squares estimator.
However, since the state of the system at time t is affected by
random input disturbances at times 0, 1, . . .t− 1, thematricesX
andW are correlated, which renders (7) hard to analyze. In order
to circumvent this issue, Dean et al. [9] simplify the estimator
and considers only the state of the system at time T in Y (i). By
ignoring the first T − 1 rows in Y (i), X(i), and W (i), one can
ensure that the random matrix (X�X)−1X� is independent of
W . Therefore, it is assumed in the following that
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Y =

⎡
⎢⎢⎣
x(1)[T ]�

...

x(d)[T ]�

⎤
⎥⎥⎦ X =

⎡
⎢⎢⎣
x(1)[T−1]� u(1)[T−1]�

...
...

x(d)[T−1]� u(d)[T−1]�

⎤
⎥⎥⎦

W =

⎡
⎢⎢⎣
w(1)[T − 1]�

...

w(d)[T − 1]�

⎤
⎥⎥⎦ . (8)

With this simplification, Dean et al. [9] show that, with input
vectors u(i)[t] chosen randomly from N(0,Σu) for every t =
1, 2, . . ., T − 1 and i = 1, 2, . . ., d, the least-squares estimator
requires at least d = Ω(m+ n+ log(1/δ)) sample trajectories
to guarantee ‖E‖2 = O(

√
(m+ n) log(1/δ)/d) with proba-

bility of at least 1− δ. In what follows, a block-regularized
estimator will be introduced that exploits the underlying sparsity
structure of the system dynamics to significantly reduce the
number of sample trajectories for an accurate estimation of the
parameters. To streamline the presentation, the main technical
proofs are deferred to the Appendixes.

III. MAIN RESULTS

Suppose that A and B can be partitioned as A = [A(i,j)]
and B = [B(k,l)] where (i, j) ∈ {1, . . ., n̄} × {1, . . ., n̄} and
(k, l) ∈ {1, . . ., n̄} × {1, . . ., m̄}. A(i,j) is the (i, j)th block of
A with size ni × nj . Similarly, B(k,l) is the (k, l)th block of B
with size nk ×ml. Note that

∑n̄
i=1 ni = n and

∑m̄
i=1 mi = m.

Suppose that it is known a priori that all elements in each
block A(i,j) or B(k,l) are simultaneously zero or nonzero. This
implies that, as long as one element in A(i,j) or B(k,l) is
nonzero, there is no reason to promote sparsity in the remaining
elements of the corresponding block. Clearly, this kind of block-
sparsity constraint is not correctly reflected in (2). To simplify
the presentation, we use the notation Ψ = [A B]�. Note that
Ψ(i,j) = (A(j,i))� for i ∈ {1, . . ., n̄} and Ψ(i,j) = (B(j,i−n̄))�

for i ∈ {n̄+ 1, . . ., n̄+ m̄}. In order to recover the true block-
sparsity of A and B, one can resort to an �1/�∞ variant of the
Lasso problem—known as the block-regularized least-squares
(or simply block-regularized) problem:

Ψ̂ = argmin
Ψ

1

2˜d
‖Y −XΨ‖2F + λd‖Ψ‖block (9)

where ‖Ψ‖block is defined as the summation of ‖Ψ(i,j)‖∞ over
(i, j) ∈ {1, . . ., n̄+ m̄} × {1, . . ., n̄}. D is used to denote the
maximum size of the blocks ofΨ. Under the sparsity assumption
on (A,B), we will show that the nonasymptotic statistical prop-
erties of Ψ̂ significantly outperform those of Ψls. In particular,
the primary objective is to prove that ‖Ψ̂−Ψ∗‖∞ decreases at
the rateO(

√
D log(n+m) +D2 log(1/δ)/d)with probability

of at least 1− δ and with an appropriate scaling of the regular-
ization coefficient, provided that d = Ω(k2max(D log(n̄+ m̄) +
D2 log(1/δ))). Here, kmax is the maximum number of nonzero
elements in the columns of [A B]�. Comparing this number
with the required lower bound Ω(n+m+ log(1/δ)) on the
number of sample trajectories for the least-squares estimator,
we conclude that the proposed method needs significantly fewer

samples when A and B are sparse. The third objective is to
prove that this method is able to find the correct block-sparsity
structure of A and B with high probability. In contrast, it will
be shown that the solution of the least-squares estimator is fully
dense for any finite number of sample trajectories, and hence, it
cannot correctly extract the sparsity structures of A and B. We
will showcase the superior performance of the block-regularized
estimator both in sparsity identification and estimation accuracy
in simulations.
To present the main results of this work, first note that

x(i)[T−1]=AT−2Bu(i)[0]+AT−3Bu(i)[1]+· · ·+Bu(i)[T−2]

+AT−2w(i)[0]+AT−3w(i)[1]+· · ·+w(i)[T−2]

+AT−1x[0]. (10)

Suppose that u(i)[t] and w(i)[t] are i.i.d. samples of N(0,Σu)
andN(0,Σw), respectively.Moreover,we assume that the initial
state is random with a Gaussian distribution N(0,Σx). There-
fore, (8) and (10) imply that

X�
i,: ∼ N

(
0, Σ̃
)

(11)

where Xi,: is the ith row of X and

Σ̃ =

[
C�C 0

0 Σu

]
, C =

[
F�
T

G�
T

]
(12a)

FT =
[
AT−2BΣ

1/2
u AT−3BΣ

1/2
u . . . BΣ

1/2
u

]
(12b)

GT =
[
AT−1Σ

1/2
x AT−2Σ

1/2
w AT−3Σ

1/2
w . . . Σ

1/2
w

]
.

(12c)

The matrix C is referred to as the combined controllability
matrix in the following. Define Aj(Ψ) = {i : Ψ(i,j) �= 0}. Un-
less stated otherwise, Aj is used to refer to Aj(Ψ

∗). Define
Ac

j as the complement of Aj . For T ⊆ {1, . . ., n̄+ m̄}, denote
I(T ) as the index set of rows inΨ∗ corresponding to the blocks
{Ψ∗(i,:) : i ∈ T }. For an index set U , define XU as a d× |U|
submatrix of X after removing the columns with indices not
belonging to U . With a slight abuse of notation,X(i),XAj

, and
XAc

j
are used to denoteXI({i}),XI(Aj), andXI(Ac

j)
when there

is no ambiguity. Similarly, Σ̃(i),Aj
and Σ̃Aj ,Aj

are used in lieu

of Σ̃I({i}),I(Aj) and Σ̃I(Aj),I(Aj), respectively. Denote kj as the

maximumnumber of nonzero elements in any column ofΨ∗(:,j),
which is the jth block column of Ψ∗. Finally, define

nmax = max
1≤i≤n̄

ni, mmax = max
1≤i≤m̄

mi

pmax = max {nmax,mmax} , kmax = max
1≤j≤n̄

kj

σ2
max = max

1≤i≤n+m
Σ̃ii. (13)

The following set of assumptions plays a key role in deriving
the main result of this article.

Assumption 1: By fixing the time horizon T , we assume that
the following conditions hold for all finite system dimensions.
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A1) (Mutual incoherency property): There exists a number
γ ∈ (0, 1] such that

max
j=1,...,n̄

{
max
i∈Ac

j

∥∥∥Σ̃(i),Aj
(Σ̃Aj ,Aj

)−1
∥∥∥
1

}
≤ 1− γ.

(14)
A2) (Bounded eigenvalue): There exist numbers 0 <

Λmin < ∞ and 0 < Λmax < ∞ such that

Λmin ≤ λmin(Σ̃) ≤ λmax(Σ̃) ≤ Λmax. (15)

A3) (Bounded minimum value): There exists a number
tmin > 0 such that

tmin ≤ min
1≤j≤n̄

min
i∈Aj

∥∥∥Ψ∗(i,j)
∥∥∥
∞
. (16)

A4) (Block sizes): There exist numbers αn, αm < ∞ such
that

nmax = O ((n̄+ m̄)αn) , mmax = O ((n̄+ m̄)αm) .
(17a)

The mutual incoherency property in Assumption A1 is a
commonly known condition for the exact recovery of unknown
parameters in compressive sensing and classical Lasso prob-
lems [34], [35]. This assumption entails that the effect of those
submatrices of Σ̃ corresponding to zero (unimportant) elements
ofΨ on the remaining entries of Σ̃ should not be large. Roughly
speaking, this condition guarantees that the unknownparameters
are recoverable in the noiseless scenario, i.e., when W = 0. It
is also worth noting that this condition can be further relaxed
under additional conditions [36]. If the recovery cannot be
guaranteed in the noise-free setting, then there is little hope for
the block-regularized estimator to recover the true structure of
A and B when the system is subject to noise.
The bounded eigenvalue condition in Assumption A2 entails

that the condition number of Σ̃ is bounded away from 0 and
∞ for all finite system dimensions. Assuming that the eigen-
values of Σu and Σw do not scale with the system dimension,
it is easy to verify that min{λmin(Σu), λmin(Σw)} ≤ Λmin ≤
λmin(Σw). However, as will be shown later, the value of Λmax

can change with respect to the time horizon T . In particular, it
will be later shown that for highly unstable systems, Σ̃ becomes
severely ill-conditioned as the time horizon increases, which, in
turn, makes the system identification problem difficult to solve.
Furthermore, this assumption implies that there exists a constant
σ̄2
max < ∞ such that max1≤i≤n+m Σ̃ii ≤ σ̄2

max.
Assumption A3 implies that, independent of the system di-

mensions, there always exists a strictly positive gap between the
zero and nonzero elements ofA andB. This assumption holds in
almost all practical settings and will facilitate the exact sparsity
recovery of the parameters of the system.
Finally, Assumption A4 requires that the maximum size of

the blocks in Ψ∗ be polynomially bounded by the number of its
block columns. For instance, n̄ = O(1) and m̄ = O(1) violate
this assumption since it implies that nmax = Ω((n̄+ m̄)logn)
and mmax = Ω((n̄+ m̄)logm). It is worthwhile to mention
that Assumption A4 results in kmax = O((n̄+ m̄)αk) for some
number αk < ∞; this will be used later in the derivations.

Define D = pmaxnmax, which is the maximum size of the
blocks in Ψ.

Theorem 1 (Blockwise regularization): Upon choosing

λd = Θ

(
σmax

√
D log(n̄+ m̄) +D2 log(1/δ)

d

)
(18a)

d = Ω
(
κ(Σ̃)2kmax

(
D log(n̄+ m̄) +D2 log(1/δ)

))
(18b)

the following statements hold with probability of at least 1− δ
(1) Ψ̂ is unique and has the same nonzero blocks as Ψ∗.
(2) We have

g = ‖Ψ̂−Ψ∗‖∞=O

(
κ(Σ̃)

(
1+

√
kmax(kmaxnmax+log(n̄+ m̄)+log(1/δ))

d

)

×
√

D log(n̄+m̄)+D2 log(1/δ)

d

)
. (19)

Theorem 1 shows that the minimum number of required
sample trajectories is a quadratic function of the maximum
block size. Therefore, only a small number of samples are
enough to guarantee the uniqueness, exact block-sparsity re-
covery, and small estimation error for sparse systems, assuming
that the sizes of the blocks are significantly smaller than the
system dimensions.

Corollary 1: Assume that nmax = O(nβn) and mmax =
O(mβm) for some βn > 0 and βm > 0. Then,

λd = Θ

(
σmax(n+m)(βn+βm)

√
log(1/δ)

d

)
(20a)

d = Ω(κ(Σ̃)2k2max(n+m)2(βn+βm) log(1/δ)) (20b)

is enough to guarantee the exact sparsity recovery of Ψ∗ and

‖Ψ̂−Ψ∗‖∞ = O

(
κ(Σ̃)(n+m)(βn+βm)

√
log(1/δ)

d

)
(21)

with probability of at least 1− δ.
Proof. The proof follows from Theorem 1. The details are

omitted for brevity. �
Corollary 1 analyzes the behavior of the proposed estimator

for the polynomial scaling of the block size. It can be seen that
the size of the required sample trajectories heavily depends on
the growth rate of the maximum block size of Ψ. Although the
sampling rate is still sublinear when βn + βm < 1/2, it may
surpass the system dimension if βn + βm > 1/2. A question
arises as to whether one can resort to the ordinary least-squares
estimator in lieu of the proposed block-regularized estimator for
the cases where βn + βm > 1/2 since the proposed estimator
requires d = Ω((n+m)1+ε log(1/δ)) for some ε > 0, whereas
d = Θ(n+m+ log(1/δ)) is enough to guarantee the unique-
ness of the least-squares estimator. This will be addressed in the
next subsection.
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Remark 1: In this article, we assume that A and B are parti-
tioned into blocks with known sizes, each with a maximum size
ofD. If the blocks sizes are unknown, an alternative approach is
to treat A and B as sparse matrices, where each block is of size
D = 1. This lack of prior knowledge on the block sizes of the
system matrices can be compensated with a higher number of
collected sample trajectories from the system. In particular, as
it is shown in [30], an elementwise regularized estimator (i.e.,
vanilla Lasso) can still recover the correct sparsity pattern of the
true systemmatrices with no prior knowledge on the block sizes,
albeit with potentially a higher number of sample trajectories
and worse estimation error. In Section IV, we showcase the
performance of these regularized estimators with and without
prior knowledge on the block sizes.
It is worth noting that, based onTheorem1, onemay speculate

that setting D = 1 (i.e., not using the prior information on the
block sizes) may lead to a better statistical guarantee. However,
note that the derived bound is based on a customized λd that is
designed to obtain a logarithmic dependence on n̄+ m̄. This λd

is specifically designed to offer a small value in terms of n̄+ m̄
without optimizing its dependence on D. To obtain a tighter
bound with respect to D (instead of n̄+ m̄), one may need to
select another λd that 1) would depend on D in a more sophis-
ticated way, and 2) similar to [37], would potentially depend on
the level of “overlap” in the blockwise support of the unknown
parameters. We consider obtaining a better dependence onD as
an enticing challenge for future research.

Remark 2: Similar to the classical results on the regularized
linear regression [37], [38], the particular choice of the regular-
ization coefficient λd in our analysis depends on the unknown
parameters of the true system, such as σw, σmax, and γ. As will
be shown in the next section, in practice, we do not rely on these
unknown parameters. In particular, the chosen value for λd in
our simulations will merely depend on the known parameters of
the system, such as d, n̄+ m̄, and D when we know the block
sizes, or d and n+m when the block sizes are unknown.

Remark 3:Another alternative approach to promote the block
sparsity in the identification of dynamical systems is the �1/�2-
regularized estimator (also known as groupLasso), where the �∞
regularization on different blocks is replaced by an �2 regulariza-
tion [39], [40]. In Section IV, it is empirically shown that these
estimators offer a similar performance in terms of the estimation
error.However, an important advantageof the �1/�∞-regularized
estimator over the group Lasso is in terms of its computational
complexity. As pointed out in [41], one of the main benefits of
the �1/�∞-regularized estimator lies in the efficient computation
of its entire solution path over a compact range of regularization
coefficients (as opposed to a single regularization coefficient).
In particular, contrary to the group Lasso, the solution path for
the �1/�∞-regularized estimator is piecewise linear with easily
computable breakpoints. This, in turn, can be used in sensitivity
analysis and boosting methods [41], [42].

A. Comparison to Least Squares

In this subsection, we prove that the least-squares estimator
does not extract the correct sparsity structure ofΨ for any finite
number of sample trajectories.

Theorem 2: IfA andB are not fully dense matrices,Ψls does
not recover the support of Ψ∗ for any finite number of sample
trajectories with probability 1.
Proof. The proof is omitted for brevity and can be found

in [43]. �
Define h(n,m) =

√
(n+m) log(1/δ)/d and recall that

‖Ψls −Ψ∗‖2 = O(h(n,m)). In the next corollary,we show that,
under additional sparsity conditions, the operator norm of the
estimation error for Ψ̂ becomes arbitrarily smaller than h(n,m)
as the system dimension grows.

Corollary 2: Assume that the number of nonzero elements at
different rows and columns of Ψ∗ is upper bounded by kmax.
Furthermore, suppose that λd satisfies (18a) and

d = Ω
(
κ(Σ̃)2k2max

(
D log(n̄+ m̄) +D2 log(1/δ)

))
. (22)

Then, we have

‖Ψ̂−Ψ∗‖2=O

(
κ(Σ̃)kmax

√
D log(n̄+m̄)+D2 log(1/δ)

d︸ ︷︷ ︸
v(n,m)

)

(23)
with probability of at least 1− δ. Furthermore, we have

v(n,m)

h(n,m)
→ 0 as (n,m) → ∞ (24)

provided that

kmaxD = o

(√
n+m

log(n+m)

)
. (25)

Proof. The proof is omitted for brevity and can be found
in [43]. �
Corollary 2 describes the settings under which our proposed

method significantly outperforms the least-squares estimator
in terms of the operator norm of the errors. This improve-
ment is more evident for those systems, where the states and
inputs have sparse interactions and the block sizes in A and
B are smaller than the system dimensions. A class of such
systems is multiagent networks, where the agents interact only
locally and their total number dominates the dimension of each
individual agent.

B. Controllability and the Effect of T

Notice that the minimum number of required sample tra-
jectories and the elementwise error of the estimated parame-
ters depend on κ(Σ̃). Recall thatmin{λmin(Σu), λmin(Σw)} ≤
Λmin ≤ λmin(Σw), independent of T . Therefore, the value of
κ(Σ̃) is governed by themaximum eigenvalue ofC�C. Roughly
speaking, λmax(C

�C) quantifies the easiest-to-identify mode
of the dynamical system. Therefore, Theorem 1 implies that the
sample complexity of the proposed block-regularized estimator
depends on the modes of the system, as well as the expected
energy of the input and disturbance noise. In particular, by fixing
Σu and Σw, only a small number of samples are required to
accurately identify the dynamics of the system if all of its modes
are easily excitable. The dependence of the estimation error on
the modes of the system is also reflected in the nonasymptotic
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error bound of the least-squares estimator in [9]. This is com-
pletely in line with the conventional results on the identifiability
of dynamical systems: independent of the method in use, it is
significantly harder to identify the parameters of the system
accurately if it possesses nearly hidden modes.
On the other hand, for fixed σw, the performance of the esti-

mator deteriorates as the expected energy of the input decreases.
In the extreme case of zero input, we inevitably have Λmin = 0,
which, in turn, implies that the proposed estimator provides no
guarantee on the accuracy of the estimated parameters.
Furthermore, notice thatFT ,GT , and, hence,λmax(C

�C) de-
pend directly on the length of the time horizonT for each sample
trajectory. In what follows, wewill show that for highly unstable
systems, λmax(C

�C) can grow exponentially fast in terms of
T , and hence, short sample trajectories are more desirable in
estimating the parameters of such unstable systems. To better
understand this, assume that the spectral radius ofA—shown as
ρ(A)—is greater than 1; it is diagonalizable, and n is fixed. One
can easily verify that the following chain of inequalities holds:

λmax(Σ̃) ≥ λmax(σ
2
uFTF

�
T + σ2

wGTG
�
T )

≥ λmin(Σw)λmax

(
AT−2(AT−2)�

)
≥ λmin(Σw)max

i

{((
AT−2

(
AT−2

)�)
ii

)2}

≥ λmin(Σw)

n
‖AT−2‖∞ ≥ λmin(Σw)

n
ρ(A)T−2.

(26)

This exponential dependence is also empirically observed in our
numerical experiments.

C. Mutual Incoherency

In this subsection, we will analyze the mutual incoherency
condition (14). In particular, we will show that the proposed
mutual incoherency condition is tightly related to the so-called
identifiability condition and, hence, cannot be relaxed for spe-
cific classes of problems. For simplicity of the subsequent ar-
guments, assume that the size of each block is equal to 1, and
that the oracle estimator can measure the disturbance matrix
W . Furthermore, suppose that the estimator can collect and
work with an infinite number of sample trajectories. Under these
assumptions, the oracle estimator should solve the following
optimization problem to estimate the parameters of the system:

min
Ψ

‖Ψ‖0 (27a)

s.t. XΨ = Y −W. (27b)

Notice that the oracle estimator cannot be obtained in practice
since: 1) the exact value of the disturbance noise is not available;
2) only a finite number of sample trajectories can be collected;
and 3) the corresponding optimization is nonconvex and NP-
hard in its worst case.
As mentioned before, there are fundamental limits on the

performance of the introduced oracle estimator. To explain this,
we introduce the mutual coherence metric for a matrix. For a
given matrix A ∈ Rt1×t2 , its mutual coherence μ(A) is defined

as

μ(A) = max
1≤i<j≤t2

|A�
:,iA:,j |

‖A:,i‖2‖A:,j‖2
. (28)

In other words, μ(A) measures the maximum correlation be-
tween distinct columns ofA (with a slight abuse of notation, we
assume that

1

μ(A)
= +∞ if μ(A) = 0).

Reminiscent of the classical results in the compressive sensing
literature, it is well known that the optimal solution Ψ∗ of (27)
is unique if the identifiability condition

‖Ψ∗
:,j‖0 <

1

2

(
1 +

1

μ(X)

)
(29)

holds for every j = 1, 2, . . ., n (see, e.g., [44, Th. 2.5]). Further-
more, this bound cannot be tightened, since there exist instances
of the problem, for which the violation of

‖Ψ∗
:,j‖0 <

1

2
(1 +

1

μ(X)
)

for some j results in the nonuniqueness of the optimal solution.
On the other hand, one can invoke the central limit theorem to

show that 1
dX

�X = Σ̃ almost surely as d → ∞. Furthermore,
recall the definition of the combined controllability matrix C
in (12a). This, together with the definition of Σ̃, implies that

μ(X) = max
1≤i<j≤m+n

|X�
:,iX:,j |

‖X:,i‖2‖X:,j‖2

= max
1≤i<j≤n

|C�
:,iC:,j |

‖C:,i‖2‖C:,j‖2
= μ(C). (30)

According to the above equality, the correlation between differ-
ent columns of C plays a crucial role in the identifiability of the
true parameters: as μ(C) becomes smaller, the oracle estimator
can correctly identify the structure of Ψ for a wider range of
sparsity levels.
Revisiting Assumption A1, one can verify that the mutual

incoherency condition is reduced to the following inequality
when the size of each block is equal to 1:

∥∥∥(C�
:,Aj

C:,Aj
)−1C�

:,Aj
C:,k

∥∥∥
1
≤ 1− α

∀k ∈ Ac
j , j = 1, 2, . . . , n (31)

where, with a slight abuse of notation, we use Aj to denote
the set {i : Aij �= 0}. Notice that, similar to (29), the above
condition is expected to be satisfied when different columns of
C are nearly orthogonal, i.e., when the elements in C�

:,Aj
C:,k

have small magnitudes. In particular, we introduce a class of
k-sparse dynamical systems, for which the above condition is
equivalent to (29) (modulo a constant factor).
k-sparse systems: Consider a class of problems, where each

row or column ofA has at most k nonzero entries andB is diag-
onal. Without loss of generality and to simplify the subsequent
derivations, suppose that the following assumptions hold.
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1) B is equal to identity matrix and diagonal entries ofA are
equal to 1. Moreover, the magnitude of each off-diagonal
entry of A is upper bounded by ϕ > 0.

2) T is set to 3.
3) Σu = σ2

uI andΣw = σ2
wI , where σu and σw are less than

or equal to 1. Moreover, Σx = 0.
Proposition 1: For k-sparse systems with k ≥ 3, the follow-

ing statements hold.
(1) There exists an instance for which the identifiability

condition fails to hold for the oracle estimator if ϕ ≥ 3
k .

(2) The mutual incoherency condition holds if ϕ < σu+σw

9˜k .
Proof. The proof is omitted for brevity and can be found

in [43]. �
The tightness of the identifiability condition (29) togetherwith

the Proposition 1 implies that for some specific classes of prob-
lems, it is not possible to a have a consistent sparsity promoting
technique with significantly more relaxed conditions than the
ones introduced in this article. However, we point out that, in
general, the mutual incoherency condition may be improved
by resorting to more sophisticated (and potentially nonconvex)
estimators [36]. Moreover, it will be shown in Section IV that
the incoherency condition is expected to hold in many cases of
practical relevance.

IV. NUMERICAL RESULTS

In this section, we illustrate the performance of the block-
regularized estimator and compare it with its least-squares coun-
terpart. We consider two case studies on switching networks and
power systems.
Define the (block) mismatch error as the total number of false

positives and false negatives in the (block) sparsity pattern of
the estimator. Moreover, define relative number of sample tra-
jectories (RST) as the number of sample trajectories normalized
by the dimension of the system, and relative (block) mismatch
error (RME) as the mismatch error normalized by total number
of elements (blocks) in Ψ.

A. Case Study 1: Switching Networks

In this case study, we study a network of multiagent systems
that are interconnected through a switching information ex-
change topology. Recently, a special attention has been devoted
to multiagent systems with a time-varying network topology; in
many communication networks, each sensor has access only to
the information of its neighbors. Therefore, when the location
of these sensors changes over time, so does the topology of the
interconnecting links [45]. The dwell time is defined as the time
interval in which the network topology is unchanged. The goal
is to identify the structure of the network within the dwell time.
The state-space equation of agent i admits the following general
form:

ẋi(t) =
∑

(i,j)∈Nx(i)

A(i,j)xj(t) +
∑

(i,j)∈Nu(i)

B(i,j)uj(t) + wi(t)

(32)
where, as before, A(i,j) ∈ Rni×ni and B(i,j) ∈ Rni×mi are the
(i, j)th blocks ofA andB, respectively. Furthermore,Nx(i) and

Nu(i) are the sets of neighbors of agent i, whose respective state
and input actions affect the state of agent i.
We consider 200 agents connected through a randomly gen-

erated sparse network. In particular, we assume that each agent
is connected to five other agents. If j ∈ Nx(i) or j ∈ Nu(i),
then each element of A(i,j) or B(i,j) is randomly selected from
[−0.4 − 0.3] ∪ [0.3 0.4]. Moreover, the regularization coeffi-
cient λd is set to √

2(D2 +D log(n̄+ m̄))

d
. (33)

Note that this choice of λd does not rely on the unknown
parameters of the system, and it does not require any additional
fine-tuning. The behavior of the proposed block-regularized es-
timator will be examined for different dimensions of the agents.
In particular, we investigate the performance of this estimator in
comparison with the Lasso for which the sparsity of the system
matrices is promoted on different elements independent of the
block structures. In these experiments, (ni,mi) is chosen from
{(5, 5), (8, 8), (11, 11)}. This entails that D ∈ {25, 64, 121}
and (n,m) ∈ {(1000, 1000), (1600, 1600), (2200, 2200)}. Fur-
thermore, T is set to 3 and the system is discretized using the
forward Euler method with the sampling time of 0.2 s. This
implies that each sample trajectory is collected within 0.6 s.
The number of block mismatch and 2-norm estimation errors
are depicted in Fig. 1(a) and (b) with respect to the dwell time.
As can be seen in these figures, the incorporation of the block
sizes in the estimation procedure can significantly improve the
accuracy.
Fig. 1(a) shows the number of block mismatch error for the

block-regularized and Lasso estimators. Evidently, the former
substantially outperforms the latter in terms of the correct spar-
sity recovery. In particular, 252, 260, and 302 sample trajectories
are enough to achieve RME ≤ 0.1% when D is equal to 25,
64, and 121, respectively (notice that the largest instance has
more than 9 million parameters to be estimated). However, the
Lasso estimator cannot achieve this accuracy with even 2000
sample trajectories.
Fig. 1(b) demonstrates the 2-norm of the estimation error for

these estimators. Although the Lasso has a smaller estimation
error for d < 200, it is strictly dominated by that of the block-
regularized estimator when d ≥ 200.

Finally, we compare the proposed estimatorwith groupLasso,
where the �∞ regularization is replaced by an �2 regularization.
Suppose that D = 25, and the regularization coefficient for the
group Lasso (i.e., �1/�2-regularized estimator) is chosen as

λ =

√
0.5(D2 +D log(n̄+ m̄))

d

(the constant factor is fine-tuned for this case study). According
to Fig. 1(c), the proposed �1/�∞ slightly outperforms group
Lasso in terms of themismatch error.On the other hand, Fig. 1(d)
illustrates that neither of the estimators is superior in terms of
the estimation error. As a future research direction, we plan to
conduct a more comprehensive study on the group Lasso and its
statistical performance in the context of system identification.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on January 06,2022 at 18:12:16 UTC from IEEE Xplore.  Restrictions apply. 



FATTAHI AND SOJOUDI: SAMPLE COMPLEXITY OF BLOCK-SPARSE SYSTEM IDENTIFICATION PROBLEM 1913

Fig. 1. (a) Block mismatch error for the block-regularized (abbreviated as BR) and Lasso (abbreviated as L) estimators. (b) Estimation error for the
block-regularized and Lasso estimators. (c) Block mismatch error for the block-regularized and Lasso estimators. (d) Normalized estimation error
for the block-regularized and Lasso estimators.

B. Case Study 2: Power Systems

For the second case study, we consider the frequency control
problem for power systems, where the goal is to control the
governing frequency of the entire network based on the so-called
swing equations [46]. Assume that there exist Ng generators in
the system. It is easy to describe the swing equations using the
well-known dc approximation

Miθ̈i +Diθ̇i = PMi
− PEi

where θi is the voltage angle at generator i, PMi
is the mechani-

cal power input at generator i, and PEi
denotes the active power

injection at the bus connected to generator i. Furthermore, Mi

and Di are the inertia and damping coefficients at generator
i, respectively. Under the dc approximation, the relationship
between active power injection and voltage can be written as

PEi
=
∑
j∈Ni

Bij(θi − θj)

where Ni collects the neighbors of generator i, and Bij is
the susceptance of the line (i, j). After discretization with the
sampling time dt, the system of swing equations is reduced to
the following dynamical system:

xi[t+ 1] =

⎛
⎝Aiixi[t] +

∑
j∈Ni

Aijxj [t]

⎞
⎠+Biiui[t] + wi[t]

where xi =
[
θi θ̇i

]�
, ui(t) = PMi

, and

Aii=

[
1 dt

−
∑

j∈Ni
Bij

Mi
dt 1− Di

Mi
dt

]
, Aij=

[
0 0

Bij

Mi
dt 0

]

Bii=

[
0

1

]
.

Realistic power systems are often equipped with an initial dis-
tributed controller whose sensing and actuation communication
topology is limited by the underlying physical structure of the
system [47]. In particular, consider a static distributed controller
as follows:

ui[t] = Kiixi[t] +
∑
j∈Ni

Kijxj [t] + vi[t] (34)

where K is a matrix with (i, j)th block equal to zero if the
generators i and j are not connected. Moreover, vi[t] is an
exogenous input. Therefore, the closed-loop dynamics of the
power system can be written as

xi[t+ 1] =

⎛
⎝Ac

iixi[t] +
∑
j∈Ni

Ac
ijxj [t]

⎞
⎠+Biivi[t] + wi[t]

where

Ac
ii=

[
1 dt

−
∑

j∈Ni
Bij

Mi
dt+K1

ii 1− Di

Mi
dt+K2

ii

]
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Fig. 2. (a) Block mismatch error for the block-regularized and Lasso estimators. (b) Estimation error for the block-regularized and Lasso estimators.
(c) Distribution of mutual incoherency parameter γ over 1000 instances of the problem.

Ac
ij=

[
0 0

Bij

Mi
dt+K1

ij K2
ij

]
(35)

and Kij =
[
K1

ij K2
ij

]
for every block (i, j)th. Our goal is

to identify the closed-loop dynamics of the power system and
the underlying topology of the network, based on the sample
trajectories collected from the system. Note that the underlying
topology structure of the network can be naturally obtained from
the block-sparsity structure ofAc: the blockAc

ij is equal to zero
if and only if the generators i and j are not connected. Therefore,
the topology inference problem reduces to obtaining the correct
block-sparsity pattern of the system matrices Ac and Bc. To
assess the performance of the proposed method, we generate
different instances of the problem according to the following
rules.

(1) The generators are connected via a randomly generated
graph with the average degree of 6.

(2) The parameters Bij , Mi, and Di are uniformly chosen
from the intervals [0.5,1], [1,2], and [0.5,1.5], respec-
tively.

(3) The nonzero elements of K are uniformly chosen from
the interval [0.1, 0.2].

The sampling time dt is set to 0.1. We assume that the
disturbance noise has a zero-mean Gaussian distribution with
variance 0.01. The mechanical input vi(t) is randomly gen-
erated according to a zero-mean Gaussian distribution with
variance 0.05. In this case study, we compare the perfor-
mance of the block-regularized and Lasso estimators. The
regularization coefficients for these estimators are chosen as√

0.1(D2 +D log(n̄+ m̄))/d with D = 4 (i.e., the maximum
block size), and

√
0.01(1 + log(n+m))/d, respectively.

Fig. 2(a) illustrates the mismatch error of these estima-
tors for different numbers of generators Ng chosen from
{100, 300, 600}. Not surprisingly, the learning time needed to
achieve a small mismatch error for both estimators increases
as the dimension of the system grows. Conversely, a smaller
value for RST is needed to achieve infinitesimal RME for larger
systems. In particular, when Ng is equal to 100, 300, and 600,
the minimum RST for the proposed block-regularized estimator
to guarantee RME ≤ 0.1% is equal to 0.67, 0.45, and 0.29,
respectively. On the other hand, the minimumRST for the Lasso

to achieve the same RME is on average 2.45 times larger than
that of the block-regularized estimator.
Fig. 2(b) depicts the 2-norm of the estimation error of the

block-regularized and Lasso estimators. In can be seen that the
estimation error of the block-regularized estimator is strictly
smaller than that of the Lasso, highlighting its superior perfor-
mance in the block-sparse systems.
Finally, Fig. 2(c) illustrates the distribution of the mutual

incoherency parameter γ for 1000 randomly generated instances
of power systems with 300 generators. It can be seen that only
1.2% of the instances violate the mutual incoherency condi-
tion (14) due to the negative values of γ. This highlights the
nonconservativeness of this condition in practice.

V. CONCLUSION

We consider the problem of identifying the parameters of LTI
systems. In many real-world problems, the state-space equa-
tion of the system admits a block-sparse representation due
to localized or internally limited interactions of its states and
inputs. In this work, we leverage this property and introduce a
block-regularized estimator to identify the sparse representation
of the system. We derive sharp nonasymptotic bounds on the
minimum number of input-state data samples to guarantee a
small elementwise estimation error. In particular, we show that
the number of available sample trajectories can be significantly
smaller than the system dimension, and yet, the proposed block-
regularized estimator can correctly recover the block-sparsity of
the state and input matrices and result in a small elementwise
error. Through different case studies on switching networks and
power systems,we demonstrate the performance of the proposed
estimator.

APPENDIX A
PROOF OF MAIN THEOREM

Let ŜA and ŜAc be obtained by removing those blocks of Ŝ
with indices not belonging to A and Ac, respectively. Equation
(4) can be reformulated as the set of linear equations

Y (:,j) = XΨ(:,j) +W (:,j) ∀j ∈ {1, . . ., n̄} (36)

where Y (:,j), Ψ(:,j), and W (:,j) are the jth block column of Y ,
Ψ, and W , respectively. Based on this definition, consider the
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following set of block-regularized subproblems:

Ψ̂(:,j) = argmin
1

2˜d
‖Y (:,j) −XΨ(:,j)‖22 + λd‖Ψ(:,j)‖block.

(37)
Define Dj = pmaxnj . The next two lemmas are at the core of
our proof for Theorem 1. Due to space restrictions, we have
deferred their proofs to the extended version of this article [43].

Lemma 1 (No false positives): Given arbitrary constants
c1, c2 > 1, suppose that λd and d are chosen such that

λd ≥

√
32c1λmax(Σw)2σ2

max

γ2
· (Dj)2 +Dj log(n̄+ m̄)

d

(38a)

d ≥ 72c2σ
2
max

γ2Λmin
· kj(D2

j +Dj log(n̄+ m̄)). (38b)

Then, with probability of at least

1− 3 exp (−(c1 − 1)(Dj + log(n̄+ m̄)))

− 4 exp (−(c2 − 1)(Dj + log(n̄+ m̄))) (39)

Ψ̂(:,j) is unique and its nonzero blocks exclude the zero blocks
of Ψ∗(:,j).
Due to Assumption A4, we have nmax = O((n̄+ m̄)αn) and

kmax = O((n̄+ m̄)αk) for some αn ≥ 0 and αk ≥ 0.
Lemma 2 (Elementwise error): Given arbitrary constants

c3 > 0 and c4 > 1, suppose that Ψ̂ is unique and the set of
its nonzero blocks excludes the zero blocks of Ψ∗. Then, with
probability of at least

1− 2 exp(−(kjnj + c3 log(n̄+ m̄))/2)− 2 exp (−d/2)

− 2 exp (−2(c4 − 1)(αn + αk) log(n̄+ m̄)))
(40)

we have

‖Ψ̂(:,j)−Ψ∗(:,j)‖∞ ≤√
36c4(αn+αk)λmax(Σw)2 log(n̄+ m̄)

Λmind

+
λd

Λmin

(
8
√
kj

√
kjnj + c3 log(n̄+ m̄)

d
+ 1

)
=gj . (41)

Furthermore, the zero blocks of Ψ̂(:,j) exclude the nonzero
blocks of Ψ∗(:,j) ifmini∈Aj

‖Ψ(i,j)‖∞ > gj .
Most of the existing block-sparsity methods in linear re-

gression focus on the problems, where the blocks have row or
column dimension of one [37], [40], [48]–[50] and, hence, are
not applicable to problems with arbitrary block sizes. On the
other hand, recall that many large-scale dynamical systems are
composed of interacting subsystems, each with its own local
states/inputs with potentially different sizes. This imposes a
general block structure on different rows and columns of the
matrices A and B, and hence, the existing results on block-
regularized estimators cannot be readily used in these settings.
Lemmas 1 and 2 are precisely aimed to address this issue andwill
play key roles in proving the main theorem of this article. The
proofs of Lemmas 1 and 2 are based on the extended version of

the so-called primal-dual witness approach, which was initially
proposed in [38] for element- or rowwise sparse structures. The
details of this generalization canbe found in the extendedversion
of this article [43].

APPENDIX B
PROOF OF THEOREM 1

First, we present the proof in a few steps.
Step 1: Equation (9) can be rewritten as follows:

Ψ̂ = argmin
Ψ

n∑
j=1(

1

2˜d
‖Y (:,j) −XΨ(:,j)‖22 + λ‖Ψ(:,j)‖block

)
. (42)

The above optimization problem can be decomposed into n̄
disjoint block-regularized subproblems in the form of (37).
Step 2:Assume that (38b) and (38a) hold for every 1 ≤ j ≤ n̄.

Upon defining Tj as the event that Lemmas 1 and 2 hold, one
can write

P (Tj) ≥ 1− 5 exp (−(c1 − 1)(Dj + log(n̄+ m̄)))

− 4 exp (−(c2 − 1)(Dj + log(n̄+ m̄)))

− 2 exp(−(kjnj + c3 log(n̄+ m̄))/2)

− 2 exp (−2(c4 − 1)(αn + αk) log(n̄+ m̄)))
(43)

for every 1 ≤ j ≤ n̄.
Step 3: Assume that c1, c2, c4 > 2 and c3 > 1. Consider the

eventT = T1 ∩ T2 ∩ · · · ∩ Tn. Based on (43) and a simple union
bound, one can write

P (T )≥1−K1(n̄+ m̄)−(c1−2)︸ ︷︷ ︸
(a)

−K2(n̄+ m̄)−(c2−2)︸ ︷︷ ︸
(b)

−K3(n̄+ m̄)−(
c3
2 −1)︸ ︷︷ ︸

(c)

−K4(n̄+ m̄)−(2(αn+αk)(c4−1)−1)︸ ︷︷ ︸
(d)

(44)

for some constants K1,K2,K3, and K4. One can easily verify
that the following equalities are enough to guarantee that the
right-hand side of (44) is equal to 1− δ:

c1 =
log(4K1/δ)

log(n̄+ m̄)
+ 2, c2 =

log(4K2/δ)

log(n̄+ m̄)
+ 2

c3 =
2 log(4K3/δ)

log(n̄+ m̄)
+ 2

c4 =
log(4K4/δ)

2(αn + αk) log(n̄+ m̄)
+

1

2(αn + αk)
+ 1. (45)

Substituting (45) into Lemmas 1 and 2 leads to two observations.
(1) If λd and d satisfy (18a) and (18b), then they also

satisfy (38a) and (38b).
(2) The parameter g defined in (19) is greater than or equal

to gj for every j = 1, . . ., n̄.
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Therefore, (18a) and (18b) guarantee that: 1) Ψ̂ is unique
and does not have any false positive in its blocks, and 2)
its elementwise error is upper bounded by (19). Now, it only
remains to show that Ψ̂ excludes false negatives (the blocks that
are mistakenly estimated to have nonzero values). To this goal,
it suffices to show that (18b) guarantees g < tmin. Suppose that

d = Ω
(
CΨκ(Σ̃)

2kmax

(
D log(n̄+ m̄) +D2 log(1/δ)

))
.

(46)
Inwhat follows, wewill show thatCΨ = O(1) is enough to have
g < tmin. The lower bound on d in (18b) yields that

g ≤ K

(
1√

CΨkmax

+
1

CΨκ(Σ̃)

)
(47)

for some constant K. Therefore,

CΨ =
2/K

tminκ(Σ̃)
+

4/K

t2minkmax
= O(1) (48)

is enough to ensure g < tmin. This completes the proof. �
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