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Abstract. Modern vehicle is considered as a system vulnerable to
attacks because it is connected to the outside world via a wireless inter-
face. Although, connectivity provides more convenience and features to
the passengers, however, it also becomes a pathway for the attackers tar-
geting in-vehicle networks. Research in vehicle security is getting atten-
tion as in-vehicle attacks can impact human life safety as modern vehicle
is connected to the outside world. Controller area network (CAN) is
used as a legacy protocol for in-vehicle communication, However, CAN
suffers from vulnerabilities due to lack of authentication, as the infor-
mation about sender is missing in CAN message. In this paper, a new
CAN intrusion detection system (IDS) is proposed, the CAN messages
are converted to temporal graphs and CAN intrusion is detected using
machine learning algorithms. Seven graph-based properties are extracted
and used as features for detecting intrusions utilizing two machine learn-
ing algorithms which are support vector machine (SVM) & k-nearest
neighbors (KNN). The performance of the IDS was evaluated over three
CAN bus attacks are denial of service (DoS), fuzzy & spoofing attacks
on real vehicular CAN bus dataset. The experimental results showed
that using graph-based features, an accuracy of 97.92% & 97.99% was
achieved using SVM & KNN algorithms respectively, which is better than
using traditional machine learning CAN bus features.

Keywords: In-vehicular network security - Intrusion detection
system + Controller area network - Feature engineering - Machine
learning

1 Introduction

A modern vehicle is a complex system that consists of electronic, mechanical &
software components. A typical modern vehicle is equipped with 70 electronic
control units (ECUs) on average [42]. These ECUs are called the brain of the
vehicle and are responsible for the safety of the passengers and vehicle func-
tionality. In order to communicate, the ECUs are connected using in-vehicle
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communication protocol networks i.e. local interconnected network (LIN), con-
troller area network (CAN), media oriented system transport (MOST) etc. [16].
Among them, the CAN bus was designed in 1983 to allow safety-critical ECUs to
communicate inside a vehicle [12]. The introduction of CAN drastically resolved
the wiring problem caused by point to point connection. It is a single bus sys-
tem where the ECUs can be easily connected and was designed mainly for closed
vehicular systems.

Vehicular systems are not considered closed systems anymore. Current vehi-
cles are connected with external networks via Bluetooth, WIFI, installed apps,
etc. They are even connected to each other while on road [40]. The connectivity
of modern vehicles is becoming an access point for the attackers and becoming
a security threat. In most cases, the motivation of the attackers is to access the
safety-critical ECUs like brake, gas, powertrain, etc. The majority of the attack-
ers take advantage of the CAN as it gives access to all the safety-critical ECU
components and can take full control of the vehicle [40].

By design, CAN allows to broadcast messages and a single message does
not have any information about the sender [40]. This vulnerability gives the
attacker a chance to send a message to the CAN after gaining illegitimate access.
Researchers have demonstrated these security vulnerabilities and were able to
take control of the vehicle remotely [1]. Using the CAN arbitration ID, three
types of attacks can be performed by the researchers [35]. They are DoS (denial
of service) attack, spoofing attack and fuzzy attack. These attacks are concern-
ing as it is directly related to passenger safety. To increase CAN bus security
researchers have proposed several solutions by providing message authentication
[39,43,44]. But, these solutions are not practical on CAN bus protocol since
CAN bus has limited data byte (8 bytes). Additionally, the implementation of
message authentication will add overhead and will limit the existing bandwidth
(500 kbps). So, the techniques like designing IDS (intrusion detection system) is
becoming more popular as they do not limit bandwidth [35] and do not modify
existing CAN bus protocol.

In this paper, an IDS is proposed to detect DoS, fuzzy and spoofing CAN bus
attacks by using machine learning. Popular machine learning algorithms SVM
(support vector machines) and KNN (k-nearest neighbors) are used for intrusion
detection. SVM and KNN have been used recently by [1] to increase CAN secu-
rity. Unlike [1], the proposed IDS uses seven features (six novel features and a
single feature from the state-of-the-art [21]) with high feature differences among
benign and malicious CAN messages, which gives better classification accuracy.
The experimental results show that the selected seven features represent the
accurate behavior of CAN benign and malicious messages. The proposed work is
inspired by the work done in [21]. The author converted the CAN messages into
graphs and used a single graph property i.e. edges to detect CAN bus attack
by using the statistical chi-square method. Unlike [21], new seven graph-based
CAN bus features are explored that are used to detect CAN intrusions. More-
over, the proposed IDS can detect attacks using a single graph, whereas [21]
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needs distribution of graphs for CAN bus attack detection. The followings are
the contribution of this paper:

— To the best of our knowledge, this is the first machine learning-based CAN
bus IDS that uses graph-based features.

— The IDS takes advantage of a total of seven graph-based properties that
represent the actual behavior of the CAN bus.

— The experimental results show that the classification based on graph-based
features are performing better than classification based on traditional CAN
bus message features.

— The proposed IDS can detect three types of CAN attack and is applicable to
in-vehicle networks.

2 Background and Related Work

2.1 CAN Bus

In modern electric vehicles, actuators and sensors are controlled through the
electronic control units (ECUs). ECU is a device in modern vehicles which control
electric subsystems. The ECUs are responsible for a variety of vehicle functions
including engine control, braking, airbag deployment, door lock/unlock, antilock
braking system (ABS), parking support system. Various network protocols have
been proposed for in-vehicle communication between ECUs, such as controller
area network (CAN), local interconnected network (LIN), media oriented system
transport (MOST) [12]. CAN protocol is most commonly used for in-vehicle
communication due to its robustness. Robert Bosch GmbH developed the CAN
Protocol and published CAN 2.0 specification A and B in 1991 [20]. In 1993,
the international organization for standardization (ISO) released standard ISO
11898 for CAN protocol [20]. Some of the advantages of CAN protocol are it
decreased the cost of wiring in vehicles, had built-in error detection, increased
robustness, higher speeds, and much more flexibility [2]. CAN protocol consists
of multiple abstraction layers. The two important layers are the physical Layer
and the transfer Layer.

Physical Layer. CAN is a broadcast-based communication protocol that is uti-
lized in many different applications that have complex structure topology and
require reliable communication between devices e.g. automotive, aerospace and
trains, etc. [4]. CAN has two types of physical layer standards, low speed and
high speed, which determine how the CAN bus is structured and the speeds of
the CAN bus [12]. The low speed standard has a baud rate up to 125 Kbps that
requires a single wired bus and devices that self terminate by 120 ohm resistors
on the CAN Bus [20]. A high speed CAN Bus consists of 2 wired half duplex
serial network technology [20]. The wires are called CAN High (CANH) and
CAN Low (CANL), which terminate at 120 ohms resistor. CAN is equipped to
operate smoothly in different types of environments because of the electromag-
netic shielding. CAN prevents electromagnetic interference (EMI) and protects
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communications from electromagnetic radiations that an automobile under goes
daily. To prevent magnetic field radiation, the pair of wires are twisted. Further-
more, to prevent electric field radiation, a coaxial cable is used for the two wires.
Also, another issue that can occur is electrostatic discharge (ESD) on the CAN
Bus and it is prevented by the CAN transceiver.
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Fig. 1. CAN-bus differential voltage representation.

One main key feature of the CAN Protocol is that it supports centralized
communication control over ECU [4]. ECUs can communicate with other ECUs
on the network, and each ECU requires a micro-controller, CAN Controller, and
CAN Transceiver as shown in Fig. 2. The micro-controller controls when the mes-
sage should be transmitted and analyzes messages received from the bus. The
micro-controller is connected to the CAN Controller which has two pins, trans-
mitter (CAN-TX) and receiver (CAN-RX) [20]. These two pins are connected
to the CAN Transceiver and have digital voltages of 0V for logical ‘0’ and 5V
for logical ‘1. The actual CAN bus does not support these voltages. Therefore,
the CAN Transceiver converts the digital logic voltages into a differential signal
[4]. The CAN Transceiver drives and detects data communication to and from
the bus. The differential voltages are outputs and consist of 2 states of voltages,
dominant (or logical 0) and recessive (logical 1) [4]. The differential voltages for
the dominant (0) are 3.5V on CANH and 1.5V on CANL [4,11,13-17,37]. In
addition, the differential voltages for the recessive (1) are 2.5V on both CANH
and CANL. Fig. 1 shows the CAN bus differential voltage representation. The
two pins on the CAN Transceiver are connected directly to the bus which allows
the ECU to transmit and receive messages from the bus [20]. How the messages
are transferred over through the bus is discussed in the following section.

Transfer Layer. The transfer layer abstraction receives messages from the
physical layer and transmits those messages using the CAN bus. This layer is
responsible for timing synchronization, message framing, arbitration, acknowl-
edgment, fault confinement, error detection, and signaling [22]. These properties
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Fig. 2. Electronic control unit.

of the transfer layer are very important to the robustness of the CAN proto-
col which allows safe message communication between ECUs. These messages
allow ECUs to communicate with any other ECU by the way of broadcasting the
message to the shared CAN bus. Messages in CAN Protocol are usually event
driven which means an event must occur before any communication is estab-
lished [7,14]. All other ECUs receive the transmitted message and depending on
the parameters in the message, the ECU will either accept or reject the message.
Communication in CAN protocol consists of four types of frames which are sent
to all ECUs. These four types of frames operate differently and consists of differ-
ent number of parameters. The types of frames are as follows, the Data Frame,
Remote Frame, Error Frame, and Overload Frame [20]. The four frames can be
classified as error message frames or data message frames. The error message
frames communicate errors that occur on the data message frames during the
transmission on the CAN bus and they consist of the Error Frame and Over-
load frame. The data messages communicate actual data or request data to be
communicated, which include the Data Frame and the Remote Frame. A data
message frame, as shown in Fig. 3, can have a maximum of 126 bits and consists
of the following parameters:

CAN MESSAGE

SOF CAN-ID RTR  Control Data CRC ACK EOF

Start Of  Extended  Remote Cyclic Acknow-  End Of

Frome identifier Transmission Redundancy ledge  Frame
Request Check

Fig. 3. CAN data message frame.
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— Start of Frame (SOF): The Start of Frame is a single dominant(0) bit which
marks the start of a message and is used to synchronize the ECUs on the bus
[20].

— Identifier (ID): The Identifier determines the priority of the message. The
lower the ID value, the higher the priority and vice-versa [20]. There are
2 types of ID’s which are standard ID’S and extended ID’S. Standard ID’s
consist of 11 bits and extended ID’s consists of 29 bits [20].

— Remote Transmission Request (RTR): The Remote Transmission Request
is made up of one bit [20]. If the bit is set to dominant (0), the message is
considered as a Remote Frame [20]. However, if the message is set to recessive
(1), the message is considered as a Data Frame [20].

— Control: The Control consists of 6 bits which defines the type of data that
will be transmitted [45]. The first bit is the Identifier Extension (IDE) bit
which determines if the ID is a standard ID (11-bits) set to dominant(0) or
extended ID (29-bits) set to recessive(1) [45]. The second bit is the Reserved
Bit (RO) which is always dominant (0) and reserved for future needs [45]. The
next 4 bits are the Data Length Code (DLC) which determine the size of the
data (in bytes) being transmitted [45].

— Data: The data consists of a maximum of 8 bytes depending on the set value of
the DLC in the control setup [20]. The data can send any type of information
such as the temperature, speed and tire pressures.

— Cyclic Redundancy Check-(CRC): The Cyclic Redundancy Check consists
of 16 bits, 15 message error correction bits and a recessive (1) delimiter bit
[20]. The CRC checks if the message transmitted is the same without any
corruption and corrects any data corruption [20].

— Acknowledge (ACK): The Acknowledgment bits consist of the ACK bit and
a recessive (1) delimiter bit [20]. The ACK indicates an error free message
has been sent [20]. Every ECU that has received an accurate message over-
writes this recessive bit from the original message as a dominant bit indicating
success [20]. If any of the ECUs detect an error, this bit is left as recessive
indicating that there was an error and the message should be discarded and
resent [20].

— End of Frame (EOF): The End of Frame consists of 7 recessive (1) bits [20].

— Inter-frame Space (IFS): The Inter-frame Space consists of 3 consecutive
recessive (1) bits which separate a data frame and remote frame [20]. The
proceeding bit will be regarded as the SOF bit of the next frame.

These message parameter fields allows CAN Protocol to be very flexible and
have many different applications. The most important parameters from above
are the ID, control, and the data fields.

One of the issues when using a single communication bus for transmitting
and receiving messages is determining which ECU has control over the bus when
two ECUs request bus access simultaneously. To resolve the issue, CAN Protocol
implements bit-wise arbitration on the ID field of a frame to determine its pri-
ority [20]. As stated above under the Identifier parameter, the lower the ID the
higher the priority, and the higher the ID the lower the priority. For an ECU to
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win bit-wise arbitration, the ID’s will be compared bit by bit and the dominant
bit will always win the arbitration over the recessive bit [20]. The ECU with the
recessive bit will forfeit the arbitration until another opportunity arises [20].

2.2 Related Work

Multiple bodies of work have adopted machine learning techniques for detect-
ing intrusions on the CAN bus [5,26,38]. For example, Theissler [38] proposed
an anomaly detection system based on multivariate time series. An ensemble
anomaly detector was made comprising of two-class and one-class classifiers in
order to detect both known and unknown fault types in various driving con-
ditions. However, his approach has limitations, especially when the in-vehicle
environment changes frequently; these limitations can be the continuous need
for calibration and data update. Other work by Barletta et al. [5] proposed an
IDS based on a combination of an unsupervised Kohonen Self-Organizing Map
(SOM) network and k-means algorithm. The CAN IDs, time stamp, DLC and
data field were used as features in order to identify attack messages sent on the
CAN bus. Other work by Markovitz and Wool [26] proposed an anomaly detec-
tion system based on monitoring Constant fields, Multi-Value fields and Counter
or Sensor fields of the CAN bus traffic. They used the Ternary Content Address-
able Memory (TCAM) model to characterize those fields and build a model for
the CAN bus messages based on those field types. Although they were able to
achieve a low false-positive rate by evaluating their system on synthetic CAN
bus traffic simulating 10 different message IDs. However, they didn’t evaluate
their system on actual attacks and against real CAN bus messages.
Additionally, Minawi et al. [28] proposed an IDS that utilizes machine learn-
ing and provides critical alerting features to protect vehicle operations. The
CAN ID and Data field were the primary features used to determine if a mes-
sage is benign or malicious. Furthermore, the Random Tree algorithm was used
to achieve high accuracy in detecting DoS, impersonation, and Fuzzy injection
attacks. Other work by Martinelli et al. [27] proposed an IDS by considering
the eight data bytes of the CAN packet as a primary feature to determine if a
message is benign or malicious. Four fuzzy algorithms of classification were used:
FuzzyRoughNN, NN, DiscernibilityClassifier and FURIA. These algorithms were
applied to the eight bytes features and they were able to achieve 0.85 to 1 pre-
cession. Other work by Avatefipour et al. [3] proposed an IDS for CAN bus
based on the frequency of message IDs patterns that are transmitted in given
normal traffic. A modified one class SVM was constructed and used based on a
new meta-heuristic optimization algorithm called the Modified Bat Algorithm
(MBA). Their IDS was evaluated on two datasets in the scope of CAN bus traffic
anomaly detection. Although their IDS achieved a low false-positive rate. Nev-
ertheless, it can’t detect massages injection stacks. Additionally, Yang et al. [41]
proposed an IDS based on tree-based machine learning algorithms. The CAN
IDs and the data field were used as features to detect threats both on the CAN
bus and external networks. Although their system was able to achieve high accu-
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racy by testing their IDS on two data sets for both intra-vehicle and external
networks. However, their IDS has a high computational cost.

Several methods were recently proposed to detect intrusions on the CAN bus
based on deep learning techniques [18,19,23,25,34,35]. Such a method includes
an IDS based on a deep convolutional neural network (DCNN) to protect the
CAN bus of the vehicle. The DCNN learns the network traffic patterns and
detects malicious traffic without hand-designed features [35]. Furthermore, work
by Loukas et al. [25] proposed a cloud-based cyber-physical IDS for vehicles
by using the deep learning technique. Eight features were used to detect an
intrusion which are network incoming and outgoing rates, CPU utilization, the
rate of the written data to the disk, the time between two consecutive encoders,
accelerometer readings, power consumption and the overall current drawn by the
vehicle. However, by using RNN, they were able to achieve only 79% accuracy.
Other work by Hossain et al. [19] proposed a long short-term memory (LSTM)
deep learning model-based on the intrusions on the CAN bus. The CAN ID, DLC
and data field were used as features for in-vehicle CAN bus network attack. Other
work by Seo et al. [34] proposed an IDS model for the in-vehicle network based
on GAN deep learning model. A large number of CAN IDs have been encoded
and random fake data in the training process have been used instead of the real
attack data. Although they were able to achieve an average of 98% accuracy.
Nevertheless, their model was not able to distinguish anomalous traffic caused by
normal malfunctioning of electronic components from anomalous traffic caused
by intentional attacks by hackers. Additionally, Hanselmann et al. [18] proposed
an IDS based on a neural network architecture that is trained in an unsupervised
manner. The CAN IDs and timestamp were used as features in order to detect
intrusions and anomalies on the CAN bus. Although they were able to achieve
high accuracy by evaluating their system on synthetic CAN bus traffic. However,
they didn’t evaluate their system on actual attacks and against real CAN bus
messages.

Although the above solutions provide some degree of security as shown in
Table 1. However, in addition to the additional resources required and complex
computation costs needed, the deep learning approach is not sufficient for a
vehicular network due to the limited computing power of the ECUs to procedure
the complex process. Unlike prior work, we propose a lightweight IDS based on a
new eight features. We find that the newly explored eight features are significant
features to detect attacks on CAN bus messages with a high detection rate with
minimal time without any modification in the standard procedure of the CAN
protocol.

2.3 Attack Model

In this section, we first present the adversary model. Afterward, we discuss three
attack scenarios that can seriously ruin in-vehicle functions: spoofing attack,
fuzzy attack, and Denial-of-Service (DoS) attack.
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Table 1. A comparison of the state of the art IDSs using machine learning techniques

Ref. No | Machine learning Features
algorithms
[38] Ensemble classifier Timestamp
[5] SOM and k-means CAN IDs, timestamp, DLC and data field
[26] One-class classifier Constant, Multi-Value and Sensor fields
[28] Random Tree CAN IDs and data field
[27] FuzzyRoughNN, Data field
NN, Discernibility
Classifier and FURI
3] A modified one class The frequency of message IDs patterns
SVM
[41] Tree-based CAN IDs and data field
[35] DCNN The network traffic patterns
[25] RNN Network in and out rates,
CPU utilization, written data rates,
time between two consecutive encoders,
accelerometer readings, power consumption,
the overall current drawn by vehicle
[19] Deep Learning CAN IDs, DLC and data field
[34] GAN Deep Learning CAN IDs
[18] DNN CAN IDs and timestamp
1] SVM, KNN CAN IDs and data field
Our IDS | SVM, KNN Graph property-based

Adversary Model. In this paper, we assume an adversary can physically or
remotely compromise in-vehicle ECUs via several attack surfaces such as OBD-II,
CD players, USB, Bluetooth, and cellular [8]. We consider an attacker who wants
to control or disable or paralyze in-vehicle ECUs’ functionality. An attacker can
accomplish this by either injecting arbitrary messages repeatedly into the CAN
bus or by injecting unauthenticated messages with a spoofed ID into the in-
vehicle network. In this paper, we discuss three kinds of attackers who can inject
malicious messages in the in-vehicle network through the CAN bus. We assume
an attacker can inject malicious messages in order to control and breakdowns
vehicle functionality. Accordingly, we consider three types of message injection
attacks which are spoofing, fuzzy and DoS attacks.

Attack Scenarios. Based on the above described adversary model, we consider
the normal CAN-bus data (attack-free) in addition to three kinds of attack
scenarios which are spoofing, fuzzy and DoS as shown in Fig. 4.

Spoofing attack: This attack happens when an attacker injects a single mes-
sage of randomly spoofed CAN identifier with arbitrary data. Subsequently, it
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Fig. 4. Different CAN bus channel scenarios

causes unintended vehicle behaviors since all ECUs will receive that message. To
exploit the spoofing attack, an attacker can inject arbitrary data into one mes-
sage of the in-vehicle messages and chose the target identifier of that message
to create unexpected behaviors for the vehicle. Such behaviors include turning
the signal lamps light irregularly, flickering the instrument board in incalculable
ways, disabling the braking system and shaking the steering wheel colossally.

Fuzzy attack: This attack occurs when an attacker injects multiple messages
with arbitrary data of randomly multiple spoofed CAN identifiers, unlike the
spoofing attack which occurs by injecting only a single message of randomly a
single spoofed CAN identifier. As a result, all ECUs will receive various messages
which cause unintended vehicle behaviors like gearshift changes automatically,
disabling the braking system, instrument panel blinks in incalculable manners
and the steering wheel shakes gigantically.

DoS attack: This attack happens when an attacker injects high priority of
CAN messages such as the 0 x 000 CAN ID packet in a short cycle on the CAN
bus. To exploit the spoofing attack, an attacker can easily occupy the bus by
injecting the highest priority identifier of CAN messages such as 0 x 000 in a
short cycle on the CAN bus. Subsequently, it yields latencies of other messages
and causes threats in regards to availability with no reaction to the driver’s
commands since all ECUs share a single bus. Unlike the spoofing and fuzzy
attacks, the DoS attack delays the normal messages through the occupancy of
the CAN bus rather than cripple the functions of a vehicle.
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3 Methodology

This section presents the proposed IDS in detail. Subsection 3.1 starts with the
overview of the IDS. It is followed by a CAN bus message to graph conversion.
Subsection 3.3 represents the extraction of graph properties from CAN message
based graphs. And finally we conclude the section with classification of CAN bus
graphs section.
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Fig. 5. Overview of the proposed IDS

3.1 Overview of the IDS

As shown in Fig. 5, the proposed IDS has three main sub-components of con-
version of CAN bus messages to graph structure, extraction of graph properties
from CAN message based converted graphs and classification of CAN bus graphs
based on the graph features. First the CAN bus messages are converted into
graph structures. In the feature extraction phase 8 features have been extracted
based on the properties of the graph. Based on the feature differences between
benign CAN bus graphs and malicious CAN bus graphs, 7 features were selected
for classification phase. In the classification, support vector machine (SVM) [30]
and K-nearest neighbor (KNN) [32] is used on the selected features based on
attack free CAN bus message and attacked CAN bus message. Experimental
result shows classification with SVM and KNN based on the selected features
exhibits good accuracy in attack in CAN bus.



CAN Intrusion Detection 741

o DLC DATA Timestamp
as5fe 2 20 00 0e B0 1] 1] 2.084334
e4fe B 20 00 00 00 8@ 00 00 2.116588
2690 8 20 00 00 o2 00 00 o0 ee 2.124836
04fe B 00 20 00 00 00 00 00 8O 2.126036
e5fe 2 00 00 00 00 00 00 00 80 2.134353
0690 8 00 00 00 00 00 00 00 80 2.135407
04fe 8 00 00 00 B0 00 eb b6 13 2.144996
0130 8 00 00 40 ff 00 00 41 3d 2.156946
0131 8 00 00 40 00 00 00 41 9b 2.157975
0140 B 00 00 00 00 02 29 21 f@ 2.158382
e4fe 8 00 00 00 B2 00 eb b6 13 2.165245
0130 B 00 00 40 ff 00 00 42 1la 2.176891
0131 8 00 00 40 00 00 80 42 bc 2.177941
0140 8 00 00 00 80 84 25 22 a5 2.178345
o5fe 2 00 00 00 00 84 25 22 a5 2.18B4367
24fo 8 20 00 00 80 00 eb b6 13 2.185408
0130 8 00 80 40 ff 00 00 43 @7 2.196924
2131 B 00 80 40 00 00 00 43 al 2.197951
2140 8 20 00 00 00 86 26 23 6f 2.198356
CAN bus message Converted graph

Fig. 6. CAN bus message to graph conversion

3.2 Conversion of CAN Bus Message to Graph

To extract the normal behavior of CAN bus system, author in [21], considers a
window of CAN bus messages and converts it to a graph. Our proposed IDS takes
these concepts and converts a chunk of CAN messages into a meaningful graph
structure. To build a graph, the CAN arbitration ID of every CAN bus message
is considered as a node and an edge is put between two graph nodes (arbitration
IDs) if two CAN messages come sequentially on after another. Figure 6 shows
how a chunk of CAN messages CAN be converted to a graph. As graphs can find
meaningful hidden structure of data, so graphs converted from CAN bus data,
represent the meaningful behavior of CAN bus.

3.3 Graph Properties as Features

In graph theory, the properties like number of nodes, number of edges etc. are
totally dependent on graph structure. To distinguish between benign CAN bus
data with malicious (DoS, fuzzy and spooning attack) data the initial plan is
to choose the properties that show the characteristics of the graph. Hence, the
proposed IDS extracts graph properties like number of nodes, number of edges
[21], radius [9], diameter [10], density [24], reciprocity [6], average clustering
coefficient [29] and assortativity coefficient [31]. Figure 7 shows the box plot for
each of these graph properties mentioned above in different CAN bus attack
free and attack scenarios. The plots clearly show that number of nodes is not
distinguishable between benign and malicious CAN bus scenarios. Hence the
proposed IDS excludes the number of nodes from classification feature list and
selects the other seven differential features.

3.4 Classification Step

The classification step is dependent on the feature extraction and selection pro-
cess. It takes the selected eight features as an input and classifies benign and
malignant CAN bus data. Two popular machine learning algorithms i.e. support
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Fig. 7. Graph based CAN features

vector machines (SVM) and k-nearest neighbor (KNN) are applied to classify
the performance.

— Support Vector Machine (SVM) [30]: SVM is a supervised learning algorithm
used for classification and regression problems. It actually tries to find a
suitable hyperplane in a finite dimension of data that clearly classifies the
training data points. In the testing phase, the test instances are compared
with the hyperplane to predict the appropriate category of the instance. The
algorithm is used in many applications like classification of images, satellite
data, categorization of text & hypertext data, handwritten recognition etc.
successfully over the years [36].

— K-Nearest Neighbor (KNN) [32]: KNN is a non-parametric machine learning
algorithm that can be used for both classification and regression. It does not
make any assumptions on the underlying data distribution. In the training
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phase it keeps the similar data near to each other and it is utilized during the
testing phase. First, the distances between training data and a test instance
are measured; And finally using majority voting among the k-nearest training
instances, the class of the test instance is predicted.

Our assumptions and selected features exhibit excellent results in classifying
attack free and attacked CAN bus messages.

4 Performance Evaluation

4.1 Description of the Dataset

To verify the effectiveness of the proposed IDS, an experiment is designed and
performed on real vehicular dataset [35]. The dataset contains three kinds of
CAN bus attack data along with benign CAN data. That is DoS attack, fuzzy
attack and spoofing attack. Table2 shows the summary of the dataset. To pre-
pare the dataset for our proposed IDS, the CAN messages are converted to
temporal graphs. Along the lines of the authors in [21], each graph is built using
200 CAN messages. Using the dataset, we were able to extract 5,558 DoS attack
graphs, 2,802 fuzzy attack graphs and 11,263 spoofing attack graphs.

Table 2. Can traffic dataset details

Dataset No of CAN | No of graphs | No of attack- | No of attack
messages free graphs graphs

DoS attack 3,631,600 18,158 5,558 12,600

Fuzzy attack 3,053,400 15,267 2,802 12,465

Spoofing attack (RMP) | 4,566,200 22,831 11,263 11,568

4.2 Validation Metrics

Each datafile of the selected dataset was fed into the classifier and was treated as
a binary classification problem. The performance of the proposed IDS was vali-
dated based on precision, recall, F-1 score, accuracy and area under the receiver
operating characteristic curve. Out of them precision and recall is considered
to measure the quality and quantity respectively. The F-1 score is used to find
how precise the classifier is. In the experiment accuracy means the percentage of
correctly classified graphs. The area under the receiver operating characteristic
curve is considered to measure the ability of the classifier to classify benign and
malignant graphs. The equations for this performance metrics can be found here
[33].
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4.3 Simulation Result

The proposed IDS was designed and implemented using python programming
language on a 1.8 GHz windows 10 computer system with 16 GB RAM. The
selected dataset was fed into two types of machine learning classifier i.e. (i)
SVM & (ii) KNN and the performance was measured based on the validation
metrics discussed in Subsect. 4.2. First, 60% of the overall data is considered as
the training dataset. The remaining 40% is divided into two equal halves as a
validation dataset and test dataset. The reason for using a validation set is to
fine tune the classifier hyper-parameters on unknown data while the classifier
is fit using training data. The total separate test dataset helps to eliminate
the overfitting tendency of a model. While feeding the dataset files into SVM
classifier, we achieved accuracy of 99.90%, 99.93% & 96.43% for DoS, fuzzy
and spoofing attack respectively. On the other hand, KNN provided accuracy of
99.86%, 99.79% & 96.55%. In order to check the robustness of the IDS, a mix
attack by combining DoS, fuzzy & spoofing attack dataset is also performed.
While defending the mix attack the SVM classifier achieved 97.92% accuracy
while the KNN has achieved 97.99% accuracy. Table 3 shows the details about
all the validation metrics discussed in Subsect. 4.2 while defending DoS, fuzzy,
spoofing & combined attack.

Table 3. The results of the fuzzy and the dos attacks

Attack Classifier | Accuracy | Precision | Recall | F-1 AUC-ROC score
DoS attack SVM 99.90 0.9994 0.9969 | 0.9981 | 0.9969
KNN 99.86 0.9993 0.9955 | 0.9977 | 0.9955
Fuzzy attack SVM 99.43 0.9996 0.9952 | 0.9973 | 0.9952
KNN 99.79 0.9989 0.9865 | 0.9926 | 0.9865
Spoofing attack | SVM 96.43 0.9761 0.9363 | 0.9537 | 0.9361
KNN 96.55 0.9767 0.9384 | 0.9554 | 0.9385
Mix attack SVM 97.92 0.9861 0.9609 | 0.9726 | 0.9608
KNN 97.99 0.9895 0.9623 | 0.9737| 0.9623

4.4 Comparison with the State of the Art

Finally, the proposed IDS is compared with one of the state of the art works [1].
The particular reason for choosing [1] for comparison is because it uses CAN bus
data message frames as features to detect CAN intrusion using SVM and KNN
classifiers. Therefore the effectiveness of the proposed IDS is compared with the
state of the art by considering accuracy on real vehicular CAN bus data. While
tested on 20% data, [1] achieved accuracy of 97.40% & 96.50% while using SVM
& KNN. On the other hand the SVM & KNN based on our proposed graph based
features achieved accuracy of 97.92% & 97.99% respectively. Figure 8 shows the
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Fig. 8. Comparison with the state-of-the-art [1]

comparison between the state of the art [1] and proposed IDS. The figure clearly
demonstrates that the proposed IDS has achieved better accuracy than the state
of the art for both SVM & KNN.

5 Conclusion and Future Work

In the modern transportation system, more and more connectivity is added in
vehicles with the outside world. More connectivity adds more threat surfaces
in vehicles which poses serious threat to the safety of passengers and security
of vehicles. In order to make the in-vehicle network secure a strong intrusion
detection system is required. In this paper, a CAN intrusion detection system
is proposed that uses graph based features to detect CAN attack. This novel
and pragmatic approach uses graph based features to classify authentic and
malicious CAN messages for in-vehicle communication. The experimental results
showed that using graph-based features, an accuracy of 97.92% & 97.99% was
achieved using SVM & KNN algorithms respectively. In future, we would like to
consider other graph properties to detect intrusion for in-vehicle communication.
In addition, we will apply different machine learning algorithms in place of the
SVM & KNN to see the robustness of the selected features.
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