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A B S T R A C T   

To fully harvest the benefits of vehicular automation and connectivity in the mixed traffic, a 
cooperative longitudinal control strategy named Cooperative Adaptive Cruise Control with Un
connected vehicle in the loop (CACCu) has been proposed. When encountering an unconnected 
preceding vehicle, CACCu enables a Connected and Automated Vehicle (CAV) to benefit from 
communicating with a connected vehicle further ahead, rather than completely falling back to 
Adaptive Cruise Control (ACC). To validate the feasibility of CACCu, this study developed and 
tested a CACCu system with real vehicles in the field. A speed-command-based CACCu controller 
is designed and parameterized for optimizing the anticipated string stability. The experiment was 
conducted with two automated vehicles equipped with Mobileye sensors and Wi-Fi modules. The 
car-following performance of CACCu, in comparison with ACC and human driving (as the ego 
vehicle), was evaluated in the real-traffic scenarios constructed using NGSIM vehicle trajectory 
data. Over the 6 test runs for each control method, it was found that CACCu reduced 10.8% 
acceleration Root Mean Square (RMS), 60.8% spacing error RMS and 6.2% fuel consumption from 
ACC’s, indicating advantages of CACCu in control accuracy, ride comfort and energy efficiency. 
Compared with human driving, CACCu also reduced 17.6% acceleration and 13.4% fuel con
sumption. More importantly, the CACCu was able to efficiently avoid the traffic disturbance 
amplifications that frequently happened to ACC and human driving, which means the string 
stability has been significantly improved by the CACCu.   

1. Introduction 

In order to improve traffic safety and mobility, advanced technologies have been introduced and implemented through Intelligent 
Transportation Systems (ITS). Connected Automated Vehicle (CAV), which enables a variety of cooperative automated driving ap
plications (Shladover, 2018), is expected to play a key role in ITS. One promising CAV application is Cooperative Adaptive Cruise 
Control (CACC) (Naus et al., 2010), which is developed from Adaptive Cruise Control (ACC). In addition to measuring the position of 
the preceding vehicle by onboard sensor, the Vehicle-to-Vehicle (V2V) communications enables CACC vehicles to immediately obtain 
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the traffic situation in the downstream, which helps improve the precision of longitudinal motion control (Milanes et al., 2014). As a 
result, the equipped vehicles can maintain short inter-vehicle headways (e.g., 0.6 s) with guaranteed safety and “string stability.” 

String stability (Naus et al., 2010) refers to the vehicle’s capability of attenuating traffic disturbance from downstream, and keeping 
the vehicle string undisrupted by sudden acceleration or deceleration of any vehicles ahead of the platoon. In string-unstable situa
tions, the speed/spacing disturbance from the preceding vehicle is amplified by the following vehicles, causing shockwaves along the 
traffic. It has been pointed out that the string-unstable dynamics of human-driven vehicles is an origin of the traffic jams that occur 
without apparent external reason (Sugiyama et al., 2008). Such disruptive behaviors were also observed on the existing commercial 
ACC systems (Gunter et al., 2020). Therefore, the string stability, which is hard to achieve in short headways for human driver or ACC, 
has become a design requirement (van Nunen et al., 2012) and also a basis for the various benefits of CACC. Previous studies have 
indicated that CACC can significantly improve roadway capacity (Liu et al., 2018), traffic flow quality (Van Arem et al., 2006) and 
energy efficiency (Shladover, 2018). 

In despite of the great potentials, the usability of CACC may be seriously limited in the near future when the CAVs are mixed with a 
large number of non-CAVs. Although governments and manufacturers worldwide are making efforts to promote vehicular connectivity 
(Masini et al., 2018), CAVs are not likely to gain a dominant Market Penetration Rate (MPR) in the next two decades (Bansal and 
Kockelman, 2017). Consequently, the chance is rare to make CAVs travel consecutively in the mixed traffic. As most of the existing 
CACC systems require the connection with the nearest preceding vehicle (Naus et al., 2010; Milanes et al., 2014; van Nunen et al., 
2012; Rajamani and Shladover, 2001; Ploeg et al., 2011), the CACC vehicle would have to degrade into ACC mode when its preceding 
vehicle is an unconnected vehicle. 

There have been a few research efforts trying to address this issue of CACC. Graceful degradation of CACC (dCACC) (Ploeg et al., 
2015) proposed to estimate preceding vehicle’s acceleration using onboard radar if it is not obtainable via communication. It was 
proven that with proper tuning of the state estimator (Kalman filter), dCACC can fulfill string stability at a short time gap which is less 
than a half of that needed for ACC. Nevertheless, it turned out that the noise in the radar-measured acceleration could compromise the 
smoothness of vehicle trajectory and the ride comfort (Ploeg et al., 2015). A class of methods called Connected Cruise Control (CCC) 
(Ge and Orosz, 2014; Zhang and Orosz, 2016; Ge and Orosz, 2018) explored the benefits of the communication with remote preceding 
vehicle when the nearest preceding vehicle is unconnected, but a limitation was that CCC considered the behavior patterns of un
connected vehicles to be known (or identified) and unchanged given different drivers. These assumptions would be challenged in the 
real traffic situation. 

A CACC extension considering Unconnected vehicle in the loop, dubbed as CACCu, was recently proposed in (Chen and Park, 
2020). CACCu enables a vehicle to follow an unconnected vehicle with string stability, by utilizing the communication with a further 
connected preceding vehicle. Different from the existing CCC, CACCu aims to be robustly string-stable given various unconnected 
vehicles’ car-following behaviors, without requiring identification process or extra information on the unconnected vehicles’ behavior. 
Numerical simulations with real traffic data showed that the proposed CACCu can improve string stability, control accuracy and fuel 
efficiency compared to existing methods (Chen and Park, 2020). 

To validate the effectiveness and feasibility of implementation, the CACCu system must be developed on actual vehicles and tested 
in the field. The sensor error and nonlinear vehicle dynamics have been shown the two major factors that could significantly deviate 
the actual performance of automated driving from that in the simulations. On one hand, the unexpected sensor noise in the real traffic 
may undermine the smoothness of vehicle response and force the designer to adopt more conservative control parameters. Taking 
dCACC (Ploeg et al., 2015) as example, the vehicle trajectories in the experiments with actual radar were much jerkier than those in 
simulations assuming radar distance/speed errors in normal distributions. Thus, a “slower” state estimation and longer desired 
headway should be applied for the ideal ride comfort. Similarly, although it is proved that ACC with Constant Time Gap (CTG) policy 
can guarantee string stability as the feedback gains are sufficiently high (Xiao and Gao, 2011), none of the commercial ACC systems 
(Milanes et al., 2014; Gunter et al., 2020) were string-stable as they were not able to use such high gains under the constraints of sensor 
noise and ride comfort. On the other hand, the nonlinear dynamics of real vehicles (especially those with internal-combustion engines) 
could prevent the vehicles from achieving the acceleration/speed as commanded. Previous tests (Ge et al., 2018; Nieuwenhuijze et al., 
2012) have shown that the accuracy of vehicle longitudinal control can be heavily affected by the limited power of engine, the power 
drops during gear shifts, and other uncompensated nonlinear behaviors of the vehicle. In summary, field evaluation with physical 
vehicles is always a necessary step to verify that an automated driving application can achieve its benefits in the real world. 

Additionally, it is noted that many previous demonstrations of CACC or related applications shared a drawback in the experiment 
setting. Their test scenarios were commonly constructed with fabricated traffic disturbance, instead of the real-world situations. For 
example, the leading vehicle of the CACC platoon followed a trapezoid speed profile in (Milanes et al., 2014), triangle speed profile in 
(Ploeg et al., 2011; Wei et al., 2018), and step speed profile in (Ploeg et al., 2015). The Grand Cooperative Driving Challenge (GCDC) 
adopted a speed profile which consisted of three swept sines with frequencies 0.01 rad/s–2 rad/s (van Nunen et al., 2012). While these 
test scenarios could conveniently examine the desired properties (e.g., string stability) of the tested control methods, they could not 
give quantitative insight on how much benefit the proposed methods could achieved over the existing ones (e.g., ACC) in the real life. 
To reasonably quantify the performance improvements, more realistic test scenarios should be utilized in the evaluations. 

In this paper, the CACCu is tested with CAVs in real-world-based driving scenarios. While the original CACCu algorithm (Chen and 
Park, 2020) determines the optimal acceleration of the vehicle, the control algorithm is re-developed in this study based on the 
experiment vehicle which only accepts speed commands. Then, the effectiveness of CACCu, in comparison with ACC and human 
driving, is evaluated in the car-following scenarios constructed using the NGSIM (Alexiadis et al., 2004) real-traffic data. Because the 
test scenario of CACCu involves the unconnected preceding vehicle which is human-driven, another challenge is that the human al
ways drives differently in the multiple runs (Ge et al., 2018). The inconsistent human behaviors may undermine the fairness of the 
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performance comparisons between different control methods. A more effective way, as shown later in this paper, is to replace the 
actual human-driven vehicle with an automated vehicle that is programmed to replay the recorded trajectory of an actual human- 
driven vehicle. 

The rest of the paper is organized as follows: the second section introduces the automated vehicles used in the experiments. The 
third section describes the control design and parameterization of CACCu. The evaluation settings and the results are presented in 
fourth section. The key findings and concluding remarks are provided in the fifth section. 

2. Experimental vehicles 

Two experimental vehicles, Hyundai i30 PD and Hyundai Veloster, are shown in Fig. 1. The i30 PD plays as the ego vehicle ruled by 
CACCu, while the Veloster is used to create the test scenarios, as explained later in the Section 4.1. Both vehicles have been equipped 
with onboard sensors and throttle/brake pedal actuators. The V2V communications between vehicle are enabled by Wi-Fi modules. 
The transmission rate of Wi-Fi message is set 10 Hz to mimic the well-known Basic Safety Massage (BSM) of Dedicated Short-Range 
Communication (DSRC), which may be implemented in the U.S. (Masini et al., 2018). Like BSM, the transmitted message contains time 
stamp, vehicle speed, acceleration, position (in X, Y, Z) and orientation (in X, Y, Z, W). However, CACCu only needs to use the vehicle 
acceleration, as stated in the next section 

2.1. Sensor selection 

It is noted that the long-range radar sensor commonly adopted by commercial ACC systems is not available in these experimental 
vehicles. Instead, there are other two options for front-view sensing: Lidar (Velodyne 16ch Puck) and camera (Mobileye). To facilitate 
the selection of the appropriate sensor that meets the needs, a sensing accuracy experiment was conducted. The distance/speed relative 
to preceding vehicle, measured by Lidar and Mobileye during an arbitrary run are shown in Fig. 2. The real-time-kinetic (RTK) GPS, 
which is of centimeter accuracy, served as the ground truth. The results showed that the lidar sensor had a detection limit distance of 
30 m. The reason is that the density of the point-cloud cluster gets too low as the distance increases. It was seen that the Mobileye 
estimated the depth of the preceding vehicle very well. The root mean square (RMS) values of the distance errors were found to be 1.10 
m for Mobileye and 4.18 m for Lidar. Therefore, Mobileye was chosen to detect the preceding vehicle for CACCu. It is noted that 
Mobileye-based ACC has been deployed in some commercial vehicles (Mobileye, “Our Technology - Mobileye, 2021). The RMS error of 
estimated velocity by Mobileye was found to be 3.46 km/h (0.96 m/s), compared to the ground truth provided by CAN buses of ego and 
preceding vehicle. These are however notable sensing errors compared to state-of-art radar sensors (Hasch et al., 2012). 

2.2. Low-level controller and vehicle dynamics model 

The experimental vehicles have been automated with a low-level controller (Jung et al., 2020), which regulates the throttle and 
brake pedals to achieve the speed command from a high-level controller (e.g., ACC or CACCu). This low-level controller has a cascade 
Proportional-Integral-Differential (PID) feedback form, consisting of a pedal control loop inside of the speed control loop. Details about 
the low-level controller can be found in (Jung et al., 2020). To be compatible with the existing low-level controllers, the original 
CACCu high-level controller which gives acceleration command (Chen and Park, 2020) must be redesigned, as described in the section 
Control Design. 

With the low-level controller, a longitudinal vehicle dynamics model (VDM) of ego vehicle can be identified. In this case, the 
“vehicle dynamics” refers to the relationship between the commanded speed and the actual speed. A vehicle dynamics test was 
conducted for the model identification. Like in (Milanes et al., 2014); two small step signals (which caused no acceleration or braking 
saturation) were given as the commanded speed in the test, and the actual response of the vehicle was recorded. Using MATLAB system 
identification toolbox, a second-order model G0(s) was identified from the collected data: 

Fig. 1. Autonomous vehicle i30 PD (blue) / Veloster (yellow) and System Configure (right). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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G0(s) =
L(ẋ0)

L(vc)
=

1
0.8s2 + 1.6s + 1

e− 0.5s (1)  

where ẋ0 and vc are the speeds of ego vehicle and the commanded speed, respectively. L(*) denotes Laplace transform and s is the 
Laplace variable. The commanded speed, the model response and the actual response of the vehicle are compared in Fig. 3. Considering 
the good match between the responses of model and vehicle, the identified model can reasonably represent the dynamics of the 

Fig. 2. Sensing results (left top/bottom) and sensing errors (right top/bottom).  

Fig. 3. The model response and actual vehicle response in the vehicle dynamics test.  
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experimental vehicle (Hyundai i30 PD). 

3. CACCu design 

3.1. Framework 

It is a common strategy for a CACC vehicle to drive in ACC mode when encountering an unconnected preceding vehicle (Liu et al., 
2018; Xiao et al., 2018). With CACCu, however, if there exists a further preceding vehicle which is connected, the ego vehicle may 
obtain additional benefits from the V2V communications, rather than completely falling back to ACC. For the ease of real-time 
implementation, this study pursues a linear time-invariant control design. Fig. 4 shows the feedback-feedforward control structure 
of the CACCu, which can be directly extended from an existing ACC or CACC system. The ACC controller generates a feedback control 
signal vfb to regulate spacing error (i.e., the difference between desired distance and actual distance to the preceding vehicle), based on 
the sensor measurement and vehicle states. Meanwhile, a feedforward control signal uff can be generated to help prevent the spacing 
error that is about to occur, based on the communicated information from the further preceding vehicle, i.e., the (n + 1)

th preceding 
vehicle. It is noted that the feedforward filter should be designed and tuned such that it can accommodate the uncertain behaviors of 
the n unconnected vehicles in between. The final control signal (i.e., the speed command) is the sum of vfb and uff , and then a low-level 
controller determines the corresponding throttle or brake level to achieve the speed command. 

3.2. Human Car-following behavior 

Since CACCu involves unconnected human-driven vehicle, it is important to incorporate the human car-following behavior. The 
physics-based optimal velocity model (OVM) (Ge and Orosz, 2017) is chosen to describe car-following behaviors of the unconnected 
vehicle around a traffic equilibrium: 

h1(t) = x2(t) − x1(t) − l

ẍ1(t) = α1(
1

t1,h
h1(t − φ1) − ẋ1(t − φ1)) + β1ḣ1(t − φ1)

(2)  

where t is time, *̇/*̈ denotes the variable’s first/second derivative in respect to time, x1(t) and x2(t) are locations of the human-driven 
vehicle and its preceding vehicle, h1 is the adjustable gap between the two vehicles, with l being the minimum bumper-to-bumper 
distance, α1 and β1 are human control gains, φ1 is the human delay (i.e., reaction time), 1

t1,h 
is spacing policy slope with t1,h being 

the desired time gap of the human driver. In fact, other frequently used car-following models (e.g., intelligent driver model) can be 
linearized into the same form of this OVM (Ge and Orosz, 2017). 

Taking Laplace transform of (2), the human-driven vehicle’s behavior can be represented by a transfer function in Laplace domain: 

T1(s) =
L(x1(t) )

L(x2(t) )
=

K1(s)

s2eφ1s + K1(s) + α1s
(3)  

where L(*) denotes Laplace transform, s is the Laplace variable and K1(s) = α1
t1,h + β1s. 

Due to the heterogeneity of human drivers in the real traffic, this study considers human parameters in normal distributions based 
on previous investigations (Ayres et al., 2001; Mehmood and Easa, 2009; Ge and Orosz, 2017): 

Fig. 4. Framework of CACCu.  
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• Desired headway t1,h ∼ N(1.5,0.252);  
• Human delay φ1 ∼ N(1,0.252);  

• Human gain α1 ∼ N
(

0.2,
(

0.2
2.6

)2)

;  

• Human gain β1 ∼ N
(

0.4,
(

0.4
2.6

)2)

. 

These distributions are to be used to parameterize a CACCu controller that is robust against the variety of human car-following 
behaviors. 

3.3. Control design 

The general goal of ACC or CACCu is to maintain a desired spacing in respect to the immediately preceding vehicle. The widely- 
accepted Constant-Time-Gap (CTG) spacing policy (Naus et al., 2010) is adopted in this study, and the corresponding desired spacing 
of ego vehicle reads: 

h0,d(t) = t0,hẋ0(t) + h0,st (4)  

where h0,d(t) is the desired spacing,h0,st is the standstill spacing, t0,d is the desired time gap, and ẋ0(t) is the speed of ego vehicle. 
ACC controller: 
In ACC, the onboard sensor can measure the actual spacing and relative speed in respect to the 1st preceding vehicle: 

h0(t) = x1(t) − x0(t) − l1 (5)  

where h0 is the actual inter-vehicle spacing, x0(t) and x1(t) are the locations of the ego and 1st preceding vehicle, with l1 being the 
length of the 1st preceding vehicle. 

The controller should be able to eliminate the spacing error, i.e., the difference between the actual spacing and the desired spacing 
h0,d. The spacing error and spacing error rate can be determined as below: 

e0(t) = h0(t) − h0,d(t) = x1(t) − x0(t) − t0,hẋ0(t) − h0,st − l1 (6)  

ė0(t) = ḣ0(t) − t0,hẍ0(t) (7)  

e0(t) is the spacing error; ė0(t) is the spacing error rate, ḣ0(t) is the relative speed measured by the onboard sensor, and ẍ0(t) is the ego 
vehicle’s acceleration obtained from its CAN bus. 

Then a Proportional-Derivative (PD) controller is used to generate the feedback control signal: 

vfb(t) = ẋ0(t) + kpe0(t) + kdė0(t) (8)  

where vfb(t) is the feedback control signal, and kp and kd are the gains of the PD controller. Note that (8) can stand alone as an ACC 
controller, where vfb(t) is directly given to the low-level controller as the ACC speed command. The control scheme of ACC is displayed 
in Fig. 5, where G0(s) is as defined in (1) and 

K0(s) = kp + kds  

H0(s) = 1 + ths 

Accordingly, the car-following behavior of the ACC vehicle can be represented by a transfer function: 

T0(s) =
X0(s)

X1(s)
=

G0(s)K0(s)H0(s)

H0(s)(s + G0(s)H0(s)K0(s) − G0(s)s)
(9)  

where 

Fig. 5. Control scheme of ACC.  
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X0(s) = L(x0(t))

X1(s) = L(x1(t))

To fulfill the internal stability (Doyle et al., 2013) of the ego vehicle, the poles (i.e., zeros of its denominator) of (9) should have 
negative real parts. This study adopts a desired time gap th = 1.5s, a common option in commercial ACC systems (Gunter et al., 2020). 
Then the control gains kp and kd are left to be tuned. 

Besides the internal stability, the tuned gains should guarantee the basic smoothness and accuracy of control, under the sensor 
errors and the imperfect vehicle dynamics. Based on the experience of previous ACC designs (Naus et al., 2010; Ploeg et al., 2015; 
Nieuwenhuijze et al., 2012), the kd is commonly larger than kp to achieve reasonable vehicle behaviors. For the safety and conve
nience, the gain tuning was conducted using numerical simulations in MATLAB-Simulink. The designed ACC system was modeled and 
simulated in a typical car-following scenario used in (Chen and Park, 2020). The sensor errors observed in Section 2.1 were modeled as 
normal random noise, and the vehicle dynamics model followed (1). The speed profiles of the ACC with some different gains are shown 
in Fig. 6. 

Eventually, the gains were determined to be 
(
kp, kd

)
= (0.5,1) which fulfill the internal stability, and showed a good balance 

between control accuracy and smoothness. 
CACCu controller: 
In CACCu mode, the ego vehicle can be aided by an extra feedforward signal: 

vc(t) = vfb(t) + uff (ẍn+1(t − θ)) (10)  

where vc(t) is the speed command, uff (t, ẍn) is the feedforward signal, ẍn is the acceleration of the (n + 1)
th preceding vehicle, and θ is 

the communication delay. While CACCu can be extended for more general scenarios (Chen and Park, 2020), this demonstration focuses 
on three-vehicle sandwich scenario (i.e., one unconnected vehicle is in between the two connected vehicles), which has the highest 
probability to occur in the mixed traffic (Chen and Park, 2020). Thus, we denoted n = 1 in the rest of paper. The control scheme of 
CACCu is shown in Fig. 7, where F(s) is the feedforward filter in Laplace domain and D(s) = e− θs. 

To determine a feedforward filter that generates proper uff , we combine (1) and the Laplace transforms of (4)–(7) and (10), 
yielding: 

L(e0(t) ) = X1(s) − H0(s)X0(s) = X1(s) −
H0(s)G0(s)K0(s)X1(s) + H0(s)G0(s)F(s)s2X2(s)

s + G0(s)H0(s)K0(s) − G0(s)s
(11) 

By making L(e0(t) ) = 0, the ideal feedforward filter F(s) can be derived to eliminate the spacing error: 

F(s) =
1 − G0(s)

sH0(s)G0(s)D(s)

X1(s)

X2(s)
=

1 − G0(s)

sH0(s)G0(s)D(s)
T1(s) (12)  

where T1 is the transfer function of unconnected preceding vehicle, as defined in (3). Because the human parameters in T1 and the 
communication delay D(s) cannot be exactly known, a more feasible feedforward filter is: 

F(s) =
1 − G0(s)

sH0(s)G0(s)
T ’

1(s) (13)  

where T’
1(s) is the transfer function of a “virtual preceding vehicle”, in the same form of T1(s): 

T ’
1(s) = T ’

1

(
α’

1, β’
1,φ’

1, t’
1,h, s

)
(14) 

Fig. 6. Speed profiles of the simulated ACC vehicle with different gains in a typical car-following scenario.  
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α’
1, β

’
1,φ’

1, t’
1,h are the parameters of the virtual preceding vehicle. 

Combining (3), (11) and (13), the car-following behaviors of CACCu vehicle can be expressed as: 

T0(s) =
X0(s)

X1(s)
=

G0(s)K0(s)H0(s) + D(s)(s − G0(s)s)T ’
1(s)/T1(s)

H0(s)(s + G0(s)H0(s)K0(s) − G0(s)s)
(15) 

Since (15) has the same denominator with (9), the internal stability of ego vehicle in CACCu mode is fulfilled given the same 
feedback control parameters. However, we need to further determine T’

1(s) in pursuit of the string stability. 

3.4. Parameterization for string stability 

While there exist multiple mathematical definitions of string stability, a widely-used and convenient one is defined in frequency 
domain (van Nunen et al., 2012), that is, the frequency response magnitude of T0(s) should always be no greater than 1: 

‖T0(jω)‖∞ ≤ 1 (16)  

where ‖ ⋅ ‖∞ denotes the maximum magnitude over all frequency ω ≥ 0, and j is the imaginary unit. Because T0(jω) =
L(x0(t) )

L(x1(t) )
=

L
(

ẋ0(t)
)

L
(

ẋ1(t)
) =

L
(

ẍ0(t)
)

L
(

ẍ1(t)
), condition (16) can be approximately interpreted as that given any perturbation from the downstream, the speed or 

acceleration peak of following vehicle should not exceed that of the preceding vehicle. Although string stability can also be tested in 
terms of spacing error or control input (Naus et al., 2010), they are less practical as the human driver is involved. 

For ACC, it can be found that T0(s) defined by (9) does not satisfy (16) unless the desired time gap is significantly raised to 2.9 s. 
For CACCu, T0(s) in (15) collapses to 1/H0 and automatically satisfy (14) if there is no communication delay (D = 1) and T’

1 = T1. 
However, there is rare chance to make T’

1 = T1 in the implementation. Instead, we parameterize T’
1 to achieve the string stability for 

the highest probability given various T1. Accordingly, String Stability Ratio (SSR) is defined as the probability that CACCu vehicle can 
stay string-stable given all different kinds of unconnected preceding vehicles. By definition, SSR can be computed as an integral of the 
probability density over all the string-stable combinations of (α1,β1,φ1, t1,h): 

SSR =

∫ ∫ ∫ ∫

p
(
α1, β1,φ1, t1,h

)
ξ(SS)dα1dβ1dφ1dt1,h (17)  

where p is the probability density function (PDF) of a combination of human parameters(α1, β1,φ1, t1,h) which can be calculated ac
cording to the aforementioned distributions of the human parameters, and 

ξ(SS) =

{
1 if SS ≤ 1
0 if SS > 1 

Then the optimal virtual preceding vehicle T’
1 can be found by maximizing SSR. Using MATLAB nonlinear optimization toolbox, α’

1,

β’
1,φ’

1, t’
1,h are determined to be (1.12,0.21,0,1.62) which leads to a maximum SSR = 95%. 

Fig. 8 provides an insight on the broad ranges of the preceding vehicle’s human parameters that the current CACCu can stay string- 
stable with. Fig. 8 (a) shows string-stable ranges (the blanked area) of α1 and β1 (fixingφ1 = 1,t1,h = 1.5), while Fig. 8 (b) shows string- 
stable ranges of φ1 and t1,h (fixing α1 = 0.2, β1 = 0.4). It can be seen that CACCu can fulfill string stability under most of human 
behaviors of the unconnected preceding vehicle. 

Fig. 7. Control scheme of CACCu.  
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4. Performance evaluation 

4.1. Experiment settings 

In the evaluation of CACCu, ACC and human driving serve as performance baselines. It is noted that an actual human driver, instead 
of any driver model or trajectory data was employed to perform the “human driving” in the field experiment. 

To ensure fair comparisons among CACCu, ACC and human driving, it is required that two preceding vehicles must drive identically 
each time when testing different control methods. However, a difficulty is that the 1st preceding vehicle is supposed to be a human- 
driven vehicle while it is almost impossible for the human driver to follow the test path the same way as before. Therefore, we proposed 
to use the existing NGSIM data (Alexiadis et al., 2004), collected by Federal Highway Administration (FHWA) in real roads, to 
reconstruct the real-traffic scenarios. In every test scenario, the NGSIM trajectories of two consecutive vehicles (i.e., 1st and 2nd 
preceding vehicles) are extracted. As shown in Fig. 9, the Hyundai Veloster is set in automated mode instead of manual model. The 
speed profile of 1st preceding vehicle from NGSIM is given to the Veloster as speed command over time, so that the movement of 1st 
preceding vehicle can be replicated consistently. 

As the ego vehicle does not need to sense the 2nd preceding vehicle and the trajectories of both preceding vehicles are fixed, there is 
no need to physically add a 2nd preceding vehicle to the test. An easier but equivalent way is making the Hyundai Veloster imitate the 
communications from the 2nd preceding vehicle to ego vehicle. Then, the Hyundai i30 (ego vehicle) can be driven in CACCu/ACC/ 
human mode following the Veloster. 

Three test scenarios are randomly extracted from the NGSIM data. The speed profiles of the 1st and 2nd preceding vehicles in these 
scenarios are shown in Fig. 10. Note that a moderate acceleration period of 0.5m/s2 has been added to the beginning of each NGSIM 
vehicle speed profile so that the test vehicles can gently reach the starting-point speed from the rest. The performance of ego vehicle 
during this start-up period are not taken into the results. This study set the standstill spacing in (4) as 15 m for securing the safety, while 
shorter one could be used in the implementation to increase road throughput. To disperse the random effects of vehicle dynamics non- 
linearity and sensor errors, each control method was tested twice in every scenario. 

This experiment was conducted at a 1 km straight track administrated by the Korea Advanced Institute of Science and Technology 
(KAIST). Fig. 11 shows the two experimental vehicles on the test track. There was no precipitation during the experiment and the road 
was mostly dry. 

4.2. Results 

The Root Mean Squares (RMS) of acceleration and spacing error of the ego vehicle were collected, as performance measures in 
comfort and control accuracy, respectively. 

Because the fuel consumption in each run was not obtainable, the popular VT-CPFM (Rakha et al., 2011) model was used to es
timate a nominal fuel consumption based on the ego vehicle’s trajectory. The model reads: 

FC(t) =

{
a0 + a1P(t) + a2P(t)2

, P(t) ≥ 0
a0, P(t) < 0

(18)  

where FC(t) is the consumed fuel at the instant t; a0, a1 and a2 are model constants calibrated for each vehicle; P(t) is the power exerted 
by the vehicle driveline at instant t, a function of the vehicle speed and acceleration. The value of a0, a1, a2 and coefficients in P(t)
should be determined based on vehicle-specific parameters (mass, air-drag coefficient, cylinder size, etc.). More details about the 

Fig. 8. String-stable ranges of the preceding vehicle’s human parameters.  
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required vehicle parameters and model calibration process can be found in (Rakha et al., 2011). 
The VT-CPFM was validated through field tests of typical light-duty vehicles (Rakha et al., 2011) and has been applied in many 

related works (Zohdy et al., 2012; Yang et al., 2017). It should be noted that the interest of this study is the relative differences among 
the control methods, not the absolute value of the fuel consumption. Therefore, the VT-CPFM is useful in this study even though it was 
calibrated using other vehicles. 

Fig. 9. Re-producing the three-vehicle-sandwich scenario.  

Fig. 10. The speed profiles of the preceding vehicles in test scenarios.  

Fig. 11. Experimental vehicles on the test track.  
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The test results of CACCu/ACC/human driving are summarized in Table 1. CACCu consistently outperformed ACC and human 
driver in all aspects:  

• Compared with ACC, CACCu in average reduced 10.8% acceleration RMS, 60.8% spacing error RMS and 6.2% fuel consumption. 
CACCu maintained the desired time gap more precisely and with even less control effort than the ACC did. These results corroborate 
the benefits of CACCu shown in the simulation study (Chen and Park, 2020).  

• Compared with human driving, CACCu reduced 17.6% acceleration and 13.3% fuel consumption, indicating great advantages in 
ride comfort and energy efficiency. The spacing error was not applicable to human driving as the human driver’s desired spacing is 
unknowable. 

Another important design goal of CACCu is to achieve string stability, i.e., the capability of attenuating the traffic disturbance. The 
vehicle speed profiles of CACCu/ACC/human driving in tests 1.1, 2.1 and 3.1 are displayed in Fig. 12. The speed overshootings, in
dicators of amplified traffic disturbance, are denoted by the red arrows. It can be seen that CACCu tended to mitigate the speed 
fluctuations from the downstream vehicles in most of time. Across the total 6 tests, CACCu had only one speed overshooting in the test 
3.1, as shown in Fig. 12 (g). By contrast, ACC and human driving frequently produced speed overshootings in every test, which 
explained for the higher acceleration and fuel consumption than CACCu’s. Fig. 13 further shows the spacing profiles of ego vehicle 
under CACCu, ACC and human driving. CACCu had the least magnitudes of the spacing fluctuations in all the test scenarios. The 
numerical measures regarding traffic disturbance are listed in Table 2. In average, CACCu reduced 88.9% speed overshootings, 6.53% 
speed Standard Deviation (STD), and 26.39% spacing STD from those of ACC. These benefits remain similar when comparing CACCu 
with human driving. According to the results above, the string stability of CACCu is significantly better than that of ACC or human 
driving. 

In addition, it is noted that the 1st preceding vehicle produced almost identical speed profiles in the same test scenario but different 
runs of CACCu, ACC and human driving. Thus, the experiment setting for the fair comparison between control methods is proven 
effective. 

4.3. Extensive evaluation 

Due to the high cost of preparing and running the field test, the performance of CACCu could only be tested in a limited number of 
scenarios. To extensively reveal the benefits of CACCu in more various scenarios, numerical simulations were conducted using a full 
NGSIM dataset collected from US highway101 (US101). The US101 dataset was collected by FWWA to reflected the high-density 
highway traffic conditions. We in total extracted 380 car-following scenarios lasting longer than 50 s, from this US101 dataset. The 
main simulation settings are as below:  

• The sensor errors identified in Section 2.1 are modeled as normal random noise;  
• The vehicle dynamics model follows (1) in the simulations. Besides (1), the vehicle’ maximum acceleration is set to be 5 m/s2, based 

on historical test data; 

Table 1 
Performances measures under CACCu/ACC/Human driving.  

Test number Control type Acceleration RMS(m/s) Spacing error RMS(m) Fuel consumption (ml) 

1.1 CACCu  0.72 1.86  41.80 
ACC  0.85 3.48  42.80 
Human  0.84 N/A  45.50 

1.2 CACCu  0.77 1.95  41.70 
ACC  0.87 5.44  41.60 
Human  0.95 N/A  48.90 

2.1 CACCu  0.70 2.03  43.10 
ACC  0.75 5.42  43.60 
Human  0.77 N/A  46.80 

2.2 CACCu  0.74 1.97  42.50 
ACC  0.74 5.24  44.20 
Human  0.90 N/A  48.40 

3.1 CACCu  0.61 1.97  37.30 
ACC  0.86 5.60  48.20 
Human  0.85 N/A  46.20 

3.2 CACCu  0.81 2.33  43.00 
ACC  0.80 5.70  45.60 
Human  0.97 N/A  52.30 

Average CACCu  0.72 2.02  41.57 
ACC  0.81 5.15  44.33 
Human  0.88 N/A  48.02 

Reduction From ACC (%)  10.82% 60.79%  6.24% 
From Human (%)  17.64% N/A  13.43%  
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• The communication delay is assumed to be 0.1 s, which is the most observed value in field tests. 

Before going forward, the simulations were conducted using a field-test scenario to verify the fidelity. The speed profiles of actual 
and simulated CACCu/ACC vehicle in test 1.1 are compared in Fig. 14. It can be seen that the simulated speed of ego vehicle stays close 
to the actual speed in most of time, which indicates a good fidelity of the simulation. 

Fig. 12. Speed profiles of CACCu, ACC and human driving in the tests.  

Fig. 13. Spacing profiles of CACCu, ACC and human driving in the tests.  
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Then, the simulations of CACCu/ACC in the extensive 380 scenarios were conducted and the average performance measures are 
reported in Table 3. It is noted that the performance of “human” here is calculated from trajectories of the actual ego vehicle (i.e., the 
actual vehicle behind the 1st preceding vehicle) stored in the US101 dataset. In average, CACCu reduced 4.7% acceleration RMS, 
60.8% spacing error RMS and 6.2% fuel consumption from ACC’s. The reductions in acceleration and fuel consumption are even 
greater when compared with human driving. Paired T-test indicates all the benefits of CACCu are statistically significant (p < 0.05). 

These simulation results in various scenarios confirm the finding in the field test, i.e., the CACCu can maintain the desired time gap 
much more precisely with even less control effort, compared with ACC. 

5. Conclusions and future work 

CACC with Unconnected vehicle in the loop (CACCu) is a potential application to extend the usability of cooperative longitudinal 
control of Connected Automated Vehicles (CAVs) in the mixed traffic. To validate the feasibility of CACCu for future implementation, 
this study developed a CACCu system based on real vehicles and evaluate it in the field. A speed-command-based CACCu algorithm is 
designed according to the identified longitudinal dynamics of the experimental vehicle. The controller is parameterized by optimizing 
the String Stability Ratio (SSR), which indicates the likelihood to make the ego vehicle string-stable given various driving habits of the 
unconnected preceding vehicles. 

The experiment was conducted with two automated vehicles equipped with Mobileye sensors and Wi-Fi modules. By commanding 
the 1st preceding to follow a NGSIM real-traffic trajectory, and simultaneously spread the information of the 2nd preceding vehicle in 

Table 2 
Measures of traffic disturbance under CACCu/ACC/Human driving.  

Test number Control type Count of speed overshootings Speed STD Speed range Spacing STD Spacing range 

1.1 CACCu 0  2.94  11.11  5.53  22.44 
ACC 2  3.12  12.87  7.37  30.31 
Human 1  3.25  12.44  5.70  27.76 

1.2 CACCu 0  3.05  11.52  5.69  24.06 
ACC 2  3.12  13.14  7.92  29.31 
Human 3  3.34  12.91  6.32  37.05 

2.1 CACCu 0  2.92  10.65  5.89  23.56 
ACC 0  3.22  11.44  8.12  29.94 
Human 2  3.64  12.45  6.56  24.03 

2.2 CACCu 0  2.95  10.34  5.82  22.19 
ACC 1  3.21  11.20  8.09  29.94 
Human 2  3.45  12.47  8.30  29.56 

3.1 CACCu 1  3.09  10.13  5.56  16.75 
ACC 2  3.26  10.93  7.68  24.44 
Human 2  3.29  11.34  5.29  18.38 

3.2 CACCu 0  2.97  9.87  6.07  20.44 
ACC 2  3.24  10.72  7.77  24.31 
Human 3  3.06  11.45  7.44  27.38 

Average CACCu 0.17  2.99  10.60  5.76  21.57 
ACC 1.50  3.20  11.72  7.82  28.04 
Human 2.17  3.34  12.18  6.60  27.36 

Reduction From ACC (%) 88.89%  6.53%  9.48%  26.39%  23.07% 
From Human(%) 92.31%  4.23%  12.91%  12.74%  21.16%  

Fig. 14. Speed profiles of actual and simulated CACCu/ACC vehicle in test 1.1.  
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NGSIM data, CACCu was able to be tested in three-vehicle-sandwich scenarios with only two actual vehicles. ACC and human driving 
served as performance baseline in the evaluation. Over the 6 test runs for each control method, it was found that CACCu reduced 10.8% 
acceleration RMS, 60.8% spacing error RMS and 6.2% fuel consumption from ACC’s. Compared with human driving, CACCu reduced 
17.6% acceleration and 13.4% fuel consumption. The speed profiles of vehicles showed that CACCu greatly attenuated the traffic 
disturbances while ACC and human driving tended to amplify them. Therefore, the experiment results show that CACCu can greatly 
attenuate the traffic disturbance and improve the car-following control accuracy, ride comfort, and fuel efficiency. To extensively 
reveal the benefits of CACCu in more various scenarios, numerical simulations were conducted using the 380 car-following scenarios 
collected in US highway101 (US101), which confirmed the benefits of CACCu. 

Future work includes the experiments of CACCu in more generalized traffic situations (e.g., multiple unconnected vehicles in 
between) rather than three-vehicle-sandwich scenarios emphasized by this study. Hardware-in-the-loop simulation could be utilized to 
rapidly and safely test CACCu in complicated scenarios. Besides, sophisticated control frameworks such as Adaptive Model Predictive 
Control (A-MPC) (Fukushima et al., 2007) can be adopted for handling the uncertain human behaviors more efficiently and further 
improving the performance of CACCu, although more computational resource may be required in such case. Lastly, the coordination 
between the CACCu vehicles and traffic signal is worth study for benefiting the mixed traffic in urban corridors. 
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