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ABSTRACT

Professor Edward Ephraim O’Brien (“Ted”) has made lasting contributions to the theory and modeling of scalar mixing and reaction in
turbulent flows. With a doctoral dissertation at The Johns Hopkins University in 1960, entitled “On the Statistical Behavior of a Dilute
Reactant in Isotropic Turbulence,” supervised by the legend Stanley Corrsin, and in the company of notable pioneer of turbulence, John
Leask Lumley, Ted’s academic training propelled him through a prolific career. In the opening article of this Special Issue, we provide a
review of some of Ted’s contributions. First, a summary is presented of his work on the examination of the failure of the cumulant discard
approximation for the scalar mixing. This is followed by a highlight of his impacts on other spectral theories of turbulence including
Kraichnan’s direct interaction approximation. His contributions to more modern theoretical/computational description of reactive
turbulence are discussed next, including the transported probability density function (pdf) formulation, scalar-gradient pdf transport equa-
tion, scalar interfaces, and the filtered density function. Finally, some of his research on Direct Numerical Simulation of compressible turbu-
lence is reviewed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062933

I. SETTING THE STAGE
The success of statistical theories of turbulence was apparent in

the 1950s. The Johns Hopkins University (JHU) was a lighthouse in
Fluid Mechanics and Turbulence in that and subsequent decades.
Francis Clauser, Stan Corrsin, Owen Phillips, Les Kovasznay, Marc
Morkovin, Bob Betchov, and Clifford Truesdell, among others, formed
the avant-garde fostering innovative education and creative research
in these fields. Ted O’Brien arrived at JHU amid this legendary atmo-
sphere in 1957 and stayed there until 1961. John Lumley was also there
during those years. Stan Corrsin and Ted O’Brien pioneered the for-
mulation of initial ideas on the statistical treatment of turbulent react-
ing flows and set the stage for future developments in reactive and
combusting systems. Ted focused most of his research on turbulent
constant density fluid flows, which convect scalars of constant molecu-
lar diffusion coefficients. The scalar field, h x; tð Þ, obeys the conserva-
tion equation

@h
@t
þ uj

@h
@xj
¼ D

@2h
@xj@xj

þ
_x hð Þ
q

; (1)

whereuj is the jth component of the turbulent solenoidal zero-mean
velocity field, q is the constant fluid density, D stands for the constant

Fickian molecular diffusion coefficient, and _x hð Þ represents the reac-
tion rate, dependent on h x; tð Þ in a non-linear manner. Moreover, in
most of his research, O’Brien assumed statistically homogeneous, and
often isotropic, scalar, and zero mean turbulence fields. A statistically
homogeneous scalar field, h x; tð Þ, with a mean, hh i tð Þ, which is either
a constant (for an inert scalar) or a time-dependent function (for a
reactive scalar), was decomposed into its mean plus its fluctuations,
h0 x; tð Þ, as h x; tð Þ ¼ hh i tð Þ þ h0 x; tð Þ. Ted’s work on turbulent mixing
of passive scalars considered a variety of flows, including isotropic,1

homogenous with a mean scalar,2 turbulent boundary layers,3 wakes,4

and plumes.5 His work on reactive turbulence was almost exclusively
in homogeneous flows.6–15 Below, a summary is provided of some of
his key contributions in a nearly chronological manner.

II. SPECTRAL THEORIES
One of Ted’s earlier contributions to the spectral theory of turbu-

lence follows his doctoral studies at JHU16 and pertains to the scalar
field application of the quasi-normal approximation, originally pro-
posed for turbulence.17,18 The turbulence problem concerns the solu-
tion of the transport equation for the spectral energy E k; tð Þ where k is
the vector of wavenumbers in an isotropic field. The closure is
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achieved with the assumption that the fourth-order cumulant of the
non-Gaussian fluctuating velocity vanishes like for a Gaussian random
variable. With this approximation, the fourth-order moments can be
expressed as the sum of products of the second-order moments. A
statistically homogeneous and isotropic scalar fields, advected by an
isotropic turbulent field with a zero-mean velocity, is investigated.
For this problem, the equation for the two-point scalar correlation
field h0 x; tð Þh0ðx þ r; tÞ

! "
is analyzed by Ted and Francis,19

where r ¼ x0 % x is the spatial separation vector, with G k2; tð Þ as the
isotropic spectral representation of this correlation. They also included
the governing equations for three-point, third-order moments,
h0 x; tð Þh0 x þ r; tð Þu0ðx00; tÞ
! "

; where x00 ¼ x þ r0, with a correspond-
ing isotropic spectral representation of these moments by
Lðk; k0;l; tÞ, where l ¼ k&k0

kj j k0j j. The governing equations for the third-

order moments contain several fourth-order moments such as

u0k x00; tð Þ u0j x; tð Þ h0 x; tð Þ h0 x0; tð Þ
D E

; with the spectral transform

ujk k0ð ÞG k2ð Þ; whereujk k0ð Þ is the Fourier transform of the fluctuating

velocity correlation u0iu
0
j rð Þ

D E
: This fourth-order moment, as an

example, is approximated via a cumulant discard closure assumption,
analogous to that for the turbulent field

u0k x00; tð Þ u0j x; tð Þ h0 x;tð Þh0 x0; tð Þ
D E

¼ u0k x00; tð Þ u0j x; tð Þ
D E

h0 x;tð Þh0 x0; tð Þ
! "

þ u0k x00; tð Þ h0 x; tð Þ
! "

u0j x; tð Þ h0 x0; tð Þ
D E

þ u0k x00; tð Þ h0 x0; tð Þ
! "

u0j x; tð Þ h0 x; tð Þ
D E

: (2)

O’Brien and Francis19 numerically solved the spectral decay of
G k2; tð Þ and L k; k0; l0; tð Þ, together with the equation governing spec-
tral scalar energy transfer

2p
ð1

0

ðþ1

%1
L k; k00;l; tð Þk002 dk00dl0 ¼ T k2; t

$ %
:

The initial conditions are as follows:

G k2;0
$ %

¼ Be%k
2
; E k02;0

$ %
¼ E k02; t

$ %
¼ 3p

3=2ð Þ%1k02e%k02 ;
and T k2;0

$ %
¼ 0;

(3)

where uij k0ð Þ ¼ u k02ð Þ djk %
k0jk
0
k

k02

h i
, and E is the spectrum energy den-

sity for the turbulence. The solution shows that the scalar spectrum
develops incorrect negative values after a time of approximately
2l=urms, where l is the integral length scale of the energy-containing

components of the turbulence, and urms ¼ hu02i
$ %1=2

is the root-
mean-square turbulent velocity fluctuation. To address this problem,
Orszag20 proposed the addition of a damping term to the physical vis-
cosity in the evolution equation for the third-order moments in spec-
tral space, leading to the Eddy-Damped Quasi-Normal (EDQN)
approximation. This approach, although producing a more physically
acceptable solution, does not guarantee realizability, or the positiveness
of the energy spectrum in all situations. This prompted another modi-
fication,21 often referred to as Markovianization, wherein the aug-
mented viscous exponent in the third-order moment equations is

assumed to vary with a characteristic time, much smaller than the
characteristic evolution time of the sum of products of the second-
order moments used to approximate the fourth-order moments. This
level of the quasi-normal theory is referred to as the Eddy-Damped
Quasi-Normal Markovian (EDQNM) approximation. Although the
EDQNM may yield acceptable solutions in the inertial and dissipative
ranges of the energy spectrum, it is questionable in the energy-
containing range where both times are of a comparable order of mag-
nitude. Leslie22 proposed a remedy for this in a subsequent study.

The failure of the cumulant discard closure approximation for
the scalar mixing problem19,23 provided the motivation to explore the
direct interaction approximation (DIA). Kraichnan24 applied the DIA
theory to the scalar quantity convective problem, deriving the set of
equations under Gaussian initial conditions. Lee25 investigated the
decay of scalar quantity fluctuations in a simplified statistically station-
ary velocity field and reported the physical plausibility of the solutions.
However, in a quantitative test of DIA, O’Brien8 showed that the appli-
cation to the problem of isotropic mixing of a reactant undergoing an
isothermal second-order reaction fails to preserve an important invari-
ance. Namely, in the absence of molecular diffusion, the decay of
single-point statistical functions of the concentration should be inde-
pendent of the turbulence. Thus, whereas hh i tð Þ and h02h i tð Þ were
found to be insensitive to the approximation over the time interval
used to integrate for Damkh€oler number, Da 2 ½0; 100(, but that
h03h i tð Þ showed a marked variation with Da. This problem with
h03h i tð Þ is expected to influence the behavior of the lower moments
significantly at later times.

Partly because of the non-invariance of the DIA under random
Galilean transformations, the procedure does not give a Kolmogorov
k%5=3 in the inertial range, but rather a k%3=2. Kraichnan26 thus pro-
posed a heuristic Lagrangian history direct interaction approximation
(LHDIA). In a subsequent study on LHDIA, O’Brien9 derived the
equations describing the behavior of the passive reactant when its con-
centration is decaying owing to an isothermal reaction of second
order, and when it is advected by a turbulent flow. Within the
Lagrangian framework, the scalar equation in the form

@

@t
% Dr2

& '
h x; tð Þ ¼ %u x; tjtrð Þ &rh x; tð Þ % ch2 u; tð Þ (4)

was investigated, where h is the instantaneous scalar field and
uðx; tjtrÞ is the velocity measured at time tr within the fluid element,
which passes through x at time t. The analogous scalar field definition
is h x; tjtrð Þ, which is equal to h x; trð Þ. O’Brien9 was able to establish
that the decay of one-point statistical functions of the concentration
field occurs at a rate that is independent of the turbulence when
molecular diffusion is neglected, or D ¼ 0. Under this condition, tur-
bulence plays no direct role in decreasing the scalar intensity. It is
noteworthy that this invariance was not consciously built into
LHDIA. The DIA and LHDIA theories are not widely used today, and
it is unclear whether they are superior to EDQNM.22 The EDQNM
was later used by Ted’s student, Jiang, for modeling reactive turbulent
flows.27

III. TRANSPORTED PROBABILITY DENSITY FUNCTION
(PDF) FORMULATIONS

Ted and his Ph.D. student (C.D.) initiated a systematic study
leading to what is known today as the transported pdf modeling.
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Dopazo and O’Brien28–30 formally examined linear equations in func-
tional derivatives31–33 and applied them to the dynamically passive
turbulent mixing of two reactants undergoing a one-step, second-
order, irreversible, exothermic, and constant temperature, chemical
reaction in homogeneous turbulence. Under some simplifying
assumptions and through the projection of the functional equation34,35

into a finite dimensional space, one- and two-point temperature pdf
transport equations were obtained. The reaction rate term, product of
concentrations, and the Arrhenius exponential dependence on tem-
perature became variable coefficients in probability space. The deriva-
tion of the pdf transport equation can be straightforwardly applied
also to variable density fluid flows.36

For a statistically homogeneous zero-mean velocity turbulence of
a constant density fluid stirring a statistically homogeneous scalar field,
the one-point pdf, P H; tð Þ ¼ d H% h x; tð Þ

( )! "
, is governed by the

two equivalent transport equations

@P
@t
¼ % @

@H
D

@2h
@xj@xj

****h x; tð Þ ¼ H

* +
P

( )
% @

@H
_x Hð Þ

q
P

" #

; (5)

@P
@t
¼ % @2

@H2 ehjh x; tð Þ ¼ H
! "

P
( )

% @

@H
_x Hð Þ

q
P

" #

: (6)

H stands for h x; tð Þ in the probability space. d H% h x; tð Þ
( )

is the
Dirac delta function, which defines the fine-grained pdf.37–39 Angular
brackets denote, for example, ensemble average or any other type of
averaging operator. Note that convection does not explicitly enter the
equation because of the assumptions of solenoidality and statistical
homogeneity. The first terms on the right side represent the molecular
diffusion of pdf, whereas the last one expresses the effect of the chemi-
cal reaction on the pdf. Both terms imply transport in scalar space.

The term D @2h
@xj@xj

**h x; tð Þ ¼ H
D E

in Eq. (5) is the molecular dif-

fusion rate, conditioned on h x; tð Þ ¼ H. This is the so-called micro-
mixing term and has been the stumbling block in the transported pdf
methodology for almost fifty years. Note that the scalar dissipation
rate, conditional upon the scalar value h x; tð Þ ¼ H, ehjh x; tð Þ ¼ H

! "
,

is a non-negative variable.
The second derivative with respect to H in Eq. (6) implies diffu-

sion in the H-domain with a negative variable diffusivity. This corre-
sponds to the physical fact that for asymptotically large times
probability tends to concentrate about the mean with a vanishing vari-
ance. The issue of diffusion equations with negative diffusivities has
been investigated, for example, in light squeezing research to reduce
quantum noise40 and in the simultaneous backward diffusion of boron
and point defects in Si.41

Note that, as previously mentioned, the non-linearity of _x hð Þ
q in

physical space becomes a nonlinear variable coefficient, _x Hð Þ
q , in the pdf

transport equations (5) and (6). Equating the right sides of these two
equations, a relationship between the conditional dissipation, the condi-
tional diffusion, and P H; tð Þ can be established. Dopazo and O’Brien29

proposed a model, known as the Linear Mean Square Estimation

(LMSE), for the unclosed conditional diffusion D @2h
@xj@xj
jh x; tð Þ ¼ H

D E
:

This term was rephrased as D limx0!xr2
x0 h x0; tð Þjh x; tð Þ ¼ H
! "

, which
was approximated using a Linear Mean Square Estimation (LMSE),
namely, h x0; tð Þjh x; tð Þ ¼ H

! "
¼ hh i tð Þ þ q r; tð Þ H% hh i tð Þ

( )
, where

q r; tð Þ ¼ h x; tð Þ % hh i tð Þ
( )

h x þ r; tð Þ % hh i tð Þ
( )! "

=r2
h tð Þ is the

scalar autocorrelation coefficient and r2
h tð Þ ¼ h x; tð Þ % hh i tð Þ

( )2D E

¼ h02h i is the variance of scalar fluctuations. For a statistically isotropic
scalar field, q r; tð Þ is only a function of r ¼ jrj, the distance separating
the two points. Then, the conditional diffusion was formally recast as

D
@2h
@xj@xj

****h x; tð Þ ¼ H

* +
¼ %3D H% hh i tð Þ

( )
%

@2q r; tð Þ
@r2

+ ,

r¼0

( )

:

(7)

We recall that42% @2q r;tð Þ
@r2

h i

r¼0
¼ 2

k2h tð Þ, where k2h tð Þ is the scalar fluctua-
tions equivalent to the Taylor micro-scale, k tð Þ, in turbulence. k2h tð Þ
is more consistently defined as a characteristic scalar fluctuation–

dissipation timescale, sh tð Þ ¼ k2h tð Þ
D ¼ 6 r2

h tð Þ
ehh i tð Þ. ehh i tð Þ ¼ D @h

@xj
@h
@xj

D E
is

the average scalar fluctuation–dissipation rate. Therefore,

D
@2h
@xj@xj

****h x; tð Þ ¼ H

* +
¼ %6H% hh i tð Þ

sh tð Þ
: (8)

Corrsin43 had shown that for turbulent scalar mixing k2h tð Þ=D
¼ 2k2 tð Þ=! ¼ 2s, where ! is the kinematic viscosity and s stands for a
characteristic turbulent kinetic energy dissipation time. However, in tur-
bulent reacting flows both the scalar autocorrelation coefficient and its
associated length micro-scale must display an explicit dependence on
the reaction rate. Obviously, the chemical reaction contributes to either
the enhancement or the destruction of pre-existing scalar gradients and
hence to ehh i tð Þ. For small Karlovitz numbers,44 the two variables will
strongly depend on the characteristic chemical time, whereas for high
Karlovitz numbers, Corrsin’s relationship will be accurate and the char-
acteristic micro-mixing time will be proportional to the turbulent
kinetic energy dissipation time. Therefore, in the limit of high Karlovitz
numbers, the conditional scalar diffusion is modeled as

D
@2h
@xj@xj

****h x; tð Þ ¼ H

* +
¼ %3H% hh i tð Þ

s
: (9)

The LMSE micro-mixing model can also be justified based on the
Laplacian operator finite differencing or its approximation in terms
of the scalar average in a volume element around the point
where h x; tð Þ ¼ H. The LMSE closure h x0; tð Þjh x; tð Þ ¼ H

! "
can be

replaced by a non-linear stochastic approximation, including higher
order statistical correlations; the added complications of a non-linear
model are not justified by the higher accuracy gained. The conditional
diffusion can alternatively be approximated in terms of the scalar gra-
dient magnitude and the local mean curvature of the iso-scalar surface
h x; tð Þ ¼ H. Mixing models with two different time scales, accounting
for the “explicit coupling between mixing and reaction,”45 have been
recently proposed by several authors.46–50

The LMSE implies a relaxation of any scalar value toward its
mean. After 47 years of the first publication of this micro-mixing
model, some of its flaws have been disclosed.

However, the model is still being widely used due to its simplic-
ity. It has become apparent that the hyperbolic type pdf transport
equation maintains the positiveness of the distribution but does not
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change the initial shape of the distribution.49 The addition of a sto-
chastic term to the LMSE relaxation model allows modifying the ini-
tial pdf shape, although with incorrect asymptotic behavior.50–52

Another class of micro-mixing closures, which overcome this prob-
lem, was inspired by droplet interaction models. Janicka et al.53 and
Dopazo49 independently proposed essentially the same model. The
issue on non-localness of the LMSE45 has been addressed by
Subramaniam and Pope.54

Ted and co-workers showed that one-point one-scalar pdf trans-
port equations are computable. However, it soon became apparent
that when dealing with joint pdfs of multi-species and temperature or
species and velocity, the dimensionality in composition space was
too high to use conventional finite-difference, finite-volume, or
finite-element numerical techniques. Monte Carlo particle simulation
methods had been applied to compute turbulent reactive flows.55 The
computational work in Monte Carlo methods is proportional to the
number of independent variables, whereas, for example, in finite vol-
ume methods it grows exponentially with that number. Pope36,56 dem-
onstrated the feasibility of a sequential Monte Carlo simulation by the
simple use of time-splitting or fractional-step techniques, which
involve the separate and consecutive application of differential or dis-
cretized operators representing physical processes. AMonte Carlo field
method, proposed by Valino57 as an alternative to Monte Carlo parti-
cle techniques and applied by Sabel’nikov and Soulard58 to turbulent
reacting flows, has proved successful in Large Eddy Simulation (LES)/
PDF methodologies.59,60

Calculation of the first and the second scalar derivatives in the
conservation equation requires the knowledge of the scalar value in
two and three points, respectively. This translates into a closure prob-
lem in the pdf transport equation. We recall that the conditional diffu-
sion was rephrased in terms of the local scalar average, conditioned
on the scalar value at a neighboring point.28,61 This average can be
obtained from the two-point one-time scalar pdf, P2 H;H0; x; x0; t

$ %

¼ d H% h x; tð Þ
( )

d H0 % h x0; tð Þ
( )D E

or, alternatively, from the con-

ditional pdf P HjH0; x; x0; t
$ %

¼ P2 H;H0; x; x0; t
$ %

=P H0; x0; t
$ %

. P2
also yields the scalar gradient statistics.

Lundgren,62 Ievlev,63 and Ted along with his students, Kuo64 and
Jiang65 investigated multipoint pdf transport equations. While the clo-
sure approximations are cumbersome and not easy to test, the advan-
tages of this strategy are not evident. Pope66 and Kollmann and Wu67

used two-time pdf transport equations at a single point. Using stochas-
tic models, Kollmann and Wu67 solved the transport equation for
P2 V;V 0; x; t; t0ð Þ ¼ d V % u x; tð Þ½ (d V 0 % u x; t0ð Þ½ (

! "
, evaluating the

integral timescale and the kinetic energy dissipation rate. External
specification of a timescale is not necessary and the agreement of pre-
dictions with available experimental data for a mixing layer is satisfac-
tory. The hierarchy of multipoint pdf transport equations in
compressible turbulence has been investigated, among others, by
Fox68 and more recently by Praturi et al.69

IV. SCALAR-GRADIENT PDF TRANSPORT EQUATION
The importance of the scalar fluctuation–dissipation rate in tur-

bulent reacting flows had been remarked by Bilger.70 Meyers and
O’Brien71 and Gao and O’Brien72 scrutinized the joint statistics of one
scalar, h x; tð Þ, and its gradient, rh x; tð Þ; namely, P2 H;G; x; tð Þ
¼ d H% h x; tð Þ

( )
d G%rh x; tð Þ
( )! "

. A relaxation model (LMSE)

toward mean values, h and rh, was proposed a priori for contribu-
tions of molecular transports. On the other hand, a white noise Kubo
approximation for the convective term was used. The effects of mean
velocity, molecular mixing, chemistry, and turbulent transport on the
statistics of a scalar and its gradient were scrutinized. It was shown
that as the Reynolds number increases the joint statistical dependence
of the scalar and its gradient magnitude, rhj j; becomes less signifi-
cant, and P2 H;G; x; tð Þ ) P H; x; tð ÞPg G; x; tð Þ. This supported pre-
vious assumptions for non-premixed flames.70 An analogy between
transport in composition space due to chemical reaction and mass
conservation in compressible gas dynamics was invoked to suggest a
methodology for determining the statistical dependence induced by
the chemical reaction. The model was then applied to the turbulent
convection of an isotropic scalar gradient field, showing that it yields a
transition probability for the logarithm of the magnitude of the gradi-
ent, which is a simple random walk with outward drift. The timescale
of both the drift velocity and the variance was determined.71,73 The
explicit effect of turbulence on P2 H;G; x; tð Þ enters its transport equa-
tion as the average of the flow strain rate normal to the iso-scalar sur-
face h x; tð Þ ¼ H, conditional upon the scalar value and its gradient
magnitude, aN jh x; tð Þ ¼ H; rhj j x; tð Þ ¼ G

! "
: This is an unclosed

term and requires a model.
The amplitude mapping closure (AMC) is an alternative method-

ology to construct approximations for the joint statistics of a scalar
and its gradient undergoing molecular diffusion under stirring by a
statistically isotropic turbulent velocity field. The closure is obtained
by taking a Gaussian reference scalar field and distorting it locally in
physical space through a mapping to exhibit the statistics of the actual
scalar variable.74–76 It is worth noting that the LMSE closure is an
exact model for the molecular diffusion of a Gaussian scalar field. Gao
and O’Brien77,78 and Pope79 compared AMC and DNS results and
extended the method to model molecular diffusion in a multispecies
turbulent flow. Valino et al.80 generalized the AMC to time-dependent
Gaussian fields, obtained analytical solutions for symmetric binary
mixing, and produced numerical results combining a Monte Carlo
simulation and the analytic solution. O’Brien and Jiang81 show that a
necessary and sufficient condition for the conditional scalar dissipation
rate to be independent of scalar value is that its one-point pdf is
Gaussian, which obtain for an initially symmetric double-delta pdf a
separable (scalar and time dependences) closed-form solution, which
agree with DNS results. Ted and Sahay82 show unsatisfactory asymp-
totic properties in the scalar binary mixing problem of the AMC,
which predicts a conditional expectation that shows both a persistent
symmetry when the pdf is not symmetric and an unphysical perma-
nence for the original scalar bounds. The incorrect asymptotic behav-
ior of the AMC for unsymmetric binary mixing is also shown by He
and Rubinstein.83 Raissi et al.84 use deep learning (DL) to discover
models for the conditional expected diffusion and the conditional
expected dissipation of a scalar undergoing a Fickian diffusion
described by its transported single-point PDF equation and the discov-
ered model is appraised against the exact solution derived by the
AMC/Johnson–Edgeworth translation model of binary scalar mixing
in homogeneous turbulence.85 The philosophy behind the recent
deformation of Gaussian fields (RDGF) closure86 to investigate the
evolution of velocity gradients in turbulence and the multiscale turn-
over Lagrangian map (MTLM) procedure87 to generate non-Gaussian
synthetic turbulence fields is somewhat similar to that of the AMC.
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Conditioned scalar dissipation and chemical reaction rates are directly
connected.88 Conditional dissipation also appears as one of the essen-
tial variables of quasi-stationary normalized scalar pdf.89,90 Ted’s
Ph.D. students, Gao and Jiang, conducted further investigations on the
AMC.91,92

The pdf transport methods have been extensively reviewed
by O’Brien,61,93,94 Pope,36,95–97 Kollmann,98 Dopazo,99 Fox,50

Haworth,100 Haworth and Pope,101 among others.

V. SCALAR INTERFACES
Interfaces separating two regions of the flow domain with differ-

ent levels of a variable are examples of non-material surfaces.
Corrsin102 unveiled the large scale or external intermittency of shear
flow turbulence and what was termed “superlayer,” namely, the thin
layer separating the turbulent flow, with high vorticity or enstrophy
levels, and the irrotational region outside it. For scalar fields, the iso-
surface h x; tð Þ ¼ 0þ, where 0þ denotes a constant infinitesimal value
of h x; tð Þ, separates the two flow domains h x; tð Þ < 0þ and h x; tð Þ
> 0þ: The iso-surface h x; tð Þ ¼ 0þ obeys the equation103

@h
@t
þ uh

j
@h
@xj
¼ 0: (10)

The local velocity of h x; tð Þ ¼ 0þ is given by uh
j x; tð Þ ¼ uj x; tð Þ

þV x; tð Þnj x; tð Þ. uj x; tð Þ is the local flow velocity, and V x; tð Þnj x; tð Þ
is the local normal velocity vector relative to the iso-surface (see
Fig. 1). Then,

@h
@t
þ uj

@h
@xj
¼ %V rhj j ¼ Ve rhj j ¼ D

@2h
@xj@xj

þ
_x hð Þ
q

: (11)

The right side is the source of h x; tð Þ, and %V ¼ Ve is termed the
entrainment velocity of fluid from region h x; tð Þ < 0þ to region
h x; tð Þ > 0þ, across the interface h x; tð Þ ¼ 0þ. An indicator function
I x; tð Þ can be defined as a generalized function,104 such that I x; tð Þ
¼ 0 for h x; tð Þ < 0þ and I x; tð Þ ¼ 1 for h x; tð Þ > 0þ. Note that the
defined scalar interface is analogous to an iso-scalar surface within a
turbulent premixed flame, where V plays the role of the normal dis-
placement speed, Sd . I x; tð Þ ¼ H h x; tð Þ % 0þ

( )
, where H is the

Heaviside function (Fig. 1).
A transport equation for I x; tð Þ is readily derived

@I
@t
þ uj

@I
@xj
¼ Ve rhj jd h x; tð Þ % 0þ

( )
: (12)

Equation (12) with an unknown source term on its right side had been
postulated by Libby.105,106 A different expression for the source term
had been proposed by Dopazo.107 Intermittency functions were also
used in the experimental investigation of turbulent shear flows, for
example, by Kovasznay et al.108 Equation (12) can be used to condition
any flow equation to the region where either I x; tð Þ ¼ 0 or I x; tð Þ
¼ 1: For example, the equation of h x; tð Þ, multiplied by I x; tð Þ, yields

@ Ihh i
@t
þ
@ Iujh
! "

@xj
¼ D

@2 Ihh i
@xj@xj

þ I
_x hð Þ
q

* +

þ hVe rhj jd h x; tð Þ % 0þ
( )! "

% eh hd0 h x; tð Þ % 0þ
( )

% 2d h x; tð Þ % 0þ
( )- .! "

% hD
@2h
@xj@xj

d h x; tð Þ % 0þ
( )

* +
: (13)

This is the conservation equation for h x; tð Þ, conditioned to region
I x; tð Þ ¼ 1: d0 h x; tð Þ % 0þ

( )
is a generalized Dirac delta function

derivative.104 The scalar conditional mean in region I x; tð Þ ¼ 1, hh i1,
is obtained from Ihh i ¼ Ih i hh i1; Ih i is the scalar intermittency factor,
which quantifies the probability of point x being at region I x; tð Þ ¼ 1
at time t. Terms involving Dirac delta functions and its derivative rep-
resent the interaction between regions I x; tð Þ ¼ 1 and I x; tð Þ ¼ 0 at
the interface h x; tð Þ ¼ 0þ to generate h x; tð Þ in the zone I x; tð Þ ¼ 1.
Multiplication by 1% I x; tð Þ½ ( yields the conditioned equation for
zone I x; tð Þ ¼ 0: The addition of the two zone-conditioned equations
yields the unconditioned conservation equation for h x; tð Þ

! "
. Note

that rhj jd h x; tð Þ % 0þ
( )

in Eq. (12) has dimensions of lengthð Þ%1

normal to the iso-surface. For an infinitesimal volume,

dV ¼ dS rhj jd h x; tð Þ % 0þ
( )h i%1

, centered at the interface

hVe rhj jd h x; tð Þ % 0þ
( )

¼ 1
V

ð ð ð
dVhVe rhj jd h x; tð Þ % 0þ

( )

¼ 1
V

ð ð
dShVe ¼ hVeR: (14)

dS is the surface area element on the iso-surface h x; tð Þ ¼ 0þ; and R
is the local surface density m2=m3

$ %
of the iso-scalar surface.109

hVe rhj jd h x; tð Þ % 0þ
( )

represents the entrainment of h x; tð Þ across
the interface from the region I x; tð Þ ¼ 0 to the region I x; tð Þ ¼ 1:
Dopazo and O’Brien110 used this zone conditioning technique to
obtain entrainment profiles of mass and momentum in turbulent jets
and wakes in the self-preservation region.

O’Brien and Dopazo103 applied this technique to obtain
the transport equation of the conditioned scalar pdf, I}h i
¼ Id H% h x; tð Þ

( )! "
¼ Ih iP1 H; x; tð Þ. P1 H; x; tð Þ is the scalar pdf

restricted to the zone I x; tð Þ ¼ 1. The equation was applied to the sim-
ilarity region of a two-dimensional turbulent wake, where extensive
conditioned moment measurements were available.111 The asymptotic
forms of the pdf were found for low and high intermittency regions,
showing good agreement with experimental data. A connection

FIG. 1. Scalar interface, h x; tð Þ ¼ 0þ, separating regions where h x; tð Þ < 0þ

from regions with h x; tð Þ > 0þ: The zone indicator function is zero and unity,
respectively, in those regions.
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between the rate of entrainment of scalar-free fluid into the scalar con-
taining the zone and the pdf of the scalar at small positive values of
h x; tð Þ was established. The calculated zone-conditioned mean and
variance of the scalar field also showed to be compatible with available
experimental data.

Byggstoyl and Kollmann112 and Janicka and Kollmann113 applied
this zone conditioning methodology to compute intermittent turbu-
lent shear flows. Enstrophy and scalar interfaces of a methane–air tur-
bulent premixed turbulent annular jet flame stabilized on a bluff-body
burner have been recently examined using a high-fidelity, flame-
resolved, three-dimensional simulation;114 the enstrophy and the
scalar interfaces have been characterized by their displacement speeds
relative to the flow, and mean values, conditioned on the reaction pro-
gress variable, have been obtained.

VI. FILTERED DENSITY FUNCTION (fdf)
With increased capabilities of supercomputing technology and

easier access to large computational platforms, Ted dedicated a portion
of his research in the 1990s to large-scale simulations (including DNS
and LES) of reactive turbulence. One of his pioneering works in this
regard is the development of the filtered density function (fdf) meth-
odology for LES.115 In this methodology, the subgrid-scale fluctuations
of the underlying scalars’ array, h x; tð Þ; involving Ns species are con-
sidered in a probabilistic manner. In this context, the fdf, denoted by
PL, is formally defined as95

PL H; x; tð Þ ¼
ðþ1

%1
} H; h x0; tð Þ½ (G x0 % xð Þdx0; (15)

} H; h x; tð Þ
( )

¼ d H% h x; tð Þ
( )

¼
YNs

a¼1
d Ha % ha x; tð Þ
( )

: (16)

d denotes the Dirac delta function and H stands for the composition
domain of the scalar array. } H; h x; tð Þ

( )
is the “fine-grained” den-

sity,61 and Eq. (15) implies that the fdf is the spatially filtered value of
the fine-grained density. Thus, PL gives the density in the composition
space of the fluid around xweighted by the filterG. With the condition
of a positive filter kernel, PL has all the properties of the pdf.

The idea of using pdf methods for LES had been suggested by
many authors in the past, but Gao and O’Brien115 were the first who
developed a transport equation for the fdf and paved the way for
future developments of the methodology for LES of chemically reac-
tive flows. Within the past 30 years, the popularity of the methodology
has been growing steadily. Within the past decade, especially, there
has been a significant increase in the number of investigators who
have contributed to its continuing developments and utilization. In
this period, we have witnessed significant progress in fine-tuning of
the fdf sub-closures, and the procedure by which the fdf is solved
numerically. The modeling strategy is naturally influenced by the pro-
cedure by which the simulations are conducted. The extent of the fdf
popularity can be perhaps measured by the relatively large number of
participants at a recent mini-symposium devoted to this methodol-
ogy.116 This is also reflected in the number of tutorials and survey
articles devoted to the subject. Just within the last decade, detailed
review articles have been provided by Givi,117 Haworth,100 Pope,97

Yilmaz et al.,118 Ren et al.,119 Miller and Foster,120 and Sammak
et al.121

Because of its demonstrated capabilities, the fdf is now being cov-
ered in text books96,122 and is being steadily built into commercial soft-
ware and packages. As examples of computer codes currently in use
are the ANSYS Fluent,123,124 the Siemens125 in Zhang and Haworth,126

the OpenFoam127 in Mokhtarpoor et al.,128 Turkeri et al.,129,130

Galindo-Lopez et al.131 and Zhao et al.,132 and most recently the
Nektarþþ spectral/hp element133,134 by Sammak et al.135 and in
AMRex code136 by Aitzhan.137 The development of the Graphic
Processing Units (GPU) simulator of the fdf has just been com-
pleted,138 and “futuristic” fdf/pdf computations on quantum com-
puters are shown to be feasible.139–141 Obviously, the methodology is
here to stay. Therefore, it will surely benefit from all of the expected
developments in all of the constituents of reactive flow modeling and
simulation, most of which were initiated by Ted.

VII. DNS OF COMPRESSIBLE TURBULENCE
In the last few years of his research career, Ted concentrated on

DNS of compressible turbulent flows. The overall goal of his research
was to provide a better understanding of high-speed air-breathing
aerospace propulsion systems in which combustion is inherently
diffusion-limited. In collaboration with his colleague, Ladenide, and
Ph.D. student, Cai, they constructed one of the first Essentially Non-
Oscillatory (ENO)-based DNS codes.142,143 This code proved novel at
this time because of its very low numerical errors (dispersion and dis-
sipation). Therefore, it allowed high-fidelity DNS of high Reynolds
number flows with sharp discontinuities, due to shock waves and/or
flame fronts. Ladeinde et al.142 employed DNS to calculate the scalar
fluctuation correlations in polytropic, homogeneous turbulence for
which the initial conditions, including the Reynolds and the Mach
numbers, were chosen to produce three types of flows: (i) a nearly
incompressible flow dominated by vorticity, (ii) a nearly purely acous-
tic turbulence dominated by compression, and (iii) a nearly statistical
equipartition of the longitudinal (compressible) and transverse (sole-
noidal) energy components. The simulated results were used to assess
the performance of the EDQNM in estimating the evolution of the
fluctuation correlations. It was found that the predictions via the use
of the solenoidal component of turbulence energy, rather than the total
(compressible) turbulence energy, provide the best overall agreement
with DNS data. In another DNS, Cai et al.144 showed that the com-
pressible turbulence modes are less efficient than the incompressible
ones in transporting scalar spectral energy from large to small scales.
This effect is attributed to the reduced size of the integral length scale
of the compressible velocity components vis-a-vis that of the incom-
pressible flow field. The results also explain the experimentally
observed ineffectiveness of the dilatational velocity modes in determin-
ing the scalar flux in homogeneous, compressible turbulence with a
uniform mean scalar gradient.

Cai et al.145 conducted DNS of a decaying, isotropic, compress-
ible turbulence with the initial temperature fluctuations larger than
those of the pressure. The initial turbulent Mach number was kept at
subsonic levels (0.3–0.7) and the magnitudes of the initial compress-
ible kinetic energy to total kinetic energy were kept in the ranges of
very low to unity. The simulated results indicated that only at the low-
est values of initial turbulent compressible Mach number ðMtÞ and
energy ratio do thermodynamic scalings with Mt follow the predic-
tions in the literature. For example, Zank and Matthaeus146 predicted
fluctuating pressures of OðMtÞ and the associated anticorrelation

Physics of Fluids EDITORIAL scitation.org/journal/phf

Phys. Fluids 33, 080403 (2021); doi: 10.1063/5.0062933 33, 080403-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


between the fluctuating temperature and density, in their nearly
incompressible energy theory for compressible turbulence. For turbu-
lent Mach numbers above 0.3, or for finite values of the kinetic energy
ratio, the scalings are more complex and the reported anticorrela-
tion146 is lost.

Ladeinde et al.147 conducted DNS of turbulent shear flows and
investigated the effects of the convective Mach number on several flow
statistics such as the Reynolds stresses, the dissipation tensor, the pres-
sure strain, and the triple correlation tensor. The short-time behaviors
of some of these quantities were shown to be similar to those suggested
by Sarkar.148 The relative magnitudes and signs of the unclosed terms
in the Reynolds stress transport equations provided very useful infor-
mation for second-order closures of compressible turbulent flows. The
results of these theoretical studies are in accord with those previously
attained via DNS.149

VIII. ORGANIZATION OF THIS SI
We are very pleased to have 53 papers from over 200 researchers,

including some of the leading experts from all over the world, to
contribute to this special issue. This enthusiastic response is another
indication of the respect Ted O’Brien has within the international
research community of turbulence and reactive flows. These contribu-
tions are on diverse topics including combustion instability,150,151 sca-
lar mixing,152–156 homogeneous isotropic turbulence,157–160 turbulent
premixed flames,161–171 turbulent non-premixed flames,172–175 wall-
bounded turbulence,176–178 turbulent combustion modeling,179–181

FDF/PDF,182–192 and two-phase turbulent flows.193–202

IX. CONCLUDING REMARKS
Being recognized as one of the outstanding problems of the

physical sciences, turbulence has been the subject of intense investiga-
tions by many leading scientists, engineers, and mathematicians for
over a century. With the continuing research in this field, a large vari-
ety of strategies have emerged, and the research community contin-
ues the search for more accurate, reliable, and systematic
methodologies. The models developed within the past century range
from very practical and engineering-oriented, to highly fundamental
and theoretical. Ted’s contributions, tending to be more on the latter
side, elicited some of the most intricate physics of turbulent scalar
mixing and reaction. His contributions have paved the way for some
of the success we are enjoying today. His fundamental findings have
also led to the developments of some of the practical tools for engi-
neering predictions.

His PDF method has been widely recognized as the most sys-
tematic means of estimating the mean rate of reactants conversion in
Reynolds-averaged simulations. His classical tutorial on the subject
(O’Brien, 1980) remains as one of the most useful and widely cited
pedagogical references on the subject. The counterpart of this
method, the fdf, is now widely recognized as the most accurate tool
for subgrid-scale modeling in LES of reacting flows. Because of this
wide visibility, the fdf usually has its own sessions at most fluid
dynamics conferences, including APS-DFD. In both pdf and fdf
methods, the LMSE model of Dopazo–O’Brien continues to be the
simplest and most popular, yet susceptible of improvement, closure
for scalar micro-mixing.

Professor O’Brien will be remembered as one of the most influ-
ential pioneers of turbulent mixing and reacting flow research.

His legacy will remain forever, not just through his publications, but
also through his Ph.D. students (and their subsequent students, and
so on) who are, and will be, making advancements in these fields.
The works of some of these students are featured in this Special
Issue.
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