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An interpretable deep-learning model for early
prediction of sepsis in the emergency department
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Highlights
e We present benchmark results of sepsis-onset prediction in
emergency department

e An LSTM-based model captures irregular time intervals with
time encodings

e Our deep-learning model shows superior performance
compared with existing methods

e Model interpretation enables real-world clinical applications
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In Brief

Electronic health records contain
valuable temporal information for sepsis
prediction. However, irregular time
intervals between neighboring events are
typically neglected. Besides,
transparency and interpretability of deep-
learning models with increasing
complexity and superior performance has
become a barrier to the models’ clinical
adoption. To this end, we propose an
interpretable deep-learning model that
better captures time information and
achieves promising performance on
sepsis prediction in the emergency
department.
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THE BIGGER PICTURE Sepsis is the leading cause of death worldwide and has become a global epidemi-
ological burden. Early prediction of sepsis enables early treatment and increases the likelihood of survival
for septic patients. The broad adoption of electronic health records (EHRs) provides an opportunity for
sepsis prediction. However, most existing prediction approaches do not consider irregular time intervals
between neighboring clinical events in EHRs. Besides, many deep-learning models suffer from black-box
problems and are not trusted in clinical settings. We propose a deep-learning model with time encodings,
offering both high accuracy and high transparency as well as clinical interpretability. We have already made
our code and its detailed documentations publicly available, enabling colleagues to apply it to their appli-
cations and eventually make clinical impacts.
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Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

Sepsis is a life-threatening condition with high mortality rates and expensive treatment costs. Early prediction of
sepsis improves survival in septic patients. In this paper, we report our top-performing method in the 2019 DIl Na-
tional Data Science Challenge to predict onset of sepsis 4 h before its diagnosis on electronic health records of
over 100,000 unique patients in emergency departments. A long short-term memory (LSTM)-based model with
event embedding and time encoding is leveraged to model clinical time series and boost prediction performance.
Attention mechanism and global max pooling techniques are utilized to enable interpretation for the deep-
learning model. Our model achieved an average area under the curve of 0.892 and was selected as one of the win-
ners of the challenge for both prediction accuracy and clinical interpretability. This study paves the way for future
intelligent clinical decision support, helping to deliver early, life-saving care to the bedside of septic patients.

INTRODUCTION

Sepsis, a life-threatening iliness caused by the body’s response
to an infection, is the leading cause of death worldwide and has
become a global epidemiological burden. Sepsis occurs at all
ages and increases mortality rates. In the United States, for
example, over 1.7 million adults develop sepsis and nearly
270,000 patients die as a result of sepsis each year." Besides,
sepsis is the costliest among all disease states and accounted
for $24 billion of United States hospital costs in 2013.% Without
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timely and adequate treatment, sepsis can progress to severe
sepsis and septic shock, which lead to higher mortality rates.®
Several studies suggest that early prediction of sepsis enables
early treatment and is able to significantly improve patient out-
comes.*® However, common signs and symptoms of sepsis,
such as fever, chills, rapid respiration, and high heart rate, are
the same as in other conditions, making sepsis difficult to diag-
nose in its early stages. Besides, it is clinically meaningless to
predict sepsis minutes before onset even with high prediction
accuracy. A good predictive model should be able to trigger
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alerts as early as possible and present increasingly stronger sig-
nals as it approaches the actual event.

Electronic health records (EHRs) are longitudinal electronic re-
cords of patients’ health information. The rapid growth in volume
and diversity of EHRs during the last decades makes it possible to
apply machine-learning and data-mining methods to the early
prediction of sepsis. Screening tools have been used clinically
to recognize sepsis, including quick Sequential (Sepsis-Related)
Organ Failure Assessment (QSOFA), Modified Early Warning
Score (MEWS),® National Early Warning Score (NEWS),” and Sys-
temic Inflammatory Response Syndrome (SIRS).2 However, those
tools were designed to screen existing symptoms as opposed to
explicitly predicting sepsis prior to its onset, and their efficacy in
sepsis diagnosis is limited. For example, prior studies show that
qSOFA had low sensitivities in identifying sepsis in both prehospi-
tal and emergency department (ED) settings.'°

With recent advances and success, machine-learning
methods have shown great potential in unlocking insights from
EHRs. Various methods have been developed for accurate
sepsis prediction.''? Faisal et al.® developed a logistic regres-
sion model (CARS) to predict the risk of sepsis using a patient’s
firstly recorded vital signs and blood test results, which are usu-
ally available within a few hours of emergency admission. Horng
etal.'” constructed a machine-learning model using a linear sup-
port vector machine and demonstrated the incremental benefit of
using free text data in addition to vital signs and demographic
data for sepsis clinical decision support at the ED. Mollura
etal.’ trained abagged tree classifier using the recorded electro-
cardiogram and arterial blood pressure waveforms, showing that
the waveform monitoring information may help in detecting
sepsis within the first hour of stay in the intensive care unit
(ICU). Kamaleswaran et al.'® showed that artificial intelligence
can be used to predict the onset of severe sepsis as early as
8 h ahead using physiomarkers in critically ill children. Lyra
et al."” used an optimized random forest to predict sepsis for
imbalanced clinical data from ICUs in the PhysioNet Computing
in Cardiology Challenge 2019."> Mao et al.'® validated a ma-
chine-learning algorithm with gradient-boosting trees, InSight,
which used only six vital signs for the prediction of sepsis, severe
sepsis, and septic shock and showed that InSight outperformed
existing sepsis-scoring systems. Using 65 features from a com-
bination of EHRs and high-frequency physiological data, Nemati
et al.’ developed and validated an interpretable machine-
learning model based on a modified Weibull-Cox proportional
hazards algorithm for making an accurate and interpretable pre-
diction of sepsis. Recently, deep-learning methods have
achieved improving performances over traditional models and
have shown unprecedented potential in the healthcare domain.*°
Deep-learning models automatically learn the data representa-
tion with improved performance and do not require conventional
feature-extraction steps. Recurrent neural networks (RNNs) are
commonly used network architectures in modeling multivariate
series prediction.?'?® Kam and Kim?' proposed a sepsis-detec-
tion model with long short-term memory (LSTM), which showed
better performance than InSight and superior capability for
sequential patterns. However, deep-learning models usually suf-
fer from black-box problems and are not trusted in clinical set-
tings. RETAIN?* and Dipole®® proposed to introduce attention
mechanisms and interpret the models’ output risks based on
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the learned attention weights, which is helpful for models’ appli-
cation to real-world clinical settings.

Most existing approaches'''>'"?! focus on the sepsis pre-
diction for ICU settings and may suffer from performance
decrease for predicting sepsis onset for patients in EDs with
low resolution of medical observations, while many patients
have been diagnosed with sepsis at ICU admission.*® Moreover,
most of the aforementioned existing methods do not or only
consider the relative order of events and ignore the irregular
time intervals between neighboring events while modeling
time-series EHR data. Besides, the increasing complexity of
deep-learning models has brought superior model perfor-
mances at the price of lack of transparency and interpretability,
which has become a barrier to the models’ clinical adoption. To
this end, we address these problems with our proposed inter-
pretable LSTM-based deep-learning model that can achieve
state-of-the-art sepsis-onset prediction in the ED.

Our proposed deep-learning model handles irregular time in-
tervals with time encodings, and leverages attention mechanism
and global max pooling techniques to help interpret the model’s
behavior. Our team, BuckeyeAl, participated in the 2019 DIl chal-
lenge with the proposed deep-learning method and ranked sec-
ond out of 30 teams on the early prediction of sepsis onset in the
ED, with an average area under the receiver-operating charac-
teristic curve (AUC) score of 0.892. The goal of the 2019 DII chal-
lenge is the early prediction of sepsis using a patient’s demo-
graphic and physiological data in the ED. Different from the
PhysioNet Computing in Cardiology Challenge 2019 on sepsis
prediction in the ICU, '? the 2019 DIl challenge focused on sepsis
prediction in the ED where the environment is more chaotic.”’ In
this paper, we present our methods, results, and analyses. To
summarize, the contributions are as follows.

® We present benchmark results of sepsis-onset prediction
in the ED. We show that our model outperforms four
early-warning scores and three baseline machine-learning
models.

® We propose an LSTM-based model for sepsis-onset pre-
diction, which handles irregular time intervals with time
encodings.

® We leverage the attention mechanism and global max
pooling techniques to help interpret our model.

RESULTS

Study design

Definition of Sepsis-2, the presence of proven or suspected
infection together with two or more SIRS criteria,?® is used to
define ground truth in the ED. The inclusion and exclusion dia-
gram of the 2019 DIl challenge data preparation pipeline is
shown in Figure 1. A summary of patient characteristics is pro-
vided in Table 1. Distribution of length of stay until sepsis onset
is shown in Figure S1. Two use cases of sepsis-onset prediction
4 h before it occurs is demonstrated in Figure 2. The proposed
deep-learning model’s architecture is illustrated in Figure 3.
Our proposed model handles irregular time intervals with time
encodings, and the model is interpretable due to the attention
mechanism and global max pooling techniques.
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Sepsis-2 onset (60,682)

PS matching using age, length of stay, race, gender
(59,629 cases, 139,524 controls)

Check mortality
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Feature cleaning
and records binning

Semi-final cohort (58,924 cases,
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v
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Final cohort (54,122 cases, 132,453
controls)

Figure 1. Inclusion and exclusion diagram of DIl challenge data
preparation pipeline
After filtering and correction, the final cohort has a sepsis prevalence of 29.0%.

We implemented and evaluated four early-warning scores,
three traditional machine-learning methods, and four deep-
learning models as baselines. The four early-warning scores
comprised MEWS,® NEWS,” SIRS,? and qSOFA.* For traditional
machine-learning methods, we considered logistic regression,
random forest, and gradient-boosting trees. Because these
standard machine-learning methods cannot work directly with
multivariate time-series sequences, the element-wise aggrega-
tion (i.e., count, mean value, minimum value, maximum value,
and standard deviation of events) of temporal features are
used as model inputs. For the deep-learning baselines, two clas-
sical RNN models (i.e., GRU?® and LSTM®%) and two state-of-
the-art interpretable RNN models (i.e., RETAIN* and Dipole?®®)
are selected. The RNN models cannot handle the missing values
of EHR data. We mapped the feature variables into vectors via an
embedding layer. The concatenation of the embedding vectors
and the observed feature values were then input to the RNN
models.

Classification results

Table 2 summarizes the performance of various models for
sepsis-onset prediction. From Table 2, our model outperforms
baseline models. The main reasons why our model works better
are 2-fold: (1) our model can automatically learn better patient
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Table 1. Label statistics and characteristics of the final cohort

Sepsis-2 patients  Sepsis-2 controls Risk
(n =52,802) (29.5%) (n = 126,041) (70.5%) ratio

Gender
Female 25,936 (49.1%) 65,523 (52.0%) 0.92
Male 26,866 (50.9%) 60,518 (48.0%) 1.08
Race
African American 11,084 (21.0%) 20,556 (16.3%) 1.24
Asian 1,085 (2.1%) 1,627 (1.3%) 1.36
Caucasian 35,059 (66.4%) 95,657 (75.9%) 0.73
Others/unknown 5,574 (10.5%) 8,201 (6.5%) 1.41
Age
18-20 1,602 (3.0%) 1,776 (1.4%) 1.63
20-40 8,100 (15.3%) 15,288 (12.1%) 1.20
40-60 15,654 (29.6%) 34,295 (27.2%) 1.09
60-80 20,241 (38.3%) 51,914 (41.2%) 0.92
80-100 7,205 (13.6%) 22,768 (18.1%) 0.78

representations as the network grows deeper and yield more ac-
curate predictions with sufficient data; (2) our LSTM-based
model can better capture temporal information, while logistic
regression, random forest, and gradient-boosting trees simply
aggregate time-series features and hence suffer from informa-
tion loss.

We found that machine-learning-based algorithms outper-
formed early-warning scores on both cases. All three machine-
learning methods achieved similar performance on both Case
1 and Case 2. MEWS and NEWS were shown to perform better
than SIRS and gSOFA on Case 2. However, the result suggested
little discrimination of four scores on Case 1 with low AUC
scores. The deep-learning models outperformed the early-warn-
ing scores and performed comparably with the machine-learning
algorithms. We speculate the reason for this is that the feature
engineering (e.g., minimum and maximum feature values) is
effective, and both machine-learning and deep-learning
methods can capture the abnormal values from EHRs. With
the help of attention mechanisms, RETAIN and Dipole can focus
on the abnormal values better, and thus outperform GRU
and LSTM.

On the private test dataset, our proposed model achieved AUC
scores of 0.940 and 0.845 for two use cases, respectively. The
official score is (0.940 +0.845)/2 = 0.892. Compared with atten-
tion-based models (i.e., RETAIN and Dipole), the proposed model
still achieves better prediction accuracy. Our model considers the
whole history of a patient’s EHRs with a global pooling operation
rather than attention, which is useful for relieving the long-term
dependency problem of RNN. Moreover, the time embedding
can capture the temporal information more efficiently, which
further improves the proposed model’s performance.

Ablation study

To measure the effectiveness of different components (i.e., event
embeddings, time encodings, and global max pooling), we adopt
an ablation study to gain a better understanding of the proposed
model by removing one component each time. The results of
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Figure 2. Two use cases of sepsis-onset pre-
diction 4 h before it occurs
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try to interpret our model at the population
level in two ways, namely medical event
importance and influential clinical features.

Medical event importance
As we can calculate the contribution rate of
each medical event of each patient, we can
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ablation study on Case 1 sepsis-onset prediction are reported in
Table 3. Based on the results from Table 3, the most influential
component is event embeddings. By removing event embed-
dings, the AUC score decreases by 0.11. By handling irregular
time intervals using time encoding, the model performance in-
creases from 0.89 to 0.94. Moreover, incorporating global max
pooling causes an AUC score increase of 0.03.

DISCUSSION

Generally, linear models and tree-based models can be easily in-
terpreted because of their intuitive way of predicting output from
inputs, but these models are quite simple. Although deep-
learning models can usually yield more accurate predictions,
they usually operate as black boxes and make it unclear why
the models make specific predictions. However, due to the
attention mechanism and global max pooling operation, our
deep-learning model is interpretable as shown in Figure 6. At pa-
tient level, we are able to calculate the contribution rate of each
medical event for sepsis risk according to Equation 5. Medical
events with higher contribution rates contribute most to the clin-
ical outcome (i.e., sepsis onset in the next 4 h).

While patient-level interpretation reveals medical events that
are most influential to sepsis onset for an individual patient, pop-
ulation-level analysis is needed to determine the most influential
medical events as well as clinical features over the entire EHR da-
taset. Therefore, to better understand the model’s behavior, we

FC
i >

Outcome

Output vectors ‘ hy

TD'IlSeC)/Z

compute each medical event’s importance
at the population level. For each medical
event, event importance is calculated by averaging its contribu-
tion rates for all patients whose EHR data contain this event.

Figure 4 shows the medical event importance (average contri-
bution rate) over time for all patients. This plot shows an overall
upward trend, which meets our expectation that the medical
events closer to sepsis onset are more important for our model
to make predictions.

Clinical feature importance

Apart from medical event importance, we also want to know
which clinical features are most important for sepsis-onset pre-
diction. Similar to medical event importance, for each clinical
feature we compute its importance over all medical events
across the entire population according to Equation 6. The top
influential features found by the deep-learning model are shown
in Figure 5. The full contribution rate list of clinical features can
be found in Table S1. The clinical features with the highest
contribution to sepsis prediction are easily attainable clinical
values. Thus, our model suggests that the development of
sepsis can be predicted easily based on items within the
EHR. Interestingly, lab values traditionally associated with
sepsis prediction (e.g., white blood cell count and renal func-
tion) were not predictive.

Model performance across subpopulations
From this perspective, we compare the model performance
across various subpopulations and report the results on

Figure 3. Architecture of proposed LSTM-
based model
The concatenation of the medical event embedding

/—_%7" =
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BiLSTM model, which generates output vectors (h1,
ha, -+, hy). All the output vectors are concatenated,
then a global max pooling operation is performed to
produce the patient representation vector. Finally, a
fully connected layer and the sigmoid function are
used to predict the probability of sepsis onset in the
next 4 h.
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Table 2. AUC scores of sepsis-onset prediction task

Method Case 1 Case 2 Average
MEWS 0.54 0.72 0.63
NEWS 0.52 0.72 0.62
SIRS 0.56 0.69 0.62
qSOFA 0.53 0.65 0.59
Logistic regression 0.89 0.79 0.84
Random forest 0.90 0.81 0.85
Gradient-boosting trees 0.91 0.81 0.86
GRU 0.88 0.80 0.84
LST™M 0.89 0.80 0.85
RETAIN 0.90 0.80 0.85
Dipole 0.90 0.81 0.86
Proposed model 0.94 0.84 0.89

Case 1 sepsis prediction as an example in Table 4. The results
show that our model achieves high prediction performance
(AUC >0.929) across all subpopulations. Confidence intervals
are calculated at the 95% level. We also test paired p values
for model performance between subgroups, the results of
which are reported in Table S2. Concerning gender, the model
seems to perform better on female patients compared with
male patients, with higher AUC scores (p = 0.025). For race
subgroups, performance on the African American patients is
the most discriminatory, with relatively lower p values
compared with other combinations. The model’s AUC on
Asian patients is lower with large variance, perhaps because
the proportion of Asian patients is small. With respect to age
subgroups, the model achieves higher performance for pa-
tients whose age is lower than 20 years while the result shows
large variance due to the low proportion of such patients.
Model performances on patient pairs aged 20-30 and 30-40,
50-60, and 60-70 years are quite similar. The reason for this
could be that the distributions of features of these pairs are
closer.

Conclusion

Our team, BuckeyeAl, participated in the 2019 DIl Challenge and
ranked #2 out of 30 teams on the early prediction of sepsis onset
task. In this paper, we present our solution to sepsis-onset pre-
diction 4 h before it occurs. For sepsis-onset prediction, our pro-
posed deep-learning model achieved an AUC score of 0.892 and
outperformed four early-warning scores and three baseline ma-
chine-learning models. By incorporating event embeddings,

Table 3. Ablation study of different components (i.e., event
embeddings, time encodings, and global max pooling) on Case 1
sepsis prediction

Model AUC
Proposed model without event embeddings 0.83
Proposed model without time encodings 0.89
Proposed model without global max 0.91
pooling

Proposed model 0.94
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Figure 4. Average contribution rate of medical events over time for
patients in test set

Note that when computing the average contribution rate for a specific time
point, we only consider the patients who have medical events at the time point.

time encodings, and global max pooling, our model yields
more accurate predictions. Time encodings help to handle irreg-
ular time intervals. The global pooling operation enables the
model to associate the contribution of each medical event with
the final clinical outcome, paving the way for interpretable clinical
risk predictions.

Although we mainly focus on sepsis-onset prediction in
this challenge, our model is general and can be applied
to other multivariate time-series prediction problems. In
addition to the superior performance, our proposed model
is interpretable from an individual patient to the whole
population.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will
be fulfilled by the Lead Contact, Ping Zhang, PhD (zhang.10631@osu.edu).
Materials availability

This study did not generate any new materials.

Data and code availability

Protected Health Information restrictions apply to the availability of the
2019 DIl Challenge dataset. As a result, the dataset is not publicly available.
The source code is provided and is available at https:/github.com/
yinchangchang/DlI-Challenge.

Ethical statement

The challenge data are extracted from the Cerner Health Facts database. All
challenge entrants signed an enforceable data use agreement as part of the
competition registration process. Regarding the use of Cerner Health Facts,
all challenge publications authors are covered under IRB protocol HSC-
SBMI-13-0549, approved by the UT Health Committee for the Protection of
Human Subjects.

Data

The challenge data are extracted from the Cerner Health Facts database.
Cerner Health Facts is a database that comprises de-identified EHR data
from over 600 participating Cerner client hospitals and clinics in the United
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Figure 5. Contribution risks of top influential features found by the deep-learning model
Blue-colored tick label on x axis is the corresponding normal range of each feature.

States and represents over 106 million unique patients. With this longitudinal,
relational database reflecting data from 2000 to 2016, researchers can analyze
detailed sets of de-identified clinical data at the patient level. Types of data
available include demographics, encounters, diagnoses, procedures, lab re-
sults, medication orders, medication administration, vital signs, microbiology,
surgical cases, other clinical observations, and health systems attributes.

The goal of 2019 DIl challenge is the early prediction of sepsis with demo-
graphic and physiological data provided. Sepsis-2 is diagnosed as the pres-
ence of proven or suspected infection together with two or more SIRS criteria.
The SIRS criteria are defined as:

e Heart rate >90 beats/min

o Body temperature >38°C or <36°C

e Respiratory rate >20 breaths/min or PaCO, <32 mm Hg

e White blood cell count >12x10° cells/L or <4x10° cells/L

Sepsis-2 definition is used to define the ground truth. Patients who are <18
years old or do not have enough observation data are excluded. The whole
data preparation pipeline diagram is shown in Figure 1. The label statistics
and characteristics of the final cohort are provided in Table 1. Descriptions
and statistics of clinical features are available in Table S1.

Predictive tasks

In this challenge, we aim to predict sepsis 4 h before onset for hospitalized
adult patients. There are two use cases, as demonstrated in Figure 2.

Case 1

In this case, patients are sampled from septic patients, and the goal is to find
out whether a model can tell if a patient is likely to have high sepsis risk a few

6 Patterns 2, 100196, February 12, 2021

hours before the onset. For each patient, the patient records is split into two
segments at the middle point, segment close to sepsis onset (= 4 h) is labeled
as 1, another segment (>4 h before sepsis onset) is labeled 0. We randomly
pick either the former or latter segment to build the Case 1 cohort. The intro-
duction of case 1 is to measure the model in terms of time-sensitive prediction
to ensure models are indeed clinically useful and relieve warning fatigue as
alarm burden. Given patient records either from Tagmission 10 Tmiddle OF from
Trmiddle 10 Tonset — 4, our model is required to distinguish these two kinds of
records.

Case 2

In this case, case and control segments are from different patients who have
sepsis onset in the next 4 h, as well as those who do not have sepsis. Given
patient records from Tagmission tO Tonset — 4, We are going to predict whether
sepsis occurs in the following 4 h.

Neural network architecture

The proposed neural network architecture is shown in Figure 3. This model is
inspired by DG-RNN.®" Although we focus on the early prediction of sepsis
onset in this challenge, our proposed model is general and can be applied
to other multivariate time-series prediction tasks, such as mortality prediction
for septic patients.

Event embeddings

For each temporal feature, we sort the values from low to high and use the or-
der to replace the original values. We then divide the orders into ten groups
(i.e., 0.0-0.1, 0.1-0.2, ..., 0.9-1.0) and each event is then embedded into a
512-day vector.
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Table 4. Model performance (AUC) with 95% confidence interval
across various subpopulations on Case 1 sepsis prediction

AUC

Total 0.942 (0.938, 0.946)
Gender
Female 0.946 (0.939, 0.953)
Male 0.938 (0.935, 0.941)
Race
African American 0.950 (0.941, 0.959)
Asian 0.929 (0.894, 0.963)
Caucasian 0.937 (0.934, 0.941)
Others/unknown 0.933 (0.925, 0.941)
Age
18-20 0.966 (0.949, 0.983)
20-30 0.933 (0.919, 0.946)
30-40 0.931 (0.923, 0.939)
40-50 0.947 (0.941, 0.953)
50-60 0.939 (0.933, 0.946)
60-70 0.940 (0.928, 0.952)
70-80 0.931 (0.921, 0.941)
80-100 0.947 (0.938, 0.955)

Time encodings

When modeling time-series EHR data, most existing LSTM-based models do
not or only consider the relative order of events. However, these methods typi-
cally ignore the irregular time intervals between neighboring events. Similar to
position encodings in Transformer,®” we infuse time information using time en-
codings. Time encodings are sent to LSTM together with event embeddings.
We compute each event’s relative time to the criterion operation date and
the time interval relative to the last event. We then use sine and cosine func-
tions of the different time intervals to represent the time encoding for the
" event:

Pr2j = sin((date, — date;) /51200j/d)
Pioj+1 =Cos((date, — date;)/51200j/d)
0<j<d

(Equation 1)

where date, denotes the criterion operation date, date; denotes the tth

event’s date, p;e R?? denotes the time encoding vector, and j is the dimension
of EHRs event embeddings. Both the event embeddings and time encodings
are then input to LSTM.

¢? CellPress

OPEN ACCESS

To better align patient records at their last recorded medical event, the time
of each event is mapped from [0, Tiastevent] t0 [ — Tiastevent, 0]

LSTM and attention mechanism

RNNs are popular and suitable for sequential EHR data modeling. Given med-
ical event embedding and time encoding vectors, we build our model based on
LSTM*" for its ability to recall long-term information. The LSTM model can be
described as follows:

it = U<Wf§r +Wip; + Uphy 1 + bf)

fi=a (W;é, +Wap, + Urh;_ +bf)

P, Equation 2
o,:o(Woet+Wo,pt+Uohf,1+bo> (Equation 2)

Ci=c (chéf +Wetpy +Ushy 1 +be | %ic+Cyq xF;
h¢ =0, * tanh(Cy)

where ¢ is the sigmoid function, t denotes the " step of LSTM, and C; is the
corresponding cell state, and h; is the output vector. &; is the input event
embedding and p; is the input time encoding. W;, Wy, W,, Weee R*?, Wi, Wy,
Wi, Were R¥*24  U; Us,Uo, U R¥*9, and b;, br, b, bee R¥ are learnable param-
eters. Attention mechanism is used to automatically identify influential clinical
features.

Global max pooling

RNN-based models are sometimes inefficient due to their long-term de-
pendency. When the input sequence is too long, it is easy for the models
to forget the earlier data. Therefore, we adopt a global pooling operation
to shorten the distance between the earlier inputs and the final outputs. As
is shown in Figure 3, all the outputs of the LSTM are concatenated, then a
global pooling operation is followed. The output oy is fed through the fully
connected layer to produce the clinical risk of patient i, which is
defined as

ri=Wsog + bs

Vi=o(r) (Equation 3)

where Wse RK and bseR are the learnable parameters and yi denotes the
predicted probability for sepsis onset. Because of the shortened distance be-
tween the inputs and the outputs, the pooling operation makes it more efficient
to propagate the gradients. Besides, the global pooling operation is useful to
compute the contribution rates of the outputs and their corresponding input
medical events.

Objective function
For binary classification, the objective function is defined as the binary cross-
entropy loss between ground truth y* and predicted probability y:

Output vectors FC Weights FC Results Figure 6. Interpretability of the proposed
hy hy hs ha he w C""t’?"k“""“ C"“‘“:’““"“ model with global max pooling: a toy example
ris] rate . .
Here we display four medical events (e1, ez, es, €4)
0.4 0.5 0.6 0.5 0.6 0.7 /| 042 17.5% } )
i and their corresponding output vectors (h1, ha, hs,
/
0.2 03 0.5 0.2 0.5 0.5 0.25 10.4% i
Global Max e N— /, hy). After a global max pooling I.’?\yer and ja fully
01 04 03 08 Pooling 08 08 K 0.64 26.7% connected layer, the model predicts the risk of
x :> 2.40 sepsis onset in the next 4 h for an individual patient.
0.9 0.6 0.4 0.3 0.9 03 i 0.27 11.2% s Lo
\ Each output vector’s contribution is then calculated
\
v W ge e s QE \ [ 042 17.5% by summing the corresponding dimensions’ contri-
Al N . . . . .
0.1 0.6 0.2 0.8 0.8 05 \| 040 16.7% bution risks. Finally, the contribution of each medical
ﬂ event is calculated according to Equation 5.
11.2% 17.5% ‘
El EE B2 BN (L A 26.7%+16.7%=43.4%
Medical events Contribution rates of output vectors

Patterns 2, 100196, February 12, 2021 7




¢? CellPress

OPEN ACCESS

L= —(ylog(y) + (1 =y )log(1—y)). (Equation 4)

Interpretability

Interpretability is very important for machine-learning models of clinical appli-
cations. The global pooling operation leveraged in our architecture can asso-
ciate the contribution of each input medical event to the final clinical outcome,
paving the way for interpretable clinical risk predictions.

In Figure 3, given the output vectors, the global max pooling operation is fol-
lowed and produced the final patient feature vector h., which is used to predict
risk of sepsis onset. We can track the output vectors which constitutes specific
element of h.. After the fully connected layer, we can calculate every dimen-
sion’s contribution rate. For a case patient, the contribution rate of output vec-
tor h; for the t™ input event is calculated as

he

Ci=—e——————.
' jn:Wmax(hho)

(Equation 5)

Toillustrate the interpretability of our model clearly, we display four input events
and four corresponding six-dimensional output vectors (hy, hs, hs, hy)in Fig-
ure 6. Given patient feature vector (h¢) and fully connected parameters (Ws,bs),
the output risk is computed (r; = Wsh, + bs). For example, the first dimension’s
contribution risk is 0.42 and the contribution rate is 17.5%, which comes from
the third output vector hs. Similarly, the second dimension’s contribution rate
also comes from hs. Thus, the contribution rate of the third vector h3 is computed
by summing the two contribution rates. We thus compute the contribution rate of
the input event ez asc3 = 17.5% +10.4% = 27.9%. For feature j in event i, we
can compute its contribution rate with attention weight as

cj =Ci*a;. (Equation 6)

Implementation and evaluation
The four early-warning scores (MEWS, NEWS, SIRS, and qSOFA) are calcu-
lated based on the worst value for each physiological variable within the
past 24 h before Tonset — 4 (i.€., the last observed time points). Logistic regres-
sion and random forest are implemented with the scikit-learn toolkit.**> We
implement gradient-boosting trees using LightGBM.** For the proposed
LSTM-based model we use PyTorch,®® and the number of time steps for
LSTM is set to 100. For evaluation, 80% of the data are used for training,
10% for validation, and 10% for testing. The competition was hosted on
Amazon Web Services, and experiments were conducted on a limited secure
server to protect data privacy. GPUs are available to accelerate computing.
To evaluate the performance and discrimination of binary classifier, for each
use case we use the AUC as the evaluation metric. The arithmetic average of
AUC scores of two use cases is used for final performance comparison.
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