
Covirt: Lightweight Fault Isolation and Resource
Protection for Co-Kernels

Nicholas Gordon and John R. Lange
Department of Computer Science

University of Pittsburgh
Pittsburgh, US

{nick.gordon, jacklange}@cs.pitt.edu

Abstract—The challenges of the exascale era have generated
a number of advancements in HPC systems software, with
co-kernel architectures emerging as one such novel approach
for HPC operating system and runtime (OS/R) design. Co-
kernels function by running multiple specialized, lightweight OS
kernels natively on the same host as a general purpose OS/R.
These specialized kernels are able to provide optimized OS/R
environments for HPC applications while still retaining access
to the full feature set of the co-running general purpose OS/R.
While co-kernels are able to effectively optimize for performance,
they generally lack effective mechanisms for cross OS/R fault
isolation and resource protection. In this paper we present
Covirt, a lightweight OS/R protection layer that leverages the
hardware virtualization features found on modern CPUs. Covirt
interposes a minimal hypervisor layer between a co-kernel OS/R
and hardware to prevent OS level faults from impacting other
OS/Rs running on the same system. Covirt is different from other
virtualization-based approaches due to the level of integration
necessary between the co-kernel instances, requiring the support
of higher level semantic interfaces between the different OS/Rs.
Covirt features a split architecture consisting of a hypervisor
and controller module that continuously monitors changes to
the underlying resource partitioning and translates those events
to hypervisor configuration changes. We have implemented a
prototype of Covirt in the context of the Hobbes exascale OS/R
stack, specifically targeting the Pisces co-kernel framework and
Kitten Lightweight Kernel. Our evaluation shows that Covirt is
able to add fault isolation for memory and interrupt processing
with minimal performance overheads.

Index Terms—virtualization, hardware virtualization, co-
kernels

I. INTRODUCTION

As we enter into the exascale era, significant effort has
been put into exploring the use of specialized Operating
System/Runtime (OS/R) environments for HPC and supercom-
puting platforms. The result of this effort is a new approach
for coupling specialized OS/Rs with more general purpose
OS/R environments that supports the native execution of both
OS/R instances concurrently on the same physical system.
Multiple efforts have explored this multistack or co-kernel
approach as a means of providing optimized environments for
complex HPC applications [1]–[3]. In a co-kernel architecture
the local hardware resources are partitioned into isolated

This material is based upon work supported by the National Science
Foundation under Grant No. 1718287

enclaves, each of which is managed by an independent OS/R
instance. Typically, these co-kernels execute a Lightweight
Kernel (LWK)-based OS/R to provide maximal performance
with minimal OS overheads. The key advantage of a co-
kernel architecture is the ability to have specialized and general
kernels co-exist on a system in order to obtain the benefits
of both. This is achieved by allowing applications running in
a LWK co-kernel to offload heavy-weight operations to the
general purpose OS/R, while performance-critical operations
can run directly in the LWK. This requires that co-kernel
environments support high-level semantic interfaces (such as
system calls) to bridge the OS/R boundaries, which in turn
requires both OS/Rs to share access to a subset of the process’s
state (such as its memory map).

The ability to tightly integrate processes running in separate
co-kernel OS/Rs has enabled support for emerging complex
application compositions [4]–[7]. Co-kernels allow the decom-
position of these applications at the process and thread levels
across multiple OS/R environments, while still supporting
the higher level IPC mechanisms necessary to support the
integrated operation of the application as a whole. An example
system configuration based on the Hobbes OS/R environ-
ment [4] is shown in Figure 1a. Using Hobbes, complex
applications are able to span multiple enclaves seamlessly by
leveraging the IPC mechanisms provided by the underlying
Hobbes runtime environment. The benefit of this approach is
a consistent high-level API for composing applications that can
automatically adapt to arbitrary enclave topologies. However
it does require a significant amount of state sharing between
enclaves that must be synchronized and kept consistent by the
underlying co-kernel architecture.

While co-kernel approaches have been shown to provide
performance benefits, they do so at the cost of expanding the
system’s trusted computing base (TCB). This is because each
co-kernel instance runs as a native OS with full access to
the underlying hardware resources. This leads to a situation
where errors and bugs in a single co-kernel instance can escape
the originating enclave and produce additional errors in other
enclaves or crash the entire system. This issue is exacerbated
by the need for tightly coordinated resource sharing to support
cross-enclave runtimes, where state inconsistencies between
enclaves can lead to resource assignment conflicts. While

Composite Application

Hobbes Runtime

Linux
Kitten Co-Kernel

Pisces/Covirt

Hardware

(a) The Hobbes OS/R.

Application

VMM
Linux

Hardware

Guest OS
Trad. VMM

Guest OS Application
Application

IPC IPC

(b) Other application composition ap-
proaches.

Fig. 1: Co-kernel applications vs typical applications.

traditional virtualization techniques are capable of addressing
this problem (by running each co-kernel in a dedicated virtual
machine), they have so far been rejected due to the perceived
overhead cost of enabling virtualization features.

In this paper we present Covirt, a virtualization-based
approach for co-kernel fault isolation and resource protection
that minimizes performance overheads. The goal of Covirt
is to quantify the baseline overheads introduced through
the use of hardware virtualization. While Covirt leverages
hardware virtualization features, it does so in a way that
is fully transparent to each co-kernel OS/R and does not
impact how the OS/R interacts with the underlying hardware
or other system software components. Covirt is different from
other low overhead, no-abstraction VMM architectures due
to its ability to dynamically track configuration changes that
require updating the underlying virtualization configuration.
This means that the existing cross-enclave resource sharing
interfaces are supported directly, and do not require the addi-
tion of abstracted APIs implemented through virtual devices
or paravirtual interfaces. Furthermore, configuration updates
are done asynchronously with respect to the hypervisor’s exe-
cution and impose minimal overheads due to update latencies.

Covirt consists of two components: (1) a lightweight hy-
pervisor layer that adds resource protection features using
hardware virtualization extensions, and (2) a controller module
that integrates with the co-kernel management framework
to monitor changes in the resource assignment and sharing
configuration. Configuration changes are detected as they
happen and any change to the hypervisor’s state is done
remotely via the controller module. The hypervisor is no-
tified of configuration changes only when it is necessary
to reload the virtual hardware state or flush local caches.
Covirt is implemented inside the Pisces co-kernel framework
and specifically targets Intel VMX virtualization extensions.
However, we believe the overall approach is generalizable to
other co-kernel architectures such as IHK/McKernel [2] and
MOS [3].

In this paper we make the following contributions:
• We describe the design and implementation of Covirt,

a lightweight fault isolation and resource protection ser-
vice for co-kernel architectures, targeting common state
inconsistency errors.

• Using Covirt, we quantify the incremental overhead costs
of different hardware protection features provided by the

virtualization extensions on a modern Intel system.
• We demonstrate that hardware virtualization features are

a viable approach to providing inter-OS/R resource pro-
tection by evaluating the overheads imposed by Covirt on
a set of representative HPC application benchmarks.

II. BACKGROUND

A. Co-kernels

Co-kernels are an OS/R paradigm that divides system
resources into hardware partitions, or enclaves, where each
enclave runs an OS/R that has full, unrestricted access to
the resources assigned to that enclave. There is no restric-
tion on what may run in these enclaves, as each enclave
is fully independent. This approach allows arbitrary sets of
hardware resources to be flexibly assigned to enclaves, at
runtime, and then those enclaves to be composed to suit
application and performance requirements. The degree and
method of cross OS/R integration between enclaves varies per
approach, ranging from source code-level integration to ex-
plicitly defined and portable APIs, but each approach employs
a co-operative paradigm for managing system resources. Co-
kernels have been extensively studied in the context of HPC,
where they have enabled the continued use of Lightweight
Kernels (LWKs) even as most (if not all) original equipment
manufacturers (OEMs) move to general purpose Linux based
OS/R environments. Existing efforts have shown that pairing
an LWK co-kernel with a general purpose Linux kernel
allows HPC systems to gain the performance advantages of
an LWK without sacrificing the usability and environmental
familiarity that comes with a Linux-based environment [1].
Furthermore, a co-kernel approach allows applications running
in an LWK to retain full access to the Linux device driver
ecosystem [8], eliminating an engineering hurdle that has long
been a significant challenge for LWK architectures.

B. The Hobbes OS/R

In this paper we specifically focus on the Hobbes OS/R
environment that supports application composition across ar-
bitrary co-kernel topologies. Hobbes [4] is an HPC-focused
OS/R that emphasizes application composition as a primary
design goal, and contains a number of different architectural
components, including the Pisces co-kernel framework [1], the
Kitten LWK [9], the Palacios Virtual Machine Monitor [9],
the XEMEM shared memory library system [10], and several
integrated communication/IO frameworks such as ADIOS [11]
and TCASM [12]. Hobbes enables composite applications that
are agnostic to the kernel(s) they are running on. As shown
in Figure 1a, the Hobbes runtime spans multiple enclave
boundaries, enabling a single application to run transparently
with individual components executing on separate, specialized
OS environments.

Pisces: The Pisces framework [1] serves as the founda-
tion for the Hobbes OS/R. Pisces is a lightweight co-kernel
framework that allows the partitioning of a system’s resources
into separate enclaves, in which an independent OS/R can
execute. The running OS fully manages its own resources,

including cores, memory, and devices. Pisces enclaves are
dynamically allocated and initialized at runtime and can be
created and destroyed in response to changing workload
requirements. Pisces itself is run as a Linux kernel module
on an otherwise-unmodified Linux host OS. While capable
of hosting arbitrary co-kernel OS/R architectures, Pisces was
specifically designed to target the Kitten Lightweight Kernel.

Kitten: Kitten [9] is a special-purpose OS kernel that
provides a simple, lightweight, and POSIX-like environment
specifically suited to HPC applications. Kitten is similar to
previous LWKs, such as Catamount [13], which have been
deployed on supercomputers in the past. One of Kitten’s main
goals is to execute workloads with high performance and
high repeatability. This is achieved by simple resource man-
agement policies, such as contiguous physical memory and
direct network hardware access. Moreover, Kitten is partially
derived from Linux, giving it a POSIX-like, modern code base
and improved Linux API and ABI compatibility that makes
utilizing existing HPC toolchains easier. When combined with
Pisces, Kitten is able to execute in a co-kernel mode, allowing
it to manage a partition of local resources using low-overhead
and low-noise subsystems.

XEMEM: Hobbes uses the XEMEM shared memory
system to handle cross enclave communication. XEMEM
is a shared memory architecture that supports inter-enclave
application-level shared memory regions. XEMEM is an ex-
pansion of, and is backward compatible with, SGI/Cray’s
XPMEM system which allows processes to share arbitrary
portions of their address spaces with each other. XEMEM
provides a global view of shared memory through the use of
XPMEM segment IDs managed across the entire system by a
node-local name service. XEMEM allows applications based
on the XPMEM library to be easily ported to Hobbes, through
slight modifications to the XPMEM API calls. In many cases
these changes are fully transparent to the application, as they
are internalized into higher level communication libraries, such
as Adios [11] or TCASM [12]. XEMEM serves as the basis
for all inter-enclave application communication as well as OS
services such as system call forwarding.

III. RELATED WORK

A. Co-kernels/Multi-kernels

The co-kernel paradigm has been studied considerably al-
ready within the context of HPC and for most projects the
overall goals are the same; provide a lightweight execution
context for performance-critical applications and delegate the
rest to a general purpose OS. These projects can be sorted
based on two characteristics: to what degree are the co-kernels
integrated, and which kernel is the host OS. Kernel integration
is granular and includes a variety of system-level decisions that
affect the degree that OS and process state is exposed between
kernels, as well as what work can be delegated. The choice of
host OS is comparatively narrow by comparison, but affects
resource isolation and fault isolation.

IHK/McKernel [2] takes a similar approach in many ways to
Hobbes, except the degree of integration between the co-kernel

and host OS, Linux, is substantially higher. IHK/McKernel
incorporates a “proxy process” on the host OS that requires ad-
dress space replication in order to support system call delega-
tion. HermitCore [14] is similar to Hobbes and IHK/McKernel
but uses unikernels/library OSes for its co-kernel, providing a
similar co-kernel framework that reduces the TCB in exchange
for requiring application compatibility with their unikernel
framework. mOS [3] departs from the previous approaches and
sits at the extreme end of the integration axis and squarely in
the middle of the host OS choice axis, fully embedding the
LWK code into Linux so that the LWK code runs on cores
picked at boot-time, so that state sharing between the two
OSes is high and LWK processes are nearly indistinguishable
from Linux processes. The FFMK/L4 [15] approach runs the
L4 microkernel as the host OS and paravirtualizes Linux to
provide delegation for LWK processes, requiring all syscalls
to be delegated to the paravirtualized Linux and providing
weak notions of resource partitioning to maximize perfor-
mance gains. FusedOS [16] assumes a heterogeneous hardware
platform and runs the LWK as a process on Linux, indicating
a high degree of system integration that requests specialized
hardware resources to run application code on top of a small
state monitor that forwards exceptions and interrupts back to
the LWK process via Linux.

While each of these co-kernels represent a unique point
in the design space, they are all similar in their high level
of dependence on co-kernel correctness. Since each of these
approaches requires native execution of the co-kernel OS/R,
they are limited in their ability to provide fault protection
and resource isolation. As such, Covirt represents a unique
capability that could be adapted to suit the full range of co-
kernel approaches.

B. Hardware Virtualization Features

Virtualization has been studied extensively in the cloud
environment, where it is used to manage execution, partition
resources, and provide protection. However, cloud computing
has requirements and restrictions very different to HPC, so
generally cloud research cannot be directly applied to the co-
kernel context. Broadly, there are three main obstacles faced by
existing hardware virtualization approaches that Covirt over-
comes: static resource assignment, virtualization performance
overheads, and poor IPC support.

Two systems that explicitly target low overhead and near-
native performance capabilities using minimal hypervisor
frameworks are DirectVisor [17] and OSV [18]. DirectVisor
improves cloud performance while retaining manageability
by primarily utilizing hardware virtualization, but temporarily
falling back to paravirtualization to continue supporting critical
manageability features. Their approach enforces statically-
configured DirectVMs that are managed by a central monitor
based on QEMU/KVM. In a similar vein, OSV provides VMs
that use hardware virtualization, together with a privileged
OS that owns and exposes a virtual interface for devices like
NICs. The privileged OS requires handling and forwarding of

interrupts, and VMs have limited communication to each other
through shared memory.

What separates these systems from Covirt is that they lack
the capabilities needed to fully support a co-kernel approach.
Co-kernel architectures rely heavily on cross-OS/R IPC mech-
anisms that are not directly supported by previous work.
Instead, IPC support is handled through either virtual hardware
or paravirtual interfaces through the hypervisor. We illustrate
three systems in figure 1b: full virtualization, direct application
execution, and a direct-hardware approach. In each case, IPC
interfaces are mediated by the underlying virtualization layer,
requiring added overhead for any communication spanning an
OS/R boundary. In contrast, Covirt is designed to provide zero
overhead IPC mechanisms that do not require any invocation
of the virtualization layer, instead relying on synchronization
of shared hardware resource mappings to support direct com-
munication.

IV. COVIRT

Covirt is a virtualization-based approach providing protec-
tion from crash-faults, hardware access violations, and state
corruption caused by bugs or compromised behaviors in co-
kernel OS/Rs. Existing co-kernel architectures rely on the full
cooperation and good-behavior of each co-kernel OS/R to
ensure that the system is able to operate without errors. This is
due to the fact that each co-kernel instance has full access to
the entirety of the underlying hardware platform, and nothing
fundamentally prevents a co-kernel OS/R from accessing arbi-
trary memory regions, sensitive hardware registers, or device
I/O ports. Instead, co-kernel architectures assume that each co-
kernel will constrain itself to the hardware resources that have
been explicitly assigned to it. For example, memory resources
are protected by each co-kernel OS/R configuring its memory
map to only include those regions it has been assigned or
granted shared access to. Yet, nothing prevents a co-kernel
from misconfiguring its memory map, unintentionally or not,
and accessing memory addresses belonging to other OS/Rs or
devices’ memory mapped I/O regions. These voluntary restric-
tions extend beyond memory to other hardware resources such
as MSRs, I/O ports, and interrupt handling.

While this resource protection problem is alleviated some-
what by the relatively small size of current LWK designs, it
is exacerbated by the fact that co-kernels require coordination
and state synchronization across OS/R boundaries to support
the high-level interfaces needed by these environments to sup-
port complex application compositions. This can lead to errors
when a co-kernel’s view of its hardware resource assignment
gets out of sync with other OS/Rs. In this case, even if a co-
kernel is operating correctly based on its own view of the
current system configuration, it might in fact be accessing
hardware it should not. This requires that dynamic changes to
the hardware assignment configuration are universally applied
in order to maintain system correctness. The dynamically-
changing assignments of hardware resources at fine granularity
pose a significant challenge for addressing this issue with

traditional virtualization-based approaches, since they typi-
cally assume coarse-grain resource assignment, relatively static
configurations, and limited resource sharing.

Covirt addresses these challenges through the use of a
lightweight hypervisor that is managed by a controller module
embedded in the co-kernel resource management framework.
Covirt is a novel approach in that it is designed to efficiently
modify the underlying hypervisor configuration in response
to dynamic changes to resource assignment. In addition, it
supports modular protection features that allow users to select
the protection features enabled during runtime. Should a
particular feature impose too much performance overhead, it
can simply be disabled during initialization. We now discuss
the design methodology and implementation details of Covirt
in the context of the Hobbes OS/R using a modern Intel
processor.

A. Design

Covirt was designed with three primary goals based on the
requirements of HPC co-kernel systems:

• Covirt should not implement a virtual hardware abstrac-
tion layer and instead make all of the underlying hardware
details directly visible to the co-kernel OS/R.

• Covirt should integrate seamlessly with existing co-kernel
architectures due to the need to support existing cross
OS/R dependencies and interfaces.

• Covirt’s protection mechanisms should be modular, al-
lowing a system operator to determine the suitable per-
formance/protection trade-off based on workload require-
ments.

Removing unnecessary abstractions is a key motivation for
the use of LWK environments, and one that is necessary for
Covirt to support. Most virtualization environments rely on re-
source abstraction to simplify the view of the underlying hard-
ware and hide details that do not match typical environmental
assumptions. Examples of this include remapping the address
space to appear as a single contiguous region, hiding NUMA
topology information, and masking out processor specific
features. While increasing portability and simplifying guest
OS/R operation, these abstraction layers are common sources
of performance problems, since VM-level assumptions about
the hardware are often incorrect. Covirt explicitly provides no
abstraction of hardware resources, and presents the guest an
unfiltered view of the underlying hardware configuration. This
allows the co-kernel OS/R to optimize its behavior around the
physical hardware environment without interference from the
underlying VMM.

Covirt is designed to seamlessly integrate with existing co-
kernel frameworks. This is a challenge due to the degree of
integration required across OS/R boundaries, which requires
Covirt to be able to efficiently reconfigure the hypervisor
in response to resource allocation and sharing operations. In
addition, Covirt must transparently support the underlying
communication channels that are necessary for coordination
and state synchronization between the OS/Rs. This task is
greatly simplified by the lack of abstraction, since Covirt is not

required to remap virtual resource addresses to physical ones.
Instead, the challenge consists of monitoring for configuration
changes and efficiently updating the hypervisor configuration.

Finally, Covirt implements a configurable and modular ap-
proach to resource protection that allows runtime configuration
of hypervisor protection features. The use of virtualization
features will always introduce some measure of overhead to
co-kernel performance, and in many cases these overheads will
be dependent on application workloads. Co-kernel architec-
tures implicitly prioritize performance over safety (otherwise
they would leverage traditional virtualization), and so Covirt
is designed to allow users to selectively enable protection fea-
tures only when the performance impact is within acceptable
bounds.

B. Covirt Architecture

In order to meet the above requirements we designed Covirt
as two separate components: a controller module integrated
with the master control process that provides resource manage-
ment coordination services for the enclaves, and a lightweight
hypervisor that handles protection faults, synchronizes hard-
ware state with configuration updates, and handles the small
set of operations that require emulation. Figure 2 shows a high
level overview of the architectural components.

Hypervisor: The Covirt hypervisor is responsible for
all enforcement operations implemented by the system. In
practice, the hypervisor itself does very little, and is primarily
responsible for ensuring the hardware level virtualization fea-
tures are correctly configured on the local CPU. This consists
of initializing the CPU’s virtualization features, serializing the
virtualization configuration to the CPU’s internal context, and
updating local caches when changes are made to the enclave’s
configuration. In addition, the hypervisor is responsible for
trapping any access violations in the enclave’s OS/R and
handling them appropriately. For the most part this means
terminating the enclave, notifying the master control process,
and safely halting the CPU. The master control process in
turn is responsible for reclaiming the enclave’s resources and
notifying any other components that had dependencies on the
failed enclave.

The degree of resource protection Covirt is able to provide
is directly dependent on the degree of virtualization support in
the hardware. While Covirt could feasibly extend protection
capabilities beyond what the hardware provides, doing so
would require significant virtualization overheads which would
violate a primary design goal. Therefore, the range of Covirt’s
capabilities is tightly tied to the feature set provided by Intel’s
VMX virtualization extensions. Even so, Covirt is capable of
providing protection for the following operations:

• Memory accesses
• MSR accesses
• IPI transmissions
• I/O operations
• Handling of abort exceptions such as Double Faults
While Covirt tries to push protection enforcement into

hardware as much as possible, there are still operations that

Co-kernel (Kitten)

Pisces

 Hardware Partition

HW
Accelerated

IPI Protection

HW Config (VMCS)

Virtualized IPI
Protection

Covirt
Hypervisor

Memory
Protection

Configuration
Change

Notification

Configuration Change

Direct
Device

I/O
Refresh

Covirt
Controller

Fig. 2: Covirt’s structure.

must be trapped and emulated. In the simplest case, these
consist of single instructions (i.e. cpuid and xsetbv) that
can be directly executed by the VMM with either minor
or no modifications. In other cases more involved emulation
is required, such as interrupt handling and injection. Where
emulation is required, Covirt takes a minimalist approach in
order to reduce overheads as much as possible.

The Covirt hypervisor is managed via a simple command
queue between itself and the controller module. Commands are
fixed-size messages containing update notifications directing
the hypervisor to synchronize part of its local state. Commands
are designed to be lightweight synchronization events that do
not require extensive processing in the hypervisor. This means
that the actual configuration updates are handled in the con-
troller module, with the hypervisor only being responsible for
activating new configurations and invalidating stale state. The
purpose of this approach is to reduce virtualization overheads
associated with re-configurations, as configuration updates are
handled asynchronously with respect to the enclave and do
not require the guest to pause while the hypervisor computes
a new configuration. The hypervisor is only invoked after the
configuration change has been made, so that it can ensure
that the change is activated. Synchronization and consistency
issues are managed by the controller module and higher level
interfaces, which we describe next.

Controller: Each Covirt hypervisor is managed by the
controller module integrated with the master control process,
which is responsible for managing inter-enclave coordination,
resource assignment, and resource sharing. Thus, the controller
module can hook into the control paths that manage the
system-wide hardware configuration. The Covirt controller
intercepts resource management events and translates them
into policy modifications that need to be applied for every
affected enclave. These policy updates are then delivered to
a kernel-level component that translates them into hardware
configurations.

Configuration modifications are performed by the controller
by directly modifying the hardware-level data structures as-
sociated with the co-kernel’s virtualization context. Once a
configuration change has been made, the hypervisor is notified
in case it needs to reload the virtualization context or flush
any caches, such as the TLB. The controller is responsible for
maintaining consistency between the co-kernel OS/R’s view of
usable resources and the active hypervisor configuration. This
is done by blocking any change to the actual OS/R resource
assignment until the resources have been either mapped or

unmapped in the hypervisor context.

C. Implementation

The Covirt control module is implemented as an extension
to the Hobbes OS/R framework. When enabled, it places a
series of callback routines into various locations within the
Hobbes infrastructure in order to capture notifications when
resource management operations are performed. In addition,
the control module includes a kernel-level component that
is embedded into the Pisces kernel module. The userspace
control module piggy-backs on the Pisces kernel ABI by
adding a new set of ioctl commands that can be used to
pass configuration update information into the kernel. Upon
receiving these events, the Covirt kernel module identifies the
specific hardware resources that are being operated on and up-
dates the co-kernels hypervisor configuration. In addition, the
kernel-level extensions are responsible for handling activation
of Covirt during enclave initialization through a modification
of the enclave boot procedure.

The Covirt hypervisor is written in a combination of C and
x86 assembly, and operates using a minimal execution envi-
ronment. Ideally the Covirt hypervisor would only initialize
the local CPU virtualization context, jump into the co-kernel
initialization routines, and never run again. However, there are
situations that require invocation of the hypervisor, so Covirt
contains enough of an execution context to support simple exit
and event handling. The context is as lightweight as possible
and provides the bare minimum of capabilities. For example,
there is no support for dynamic memory allocation and Covirt
relies on a small, 8KB stack that is preallocated by the control
module. In addition, each hypervisor context only supports a
single CPU core and is unaware of other hypervisor instances
managing other enclave CPUs. This is achieved by replicating
the hypervisor context (code, data, and hardware state) for each
CPU core managed by Covirt into isolated memory locations.
The hypervisor is responsible for invoking the local CPU’s
virtualization (VMX) instructions, and managing the hardware
data structures containing the guest’s Virtual Machine Control
Structure (VMCS). This minimizes complexity but does not
interfere with topology or other underlying hardware informa-
tion, appearing transparent to the OS and applications.

Initializing Covirt: Covirt repurposes Pisces’ existing
enclave initialization procedure by interposing its hypervisor
into an enclave’s CPU boot process. Instead of booting directly
into a co-kernel OS/R, Pisces instead boots into the Covirt
hypervisor, which handles the virtualization hardware setup
before directly invoking the actual co-kernel. It should be
noted that this process is entirely transparent to the co-kernel
OS/R, because Covirt configures the virtualization context to
mirror the hardware state that would have resulted if the co-
kernel had been booted normally by Pisces. Specifically, Covirt
sets up the VMX guest configuration to launch at the co-
kernel’s start address as if it was coming from the Pisces
trampoline code. This includes launching the VM directly
into 64-bit long mode with pre-configured, identity mapped
page tables and segmentation tables. The VMX hardware

configuration is written by the controller module before the
CPU is booted, allowing the hypervisor to simply load the
pre-configured VMCS onto the local CPU core and perform
a VM launch operation.

In Pisces, initial enclave configuration information is passed
to a co-kernel via a boot parameter structure stored in memory.
The address of this structure is passed to the co-kernel by the
trampoline code, and contains the assigned hardware config-
uration, as well as several communication channels used for
coordination between the co-kernel OS/R and master control
process. Covirt replaces the standard boot parameter structure
with a new, specialized structure used by the hypervisor.
The Covirt boot parameters contain the VM configuration
information, a minimal communication channel used as a
command queue, and a pointer to the unmodified Pisces boot
parameter structure used by the co-kernel. At VM launch, the
address of the original Pisces boot parameters are passed to
the co-kernel OS/R via register.

Hypervisor Coordination: As stated previously, certain
resource configuration changes require that the hypervisor up-
date the local virtualization context to keep it consistent. These
update notifications are implemented using a shared memory
command queue included inside the Covirt boot parameter
structure. Commands are synchronous and are always invoked
directly by the controller module, with pending commands
signaled using NMI IPIs. NMIs are used in order to avoid
IPI number conflicts that would in turn require virtualization
of the interrupt vector space in the hypervisor. By using
NMIs, Covirt is able to provide direct IRQ vector mappings
between the hardware and the co-kernel OS/R. Notably, not
all configuration changes require hypervisor coordination. This
is because the controller module retains access to the data
structures of the co-kernel’s virtualization context, and in many
cases can update those data structures directly. We will discuss
this in more detail when we cover Covirt’s memory protection
features, but the benefit is that only state that might be cached
by the local co-kernel CPU needs to be synchronized via the
command queue.

Covirt’s approach allows configuration changes to be made
asynchronous with respect to the enclave’s execution. In other
words, Covirt can update the underlying virtual hardware
configuration while the enclave continues to run in the virtual
context. This is safe because the co-kernel OS/R is always
explicitly notified whenever a configuration change is made,
which follows directly from the zero-abstraction approach
we have taken. To maintain consistency between the enclave
OS/R’s internal hardware mappings and the underlying virtual
hardware configuration, Covirt orders the operations such that
accesses to hardware is only done after the virtual mappings
are fully synchronized. For resource assignment, this means
that the enclave OS/R is only notified of new hardware
resources after those resources have been mapped into the
virtualization context, and conversely resource reclamation
only occurs after those resources have been fully unmapped
by the hypervisor. As a high level example, this means that if
one co-kernel process is blocked waiting on a shared memory

mapping request, other processes can continue to run while
the memory is mapped into the virtualization context in the
background, and the blocked process will only return once the
virtualization configuration has been successfully completed.

Memory Mapping: Memory is the primary resource
Covirt is designed to protect, as (based on our experience)
memory mapping and access bugs are the cause of the ma-
jority of co-kernel errors. Covirt provides memory protection
through the use of nested page tables (or EPTs in the Intel
nomenclature). When memory protection is enabled, the EPTs
are created at enclave initialization time with an identity
map of the memory regions allocated for that enclave. All
EPT entries are mapped with full access permissions, and
access violations occur only when an enclave tries to evaluate
a memory address that is outside of its assigned memory
regions. All EPT access violations are considered abort class
errors and result in the termination of the co-kernel by the
Covirt hypervisor. For further optimization, contiguous mem-
ory pages are coalesced into large (2MB) and giant (1GB) EPT
page mappings whenever possible. Finally, it should be noted
that while enabling memory protection features is optional in
Covirt, many other protection features rely on it.

In co-kernel architectures, memory tends to be a very
dynamic resource both at the OS/R and application levels.
At the OS/R level, shared memory regions are used exten-
sively to communicate and coordinate with other OS/Rs on
the system. At the application layer, shared memory and
shared address spaces that span OS/R boundaries are used to
enable such things as application composition, low overhead
data exchange, and remote system call invocation via proxy
processes. As a result, shared memory regions are created and
destroyed with a significant amount of frequency during an
enclave’s execution. Existing co-kernel architectures provide a
large degree of support for cross OS/R memory sharing, often
relying on multiple APIs to address specific needs. In order
to provide seamless integration with co-kernel architectures
Covirt must support each one. In the context of the Hobbes
OS/R environment this support boils down to integrating with
two control paths: the Hobbes memory management service
and the XEMEM shared memory system.

While the mechanics of both Hobbes and XEMEM are
described elsewhere [10], [19], they both result in the need
to transmit memory lists of page frame information to a co-
kernel OS/R to establish/destroy the memory mappings inside
the co-kernel’s context. The Covirt control module monitors
these operations and intercepts the page information before it
is transmitted to the co-kernel OS/R, at which point the Covirt
control module updates the enclave’s EPT mappings to reflect
the updated memory configuration. On mapping operations
(when the co-kernels visible memory is being expanded), the
control module returns immediately after modifying the EPT
mappings, allowing the Pisces framework to complete the
transmission of the page frame list to the co-kernel. The co-
kernel is then able to update its internal memory map, at which
point the memory will be accessible via a nested page table
walk. For unmapping operations (shrinking the co-kernel’s

memory map), the operations proceeds in a similar fashion,
with Pisces transmitting a list of page frames that need to be
removed from the co-kernels memory map. In this case, Covirt
intercepts the operation after the page frame list has been
transmitted and acknowledged by the co-kernel, but before a
completion notification is passed to the Hobbes management
layer. At this point the Covirt control module removes the
requisite pages from the EPT mapping. However, instead of
returning immediately, in this case the control module issues a
memory update command to the Covirt hypervisor indicating
that a change event occurred. This causes the enclave’s CPU
cores to trap into the hypervisor context so that they can flush
their local TLBs. After the command has been completed
on each CPU of the enclave, Covirt returns and continues
the unmapping procedure by notifying the Hobbes resource
manager that the memory has been released.

IPI Protection: The other significant resource protected
by Covirt is the Inter-Processor Interrupt (IPI) vector space.
Co-kernels typically have extensive reliance on IPI transmis-
sion as a means of providing direct notifications between both
OS/R and application components. In Hobbes, per-core IPI
vectors are a globally allocatable application resource, and
provide low overhead signaling across OS/R boundaries. Due
to their scale of use and dynamic allocatability, bugs due to
errant or misconfigured IPI operations are another significant
source of errors (again based on our experience). IPI-based
errors can manifest either through superfluous notifications
indicating events that did not occur or interference with device
driver operations by mimicking hardware level interrupts.
Covirt provides optional support for protecting co-kernels
from IPI errors by virtualizing and masking IPI transmission
operations originating from an enclave’s OS/R.

IPI protection is implemented using the APIC virtualization
(VAPIC) features provided by VMX. This allows the Covirt
hypervisor to intercept all IPI transmission operations by trap-
ping write operations to the APIC ICR register. The hypervisor
is then able to compare the destination CPU and vector against
a whitelist in order to verify that the IPI operation is permitted,
and any errant IPIs are simply dropped by the hypervisor.
IPI protection is implemented in one of two ways dependent
on the virtualization capabilities of the hardware. The first
approach relies on fully virtualizing the APIC and trapping
and emulating the complete range of IPI operations. One side
effect of this approach, however, is that VMX requires that all
incoming interrupts trigger VM exits, resulting in increased
IPI handling latencies.

The second approach leverages Posted Interrupt Vector
(PIV) support on modern CPUs. Posted interrupts work by
registering an in-memory vector bitmap with a guest’s VMCS,
which is used to indicate all interrupt vectors that are currently
pending. In addition, PIV requires the registration of a single
IPI vector with the VMCS that will be used to notify the
hardware when a vector has been added to the bitmap. With
PIV, IPI delivery is handled entirely by the hardware and no
longer requires exits for every incoming IPI. However, while
PIV allows exitless IPIs, it still requires exits for all external

interrupt generated by hardware devices. For the most part,
this is ameliorated since most co-kernel approaches offload
device driver operations to a general purpose OS/R via system
call forwarding. However, there are some hardware interrupts
that must be handled locally (notably, the local APIC timer),
and these still require emulation. But again this is ameliorated
by the fact that timer interrupts have long been a target of
optimization in LWK architectures and their use is usually
minimized.

V. EVALUATION

Covirt’s protection features were designed based on our
previous experiences in developing and running co-kernel
frameworks. One of the main sources of errors we have
experienced with Pisces comes from consistency issues in the
shared state between the co-kernel and host kernel. Sources
of these inconsistencies included bugs in rarely used error
handling paths, changes to semantics across interface versions,
and trivial coding mistakes during the development process
that nonetheless were difficult to diagnose due to causing
node crashes. Covirt was explicitly designed to catch these
errors before they were able to cause system level faults
or corrupt other kernel instances on the node, and provide
graceful fault handling that preserved the correctness of the
host kernel. Anecdotally, Covirt is able to protect against a
range of notorious bugs we dealt with during the development
of Pisces. In one instance, a bug in an XEMEM cleanup
path resulted in stale shared memory regions persisting in the
co-kernel state for a short time window after they had been
reclaimed by the host OS. This bug caused extremely rare
system crashes that were only seen when running Pisces at
large scale, and could not be reproduced in local development
environments. Covirt would have made diagnosing the error
substantially easier, as it would have (1) prevented the bug
from taking down the entire node, and (2) provided the ability
to collect debugging traces when it did occur.

We have also seen the beneficial capabilities of Covirt more
directly during the development of Covirt itself. Developing
Covirt resembled the early work on porting the Kitten LWK
to Pisces, as it required working with the early hardware
initialization process and correctly mapping in partitions of
the node’s hardware resources. The original Pisces effort
required the use of full system virtualization tools (QEMU
and VMWare) to deal with the frequency of system crashes.
This required a substantial amount of effort later on as
we moved to physical hardware to reconcile the differences
between emulated and real hardware. With Covirt we were
able to move to real hardware almost immediately in the
development process, and so avoided all of the problems
related to transitioning from virtual to physical systems. The
same benefits are present in our efforts to port other kernel
architectures (such as the Nautilus Aero-kernel) to the Pisces
framework, as Covirt provides the capability to work directly
on the target hardware from the start and is able to contain
errors from propagating outside of the co-kernel itself. Based
on our experiences with Covirt so far, we can anecdotally say

Benchmark Name Version Parameters
Selfish Detour [20] 1.0.7 None

STREAM 5.10 None
RandomAccess OMP 10/28/04 25

HPCG [21] Revision 3.1 104 104 104 330
MiniFE [21] 2.0 nx 250 ny 250 nz 250

LAMMPS [22] 3 Mar 2020 None

TABLE I: Benchmark Versions and Parameters

that, in general, Covirt is able to reduce complex debugging
efforts from weeks to days and porting efforts for new co-
kernel architectures from months to weeks.

We evaluated our implementation of Covirt on a modern
Intel system using a set of microbenchmarks, HPC mini-apps,
and the LAMMPS multi-physics application. Parallelism was
achieved with the OpenMP library. The specific benchmark
details are provided in table I. All benchmarks were run
on a system with two Xeon E5-2603 v4 1.70GHz CPUs in
a dual-socket configuration, with 64GB of DDR4 2667MHz
memory. All benchmarks were run ten times in a co-kernel
environment configured with 14GB of memory spread across
the two NUMA zones.

A. Microbenchmarks

 0

 10000

 20000

 30000

 40000

 50000

D
et

ou
r

du
ra

tio
n

(c
yc

le
s)

EPT, VAPIC, PIV

Fig. 3: Selfish-Detour benchmark results
We first evaluated the impact of Covirt on the underlying

noise profile of a co-kernel environment. This was done using
the Selfish-Detour benchmark that detects sources of interrup-
tions on application execution. This and other microbench-
marks were all run on a single-core hardware configuration.
For this experiment we evaluated multiple configurations of
Covirt’s enabled various protection features. The result for all
features enabled is shown in Figure 3. The different configu-
rations show little variation in their noise profiles, indicating
that hardware level virtualization does not inherently increase
system noise.

We next evaluated the overheads Covirt adds to resource
configuration changes by measuring XEMEM attach opera-
tions. Operation latencies were measured by sampling the co-
kernel’s hardware TSC counter immediately before and after
an XEMEM attach operation. We evaluated the latencies for
various memory region sizes (up to 1024MB) with Covirt
both enabled and disabled. The results are shown in Figure 4.
Covirt imposes little to no overhead for this range of region
sizes. Considering that the code paths between the Covirt
and non-Covirt configurations are identical, this suggests the
mapping operation is either masked by other operations or is
insignificant compared to other operations.

32 64 128 256 512 1024
0

20

40

60

Mapped Region Size (MB)

M
ill

io
ns

of
C

yc
le

s
Ta

ke
n

Native
With Covirt and EPT
With Covirt, no features

Fig. 4: XEMEM Attach Delay

Finally, we evaluated the impact of various Covirt config-
urations on raw memory performance using the STREAM
and RandomAccess memory microbenchmarks, shown in Fig-
ure 5(a) and 5(b). For STREAM, performance across all
configurations of Covirt was comparable to native performance
with no noticeable overheads. RandomAccess did exhibit some
performance degradation with Covirt almost certainly due to
EPT table lookups. However the overhead did not exceed
more than 3.1% in the worst case (memory + IPI protection
enabled), and adding memory protection only added overhead
of 1.8%.

Native No features EPT VAPIC PIV

0

10

20

C
op

y
G

B
/s

(a) STREAM

0

0.5

1

M
U

P/
s

(b) RandomAccess

Fig. 5: STREAM (a) and RandomAccess (b) benchmark
performance comparison

1/1 4/2 4/1 8/2

2,000

4,000

6,000

Machine Configuration

M
FL

O
P/

s

Native No features
EPT EPT, VAPIC
EPT, VAPIC, PIV

Fig. 6: MiniFE scaling over CPU-core/NUMA-zone layouts

B. Mantevo Mini-apps

We next evaluated Covirt using 2 mini-apps: HPCG and
MiniFE from the Mantevo Suite. MiniFE is a proxy app
that approximates an unstructured implicit finite element or
finite volume application. HPCG is a conjugate gradient solver

1/1 4/2 4/1 8/2

0.8

0.9

Machine Configuration

G
FL

O
P/

s

Native No features
EPT EPT, VAPIC
EPT, VAPIC, PIV

Fig. 7: HPCG scaling over CPU-core/NUMA-zone layouts

commonly used for HPC system benchmarking. For these
experiments we configured Covirt with various protection
features enabled and scaled the enclave environment across
several hardware layout configurations. We scaled the en-
clave’s resources from a single core up to 8 cores split evenly
between 2 NUMA domains. The amount of memory assigned
to the enclave was kept constant at 14GB, but the memory
was divided evenly between NUMA zones as the number of
cores was increased, also split evenly across domains. The
evaluated hardware configurations consisted of (1) a single
core enclave running entirely in one NUMA domain, (2) a
4-core enclave split evenly across two NUMA domains, (3) a
4-core enclave running in a single NUMA domain, and (4) an
8-core enclave split evenly across two NUMA domains. The
results for MiniFE are shown in Figure 6 and for HPCG in
Figure 7.

From our evaluation, we see that Covirt imposes little to
no overhead on MiniFE across all configurations. Due to its
design, MiniFE does not require significant amounts of inter-
process coordination and so the inclusion of IPI protection
features does not have a noticeable impact on application per-
formance. Moreover, the addition of memory protection like-
wise does not introduce noticeable performance degradation.
In the case of HPCG, Covirt does impose minor overheads, but
they stay consistent across Covirt feature configurations and
varying hardware layout configurations. This implies that there
is a baseline performance penalty imposed by the introduction
of virtualization features, that stays roughly constant regardless
of how those features are configured. Regardless, in the worst
case, Covirt only degrades HPCG’s performance by 1.4%.
These results show that not only does Covirt impose minimal
overheads for realistic workloads on a single core, but also
that its protection features do not impose significant overheads
to inter-core communication and coordination operations that
impact application performance.

C. LAMMPS

Finally, we evaluated the performance of the LAMMPS
multi-physics application across multiple configurations of
Covirt. For the LAMMPS experiments we used an 8 core
enclave split across 2 NUMA domains. The experiments
consisted of different workloads, executed using the default
run scripts shipped with the application. Figure 8 reports the
results as the loop times calculated during LAMMPS execution

Native No features EPT VAPIC PIV

0

2

4

L
oo

p
Ti

m
e

(s
)

LJ

0

1

2

L
oo

p
Ti

m
e

(s
)

Chain

0

20

40

60

L
oo

p
Ti

m
e

(s
)

Rhodo

0

5

10
L

oo
p

Ti
m

e
(s

)

eam

0
0.2
0.4
0.6
0.8
1

L
oo

p
Ti

m
e

(s
)

Chute

Fig. 8: LAMMPS benchmark performance comparison

(lower is better). The results show that for the LJ, EAM,
and chain benchmarks all configurations have similar perfor-
mance. Chute shows the most sensitivity to the protections
being enabled, with the native and no-feature configurations
performing the best. Similar to the earlier results, LAMMPS
shows that the overheads imposed by Covirt are minimal.

VI. CONCLUSION

We have presented Covirt, a novel approach to resource
protection and fault isolation for co-kernel OS/Rs based on
hardware virtualization capabilities. Covirt’s split architecture
approach allows the use of a minimalistic hypervisor to
be interposed underneath a running kernel in an enclave,
which enforces hardware access policies and so achieves
fault isolation. Our approach allows for seamless integration
with existing co-kernel software stacks, and supports dynamic
configuration changes needed by tightly integrated cross OS/R
applications running on top of co-kernel runtimes. Further, we
show these protections introduce only minimal performance
overheads, and in many cases Covirt’s protection comes at no
overhead due to the capabilities of the underlying hardware
virtualization features.

REFERENCES

[1] J. Ouyang, B. Kocoloski, J. R. Lange, and K. Pedretti, “Achieving
Performance Isolation with Lightweight Co-Kernels,” in Proceedings
of the 24th International Symposium on High-Performance Parallel and
Distributed Computing, 2015.

[2] B. Gerofi, M. Takagi, and Y. Ishikawa, “IHK/McKernel,” in Operating
Systems for Supercomputers and High Performance Computing, 2019.

[3] R. W. Wisniewski, T. Inglett, P. Keppel, R. Murty, and R. Riesen, “mOS:
an architecture for extreme-scale operating systems,” in Proceedings of
the 4th International Workshop on Runtime and Operating Systems for
Supercomputers, 2014.

[4] B. Kocoloski, J. Lange, K. Pedretti, and R. Brightwell, “Hobbes: A
Multi-kernel Infrastructure for Application Composition,” in Operat-
ing Systems for Supercomputers and High Performance Computing.
Springer, 2019, pp. 241–267.

[5] A. Hori, M. Si, B. Gerofi, M. Takagi, J. Dayal, P. Balaji, and Y. Ishikawa,
“Process-in-process: techniques for practical address-space sharing,” in
Proceedings of the 27th International Symposium on High-Performance
Parallel and Distributed Computing, 2018.

[6] B. Gerofi, R. Riesen, R. W. Wisniewski, and Y. Ishikawa, “Toward
Full Specialization of the HPC Software Stack: Reconciling Application
Containers and Lightweight Multi-Kernels,” in Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Super-
computers ROSS, 2017.

[7] A. Dubey, P. H. J. Kelly, B. Mohr, and J. S. Vetter, “Performance
Portability in Extreme Scale Computing (Dagstuhl Seminar 17431),”
Dagstuhl Reports, vol. 7, no. 10, pp. 84–110, 2018.

[8] B. Gerofi, M. Takagi, A. Hori, G. Nakamura, T. Shirasawa, and
Y. Ishikawa, “On the Scalability, Performance Isolation and Device
Driver Transparency of the IHK/McKernel Hybrid Lightweight Kernel,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), 2016.

[9] J. Lange, K. Pedretti, T. Hudson, P. Dinda, Z. Cui, L. Xia, P. Bridges,
A. Gocke, S. Jaconette, M. Levenhagen, and R. Brightwell, “Palacios
and Kitten: New high performance operating systems for scalable vir-
tualized and native supercomputing,” in IEEE International Symposium
on Parallel Distributed Processing (IPDPS), 2010.

[10] B. Kocoloski and J. Lange, “XEMEM: Efficient Shared Memory for
Composed Applications on Multi-OS/R Exascale Systems,” in Proceed-
ings of the 24th International Symposium on High-Performance Parallel
and Distributed Computing, 2015.

[11] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin,
“Flexible IO and integration for scientific codes through the adaptable
IO system (ADIOS),” in Proceedings of the 6th international workshop
on Challenges of large applications in distributed environments, 2008.

[12] D. Otstott, L. Ionkov, M. Lang, and M. Zhao, “TCASM: An asyn-
chronous shared memory interface for high-performance application
composition,” Parallel Computing, vol. 63, pp. 61–78, 2017.

[13] S. M. Kelly and R. Brightwell, “Software Architecture of the Light
Weight Kernel, Catamount,” in Proceedings of the 2005 Cray User
Group Annual Technical Conference, 2005.

[14] S. Lankes, S. Pickartz, and J. Breitbart, “HermitCore: a Unikernel for
Extreme Scale Computing,” in Proceedings of the 6th International
Workshop on Runtime and Operating Systems for Supercomputers, 2016.

[15] C. Weinhold, A. Lackorzynski, J. Bierbaum, M. Küttler, M. Planeta,
H. Härtig, A. Shiloh, E. Levy, T. Ben-Nun, A. Barak et al., “FFMK:
A Fast and Fault-Tolerant Microkernel-Based System for Exascale
Computing,” in Software for Exascale Computing-SPPEXA 2013-2015.
Springer, 2016.

[16] Y. Park, E. Van Hensbergen, M. Hillenbrand, T. Inglett, B. Rosenburg,
K. D. Ryu, and R. W. Wisniewski, “FusedOS: Fusing LWK Performance
with FWK Functionality in a Heterogeneous Environment,” in IEEE
24th International Symposium on Computer Architecture and High
Performance Computing, 2012.

[17] K. Cheng, S. Doddamani, T.-C. Chiueh, Y. Li, and K. Gopalan, “Di-
rectvisor: virtualization for bare-metal cloud,” in Proceedings of the 16th
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution
Environments, 2020.

[18] Y. Dai, Y. Qi, J. Ren, Y. Shi, X. Wang, and X. Yu, “A lightweight
VMM on many core for high performance computing,” in Proceedings
of the 9th ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments, 2013.

[19] B. Gerofi, Y. Ishikawa, R. Riesen, and R. W. Wisniewski, Operating Sys-
tems for Supercomputers and High Performance Computing. Springer,
2019, vol. 1.

[20] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj, “Bench-
marking the effects of operating system interference on extreme-scale
parallel machines,” Cluster Computing, vol. 11, no. 1, pp. 3–16, 2008.

[21] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and
R. W. Numrich, “Improving Performance via Mini-applications,” Sandia
National Laboratories, Tech. Rep. SAND2009-5574, 2009.

[22] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of computational physics, vol. 117, no. 1, pp. 1–19.

