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ABSTRACT

A perspective is given on some prospects of machine learning and quantum computing for modeling and simulation of turbulent reactive flows. This perspective is a
more comprehensive and extended form of the 13th Elsevier Distinguished Lecture in Mechanics delivered by the author.

1. Introduction

With the current Big Data Revolution [1], and the Second Quantum
Revolution [2], the scientific community is witnessing remarkable sci-
entific & technological progress and also challenges. Artificial intelli-
gence (Al) and quantum information science (QIS) are influencing every
fabrics of our society, and are rapidly making transformative changes in
research and technology. With the rapid increase in the volume of data
being generated, Al methods are playing a major role in utilizing data to
construct new models of processes. In QIS, quantum computing (QC) is
proving to be real, and to dramatically change the way computations
will be conducted in the future. Both of these fields are now placed in top
priorities in industrial societies, and will surely remain there within the
upcoming decades.

Machine learning, originally emerged from computer science, has
revolutionized fields such as vision, autonomous systems and natural
language processing. Both the supervised and totally data driven form of
ML have proven effective [3-6], and it is expected that the rate of
progress would be even faster in the future. The rise of deep learning via
neural networks has enabled researchers to perform complex classifi-
cation and regression tasks that were not previously possible. As a result,
data sciences have been recognized as the fourth paradigm of scientific
discovery [7] offering an elegant path to construct predictive models of
complex physical systems.

QIS represents the merger of the two most significant scientific and
technological revolutions of the 20th century, notably quantum physics
and information technology. As one of its constituents, QC can provide
powerful resources for solving certain classes of problems, achieving
cost scalings with the size of the problem that are not possible on
existing “classical” computers [8,9]. Amongst the best known examples
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of quantum algorithms are Shor’s algorithm of factorization [10,11],
and Grover’s search algorithm [12]. The gain in efficiency of the scaling
of these algorithms is either exponential or polynomial [13,14]. These
are known as quantum speed-up [8,15-23].

2. Applications in reactive turbulence

Turbulence transport and its interactions with chemistry remain as
one of the most important unresolved problems with significant scien-
tific and practical applications. The broad ranges of length and time
scales in this transport makes its computational description very difficult
[24,25]. Both ML and QC can become major forces in dealing with this
complex phenomenon.

2.1. Perspectives in ML

Modeling of turbulent reactive flows is expected to be aided signif-
icantly via modern. ML optimization techniques in the contexts of both
the Reynolds-averaged NavierStokes (RANS) and large eddy simulation
(LES) [26-29]. For that, we need to consider the ways ML its into current
modeling paradigms, and also develop new turbulence closure strategies
that leverage ML strengths. We need to determine the best training
procedures that accommodate specific features of turbulence descriptor.
For example, coherent vs. stochastic structures, linear vs. non-linear
physics, etc. [30]. Several specifics issues pertaining to ML applica-
tions in reactive turbulence modelings are listed here, along with some
suggestions and guidelines for future work:

Amount, Quality and Complexity of Data: Currently, data in turbulent
combustion is limited, and it is not totally clear how much data is
required for training in ML/AI. More importantly if an accuracy target is
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set, it is difficult to understand if more data (and what data) is required
to achieve the target. Extensive reactive flow data sets are currently
available, such as Sandia TNF. Workshop (tnfworkshop.org). Such sets
have been very useful in developments and evaluations of physical
models. But they are not tailored for ML. For a dataset to be useful for
ML, it should be well documented in terms of use, and be accessible by
standard ML/data science packages (such as those in Python, and Mat-
lab). A forum similar to ImageNet (image-net.org) in computer vision is
needed. Such benchmark tests will also serve as excellent teaching
materials for students and researchers.

Physics Discovery: One of the most useful application of ML/DL is for
discovery of physical systems [31-35]. Work is needed to enhance
current ML algorithms to reconstruct modelled transport equations of
turbulent reacting flows. These algorithms must learn non-autonomous
dynamical systems, and recover the symmetries including invariances.
As DL/ML methods deal with data to capture physics, the process of
optimization can be enhanced by including certain known physical
characteristics. In this way, some additional unknowns can be deter-
mined in addition to the desired characteristics of the raw data. See
Ref. [27] as an example. Also, “reinforcement learning” strategies
involving the combination of proper ML tools with domains of expertise
has the potential for optimizing the control strategies [34,36].

Solution of Inverse and Ill-Posed Problems: There are many situations
where the physical quantities need to be inferred from data. There are
also a relatively large number of physical ill-posed or inverse problems.
See, for example Journal of Inverse and I11-Posed Problems. For example,
the inverse diffusion of scalar probability density function of scalars by
their conditional expected dissipation [37]. In some of these cases, the
optimization routine in a properly devised neural network can provide
accurate solutions.

Algorithm Improvements: Data-driven algorithms expose the users to
an extremely large number of options (number of layers & neurons,
activation function, type of layers, etc.) Significant experience is
required to sort through these options, This introduces a fundamental
reprehensibility issue, since it would make it difficult to synthetically
describe the various ML choices. Many of the options in these ap-
proaches are not clearly understood. Therefore, a theoretical framework
for the description of these methods is of critical importance.

Using Physics to Improve ML: A successful ML routine must be inter-
pretative and generalized for effective use beyond the training data.
Also, as we develop and apply ML algorithms for turbulent combustion,
the learning process can be also used to improve the ML algorithms in
return. This is possible because of the extensive current knowledge in
modeling and simulation of reactive turbulence (or any other domain
field for that matter).

Similarities and Commonalities: It is useful to find similarities with
other scientific areas to solve more general problems: How to couple
domain-driven models with data-driven models from AI/ML. Modern
methods have enabled non-linear dimensional reductions for large vol-
ume data, and offer opportunities for further model reduction and better
generalizations compared to classical linear subspace methods, such as
PCA or other dynamic mode decomposition methods [38].
Auto-differentiation could enable efficient analysis of simulation results,
which will make the uncertainty quantification of expensive systems to
be computationally tractable. See Ref. [39] as an example.

Along similar lines, the universality of the data driven models must
be assessed and documented. Will the ML-assisted turbulent combustion
model only act as an interpolator within the domain of the training data,
or will it provide useful predictions outside that domain? If yes, what is
the domain of applicability? For example: premixed and/or non-
premixed and/or partially premixed flames? distributed or flamelet-
like reaction zones? etc.

Despite all of its popularity, it is to be emphasized that ML is not a
magic! It essentially consists of four basic elements: linear algebra,
optimization, probability & statistics and algorithms. The subject’s
broad popularity has been, in part, motivated by developments of
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excellent software such as Tensorflow [40]. While ML will surely remain
as a powerful research tool, it must be utilized in the context of a very
strong domain modeling.

2.2. Perspectives for QC

The unit of quantum information is a “qubit” (or quantum bit) [41].
In QC the qubits have the quantum mechanical property of being in both
states 0 and 1 simultaneously. It is currently possible to conduct digital
quantum computation with about 30 qubits with gate error rates of
order 1-2 percent. To achieve an advantage for quantum over classical
computing, it is required to increase the number of qubits to about
50-100, and to decrease the error rates to less than 0.1%. This is ex-
pected to happen within the next decade or so. Solution of
multi-dimensional non-linear partial differential equations as required
for turbulent combustion computations on a digital universal quantum
computer would require a fault-tolerant computer along with millions of
gates and qubits [23,42]. This would not be possible for another decade
or somewhat longer. In the meantime, other near-term alternatives are
available. Some of these are listed here:

Noisy Intermediate-Scale Quantum (NISQ): These devices typically
consist of order several hundreds of imperfect qubits, which can only
operate for some fixed maximum number of cycles.. The algorithms in
these machines are based on those in gate operations, but without any
error corrections [20]. Some prospects for such computing are currently
being examined in many fields including machine learning, optimiza-
tion, chemistry and materials science amongst others. All of these are
useful for turbulent combustion.

Analogue Computers, Quantum Simulators and Annealers: These ma-
chines are designed to deal with specific problems and potentially pro-
vide quantum speedups [43]. In these devices, operations are
implemented as controlled interactions between qubits that operate
continuously in time. In the actual operation, the physical problem is
mapped onto the an evolution of a quantum system. p-Wave computers
are considered to belong to this category of quantum computers [44]. It
is useful to identify research areas in which the governing equations can
be mapped into a format suitable for quantum annealers & simulators.

Hybrid Quantum-Classical Computing (HQQC): All of the alternatives
listed here can be used as a potential co-processor to a calculation on a
classical computer. These type of computing has proven functional
[45-471], and is expected to gain more popularity as quantum computers
become widely accessible.

Quantum-Inspired Algorithms: Work is in progress in identifying
classical algorithms that are”quantum-inspired” [23]. For example, ma-
trix product state (MPS) algorithms are deemed suitable for large scale
turbulence simulations. The MPS is an important sub-type of tensor
networks [48,49]. Essentially, the algorithm works by mapping the
differential equations (Navier-Stokes, reactiondiffusion, energy, etc.)
onto a tensor network, and evolving the network towards the solution.
These networks provide one of the most effective means of dealing with
strongly correlated quantum systems [50]. Work along this path is in
progress by Jacksch and co-workers [51].

The success rate of QC for simulating turbulence, or any other clas-
sical phenomena, is directly related to the progress in establishing and
sustaining a “virtuous cycle” in QC [21]. Similar to that in
semi-conductor technology, it is crucial to consider QC and its prospects
for as many problems and applications as possible.

Future programs in both ML and/or QC should encourage partner-
ships and collaboration of both domain scientists and ML/QC experts.
The turbulent combustion community is not very far into coupling with
these modern disciplines. Therefore, shall be ready for dealing with is-
sues that are inevitable in multidisciplinary programs including social,
behavioral, and economic challenges [21,52].
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