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Abstract

One of the principal barriers in developing accurate and tractable predictive models in turbulent flows with a large number
of species is to track every species by solving a separate transport equation, which can be computationally impracticable. In
this paper, we present an on-the-fly reduced order modeling of reactive as well as passive transport equations to reduce the
computational cost. The presented approach seeks a low-rank decomposition of the species to three time-dependent components:
(i) a set of orthonormal spatial modes, (ii) a low-rank factorization of the instantaneous species correlation matrix, and (iii) a set
of orthonormal species modes, which represents a low-dimensional time-dependent manifold. Our approach bypasses the need
to solve the full-dimensional species to generate high-fidelity data — as it is commonly performed in data-driven dimension
reduction techniques such as the principle component analysis. Instead, the low-rank components are directly extracted from
the species transport equation. The evolution equations for the three components are obtained from optimality conditions
of a variational principle. The time-dependence of the three components enables an on-the-fly adaptation of the low-rank
decomposition to transient changes in the species. Several demonstration cases of reduced order modeling of passive and
reactive transport equations are presented.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Tractable numerical simulation of passive and reactive species transport in turbulent flows has been the subject
of intense research in the past few decades [1] due to its importance in a diverse range of engineering and
scientific applications. See for example [2-10]. High fidelity numerical simulations using direct numerical/large-
eddy simulation (DNS/LES) of turbulent reactive flows with a large number of species is cost prohibitive [11].
Detailed kinetic models usually contain hundreds of species and thousands of reactions [12-15]. Each species
requires solving a transport equation, i.e., a partial differential equation (PDE). The cost of solving a large number
of transport PDEs on a DNS/LES grid can be prohibitive [16]. Moreover, the memory and input/output (I/O) cost
of storing a large number of species imposes severe limitation on the number of species that can be simulated. For
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example, currently I/O limitations allow for the storage of the species at every 400 simulation time steps in a DNS of
turbulent combustion, while intermittent phenomena such as ignition kernel occurs in the order of 10 simulation time
steps [17]. The cost of I/O and storage continues to grow in comparison to the cost of floating point operations
in the future high performance computing architectures and this trend will impose even more stringent I/O and
memory restrictions [18].

To reduce the computational cost of large scale complex turbulent reactive simulations, a vast array of techniques
have been developed with the aim of reducing the number of species and/or reactions. Skeletal reduction, for
example [1], finds an optimized subset of a detailed model by eliminating unimportant species and reactions.
The skeletal reduction is often performed for zero-dimensional reactors and based on different criteria, e.g.
sensitivity analysis [19-22], reaction flux analysis [23-25], etc. [26,27]. Other reduction techniques include lumping
methods [28,29] and time-scale analysis techniques e.g. quasi steady state approximation [30], partial equilibrium
approximation [31], rate controlled constrained equilibrium [32], computational singular perturbation [33,34] and
intrinsic low dimensional manifold [35].

Reduction schemes based on principle component analysis (PCA) [36—40] is another strategy to enable realistic
high fidelity simulations of turbulent flows with many species. The PCA-based reductions belong to data-driven
reduction techniques, in which a reduced composition space is obtained by performing PCA on a DNS/LES dataset
and then solve transport equations for the reduced principal components. In the PCA workflow, one must at least
solve one full-dimensional DNS/LES a priori and store the data. This step is done offline and one of its implications
is that the PCA-based reductions are fine-tuned for a target problem and in general it is difficult to guarantee that
the reduced composition space would be accurate if operating conditions such as boundary conditions, geometry,
Reynolds number and Mach number change. This motivates for an on-the-fly reduction scheme.

Recently, new model-driven dimension reduction techniques have been introduced in which the low-rank structure
is extracted from the model. Dynamically orthogonal (DO) [41], bi-orthogonal (BO) [42] and dynamically bi-
orthonormal decompositions (DBO) [43] are model-driven stochastic reduced-order modeling techniques. For linear
deterministic systems, optimally time-dependent (OTD) reduction was introduced [44]. In all of these techniques,
closed-form (partial) differential equations for the evolution of the low-rank structures (modes) are derived.
Leveraging the mathematical elegance of these techniques, for some cases, numerical and dynamical system analyses
are used to shed light into their performance. See, for example, [45] for the equivalence of DO and BO; [43] for the
equivalence of DBO with BO/DO; [46,47] for a theoretical error bounds for the approximation error; [48] for the
exponential convergence of » OTD modes to the » most dominant Lyapunov vectors of a dynamical system; [48]
for a variational principle for deriving data-driven DO evolution equations.

In this paper, we present a new DBO formulation for on-the-fly low-rank decomposition of species transport
equation. In particular, we present a novel variational principle for the extraction of the components of the low-
rank decomposition. The reduction is achieved by extracting instantaneous correlations between different species
on the fly and directly from the species transport equation without the need to generate data. We demonstrate
the performance of the presented method for three cases. The remainder of this paper is organized as follows:
In Section 2, we present a variational principle for the determination of the DBO components. In Section 3, we
illustrate the performance of the presented method by solving passive species transport equations with one thousand
species. We also apply the presented method to solve incompressible and compressible reactive flows. Finally, a
brief summary of the present work is presented in Section 4.

2. Methodology

2.1. Definitions and notation

Our target problem is the passive/reactive transport equation given by:
P
W+(v-V)@:V-(V@a)—l—S(@,p,T), (1)

and augmented with appropriate initial and boundary conditions. Here, x € D C R? is the spatial coordinate,
where d = 1,2 or 3 is the dimension of the physical domain and 7 is time. In Eq. (1), v is the velocity vector,
D = [¢1(x, 1), Pa(x, 1), ..., ¢n(x,1)] is the species concentration, and S(P, p, T') is the source term, where p is
the density and 7 is the temperature. For clarity in the exposition, we use the guasimatrix notation as introduced
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in [49], in which one of the matrix dimensions, representing the continuous space, is shown with oo and the other
dimension is defined with an integer. Following this notation ®(x, t) € R**"s and S(®, p, T) € R**"s. Moreover,
o = diag{1/ReScy, 1/ReScy, ..., 1/ReScy,} is a diagonal matrix of size n; X ng at each physical point x, where,
Re is the Reynolds number, and Sc¢; is the Schmidt number of the ith species. We derive the equations for the
generic case where a = a(7 (x, t)) is space—time variable due to its dependence to temperature. The term (v-V) @ is
interpreted as a quasimatrix of size coxn,: (v-V)® = [(v- V)1, (v-V)y, ..., (V- V), ]. In case of S(P, p, T) =0,
Eq. (1) represents the passive transport equation, and for incompressible flow the source term is only a function of
species, i.e. S = S(P).
We define an inner product in the spatial domain between two fields u(x) and v(x) as:

(u(x), v(x)) = /D u(x)v(x)dx, 2
and the L? norm induced by this inner product as:
lu)|, = (), u(x)>%. 3
The Frobenius norm of a quasimatrix A(x) = [a;(x), ax(x), ..., a,(x)] € R**" is defined as:
A=Y /D a2 (x)dx. 4)
i=1

We also define the inner product between quasimatrices U(x, t) € R®*™ and v(x, t) € R*®*" as:
S@) = (Ux, 1), V(x, 1),

where S(r) € R™*" is a matrix with components S;;(¢) = <u,»(x, 1), vilx, t)), where v;(x, t) is the jth column of
V(x, t). Following the above definition, we observe that (URU, V> = RIT,(U, V> and (U, VRV> = (U, V)RV for any
Ry € R™™ and Ry € R™*".

2.2. Dynamically bi-orthonormal decomposition

Our goal is to solve for a low-rank decomposition of &(x, ¢) instead of solving Eq. (1). To this end, we consider
the DBO decomposition for the full species concentration matrix as follows:

D(x, 1) =Y wix, N T;(0y] (1) + Ex, 1), (5)
j=1i=1
where
UCx, 1) = [ur(x, 0) [ uae, 1) | oo | (x, )], (6a)
Y(0) =@ ] y2(0) | oo | 0], (6b)

Here, r < ny is the reduction size, U(x, t) € R**” is a quasimatrix whose columns are orthonormal spatial modes,
2(t) € R™" is a reduced factorization of the correlation matrix, Y (z) € R™*" is the matrix of orthonormal species
modes and E(x,t) € R>®*" is the reduction error (Fig. 1). The key observation about the above decomposition,
given by Eq. (5) is that all three components are time dependent. As we explain, the time dependence of DBO
components enables the decomposition to adapt on the fly to changes in ¢(x, ¢). Orthonormality of spatial modes
and species modes implies that:

(uiCx, 1), uj(x, D) = 8, (7a)
Y] @)y;() = 8ij. (7b)

The schematic of the DBO decomposition is shown in Fig. 1. In the cases, where @(x, t) represents mass fraction,
ny, — 1 species can be used as the mass fraction of one of the species can be computed from Y | ¢;(x, 1) = 1.
Moreover, it is possible to include temperature and pressure in DBO in a straightforward manner. However, to
maintain the generality of the presented approach for passive transport and incompressible reactive flow, we only
focus on the transport of n; species.
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Fig. 1. Schematic of dynamically bi-orthonormal decomposition of species. The species quasimatrix @(x,t) is decomposed to
Ux, )20 Y ()T, where U(x, 1) represents a set of orthonormal spatial modes, X'(¢) is a factorization of the low-rank correlation matrix
and Y (¢) is the matrix orthonormal species modes and it represents a low-dimensional time-dependent manifold. In the above decomposition,
ns represents the number of species, r is the rank of DBO and in the discrete representation oo will be replaced with the total number of
grid points.

There is a duality in the DBO decomposition, in which U is a low-rank basis in the physical domain and
analogously Y constitutes a low-rank basis in the species space. As we demonstrate, DBO closely approximates
the dominant instantaneous correlated structures in the species. To formalize this connection, we define the species
two-point correlation operator and its approximation by DBO as follows:

Clx,x',t) = (x, ) ', ) ~Ux, )XY YOEOTUK, )l =Ux,)CHUK, )T, (8)

where we have used the orthonormality condition Y (#)7 Y(¢#) = I. In the above equation, C(x, x’, 1) € R®**® is
the species two-point correlation operator. In the discrete representation, C(x, x’, t) is a matrix of size N by N,
where N is the total number of grid points, and C(t) = X(t) X ()T € R is the low-rank correlation matrix. This
shows that Y'(z) is a factorization of the symmetric positive matrix C(¢). As we demonstrate, the eigenvalues of
C(r) approximate the r largest eigenvalues of C(x, x', t).

2.3. Variational principle
In this section we present a variational principle whose optimality conditions lead to closed form evolution

equations for the components of the DBO decomposition. The variational principle is given by:

H AU, NENOY D)) ?

FUx, 1), £@1), Y (1) = >

—M(@)| €))

]:

subject to the orthonormality conditions of u;(x, ) and y;(#) modes given by Eqgs. (7a)—(7b). In Eq. (9), (.) =d()/ot
and M(@) is the right hand side of species transport equation: M(®) = —(v-V)®+V - (Voa)+ S(P, p, T). The
variational principle given in Eq. (9) seeks to minimize the difference between the right hand side of the species
transport equation and the time derivative of the DBO decomposition subject to the orthonormality constraints given
by Egs. (7a)—(7b). The control parameters are U, Y and 3. The orthonormality constraints can be incorporated into
the variational principle via Lagrange multipliers. To this end, we first take a time derivative of the orthonormality
constraints. This results in:

(l’.ti(-x9 t)» Mj(x, t)) + <ui(x7 t)’ M](x’ t)) = 09 (10)

¥ 0y (0) + ] ;) = 0. (1n

We denote ¢;;(t) = (u,-(x, 1), uj(x, t)) and 6;;(t) = y,.T(t))'zj(t). From Eqgs. (10) and (11), it is apparent that both

@(t) e R™" and O(t) € R™*" are skew-symmetric matrices, i.e. ¢’ (1) = —¢(t) and 87 (1) = —6(¢). By incorporating

the orthonormality constraints into the variational principle via Lagrange multipliers, the following unconstrained
optimization problem is obtained:

H AU (x, NZOY (")

ot

2

+)»ij((uhlf'ij>—<ﬁij)+)/ij(yiT).’j —0;)), (12)
f

GWU, 2, Y, A y)= — M(D)
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where A;; and y;; are the Lagrange multipliers for i, j =1, ..., r. In simple words, the variational principle seeks
to optimally update the DBO components given the change in the right hand side of the species transport equation
while preserving the orthonormality constraints. In Appendix A, derivations of closed form evolution equations for
U(x,t), X(t) and Y (¢) are provided from the first-order optimality conditions of the functional (12). The closed
form evolution equations of U(x, t), X(¢) and Y (¢) are as follows:

oUu

&7 =M@Y —U(U, M(DY)I™ + Uy, (13)

dx

o= (U, M(@)Y)—pX — X0, (14)

dy T -T

—=u-xy N M(®), U)T~T +Y6. (15)
As we show in Appendix B, any skew-symmetric choice for matrices 8 and ¢ leads to an equivalent DBO
decomposition. In this work, we consider the simplest choice of ¢ = 6 = 0. This choice lends itself to a

simple interpretation: the updates of the low-rank subspaces (U and Y) are orthogonal to the current subspace,
ie., (U LU ) =0and Y7Y = 0. This choice is referred to as dynamically orthogonal condition and it was also used
for the evolution of time dependent basis for the application of computing sensitivities [44,50] or stochastic reduced
order modeling [41,43,51]. We now replace M(®) with the right hand side of the species transport equation (Eq.
(1)) and use the DBO low-rank decomposition for species, i.e. ® = UXYT:

M) = - -VYVUEYT + V. (VUEYTa)+ S(UZYT, p, T). (16)

The projection of M(®) onto the space spanned by the species modes is obtained by multiplying the above equation
from right by matrix Y. This results in:

MY = - -VIUE +V - (VUZay)+ SUEYT, p, TY, A7)

where M(®)Y € R®*" and ay = YTaY € R"™ is the low rank diffusion matrix and for cases where « is a
function of x and 7, ey is computed at each physical point x and time ¢. Similarly, the projection of M(®) onto
the spatial modes is obtained by taking the inner product of M(®) with U from right:

(M(®),U)=-YE"((v- VU, U)+ (V- (VUEY o), U)+ (SULY", p, T), U), (18)

where we have used ((v- VYUXYT,U) = YE7((v - V)U, U). Substituting Eqs. (17) and (18) into Egs. (13)~(15)
yields:

U
Evolution of spatial modes (PDE): = = = [[[-@ YU+ V- (VUZay) 2™ +sya'], (19)
f 1U
dx
Reduced order model (ODE):  —= = —(U,(v-VYU)E +(U,V - (VU Zay)) + (U, SY), (20)
dY
Evolution of species modes (ODE): = = H[(V (VUXYTa), U) + (S, U)]Z’*T, 2D
1Yy

where for f(x) € R®*! and 7 € R%*!:

Hf=f—U(U,f) and Hz=z—YYTZ,
U 1y

are the orthogonal projections onto the complement of U and Y, respectively. In the above equations S =
SWUXYT, p, T). We make the following observations about Egs. (19)—(21):

1. The DBO decomposition has an on-the-fly built-in adaptivity to “chase” the low-rank subspace that the species
belong to. This can be realized by noting that the right hand side of the evolution equation of U, for example,
is equal to the orthogonal projection of Ry = M(®)Y X ~! onto the complement of U. This means that if
Ry is in the span of U, then Ry can be exactly expressed as a linear combination of U: Ry = UCy for
some Cy € R™. In that case, U = UCy — U<U, UCU> =UCy — U(U, U)CU = 0, where we have used
(U , U ) = I. However, when Ry is not in the span of U, the basis optimally evolves to follow the right hand
side. An analogous mechanism exists for the evolution of Y.
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2. The contribution of the convective terms to the evolution of Y is zero. This is because the convective term
((v VYUXYT, U) = YCy for Cy = ET((U - VU, U) € R is in the span of Y. Therefore, the projection
of YCy onto the complement of Y is zero. Similarly, for the special case of equal diffusivity coefficient, i.e.,
o] =op = --- = ay,, the contribution of diffusive term to Y is also zero. In this case, the nonlinear reactive
source term is the only reason that the reduced manifold (Y) evolves with time.

3. Eq. (20) is a reduced order model (ROM) obtained by the projection of the full-dimensional species transport
equation onto spatial and species modes.

4. The presented approach is intrusive and it requires the implementation of Eqgs. (19)—(21).

The approximation error is computed as the difference between the DBO reconstruction versus the full-rank
solution of the species. We use a relative error to measure the accuracy of DBO decomposition. The relative error
is defined as:

EW) =P, t) —Ux,.)Z0)YD)" | /| &Cx. 1) 1. (22)

where ®(x, t) represents the solution of the full-dimensional species transport equation.

There are two main distinctions between the stochastic DBO, which was recently introduced in [43], and Eq. (5)
that we highlight here: (i) Eq. (5) approximates deterministic fields (i.e., multiple species), whereas the stochastic
DBO decomposes a random field, in which the y; components are infinite-dimensional random processes. (ii) In the
stochastic DBO a Reynolds decomposition of the stochastic field is considered, i.e. the stochastic field is decomposed
to the mean and fluctuations and the stochastic DBO decomposition is considered only for the approximation of the
fluctuations. On the other hand, Eq. (5) does not consider a separate mean field. This simplifies the DBO evolution
equations significantly. Moreover, in this work, it is shown that the evolution equations for the DBO components
minimize the variational principle given by Eq. (12). The variational principle can facilitate further adjustments to
the DBO decomposition in a rigorous and unambiguous manner.

2.4. Computational cost

The main computational advantage of using DBO is that the transport PDE is solved only for r spatial modes
(Eq. (18)) as opposed to n, species in the full transport equation. The computational cost of evolving 3 and Y
is negligible as they are governed by low-rank ordinary differential equations (ODEs). Moreover, in the DBO
decomposition, the species are stored in the compressed form, i.e., matrices U, X and Y are kept in the memory as
opposed to their multiplication U XY, i.e., the decompressed form. The memory storage requirement is dominated
by U as Y and Y are low-rank matrices and their storage cost is negligible. Therefore, in comparison to the full
species transport equation, this results in the memory compression ratio of n;/r. As we show below, if care is taken,
it is possible to evolve the DBO components and not store the co x ng species quasimatrix in the decompressed form
at any point. Evidently, the same compression ratio is gained when storing the time-resolved DBO solution to the
disk, in which U, X' and Y are written to the disk and any species can be reconstructed from the DBO decomposition.
The memory and I/O savings are very important for the future high performance computing architecture, where
power restrictions impose stringent limitations on memory and I/O usage [18]. In this section we discuss how each
term in the right hand side of Eqgs. (19)—(21) can be computed. For brevity, we drop the dependence of S on p and
T.

o V. (VUXay): This term can be written as V - (VU XYay) = V - (Vf]) € R where U = UD and the
low-rank matrix D = Yay € R™*" can be computed point wise. This shows that computing this term requires
computing Laplacian of r field variables. This term is then utilized in Egs. (19) and (20).

e S(UXYT): This term can be computed in a loop over all grid points and when the species concentration at point
x* is required it can be computed as: S(®(x*, 1)) = S(U(x*, )X ()Y (t)T), where U(x*, ) X ()Y (t)T € R
is the vector of species concentration that is utilized in detailed kinetics. Again, the matrix S(UXYT) € R®*"s
never have to be stored as only the projection of S onto Y and U, i.e., SY € R**" and <S , U ) € R™>" are
needed in the DBO equations. Both (S, U ) and SY need to be stored and they can be computed as a running
summation and they can be stored in the same loop where S is calculated.

e V- (VUXYTa): Similar to the computation of S, this term can be computed for each point x*. This requires
the computation of the Laplacian of n, field variables. However, only the projection of this term onto U
((V -(VUXYTa), U )) appears in the DBO equations, and this term can be computed as a running summation
in the same loop over grid points.
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2.5. Canonical representation

The DBO spatial and species modes can be ranked based on “energy” in the second norm sense. The ranking
can be achieved by performing a singular value decomposition (SVD) of X'(¢):

2(t) = Ry E0Ry (1), (23)
where 2([) is a diagonal matrix that contains the ranked singular values: &1(t) > 6,(t) > --- > 0,(t) and Ry(¢)
and Ry () are orthonormal matrices that can be used to rotate U and Y as follows:

Ux,t) = U(x, Ry (1), (24a)

Y(1) = Y(t)Ry(2). (24b)

The components (U(x,1), f?(t), Y(1)} represent the DBO decomposition in the canonical form. We note that the
DBO in the canonical form and the form that is computed are equivalent: UXYT = UXYT. See Appendix B for
more details on equivalent decompositions. In any demonstration figures in this paper, the components of the DBO
decomposition are shown in the canonical form.

2.6. Static vs. time-dependent manifolds

In this section, we draw contrast between time-dependent manifolds extracted by DBO and the static manifolds
extracted from PCA. To this end, we write the DBO and PCA decompositions in the matrix form:

PCA decomposition: &(x,t) =~ Upca(x, t)Y,{CA, (25a)
DBO decomposition: &(x, 1) >~ Ul(x, NEDY ). (25b)

In the PCA decomposition, Ypcs € R" " represents the static manifold. In PCA, the full-dimensional spatiotempo-
ral species data is required in the form of: A = [@T (x*, t*)] € R">*" where x* and t* are selected points and times,
respectively and 7 is the total number of space—time points. The data species @(x, t) is obtained by a high-fidelity
simulation, e.g. DNS or from experiment. The matrix Ypc4 consists of the first r eigenvectors of the correlation
matrix: C = AAT € R™*"s associated with the r largest eigenvalues of C. An evolution equation for the principal
component Upca(x, t) is obtained by plugging the decomposition, given in Eq. (25a), into Eq. (1) and perform
the Galerkin projection onto Ypc4. There are several key differences between DBO and PCA decompositions:
(i) the PCA decomposition relies on high-fidelity data, i.e., one must commit to preforming a high-fidelity simulation
of a canonical problem with all species, or conducting an experiment and storing the high-dimensional data. That
may be a prohibitively expensive undertaking for problems with a very large number of species both in terms of
computation/experiment and storage requirements of the space—time resolved matrix A. On the other hand, the DBO
decomposition does not require data: it extracts the low-dimensional structure directly from the species transport
equation. In that sense, DBO eliminates the potentially expensive and offfine step of high-fidelity data generation that
is required in the PCA workflow. We note that the cost of data generation in PCA can be significantly reduced by
solving a much simpler problem than the target problem [39]. (ii) Reliance of the PCA approximation to high-fidelity
training data means that Ypc4 may not be a good low-rank representative of the full composition space when used
for different operating conditions, e.g. boundary conditions, geometry, Mach and Reynolds numbers. This potential
limitation does not exist for the DBO decomposition, because DBO is solved for the problem at hand. (iii) In
the DBO decomposition, the low-rank matrix Y (¢) is a time-dependent manifold, whereas in PCA, Ypc4 is static.
This allows the DBO decomposition to instantaneously adapt to changes in @(x, ). More specifically, Ypca is a
low-dimensional manifold in a time-averaged sense. This can be realized by inspecting the continuous analogue of
the eigen-decomposition of the correlation matrix C that is formed in PCA: C; = % fT f p Pi(x, D@ (x, t)dxdt.
As we demonstrate in our results, the DBO decomposition closely approximates the eigen-decomposition of the
instantaneous correlation matrix: é‘i (1) = f p Pi(x, ) (x, )dx.

We compare the performance of DBO with the reduction based on instantaneous principal component analysis
(I-PCA). The I-PCA components can be computed in a data-driven manner by computing SVD of the instantaneous
matrix of full species: @(x,t) = U (x, t)f)(t)?T(t), where (A) denotes the components of [-PCA, U (x,t) =
{t1(x, 1), ux(x,1), ..., 0, (x, 1)} is the quasimatrix of left singular functions, @) = diag(a1(1), 62(1), . .., 6, (1))

7
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is the diagonal matrix of singular values and IA/(t) = {31(2), y2(¢), ..., Yo, (¢)} is the matrix of right singular vectors.
It is also straightforward to show that the I-PCA spatial and species modes are the eigenfunctions and eigenvectors
of the two-point correlation operator (Eq. (8)) and instantaneous correlation matrix, respectively, as shown below:

/C(x,x’,t)ﬁi(x’,t)dx’=5i2(t)ﬁi(x,t) and C(0)3;(1) = 62(0)5i(t), i=1,2,...,n,. (26)
D

A rank r truncated I-PCA represents the best approximation that any rank » decomposition in the form of Eq. (5)
can achieve at any given time ¢ and therefore, comparison of DBO components in the canonical form with I-PCA
shows how closely DBO is approximating the optimal low-rank decomposition.

3. Demonstration cases

3.1. 1D passive transport

In this section, we demonstrate the application of DBO in solving passive transport equation with many species.
The passive species are governed by Eq. (1) for the case of S(®, p, T) = 0. We consider n;, = 1000 species
with different diffusivities and initial conditions. The solution of Eq. (1) is considered with v(x, t) obtained from
the solution of Burgers’ equation with the presence of shocks. We compare the solution obtained by the DBO
reduction against the same-rank I-PCA reduction.

We consider the Burgers’ equation governed by:

av v 0%v
o Vox T Vo
where v is the velocity of the flow and v is the viscosity of the fluid which is assumed to be 0.01. The Burgers’
equation is solved with the initial condition of v(x, 0) = 0.5(exp(cos x) — 1.5) sin(x + (%n x 0.37) and the initial

x €[0,27], and 1 €|[0,1f], 27)

condition of the passive species transport equation is assumed to be: ¢;(x,0) = > _1° | i’l—h) sin(*F*), where g“l-(”) are
chosen from an independent normal distribution and b is the rate of decay of the spectrum and is considered to
be 2. The diffusivity of the ith species is considered to be o; = 0.01/4/i,i = 1,...,n, and the length of the
physical domain is L = 2. The reason that each species has a different concentration is because of different initial
condition and different diffusivity coefficients. The DBO spatial modes, governed by Eq. (19), are solved using
spectral Fourier method with N = 512 Fourier modes. The fourth-order Runge—Kutta scheme is used for the time
integration of the DBO Eqs. (19)—(21) with Az = 1/256 and up to the final time of ¢, = 4 time units. In Fig. 2(a),
solutions of two different passive species (¢, and ¢goo) using reduction sizes of r = 2,4 and 8 at + = 4 are shown.
The presence of the traveling shock in v manifests itself with a sharp change in the passive species. As it can be
seen, even for r = 2, i.e., a drastic reduction, the location of the shock is predicted correctly and as reduction rank
increases from » = 2 to » = 8 the passive species obtained by DBO converge to the true profile obtained by directly
solving the full-dimensional passive species and the location and amplitude of the shock are correctly captured. The
accuracy of DBO is also compared against the I-PCA. As shown in Fig. 2(b), the first two I-PCA spatial modes
(@t1(x, 1) and #i5(x, 1)), which are the first two dominant eigenfunctions of C(x, x’, t), match relatively well with the
DBO spatial modes (i1(x, ¢t) and u#,(x, t)) for r = 2, and as the reduction size increases to r = 4 and r = 8 the
agreement between the first two DBO modes and those of the I-PCA improves.

In Fig. 3(a) the evolution of the error using different reduction sizes are shown. The error improves about one
order of magnitude by increasing the reduction size from r = 2 to r = 12. In addition, the evolution of singular
values extracted from I-PCA and DBO solutions are presented in Fig. 3(b). It is observed that DBO can capture the
largest singular values with a better accuracy. However, the accuracy of DBO degrades for capturing lower singular
values. The difference between singular values of I-PCA and those of DBO is the result of the lost interactions
of DBO modes with the unresolved modes. The unresolved error affects the modes with smaller singular values
more intensely. Ultimately, the DBO can be augmented with an adaptive strategy to add/remove modes based on
a criterion. Similar strategies have been adopted in the past. See for example [52]. For a discussion of the error in
ROM based on time-dependent basis, see [50].
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Fig. 2. DBO of passive species transported in 1D Burgers’ equation. (a) Comparison of solutions of ¢; and ¢ggp obtained from DBO using
reduction sizes of r = 2,4 and 8 with full dimensional passive species solutions over the physical domain at t = 4. (b) Comparison of the
first two dominant spatial modes using reduction sizes of r = 2,4 and 8 at + =4 with the optimal spatial modes obtained from I-PCA.
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Fig. 3. DBO of passive species transported in 1D Burgers’ equation: (a) Evolution of solution error using reduction sizes of r = 2,4, 8
and 12. (b) Evolution of singular values of I-PCA and DBO using reduction sizes of r = 2,4 and 8.

3.2. Incompressible reactive flow

We investigate the performance of DBO for an incompressible reactive flow, in which velocity is not affected
by reactions and the reactive source term is a function of & only, i.e., S(®). To this end, we use DBO to solve a
biochemically reactive flow, in which the coagulation cascade process in a Newtonian fluid is modeled by Anand
et al. [53]. In this model, the coagulation cascade process is simulated by solving for ny, = 23 species. The velocity

field is obtained by solving the incompressible Navier—Stokes equations:
oy (v-V) Vp+ v
—+ W -Vv=— — V-,
at P Re
V.v=0,

where v = (v, v,) is the velocity vector field, p is the pressure field, and Re is the Reynolds number. The involved
species, their corresponding Schmidt numbers, as well as source terms of each reactant can be found in [54].

The schematic of the problem is shown in Fig. 4. Height and length of the jet are H = 2 and L =
10, correspondingly and the Reynolds number based on reference length of half the height (H/2) and the
kinematic viscosity v is Re = wH/2v = 1000. The species boundary condition at the inlet is ¢;(0, x5, 1) =

(28)

9
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Fig. 4. 2D incompressible turbulent reactive flow: Schematic of the computational domain and boundary conditions.
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Fig. 5. 2D incompressible turbulent reactive flow: The four most dominant DBO spatial modes in different times.

1/ 2(tanh (x, + H/2)/§—tanh (x, — H/2)/ 8) for all species, where § = 0.1. For the spatial discretization, spectral/hp
element method is used with N, = 4008 quadrilateral elements and polynomial order of 5. For more details of the
spectral/hp element method see [55-57]. The fourth-order Runge—Kutta scheme is used for the time integration
with A7 =5 x 107* and the system is solved till #; = 5 units of time. The velocity field at each time step is then
interpolated on a Cartesian spectral element mesh in the rectangular domain shown by dashed line in Fig. 4. The
DBO equations are solved in the rectangular domain with 251 elements in the horizontal direction and 76 elements
in the vertical direction. The spectral polynomial of order 5 is used in each direction.

We solve the problem using » = 5 reduction size. Fig. 5 shows the first 4 dominant spatial modes at 5
different instants. The first mode, associated with the largest singular value, is positive in all x and ¢. This
mode is the most energetic mode and it roughly approximates the orthonormalized mean of the species, i.e.,
ai(x, 1) ~ ¢(x,0)/|p(x, )|, where ¢(x,t) = 1/n; Z;’;l ¢i(x, t). This occurs when the mean of the species is
in fact the most energetic mode. The higher modes change sign in the domain and capture finer structures. Also it
is clear that the modes are advecting with the flow from left to right.

Fig. 6 displays the species matrix Y(r) in different times. Similar to the spatial modes, the first mode associated
with the most energetic direction is always positive. This mode changes slowly with time. On the other hand
the higher modes have positive and negative contribution of each species and they change faster with time. Each
component of vector y;(¢) should be interpreted as the instantaneous contribution of the corresponding species. The
species labels are shown in Fig. 6. Unlike conventional reduction schemes such as skeletal reductions, DBO does not
eliminate any species or reactions. Instead, a time-dependent weighted contributions of all species are considered
in the low-rank decomposition. For example, as it is clear from Fig. 6, ¢)g and ¢;¢ have a small component in y,(¢),
which vanishes with time. On the other hand, ¢; and ¢y have a larger footprint in all ¥; modes.

Fig. 7 shows several snapshots of first and tenth species concentration obtained from direct numerical solution
(DNS) of the full-dimensional species transport and DBO. We can observe that solutions obtained from DBO using
only » = 5 are very similar to DNS data at all times. For further examining the accuracy of DBO, singular values
extracted from DBO decomposition are compared with those of the I-PCA decomposition. As presented in Fig. 8(a),

10
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Fig. 6. Time-dependent low-dimensional manifold of 2D incompressible turbulent reactive flow: dominant species modes in different times
in the form of color-coded matrices. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

[l c>o — BN > — BN . o —

P = Yo == ¥ In

|
F‘i

:

3y

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Fig. 7. 2D incompressible turbulent reactive flow: species concentration of first and tenth species in different times obtained from DNS
(full-dimensional) and DBO using r = 5.

the evolution of singular values extracted from DBO solutions closely match with I-PCA, and similar to the previous
demonstration case the most dominant modes show better agreement with I-PCA. In Fig. 8(b), the approximation
errors of DBO for » = 3, 6 and 9 versus time are shown. This shows that the reduction error decreases by increasing
r.

11
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Fig. 8. 2D incompressible turbulent reactive flow. (a) Evolution of eigenvalues obtained from DBO solutions using r = 5 reduction size and
I-PCA solutions. (b) Evolution of solution error using reduction sizes of r = 3,6 and 9.

3.3. Compressible reactive flow

The applicability of using DBO decomposition for simulating 2D compressible reactive Navier—Stokes is
demonstrated in this section. For the mathematical description of compressible flows involving n; species, the
primary transport variables are the density p(x, ), velocity vector v(x,t), pressure p(x,t), total energy E(x,1),
temperature 7T'(x, t), and species mass fractions @(x,t). The reactive compressible Navier—Stokes equations are
given by:

dp  pv;
% | oy _ o (292)
ot 8xj
opvi | dpviv; __ Op 0T (29b)
ot dx; dx; O,
dpE  d(pEv)) dpv;  d(wvi)  9q;
. %L we, p,T), 29
TR ar, T an o, TV @D (29¢)
3B I 19J%

J
— = ———L + S(D,p, T). 29d
ot +v18xj ,08xj+k( 1) (25d)

Here, the viscosity flux 7, heat flux ¢, mass flux J, and total energy are represented by:

o, T on 3o

Tijzi(av,_i_avj 2 vy )’ g = — 1 B_T’ J’.‘=—ak%,
Re Ec.Pe 0x; J 0x;

in dimensionless format where e is the internal energy, £ = e + %v,- v; is the total energy, Ec = (y — 1)Ma?,
Pe = Re.Pr, and Ma are Eckert, Peclet, and Mach numbers, respectively. Moreover, W = ZZ‘: 1 oSk Ah‘}’ i 1s the
heat release where S; is the dimensionless species source term and Ah%k is the formation enthalpy of species k.
We assume a perfect gas with the specific heat ratio y = ¢,/c, and R = ¢, — ¢,, where R is the gas constant,
¢, and ¢, denote the specific heats at constant pressure and constant volume, respectively, and are assumed to be
constants. Equal and constant diffusion coefficients and unity Schmidt (S¢c = p/D) and Prandtl (Pr = c,u/A)
numbers for all species are assumed, where D is the mass diffusivity and A is the heat conductivity. The viscosity
and molecular diffusion coefficients can, in general, be temperature dependent but in this study, they are assumed
to be constants. As the ability of DBO decomposition in handling different species with different diffusivities was
demonstrated in previous sections, here we use a simple diffusion model. More complex simulations with realistic
conditions will be the subject of future studies.

12
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Fig. 9. Compressible reactive flow. (a) Computational domain and boundary conditions for compressible reactive Navier—Stokes simulation
with 15 species for hydrogen—air burning based on the model in Ref. [58], (b) contour of temperature at = 3, (c) dimensionless temperature
as well as mass fractions of Hy and O, in a zero-dimensional constant pressure reactor initialized with 7 = 4 and mass fractions from the
reference state. In 2D simulation the species and energy source terms are multiplies by a constant (0.01 here) to experience temperature
inflection point in the middle of the domain at the time of vortex roll-ups.

Simulations are conducted of a 2D temporally evolving jet transport of 15 species’ (n, = 15) associated with
hydrogen—air burning based on the model in Ref. [58]. As is shown in Fig. 9(a) our temporal layer consists of three
parallel streams. The middle stream travels in opposite direction but with the same speed as the bottom and top
streams. The transport variables are normalized with respect to L, V,, p,, and T, where L, is the size of domain in
each direction and V,, = AV is the velocity difference across the layer. p, and 7, are defined for a mixture of species
in which ¢y, = 2955, = 205, = 2¢7%r = 2¢¢0, = 2¢y = 2/7, under T = 300 K and p = 1 atm where &}" is
the mole fraction of kth species. In our simulations, Re = p,V,L,/u = 10* and Ma = V, /\/y RT, = 0.5. Periodic
boundary condition are imposed on all four boundaries (Fig. 9(a)) and initial temperature and pressure on the entire
domain are set to T = 4.0 and p = 2.871. Species mass fractions are initialized as shown in Fig. 9(a). Fig. 9(b)
shows the contour of temperature at ¢+ = 3. For synchronizing hydrodynamics with combustion by equating ignition
delay’ and vortex roll-up time, the species source terms are multiplied by 0.01. Fig. 9(c) portrays the evolution of
dimensionless temperature and mass fractions of H, and O, in a constant pressure (p = 2.871) zero-dimensional
reactor with initial temperature of 7 = 4 and initial mass fractions shown in the fuel side of Fig. 9(a). It is clear
in Fig. 9(c) that the temperature inflection point happens at ¢ &~ 1.5. The physical domain is discretized using the
Fourier spectral method with 256 Fourier modes, and we used odel13 [59] of MATLAB for time integration of
DBO components.

DBO and PCA-ROM simulations are initialized at + = 1 from the DNS data and evolved with » modes till
t = 3, i.e., within the yellow rectangle in Fig. 9(c). PCA-ROM modes containing a linear combination of n; species
mass fractions were extracted from the DNS data of all the spatial points of the domain and at 200 equally spaced

2 H,H,,0,0,,0H,H,0,N,,HO> ,H,0,,AR,CO,CO,,0H* HE,HCO.
3 Time of temperature inflection point d7/dt|m.y in the fuel side of the domain.

13



D. Ramezanian, A.G. Nouri and H. Babaee Computer Methods in Applied Mechanics and Engineering 382 (2021) 113882

ﬂl(az,t) ﬂg(x,t) &g(x,t) fb4(£l},t)
o]
= ] — i~ — - .
— - & 4 P B &Y 4
l w -—- e e = N
N - st
i P ——_~ =0

-4 2 0 2 4 -4 2 0 2 4 -4 -2 0 2 4

F

-1 -098 -0.96 -0.94 -0.92

Fig. 10. Compressible reactive flow: First four orthonormal DBO spatial modes in different time.

time steps from r = 1 to t+ = 3. Here, the results of DBO and PCA-ROM are shown and compared against DNS
within At = 2 after their initialization (¢ € [0, 2]). The reason that this case is initiated at t = 1 is to allow the
reactive flow to develop so that rank based on I-PCA increases. At ¢ = 0, with our chosen initial condition, the
rank is r = 1. If » > 1 is chosen at ¢+ = 0, the matrix X'(r) becomes singular. So one has to increase the rank
with time if the simulation starts at ¢+ = 0. There are two approaches to deal with this: (i) include higher ranks at
t = 0 and keep them idle using the pseudo-inverse to remove the singularity until the idle modes become energetic
and join the active modes. See [52] for more explanation about this strategy in the context of stochastic ROM.
(i1) Develop an adaptive strategy where modes are added/removed given the state of the solution. The latter approach
is more preferable, but its development is beyond the scope of this work. In the rest of the figures in this section,
the temporal plots are shown using the DBO time ¢ € [0, 2], which corresponds to ¢ € [1, 3] of the full-dimensional
simulation.

Fig. 10 portrays the evolution of the vortexes and first four spatial modes of DBO (i;(x, t)). Fig. 11(a) shows
the instantaneous singular values of DBO decomposition for r = 6 and 7 as well as the [-PCA singular values.
It is clear that the singular values of DBO very closely match with the most dominant singular values of I-PCA.
For the compressible reactive flow, the DBO approximation error affects p, pv; and E due to two-way nonlinear
coupling of species and these variables, since the heat source W(®, p, T) utilizes & ~ UXYT. Fig. 11(b),(c) and
(d) demonstrate the instantaneous errors in estimating @, 7', and p, respectively. In general the error decreases with
increasing r.

Fig. 12 demonstrates the time-plot of temperature at two fixed spatial positions in the domain These two points,
labeled as P1 and P2, are shown in Fig. 9(a). P1 is the center of the domain and initially has the fuel composition, and
P2 is very close to the shear layer on fuel side. Here, the variations in DNS temperatures after 1 = 0.5 are because
of passing vortexes. These variations start earlier in P2 with larger amplitudes. PCA-ROM cannot provide a good
estimation for temperatures at P1 and P2 with » < 6, while DBO reasonably estimates the DNS temperature trends
with r = 4. Fig. 13 shows the differences between Y modes in PCA-ROM and DBO as described in Section 2.6.
The first species mode of DBO ¥,(¢) barely changes in time, and it is very similar to the first PCA-ROM species
mode y;. This mode is associated with the products of combustion, which occupy a large portion of the domain
and because of this the singular value of the first DBO mode 6 is an order of magnitude larger than the next mode,
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Fig. 11. Compressible reactive flow. (a) Evolution of eigenvalues extracted from DNS and DBO using » = 6 and 7, and (b) errors in species
mass fractions, (c) temperature, and (d) density using r = 3,4,5,6 and 7 in DBO simulations.

as shown in Fig. 11(a). Yppp and Ypc4 have similar patterns in ¢t = 0.5 but their differences grow significantly in
time and as a result PCA-ROM cannot capture the temperature profile in Fig. 12 with r < 5. This means that the
proper species composition at each spatial point would not remain in space of the first 5 modes of PCA-ROM during
ignition. The contribution of CO,, for example, in the second and third species modes reveals the difference between
PCA-ROM and DBO. In DBO, CO; component in y,(¢) continuously increases from before ignition (+ = 0.5) to
after ignition (r = 2.0). This can be contrasted against the static component of CO; in the second PCA mode.
Similar observations can be made for other species e.g. H,O and CO.

4. Summary

In this paper, we presented a variational principle for the determination of a low-rank decomposition (DBO) of
the passive and reactive species transport equation. The optimality conditions of the variational principle lead to
closed-form evolution equations for the components of the decomposition. The DBO decomposition consists of a
set of time-dependent orthonormal spatial modes, a set of orthonormal species modes and a low-rank factorization
of the correlation matrix. The novelty of DBO is that the low-dimensional manifold is time dependent — enabling
the spatial and species subspaces adapt to the changes of the dynamics on the fly. The DBO decomposition does
not require the offline step of generating high-fidelity data to extract the low rank composition space. This step
is needed in data-driven reduction techniques such as PCA — although in many cases the data is generated for
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Fig. 12. Compressible reactive flow: Comparing the performance of PCA and DBO using r = 4,5, and 6 against DNS based on predicted
temperature at (a) point 1 and (b) point 2.
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Fig. 13. Low-dimensional time-dependent manifolds for compressible reactive flow. Comparison of species modes obtained from PCA (static),
I-PCA and DBO (time-dependent) in different times.

a much simpler problem than the target problem. In DBO the low-rank composition space is extracted from the
species transport equation. Therefore, the DBO decomposition is not fine-tuned for a target problem and it can
extract the low-rank structure for the problem at hand.

We demonstrated the numerical performance of DBO for passive species transport as well as reactive incompress-
ible and compressible flow. In all demonstration cases, we show that the DBO decomposition closely approximates
the best instantaneous low-rank decomposition obtained by performing instantaneous PCA of the full-rank species.
The presented work does not address the issue of adaptivity, i.e., when the rank of the DBO system needs to change
in time as the rank of full-rank species may vary during its evolution for a given threshold value of singular values.
Developing an adaptive strategy to add/remove modes is the subject of future research.
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Appendix A. Variational principle for DBO

For the sake of simplicity in notation, we denote u;(x, ¢) as u;, y;(t) as y; and Xj;(¢) as X;;. In the following we
show that the first-order optimality condition of the variational principle leads to closed-form evolution equations
for U, Y and X'. Throughout this derivation, we use index notation, where the repeated index implies summation
over that index. We begin with the functional form of the variational principle:

G, .Y, 1,0) = (i, ie)( Zi; ST )
+ {ui, uk)(EijZkl)(ijyl)
+ {ur w )2 )G T 90
+ 2t i) (2 ST )
+ 20w, w)(Z ST )
+ 2, ue)(Zij Ze)(y] 31) (A.1)
— 2(it;, M(D)%;;y,)
— 2u;, M(D) 5} y;)
— 2{ui, M(D) X 3;)
+ Mm@
+ hij(ui i) = @) + vii 6 35 = 03))-

The first-order optimality condition requires a vanishing gradient of the functional G with respect to all control
variables. Starting with the gradient of G with respect to Y, the following expression is obtained:
g

5= (s, ) S o) + (us, ”m)xif(y/Ty”)

+ 2t ) X (37 y) (A2)
+ 2<ui1 um)zvij(y]r).)n)
— 2, M(D)y,) = 0.

Using the orthonormality conditions and definitions of ¢ and 6, we have: (um uk) = Suks (u,-, um) = §;, and
vy = 8u, ij Yn = 8ju, (tti, tm) = @i and ij Ya = 0, and after simplifications, the evolution equation for X is
obtained:
dX,.,
dt

= <”m? M(é)yrﬂ — Pmi LWin - Emiein- (A3)
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Next, the gradient of G with respect to y,, is set to zero. This results in:

= 2ui, u)(Zj Zim) V]

(
+ 2wy, ui)( 25 Z.fkm)Y,T
+ 2(ii, wi)(Zij em)y |
— 2{ui, Ty M(D))
+ VimyiT =0.

8 Vm

(A4)

To eliminate y;,,, we take the inner product of the above equation and y, by multiplying y, from right:

%yn = 28ik (X j 2km)Onj
+ 28 (Zj Sm)8
+ 201 (X 2km)d jn
— 2ui, L M(D)yn)

+ Vim(sin =0.

(AS)

Then y,,, is obtained from:

Vom = 2uti, ZimM (D))
— 225 XimOnj
— 25, 5
— 20ki Xiin Zikm -

(A.6)

By substituting y,,,, from Eq. (A.6) into Eq. (A.4) and simplifying, we obtain:

Syl = (i, MO = yay!) + Zij0njy, . (A7)
where I € R™*" is the identity matrix. Taking the transpose of Eq. (A.7) results in:

iy =T = yay)(M(®), ui) + 2;i6pj yu, (A.8)

where we have used: (u,-, M(@))T = (./\/l(@), ul-) and 9,5. = —0;,. Dividing both sides of Eq. (A.8) by the inverse
of X7 yields the evolution equation for the species modes as in the following:

= (I = yuy (M(®), ;) 257" + yubs;. (A.9)

Next, the gradient of G with respect to i, is considered. Since u is a function, i.e., infinite-dimensional, we use
the Fréchet differential:

GWU +eU', 3, Y, M, y)—GWU, 2, Y, A, y)
; .

G|y = lim
e—0

For optimality condition the Fréchet differential of G with respect to every column of U must vanish. This results
in:

Gy = 20, 11 )(Zonj D)y} 31)
(i, ug) (B, Zkl)(y] i)
(i, k) Ey ST 1) (A.10)
— 2(i', X M(P)y;)
+ Aimi', ui) = 0.
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The above equation can be written as (12’ » Vi Q> and since #’ is an arbitrary perturbation, V; G must vanish. This

results in:
Vi, G = 20 (Znj Si)(y] y1)
+ 2uk(2mj2kl)(ijYI)
+ 2ux(Znj Zi)(y] Y1) (A.11)
— 25, M(D)y;
+ Aimu; = 0.

ity

Similar to the procedure of deriving the evolution equation for y,,, to eliminate A;, an inner product of Eq. (A.11)
and u, is taken. This results in:

(tns Vi G) = 20k Zonj Ziad j1
+ 28, (5 Sk)8 1
+ 28,1 (X L) (A.12)
— 2ity, Ty M(D)y;)
+ Aimdin = 0.
Solving for A, using Eq. (A.12) results in:
Mm = 2(ttn, Ly M(P)y;)

— 20k S T
Pk Zmj ki (A.13)
— 20 )
— 2%, 2001
Replacing A, from Eq. (A.13) into Eq. (A.11) and simplifying the results yields:
u; g = (M(P)y; — Mn<un, M(‘p))’j)) + UnPni i (A.14)
Multiplying both sides of Eq. (A.14) by the inverse of X' from right results in:
i = (M(P)y; — un(un, M(P)Y NI + tngni, (A.15)

where Z‘l;l is the ij element of matrix X ~!. Therefore, evolution equations of DBO components are as in the
following:

oUu

5 = MDY — U(U, M(®YNE + Ug, (A.16)
dx

T (U, M(D)Y) — X — 20, (A.17)
‘;—f =1 -YYH(M(D),U)L " +76. (A.18)

Appendix B. Equivalence of DBO decomposition

Any choice of skew-symmetric matrices for ¢ and 6 leads to equivalent decompositions. Two DBO decom-
positions are equivalent if they represent the same low-rank subspace instantaneously. Therefore, the two DBO
decompositions {U, ¥, Y} and {U, X, Y} are equivalent if and only if: UXYT = UXYT. As a result, if

U=URy, Y=YRy and 5 =R} SRy, (B.1)

for any orthonormal matrices Ry € R™ and Ry € R, then it is straightforward to show that the two
decompositions are equivalent using R Ry = I and R} Ry = I, where I € R is the identity matrix. The
matrices Ry and Ry are in-subspace rotations. i.e., both U and U span the same subspace. The same is true for Y.

Now, let {U, X, Y} and {Ij 5, f/} be the solution of Egs. (13)—(15) with the skew-symmetric matrices {¢, 6}
and {Q, é}, respectively. It can be shown that the two decompositions are equivalent for all + > 0 given that: (i)
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they are equivalent at t = O with the corresponding rotation matrices Ry, and Ry,, and (ii) the rotation matrices
Ry and Ry evolve according to:

Ry =Ry — @Ry and Ry = Ry — ORy, (B.2)

with the initial conditions of Ry, and Ry,, respectively.

It was shown in Lemma 2.1 in Ref. [44] that matrices Ry and Ry remain orthonormal for all + > 0 if they
evolve according to Egs. (B.2). To prove the equivalence under the above two conditions, we show that the DBO
decompositions (U, 5, Y} is an in- subspace rotation of {U, X, Y} according to Eq. (B.1) and the rotation matrices
are governed by Eq. (B.2). To this end, we start from the evolution equations for (U, b3 4 } and using the rotation
matrices given by Eq. (B.2), we recover the DBO evolution equations for {U, X, Y}. The DBO evolution equations
for {(7, 57 )A’} are given by:

U=][Mm@7s"+0¢.

10
First we note that: [] = [], since
1w 1w
[[r=r-0{0.f)=f—-URURy. f)= f = URyR}{U. f) = f = U(U. f),

10

for any f € R>®*!, Therefore,

URy +URy = [ [M(®)YRyR;'X7'R;" + URy¢ = [ [M(®)Y £7'R;" + URy .

iU iU

Rearranging the above equation and multiplying it by R/, from right results in:

U=][M@YZ"'+URy¢R], — URyRY,

v

Now replacing Ry = Ry$ — @Ry in the above equation results in:

U=[[M@®YE" +URyGR} — URy® — 9Ry)R],
1U

- ]‘[M(gp)yz—l +Ug,

which is the governing equation for U. The analogous procedure can be repeated for the evolution equation of Y.
Replacing the equivalence relationship for the evolution of X' results in:

RLSRy + RL SRy + RE SRy = (URy, M(®)YRy) — GRS Ry — RL X Ry 6
= RI(U, M(®)Y)Ry — $RLERy — Rl ZRy0.

Multiplying the above equation from left by Ry and from right by R! and rearranging to obtain the evolution
equation for X' results in:

5= (U, M(®)) — Ry¢R;X — XRyOR} — RyR, X — SRyR}.

The term R}, can be obtained from Eq. (B. 2): Rl = "Rl Rl " = —9R! +R!,p, where we have used o7 = —¢.
Using this relatlon for R I and replacing Ry from Eq. (B.2) into the above equation and after simplification yields
the evolution equation for Y, ie., Eq. (14).
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