HERQULES: Securing Programs via
Hardware-Enforced Message Queues

Daming D. Chen
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
ddchen@cmu.edu

Phillip B. Gibbons

Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
gibbons@cs.cmu.edu

ABSTRACT

Many computer programs directly manipulate memory using unsafe
pointers, which may introduce memory safety bugs. In response,
past work has developed various runtime defenses, including mem-
ory safety checks, as well as mitigations like no-execute memory,
shadow stacks, and control-flow integrity (CFI), which aim to pre-
vent attackers from obtaining program control. However, software-
based designs often need to update in-process runtime metadata
to maximize accuracy, which is difficult to do precisely, efficiently,
and securely. Hardware-based fine-grained instruction monitoring
avoids this problem by maintaining metadata in special-purpose
hardware, but suffers from high design complexity and requires
significant microarchitectural changes.

In this paper, we present an alternative solution by adding a fast
hardware-based append-only inter-process communication (IPC)
primitive, named AppendWrite, which enables a monitored pro-
gram to transmit a log of execution events to a verifier running in a
different process, relying on inter-process memory protections for
isolation. We show how AppendWrite can be implemented using
an FPGA or in hardware at very low cost. Using this primitive, we
design HERQULES (HQ), a framework for automatically enforcing
integrity-based execution policies through compiler instrumenta-
tion. HERQULES reduces overhead on the critical path by decoupling
program execution from policy checking via concurrency, without
affecting security. We perform a case study on control-flow integrity
against multiple benchmark suites, and demonstrate that HQ-CFI
achieves a significant improvement in correctness, effectiveness,
and performance compared to prior work.

CCS CONCEPTS

« Security and privacy — Software security engineering; «
Computer systems organization — Processors and memory
architectures; « Software and its engineering — Operating
systems; Message passing.

This work is licensed under a Creative Commons Attribution International 4.0 License

ASPLOS 21, April 19-23, 2021, Virtual, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8317-2/21/04.
https://doi.org/10.1145/3445814.3446736

Wen Shih Lim
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
wmlim@alumni.cmu.edu

James C. Hoe
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
jhoe@cmu.edu

773

Mohammad Bakhshalipour
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
bakhshalipour@cmu.edu

Bryan Parno
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA
parno@cmu.edu

KEYWORDS

control-flow integrity, pointer integrity, memory safety, inter-process
communication, compiler, kernel, shared memory, FPGA, microar-
chitecture

ACM Reference Format:

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gib-
bons, James C. Hoe, and Bryan Parno. 2021. HERQULEs: Securing Programs
via Hardware-Enforced Message Queues. In Proceedings of the 26th ACM In-
ternational Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS °21), April 19-23, 2021, Virtual, USA. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3445814.3446736

1 INTRODUCTION

Many computer programs directly access memory using unsafe
pointers, which may unintentionally dereference memory that is
out-of-bounds or that has been deallocated. For example, a buffer
overflow occurs when memory outside a referenced buffer is ac-
cessed, whereas a use-after-free error occurs when deallocated mem-
ory is accessed. Attackers can leverage these memory safety bugs to
corrupt program execution, by intentionally overwriting memory
that contains function pointers or program data. In response, run-
time defenses have been developed to detect these bugs or mitigate
corruption; e.g., by tracking allocation boundaries [10, 38, 60, 76],
temporal identifiers [77], tainted values [111], or control-flow point-
ers [8]. However, these defenses need to maintain runtime metadata
about memory, which must be protected from unintended access.

Past work has explored various approaches for partitioning pro-
gram subcomponents, which can be used to isolate these metadata.
However, software-based mechanisms impose significant overhead,
reduce compatibility, or rely on hiding information. Disjoint ad-
dress spaces [39, 70, 86] reconfigures the memory management unit
(MMU) to isolate physical memory, but it adds overhead by flush-
ing the translation lookaside buffer (TLB) on each context switch.
Software fault isolation [109] (SFI) must mask all pointers to be
effective, which requires recompilation of existing shared libraries.
Information hiding has low overhead, but relies on randomization
of program code or layout, which is vulnerable to disclosure at-
tacks [92, 95, 97].

Hardware-based fine-grained instruction monitoring [9, 28, 35,
44]) takes a different approach by modifying the processor to gen-
erate, filter, and process execution events (e.g., retired instructions,
function calls, memory accesses, etc.) in isolated hardware. Research

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446736
https://doi.org/10.1145/3445814.3446736
https://creativecommons.org/licenses/by/4.0/

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 1: Comparison of HERQULESs against hardware-based

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

fine-grained instruction monitoring designs. Inspt»:z:;::ecj (33) MSG: System-Call Appenjwme
(2b) MSG: Check(p, v) System-Call

Design Events | Recipient Paradigm HW A @ (2a) MSG: Create(p, v) chec.l;.(p, o

FADE [44] HW/SW Core Filter-Update Big \@ Create(p, v)

FlexCore [35] HW/SW FPGA Reconfigure Big)

Guardian Council [9] | HW/SW puCores Filter-Map-Reduce Big (1a) Enable HerQules runtime

LBA [28] HW/SW Core Filter-Update Big (3b) Perform syscall (4a) Parse messages

Processor Trace [6] HW/SW | Memory Filter-Update -

HERQULES SW Core Message Passing | Small Kernel Verifier

proposals include adding a similarly-sized core [28, 44], an on-chip
FPGA [35], or multiple microcontroller-sized cores (uCores) [9],
as shown in Table 1. However, these designs require significant
microarchitectural changes, and generate fixed hardware-defined
events that may not always be useful, but nevertheless incur both
energy and logic costs. For example, under FADE [44], 84-99% of all
events must ultimately be discarded as irrelevant. Guardian Coun-
cil [9] suffers from similar load balancing challenges, as anywhere
between 2-24 pCores are needed to reduce overhead below 5%,
depending on the security policy being enforced.

Recent commodity Intel processors include built-in support for
Processor Trace [6] (PT), which stores hardware performance mon-
itoring events in memory, and can support software-defined events
via a PTWRITE instruction. However, although it has been used
for instruction monitoring by past security policy enforcement
designs [37, 45, 53, 71], it is not designed as a security mecha-
nism, and thus suffers from numerous flaws. Hardware-defined
events do not provide sufficient execution context, which forces
these designs to reconstruct control-flow by disassembling pro-
gram binaries, which adds complexity and overhead. Event packets
can be lost or overwritten due to, e.g., performance monitoring
interrupt skid [6], which defeats security. Tracing and decoding
of events incur tremendous overhead, measuring over 500x [71]
on the SPEC benchmarks. As a workaround, these designs must
limit which events are monitored (e.g., monitoring only 7-10 system
calls—execve, mmap, etc.), which greatly reduces effectiveness (espe-
cially since these system calls are rarely used in compute-intensive
programs like SPEC benchmarks).

In this paper, we observe that prior software-based approaches
cannot provide efficient isolation, whereas prior hardware-based ap-
proaches suffer from excess design complexity. Instead, we propose
to augment existing hardware with a simple and fast AppendWrite
inter-process communication (IPC) that adds authentication and
message integrity, which protects metadata via existing inter-process
isolation. We provide two implementations of AppendWrite: one us-
ing a self-contained FPGA-based message queue, and another that
adds append-only microarchitectural memory buffers using only
one ISA instruction, two registers per core, and some simple logic.
Using this primitive, we design HERQULES (HQ), a framework for
efficiently enforcing integrity-based execution policies, which deliv-
ers log messages from a monitored program to a policy-enforcement
verifier program running in a different process. For efficiency, both
programs execute concurrently, and synchronize at the monitored
program’s system calls to prevent undesired behavior.

We describe how our system can support different execution
policies, and perform a security case study on control-flow integrity

774

(1b) Notify new process

(4b) Allow syscall

Figure 1: Overview of interactions under HERQULES.

(CFI), which protects a program’s execution integrity by verify-
ing control-flow transitions at runtime. Specifically, we develop
two new fine-grained pointer integrity designs, which are max-
imally precise, do not suffer from the undecidability of pointer
aliasing [41, 88], and incorporate novel compiler optimizations.
Compared to past work [30, 62, 63, 74], our designs maintain pro-
gram correctness, preserve library compatibility, and add detection
of use-after-free errors on control-flow pointers, while minimizing
overhead, as shown in Table 3. We evaluate the correctness, effec-
tiveness, and performance of our designs on the SPEC CPU2006 [55],
SPEC CPU2017 [22], RIPE [90, 110], and NGINX [98] benchmarks.
Our results demonstrate the successful execution of all benchmarks,
and the discovery of new use-after-free bugs in the SPEC bench-
marks. Our fastest design prevents all but one type of exploit with
a geometric mean overhead of 14.4%, whereas our comprehensive
design prevents all exploits at the cost of increased overhead, which
improves over past work.
We summarize our contributions as follows:

e We observe that software-based program partitioning lacks effi-
cient isolation, whereas hardware-based instruction monitoring
is overly complex, and instead propose a simple new Append-
Write IPC primitive (§2.3), which we implement in both an FPGA
and in hardware at very low cost (§3.1).

e We use AppendWrite to build HERQULES, a framework for im-
plementing efficient integrity-based execution policies, which
executes asynchronously to maximize performance (§2.2).

e We show how HERQULES supports a variety of security poli-
cies, and perform an experimental case study on control-flow
integrity (§4.1), demonstrating a significant improvement in cor-
rectness, effectiveness, and performance over prior work (§5).

e We release our system as open-source at https://github.com/sec
ure-foundations/herqules.

2 HERQULES DESIGN OVERVIEW

As a toy example, to put HERQULES in context, suppose that a
program wants to reliably count the number of function calls that
it has made. One approach would have the program allocate an in-
process global counter and increment it before every call instruction,
but this counter could be corrupted by program bugs. Instead, under

https://github.com/secure-foundations/herqules
https://github.com/secure-foundations/herqules

HERQULES: Securing Programs via Hardware-Enforced Message Queues

our design, the compiler automatically instruments the program
to send policy-relevant messages (e.g., counter increment on each
function call) to a verifier running in a different process, using our
AppendWrite IPC primitive. This relies on existing inter-process
isolation to prevent bugs in the program from directly affecting
policy-relevant state. Even if the program is corrupted immediately
after sending a message, it cannot retract previously-sent messages.
Because the monitored program and the verifier execute concur-
rently, it takes some time for messages to be sent, received, and
processed, which can impact the accuracy of our execution counter,
especially in the presence of high message traffic. We can improve
the accuracy of this counter by bounding asynchrony at system
calls (§2.2), where we pause the program until the verifier has pro-
cessed all in-flight messages. To determine when a paused program
should resume, the kernel and verifier communicate over a separate
privileged channel that is not accessible to the monitored program.
In this section, we discuss the design of AppendWrite and HER-
QuiEs, deferring implementation to §3 and security policies to
§4. Figure 1 highlights the four main components of HERQULEs,
providing an overview of the interactions between the components.
At compile-time, our compiler pass automatically instruments the
program to send policy-dependent messages when policy-relevant
events occur. At run-time, the monitored program enables HER-
QULEs (Ia) during startup, causing the kernel to register it with
the verifier (1b). Subsequently, the monitored program can send
messages to the verifier via AppendWrite (24, 2b). At some point, the
monitored program sends a system-call message (3a) and performs a
system call (3b), where it is initially paused by our kernel module,
until the verifier confirms no policy checks have failed (4a, 4b).

2.1 Threat Model

HErRQULES enforces runtime execution policies that rely on software-
visible execution events. Thus, we do not enforce policies based
on microarchitectural events such as in side-channel attacks. We
assume that programs begin execution in a benign state, but may
contain memory safety bugs that allow adversaries to read and write
arbitrary memory in the monitored process, subject to page table
protections. This excludes access to processor registers, and modifi-
cations of read-only program code. We trust the microarchitecture
and operating system to enforce security boundaries between user
processes, and between user and kernel address spaces, which ex-
cludes side-channel leakage. We enforce arbitrary policy-defined
invariants on program execution, but exclude confidentiality poli-
cies, because asynchronous policy enforcement, while sufficient for
integrity-based policies, could allow data leakage.

2.2 Bounded Asynchronous Validation

Because monitored programs start in a benign state, messages pro-
vide a snapshot of program state at a specific point in time. This can
effectively provide evidence of a future policy violation, if messages
are sent before events of interest (e.g., function execution), and
messages are guaranteed to be append-only. Even if that violation
subsequently results in total program compromise, append-only
messages ensure that evidence cannot be retracted.

Asynchronous messages decouple policy checking from program
execution, which improves performance by minimizing critical

775

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 2: Comparison of existing IPC primitives, grouped by
type (top: software-based, center: hardware-based, bottom:
proposed), showing message send times.

Append Async. Primary Time

IPC Primitive Only | Validation Cost (ns)
Message Queue v X System Call 146
Named Pipe v X System Call 316
Socket v X System Call 346
Shared Memory X v Mem. Write 12

Light-Weight Contexts v X System Call | 2010 [70]

AppendWrite-FPGA v v Mem. Write 102
AppendWrite-parch v v Mem. Write <2

path latency. We rely on system call synchronization to prevent
compromised programs from affecting externally-visible side effects
(e.g., attacking the system) before a violation is detected by the
verifier. The kernel pauses system call execution until the verifier
confirms that no policy checks have failed. A naive approach would
require a round-trip between the kernel and verifier on every system
call executed by the monitored program, which would add latency.

Instead, the monitored program sends a special SYSTEM-CALL
message before each system call, which indicates to the verifier
that all outstanding messages have been processed, and that the
verifier can notify the kernel to resume system call execution. This
requires instrumenting shared libraries as well, but it enables the
overhead of this synchronization message to be pipelined with the
overhead of the system call itself. An attacker can forge this syn-
chronization message, but because the forgery would be transmitted
after a message containing evidence of a policy violation, it has
no effect. Similarly, if no synchronization message arrives within a
configurable epoch, the kernel can treat it as a policy violation and
terminate the monitored program.

2.3 Instantiating The AppendWrite IPC
Primitive

AppendWrite must guarantee message authenticity and integrity,
because the monitored program may become compromised. Namely,
it must ensure that all messages were sent by the monitored pro-
gram, and that no messages have been modified or erased after
being sent. Although the former can be provided by configuring
the kernel to arbitrate creation of messaging channels, the latter
requires that the IPC primitive be designed append-only. Messages
must also have low overhead, to avoid slowing down the monitored
program. As discussed below, we observe that existing software-
and hardware-based primitives do not satisfy these constraints;
hence, we design two hardware implementations of our primitive.
AppendWrite-FPGA uses a programmable FPGA accelerator (§2.3.1),
whereas AppendWrite-parch adds append-only memory buffers
to the microarchitecture (§2.3.2), which we model in software and
validate in simulation (§5.3.1).

Existing IPC mechanisms either perform poorly or lack message
integrity, as shown in Table 2, which includes the average runtime
of a micro-benchmark that repeatedly sends messages. Primitives
which require a system call (including POSIX queues, pipes, and
sockets) are too slow: they cost hundreds of nanoseconds, require a

ASPLOS 21, April 19-23, 2021, Virtual, USA

privilege transition that flushes hardware caches (c.f. kernel page-
table isolation [52, 69]), and execute synchronously. Traditional
optimizations, such as vectored I/O or client-side buffering, would
violate integrity by buffering unsent messages in the untrusted
sender. Fast IPC primitives, like shared memory, lack semantic
access control, allowing writers to corrupt or erase previously-
written messages. A compromised program could do so before
newly-written messages have been read by the verifier.

Existing hardware-based primitives suffer from similar problems.
Even the fastest disjoint address space [39, 70, 86] mechanism costs
2010 ns [70] per context switch, which would be on the critical path,
and occur both to and from the verifier on each sent message. On
our benchmarks (§5.4), we estimate that this would amount to a
worst-case overhead of more than five hours. Certain peripherals
already contain hardware first-in first-out (FIFO) queues, which we
initially attempted to repurpose, but ultimately determined were
unusable. For example, network interface cards (NICs) are widely
deployed, and include per-port queues for packet receive/transmit.
However, this requires logical or physical loopback of NIC ports,
kernel bypass (§6.1) to make these resources available to user-space
programs, which entails trusting a large code-base (e.g., Data Plane
Development Kit [1]), and the presence of special hardware features,
like an IOMMU and PCI Express (PCIe) Access Control Services.

2.3.1 Accelerator. We implement one version of AppendWrite on
an FPGA accelerator, which we label AppendWrite-FPGA. It is com-
patible with any systems that support PCle expansion cards, includ-
ing most x86_64 machines. However, depending on the amount of
message traffic, the performance of monitored applications may be
limited by the processor interconnect and PCle bus overhead (§5.3.1).

2.3.2 Microarchitecture. We implement another version of Ap-
pendWrite by extending the instruction set architecture (ISA), which
we label AppendWrite-parch. It modifies the microarchitecture to
natively support appendable memory regions (AMRs), which may
span multiple memory pages, and may only be written to via the Ap-
pendWrite instruction by userspace programs. Other unprivileged
writes to AMR memory pages must be rejected by the MMU. Two
privileged per-core registers are added to the processor, which iden-
tify the virtual addresses of the next and one-past-the-end message,
respectively: AppendAddr and MaxAppendAddr.

Programs on each core can use a fixed-size AppendWrite in-
struction to append user-defined messages to the configured AMR,
by passing a pointer to a message of, e.g., 32/64/128/256-bytes.
The processor automatically increments the AppendAddr register
and copies the message to the AMR, if doing so would not exceed
MaxAppendAddr. Otherwise, it faults to the operating system ker-
nel, which can allocate a new buffer or reset address registers, if
the AMR has been fully read.

For simplicity, our design configures AMRs using core-local reg-
isters, which do not support cross-core writers to minimize cache
coherency overhead. Instead, each writer core must be assigned a
unique AMR, although a single reader core can iteratively receive
messages on all mapped AMRs. Although most execution policies,
including control-flow integrity (§3.3), do not need cross-core mes-
sage ordering, individual messages can include the value of a global
counter (e.g. processor timestamp counter) if ordering is needed.

776

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

3 DETAILS ON HERQULES COMPONENTS

Below, we describe the implementation details of HERQULES’ four
main components (Figure 1): the AppendWrite IPC primitive, com-
piler instrumentation, a kernel module, and a verifier process.

3.1 The AppendWrite IPC Primitive

Each message transmitted by AppendWrite is a fixed-size structure,
which contains a 4-byte operation code, two 8-byte operation ar-
guments, and on our FPGA-based implementation, an additional
4-byte process identifier (PID). The semantics of our operation codes
and arguments are policy-dependent.

3.1.1 Accelerator. We implement AppendWrite-FPGA using a cus-
tom Accelerator Functional Unit [68, 81] (AFU) on an Intel Arria
10 [106] GX Programmable Accelerator Card (PAC), a PCle-based
FPGA. Our logic is written in SystemVerilog/Bluespec [78], interacts
with the host via the Open Programmable Acceleration Engine [73]
(OPAE), and synthesizes using few accelerator resources: 54k (6%)
Adaptive Logic Modules and 636k (<1%) block memory bits.
Messages are decomposed into word-granularity uncached writes
to memory-mapped I/O (MMIO) registers, which are reassembled
by the AFU and written back to a circular buffer in the verifier on
the host. To avoid address translation, this circular buffer is allo-
cated from huge memory pages, and its physical address is pinned
in memory. The AFU populates the PID field of each message using
a kernel-managed PID register, which is updated on each context
switch and ensures message authenticity. Operation-specific regis-
ters enable messages to be created using at most two MMIO writes.
A per-message counter is used to detect dropped messages, since
the AFU lacks a back-pressure mechanism. This occupies otherwise-
unused space within each cacheline-aligned memory write from
the AFU to the host. The verifier checks that each message has a
consecutive counter value; otherwise, the monitored program must
be terminated due to violation of message integrity. In practice, we
select a circular buffer size of 1 GB such that this never occurs.

3.1.2 Microarchitecture. In terms of logic, die area, and power
consumption, the cost of implementing AppendWrite-parch is ex-
tremely low. Execution of AppendWrite resembles that of nor-
mal x86 store instructions, except that the store-address micro-
operation directly uses AppendAddr without computing an effective
address (one fewer micro-operation). A few additional gates and a
comparator are needed to verify that AppendAddr will not exceed
MaxAppendAddr, and to bypass the TLB check for writable memory
pages in the AMR. Auto-increment logic already exists for, e.g., the
REP prefix, and can be reused for the AppendAddr register. These
changes have negligible effect on die area and power consumption.

3.2 Compiler Instrumentation

We implement our instrumentation in Clang/LLVM [64] compiler
passes, which insert runtime calls to generate policy-specific mes-
sages (§4) and SYsTEM-CALL messages (§2.2), while iterating through
the LLVM Intermediate Representation (IR).

Programs directly perform system calls using inline assembly. If
an inline assembly call contains a syscall, sysenter, or int 0x80
instruction, we treat it as a system call, which must be preceded by a
synchronization message. Our analysis uses graph dominators [65]

HERQULES: Securing Programs via Hardware-Enforced Message Queues

to find the earliest suitable point for sending such messages. Be-
cause each source file may be compiled individually, making inter-
procedural analysis difficult, we require this program point to be
(1) on a program path that executes the system call, and (2) not
succeeded by any other messages or function calls. In other words,
under non-exceptional control flow, it must dominate the system
call, be post-dominated by the system call, and not dominate any
function calls that also dominate the system call.

Indirect system calls occur through standard library functions.
As a result, we must recompile the C standard library with system
call instruction enabled. Although the GNU C standard library is
widely-deployed, it uses GCC-specific compiler extensions that are
incompatible with Clang/LLVM, so instead we substitute the musl
C standard library [42], which is compact and standards-compliant.
During this process, we also statically link our runtime messaging
library into the C standard library. Alternatively, our runtime library
can be inlined directly into monitored programs, which reduces
execution overhead at the cost of increased size. Other standard
libraries, such as language libraries for C++, typically call into the
C standard library, and thus do not need to be rebuilt.

3.3 Kernel

We implement bounded asynchronous validation using a kernel
module. To maximize compatibility, our kernel module dynamically
intercepts system calls using built-in kernel mechanisms, such as
kprobes [57] and tracepoints [36]. A hash table maintains kernel
context for each process that has enabled HERQULES, including a
boolean synchronization variable and various statistics. For a given
process, this boolean variable is set by the verifier upon reception
of a system call synchronization message, and it is reset by our
kernel module upon resumption of a system call.

Our module allocates a new kernel context for child processes
upon invocation of the fork and clone system calls, but as a proto-
type, it does not model full POSIX program semantics, or optimize
away synchronization messages for read-only system calls. Like
most work [112] in this space, we do not account for shared mem-
ory mappings that may propagate updates to control-flow pointers
across multiple processes, which are rarely used and do not occur
in our benchmarks, but could result in false positives.

3.4 Verifier

The verifier is a user-space process which maintains a policy context
for each monitored application. It receives messages from moni-
tored programs via AppendWrite, and is notified of process events
by our kernel module. Policy contexts are allocated, copied, and
destroyed when a monitored process enables HERQULES, executes
fork or clone, and terminates, respectively. By default, monitored
programs are killed upon policy violation or unexpected verifier
termination, but this behavior is configurable.

4 EXECUTION POLICIES FOR HERQULES

Below, we provide a case study on control-flow integrity (§4.1),
which uses separate protection mechanisms for different types
of program control-flow transitions, such as forward-edge transi-
tions (§4.1.3, §4.1.4) and backward-edge transitions (§4.1.5, §4.1.6).

777

ASPLOS 21, April 19-23, 2021, Virtual, USA

v
ret = call (*cmp) (buf[0], buf[l])
return buf[0] < buf[l]
if (ret > 0) N buf += 1 |
branch IN "| branch LOOP

v ‘

count += 1

Figure 2: Control-flow graph of a small loop that counts the
number of sorted (increasing) pairs in a buffer. Edges are
colored, with sequential execution in black, direct forward
edges in green, indirect forward edges in red, and backward
edges in blue.

We also sketch designs for memory safety (§4.2) and other poli-
cies (§4.3).

4.1 Control-Flow Integrity Policy

4.1.1 Background. Control-flow integrity [8, 23] (CFI) protects the
execution integrity of a program by verifying control-flow transi-
tions. Typically, static analysis is used to identify how a program
should execute, then runtime checks are inserted before each tran-
sition to ensure that the actual execution corresponds. In Figure 2,
we show a small loop in the form of a control-flow graph (CFG),
which identifies control-flow transitions that may need protection.
Forward-edge transitions occur at branch and call instructions,
and are classified as direct or indirect, based on whether the desti-
nation can be statically identified. Backward-edge transitions occur
at return instructions.

Transition edges are protected by partitioning valid targets into
sets of equivalence classes, and inserting checks to verify that the
runtime target is indeed in the set. Because direct forward edges
only have one possible target, and program code is mapped read-
only to prevent modification, these edges typically do not need
protection.

The effectiveness of control-flow integrity can differ based on
the precision of the underlying analysis, which is used to iden-
tify valid call targets. Imprecise coarse-grained approaches (§6.3.1)
simply partition the program based on static function attributes,
including address-taken status [2, 3, 94], arity [102], and type [30,
113, 114]. Although relatively fast and widely-deployed, these ap-
proaches are vulnerable to code-reuse attacks [18, 25, 34, 47, 48]
like return-oriented programming [27, 93] and jump-oriented pro-
gramming [18]. Fine-grained approaches (§6.3.2) improve precision
by updating valid call targets at runtime using execution context,
e.g., by tracking call paths [37, 45, 53, 71, 79, 107], pointer val-
ues [62, 63, 74] (pointer integrity), or object origin [58]. These de-
signs maintain runtime metadata to track program state, which
must be guarded against memory corruption.

ASPLOS 21, April 19-23, 2021, Virtual, USA

4.1.2 Our Design. We enforce control-flow integrity using a fine-
grained pointer integrity (§6.3.3) policy, which protects the values
of control-flow pointers by checking against a copy stored in the
verifier via AppendWrite. Unlike other fine-grained approaches,
pointer integrity is maximally precise and does not suffer from the
pointer aliasing undecidability [88] problem used to defeat [41]
past designs. Our approach, named HQ-CFI, differs from past work
on pointer integrity, which relocate [62, 63] pointers or verify cryp-
tographic hashes [74] within the instrumented process itself. We
are also able to detect use-after-free bugs on control-flow pointers
by tracking their lifetime and invalidating them upon destruction,
which is not supported by prior control-flow integrity designs.

Table 3 compares our two designs against existing coarse-grained
(§6.3.1) and fine-grained (§6.3.2) control-flow integrity designs. Typ-
ically, coarse-grained designs are faster but fail to prevent cer-
tain attacks, whereas fine-grained designs are more precise but
impose greater overhead. As examples, for the former, we select
modern Clang/LLVM CFI [30], which is included in Clang/LLVM
and widely-deployed. For the latter, we select Cryptographically-
Enforced CFI [74] (CCFI) and Code-Pointer Integrity [62, 63] (CPI),
which are state-of-the-art pointer integrity designs.

4.1.3 Design: Forward-Edge Transitions. Although programs con-
tain many control-flow pointers, some are read-only and do not need
protection. For example, on Linux, ELF binaries can contain lazy
relocations for imported functions from shared libraries, but we
compile programs with read-only relocations and eager binding
to prevent runtime changes. Similarly, read-only global variables
are stored in a read-only program data section. We protect the
following forward-edge control-flow pointers, if writable:

(1) Function pointers: Direct pointers to executable code. This in-
cludes the internal pointer stored in jmp_buf for non-local gotos
via longjmp and setjmp.

(2) Virtual method table pointers: Indirect pointers in C++ objects
that refer to a global per-class virtual method table (vtable).
Although vtables contain function pointers, they are stored in
read-only memory.

(3) Virtual-method-table table pointers: Indirect pointers in certain
C++ objects that use multiple inheritance. They refer to a global
per-class vtable table that stores relative offsets of individual
vtables.

Our design sends messages when certain operations occur on
control-flow pointers. For example, certain library functions may
manipulate contiguous chunks (blocks) of memory, but because it
is difficult to statically determine whether control-flow pointers
are present, we notify the verifier of these events at runtime. We
describe the semantics for our messages below, and defer imple-
mentation to §4.1.4.

e POINTER-DEFINE(P,V): Initialize a pointer at address p with value
v.

o POINTER-CHECK(P,v): Validate that the pointer at address p with
current value v matches its previous definition. If not, this pointer
is corrupt or a use-after-free.

o POINTER-INVALIDATE(P): Remove the pointer at address .

e POINTER-BLOCK-COPY(SRC,DsT,sz): Copy all pointers from ad-
dress range[sRc, SRC + 5z) to [DST, DST + sz). These ranges may

778

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

intersect, and pre-existing pointers in the destination will be
invalidated. This matches the behavior of memcpy and memmove.

e POINTER-BLOCK-MOVE(SRC,DST,sz): Move all pointers from ad-
dress range [SRC, SRC + Sz) to [DST, DST + sz). These ranges must
not intersect, and all pre-existing pointers in the destination will
be invalidated. This is an optimization for realloc.

o POINTER-BLOCK-INVALIDATE(P,SZ): Invalidate all pointers in the
address range [P, P + sz). This matches the behavior of free.

4.1.4 Implementation: Forward-Edge Transitions. Our compiler in-
strumentation uses the following three components to generate run-
time calls for sending control-flow pointer messages. We also enable
additional devirtualization optimizations for C++, which attempt to
convert indirect calls into direct calls that do not need protection.
While implementing our instrumentation, we improved various
built-in optimizations, fixed miscompilation bugs, and added new
extension points for dynamically-loaded passes, which we have
submitted for review into LLVM.

(1) Language-Specific Annotations (Clang built-in): Insert CFI check
annotations before calling function pointers or object methods.

(2) Initial Lowering (LLVM): Before program optimization, insert
CFI define and invalidate annotations, and convert all CFI an-
notations into runtime messaging calls.

(3) Final Lowering (LLVM/gold [100]): After program optimization,
insert instrumentation on block memory operations, optimize
messaging calls, and optionally inline our messaging runtime.

Initial Lowering: We examine each operation in the LLVM
IR (e.g., Lload, store, call, etc), and insert runtime messaging as
needed. We perform special detection of function pointers to avoid
false negatives, as type casting allows arbitrary type conversion,
and LLVM permits pointers to struct fields and unions to decay
into generic pointers. Specifically, we treat any pointer as a function
pointer if (1) it is ever defined from a value of function pointer type,
including via pointer casts and ¢-nodes [11, 89], or (2) other uses
of its original value are ever cast to function pointer type.

Final Lowering: We perform store-to-load forwarding and mes-
sage elision optimizations using our escape analysis, which is more
precise than the built-in fast-but-conservative alias analysis. Then,
we insert messaging on block memory operations. By default, we
perform strict subtype checking on composite types passed into
block operations using our function pointer detection scheme,
which eliminates messaging on block operations that statically
do not contain control-flow pointers. However, we observe that
this strict checking fails on four benchmarks, which pass decayed
function pointers inter-procedurally. We include a built-in allowlist
that always instruments block operations in certain functions; al-
ternatively, we could conservatively disable such subtype checking
globally at the cost of increased message traffic.

We also insert an initializer function to inform the verifier of
global control-flow pointers immediately after program startup.
These variables are directly loaded into memory via a data section,
and may be relocated by the dynamic loader during program startup.
This feature is used by programs that are built position-independent
or with runtime layout randomization (§6.4) enabled, which shift
function addresses and the value of corresponding function pointers
by a runtime offset.

HERQULES: Securing Programs via Hardware-Enforced Message Queues

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 3: Comparison of control-flow integrity designs, grouped by precision (top: low, center/bottom: high). More e is better.

Design Mechanism Precision | Use-After-Free | Compatibility | Performance
Clang/LLVM CFI [30] | Language-level Types . X ' XY
CCFI [74] Cryptographic MACs coe X .
CPI [62] Information Hiding oo X . XY
CPI [63] Software Fault Isolation oo X eeoe
HQ-CFI-SFESTK AppendWrite oo v see cee
HQ-CFI-RETPTR AppendWrite (XX 4 oo oo

C++ Devirtualization: We enable three C++-specific optimiza-
tion passes, which analyze the type of C++ objects to eliminate
vtable loads, infer callees for virtual calls, and eliminate unused vir-
tual functions: Virtual Pointer Invariance [82, 83], Whole Program
Devirtualization [31], and Dead Virtual Function Elimination [96].
They reduce the frequency of indirect calls and associated checks.

Store-to-Load Forwarding: A field-sensitive optimization that
forwards stored control-flow pointer values to dominated loads,
both intra- and inter-procedurally, which reduces checks. To ensure
soundness, we exclude accesses to thread-local storage, in functions
that may return twice, that are atomic or volatile, or to pointers
that may escape. We model inter-procedural loads by localizing
them to the local call site on the unique call path to the remote
function. Instead of passing values through intermediate callees,
we create a single canonical remote checked load, and forward it to
subsequent remote uses. To ensure correctness, we avoid mutually-
recursive functions using a runtime guard, as indirect calls make
static analysis difficult. While an optimized function is executing,
a global boolean guard variable is set, and if it remains set upon
a subsequent call, then the program is terminated and must be
recompiled with this optimization disabled. In practice, no guards
fail across all of our benchmarks (§5).

Message Elision: A field- and path-sensitive optimization that
eliminates superfluous messages. This includes checks on devirtu-
alized calls, duplicate invalidates after inlining of C++ destructors,
as well as other cases that utilize graph dominators and our es-
cape analysis. For example, if a given control-flow pointer is never
checked, then it does not need to be defined or invalidated. Similarly,
if multiple define messages are emitted, but intermediate values are
never checked, then intermediate defines can be removed.

4.1.5 Design: Backward-Edge Transitions. We protect return point-
ers using two different approaches. One variant, HQ-CFI-RETPTR,
sends messages as shown below, whereas our other variant, HQ-
CFI-SFESTK, instead places return pointers in a safe stack (§6.3.4)
that is protected by information hiding. Although faster, the safe
stack is vulnerable to disclosure attacks, whereas the messaging
approach is slower but invulnerable.

e POINTER-DEFINE(P,V): See above.
e POINTER-CHECK-INVALIDATE(P,V): Performs POINTER-
CHECK(P,V), then if successful, POINTER-INVALIDATE(P,V).

4.1.6 Implementation: Backward-Edge Transitions. Our compiler
instrumentation checks for functions that may write to memory,
are known to return, contain stack allocations, and are not always
tail called. When found, we insert a runtime call to define the return

779

address pointer in the function prologue, and we insert a runtime
call to check-invalidate the pointer in the function epilogue.

4.2 Memory-Safety Policy

Memory safety ensures that all memory accesses occur within the
spatial boundaries of the target allocation (e.g., not a buffer over-
flow), and that the allocation itself is temporally valid (e.g., not a
use-after-free). This eliminates the need for mitigations, such as
control-flow integrity and shadow stacks, because memory cor-
ruption cannot occur. Below, we sketch an execution policy that
enforces memory safety by checking creation, access, and destruc-
tion of memory allocations.

e ALLOCATION-CREATE(A,sz): Create an allocation at [A, A + sZ),
which cannot overlap with existing allocation(s). This matches
the behavior of malloc, stack allocation, and read-only/global
variables.

e ArrocATION-CHECK(A): Check that address A is within a valid
allocation. If not, this access is out-of-bounds or use-after-free.
This matches the behavior of a pointer dereference.

e ArLOCATION-CHECK-BASE(A1,A2): Check that addresses Al and
A2 are within the same valid allocation. If not, this access is
out-of-bounds or use-after-free.

e ALLOCATION-EXTEND(SRC,DST,sz): Extend the allocation at SRC to
[DsT, DST + sz), which cannot overlap with existing allocation(s).
This matches the behavior of realloc.

e ALLOCATION-DESTROY(A): Destroy an allocation at A. If not present,
this destruction is invalid or double. This matches the behavior
of free.

e ALLOCATION-DESTROY-ALL(A,SZ): Destroy all allocations within
[A, A + sz). If none are present, this destruction is invalid or
double. This matches the behavior of stack deallocation.

4.3 Other Policies

More generally, HERQULEs can enforce other execution policies for
security, performance, or reliability. Examples include data-flow
integrity [26], memory tagging, taint tracking, race detection, event
counting, software watchdog, and redundant fault detection. These
may need message ordering between concurrent writers, e.g., by
including the value of the processor timestamp counter in each
message, or bidirectional communication between two processor
cores, e.g., by allocating one buffer for each core, and configuring
each core to transmit append-only messages to the other buffer.

ASPLOS 21, April 19-23, 2021, Virtual, USA

Table 4: Correctness of various CFI designs.

Design Errors | False Positives | Invalid | OK
Baseline 0 0 0 48
Baseline-CCFI 2 0 2 46
Baseline-CPI 2 0 2 46
Clang/LLVM CFI 0 15 0 33
CCFI 12 29 9 19

CPI 14 0 14 34
HQ-CFI 0 0 0 48

5 EVALUATION

We evaluate CFI designs on the RIPE [90, 110] benchmark for effec-
tiveness (§5.2), and on the SPEC CPU2006 [55], SPEC CPU2017 [22],
and NGINX web server [98] benchmarks for both correctness (§5.1)
and performance (§5.3). All benchmarks were configured to use
the musl C runtime library, and we patched SPEC to fix various
memory safety (§5.2) and compatibility bugs. To identify the IPC
primitive used by HQ-CFI, we apply the postfix -MQ for POSIX
message queues (§2.3), -FPGA for the accelerator (§3.1.1), -Stm
for the hardware simulator (§5.3.1), and -MobEL for the hardware
model (§5.3.1).

We compare HQ-CFI against past designs from Table 3, which
represent different design trade-offs. Since CCFI and CPI are based
on Clang/LLVM 3.4.2 and 3.3.1, whereas HQ-CFI and Clang/LLVM
CFI are based on 10.0.1, each design is normalized against a version-
specific baseline that excludes unavailable optimizations (§4.1.4).
For CPI, we disable runtime bounds checking, as we focus on pointer
integrity, not spatial memory safety. Due to the prevalence of false
positives amongst past designs (§5.1), we continue execution after
a policy violation, except when evaluating effectiveness.

During this process, we fixed multiple correctness bugs in CCFI
and CPI that crashed the compiler during compilation, as well
as other bugs that defeated CPI's protections. These include an
incorrect pointer mask that did not guard accesses to the safe store,
a failure to redirect function pointers to the safe store, and missing
updates to the safe store after realloc and free. The authors of CPI
confirmed [61] that their code was a proof-of-concept prototype,
and not fully robust.

5.1 Correctness

To quantify correctness, we executed all performance benchmarks
under each CFI design, and checked that each benchmark produced
the intended output. We summarize our results in Table 4, distin-
guishing between errors (crashes or hangs), false positives (no ac-
tual CFI violation), invalid results (incorrect output), and successful
runs. Note that some categories are not mutually exclusive.

Both CCFI and Clang/LLVM CFI enforce pointer type match-
ing but fail to account for type conversion from casting or decay,
producing false positives on 60% and 31% of all benchmarks, re-
spectively. For example, the povray benchmark defines a function
pointer of type void x(void *), but subsequently calls it with type
void *(pov::Object_Struct =*), causing both CFI designs to re-
port a violation. Although matching can be relaxed using compiler
flags or a custom allowlist, these involve manual debugging.

780

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

Table 5: Successful RIPE exploits under various CFI designs,
grouped by overflow origin.

Design BSS | Data | Heap | Stack || Total
Baseline 214 234 234 272 954
Clang/LLVM CFI | 60 60 60 10 190
CCFI 0 0 0 0 0
CPI 10 10 10 10 40
HQ-CFI-SFeSTK 10 10 10 0 30
HQ-CFI-RETPTR 0 0 0 0 0

Both CCFI and CPI cause many benchmarks to execute incor-
rectly, either due to design flaws or bugs introduced by compiler
instrumentation, which affect 25% and 29% of all benchmarks, re-
spectively. We note that 4% of all benchmarks also fail on both
respective baselines, suggesting the presence of shared bug(s) in
older versions of Clang/LLVM.

CCFI reserves eleven XMM registers to store a private crypto-
graphic key, which breaks platform calling conventions [4] and is
incompatible with existing shared libraries. As a workaround, we
compile a special C runtime library that avoids registers reserved
by CCFI. But, we observe reduced numerical precision and incor-
rect benchmark output, likely due to usage of x87 floating-point
registers from increased register pressure.

CPI fails to redirect all loads and stores of each control-flow
pointer to the safe store, causing infinite loops and crashing upon
execution of NULL pointers. It also consumes significant memory-
the safe store is allocated 4 TB of huge-page-backed virtual memory,
and was originally evaluated with 512 GB physical memory. To
avoid memory-related crashes, we eventually preallocated 16 GB
physical memory for huge pages.

5.2 Effectiveness

We demonstrate effectiveness of each CFI design using the RIPE [110]
test suite, which contains hundreds of buffer overflow exploits.
Because all programs were compiled as 64-bit binaries, we use
RIPE64 [90], a port that also adds 100 exploits. For all experiments,
we disable program layout randomization, and under HERQULEs,
we also disable enforcement of system call synchronization for
execve, because RIPE verifies exploits directly using system calls
in binary shellcode.

Table 5 shows that no exploits succeeded under CCFI and HQ-
CFI-RETPTR, whereas the safe stack is vulnerable to certain ex-
ploits, as RIPE emulates disclosure attacks by using a compiler
built-in to directly retrieve return pointer addresses. This affects
HOQ-CFI-SFESTK, Clang/LLVM CFI, and CPI, which use a safe stack;
however, the Clang/LLVM implementation adds additional guard
pages between the safe and unsafe stacks, which prevents 10 linear
overwrite attacks. In addition, Clang/LLVM CFI is vulnerable to
160 return-to-libc code-reuse attacks due to lower design precision.

Initially, we were surprised to discover policy violations for the
CPU2006 and CPU2017 benchmarks under HQ-CFL. It turns out that
two omnetpp benchmarks suffer from use-after-free bugs caused
by a subtle static initialization order problem, because initialization
and destruction of static objects across compilation units occurs
in undefined order. We note that this bug type has persisted despite

HERQULES: Securing Programs via Hardware-Enforced Message Queues

ASPLOS 21, April 19-23, 2021, Virtual, USA

Relative Performance of IPC Primitives: Software vs. Hardware

9
100% . S © R
1 FETYR VR

= - N

80% R R T g SRR
I N NI SN

N NI NN

. - NI N
60% =z = f R I N N N
Yoy R OB R OB

N - N

- 3 NI A N

40% N PP RIARBRR
oz 3 8 VR 8 o BB R R

NI NENERNERNE B NENE RN

« 3 § § T8 8 % RO OB OE B B R

20% g 8§ ¥ % 38 R A A A R R R
3 Y Y Y Y s 3 Y Y YRR RRRRBRR

{ Vid A AR Iddnana RRRRARRR

I s 5 8

0% & & a8 B ENIENE O N N !3 l? l? i? AR S S N
X X X X X 9 o x ox o x Koo L5 6 X $ 6 & 5 9 o

NN O S | s $ 8 Q@ @ & 7 /.S N DA WA 7N/
S BV & S LR K& ’»“’b ’@b &P & &\Q e
S FFFF IS EE A s &

\2 & & & &\

PO TS ° < o

& HQ-CFI-SfeStk-MQ

oo)
bz

N HQ-CFI-SfeStk-FPGA

“
%
B
'
W
4
fal
2
W
3l
]
Z)
i
L1
W
"
]
i
i
)

b RO
)
A
b 2N
b R
)
T
bz
bz
bz)
bz
bz
bz
bz
bz
P00 I T2 I PP I PP II TSI
P I00002 7000 P ISP I IR
)
bz
b)
o
oo

SO 2]
o)

e
%
S

Coax 8 X & 6 x & N & o x & o x x x L 9 &
(RS & £« N < X & & ¢ < PR
I F ST o7 &7 7S el & o a0 &S
2 > O° & O 2 K& @ NS & & O
THFSKEFH ¥ & ¢ F T EL S T S
A N & &
¥ S

HQ-CFI-SfeStk-Model

Figure 3: Relative performance of HQ-CFI using various IPC primitives, sorted on HQ-CFI-SFESTK-MODEL (left to right) for

SPEC. Suffix ‘+’ denotes C++.

Relative Performance of AppendWrite-uArch: Model vs. Simulator

100%
80%
60%
40%
20%

0%

o o2 1,
7 o
& F

B HQ-CFI-SfeStk-Model-Train

K5 Q¢
@cé\

e
»z,"o
-\6‘

&
& S o2 &
Q\ \)?,o @6\ 3
()~

% 6006

HQ-CFI-SfeStk-Sim-Train

Figure 4: Relative performance of HQ-CFI using AppendWrite-parch on the train input for SPEC. Suffix ‘+’ denotes C++.

over 11 years of continuous development, as both benchmarks
correspond to different versions of the OMNeT++ simulator [108].
We have reported these bugs in CPU2017 to SPEC, but no changes
are planned, and CPU2006 has been retired.

5.3 Performance

On SPEC CPU2006 and CPU2017, we measure execution time of
the ref input dataset, unless noted otherwise. On the NGINX web
server, we measure request throughput using wrk [46] for 60 s. We
report relative performance by computing the arithmetic mean of
3 runs, and show standard deviations using error bars.

5.3.1 IPC Primitives. Using HQ-CFI, we quantify the overhead of
each IPC primitive across our performance benchmarks.

Software vs. Hardware: In Figure 3, we compare hardware-
based AppendWrite against the fastest suitable software primitive
from Table 2 — POSIX message queues (HQ-CFI-SFESTK-MQ). We
observe that software-based IPC suffers from significant system call
overhead, resulting in a geometric mean performance of only 39%.
In comparison, AppendWrite-FPGA (HQ-CFI-SFESTK-FPGA) and
our software-only model of AppendWrite-parch (HQ-CFI-SFESTK-
MoDEL, described below) are much faster.

We observe that HQ-CFI-SFESTK-FPGA has a geometric mean
performance of 62%, due to processor stalls caused by uncached
stores and PCle bus overhead. Writes to MMIO registers must be
written out immediately from cachelines using partial writes of up

781

to 8 bytes, which traverse the uncore to become transaction layer
packets (TLPs) on the PCle bus. These occupy store buffer entries
until retirement and increase memory pipeline pressure by taking
longer compared to cacheable writes. PCle relies on pipelining of
TLP requests with out-of-order responses to maximize bandwidth,
but we must transmit each message immediately as a posted TLP
write request with inline payload, adding bus overhead. Buffering
smaller writes into 64-byte PCle burst transactions via hardware
write-combining is not currently supported by the Intel PAC.

Although HQ-CFI-SFESTK-MODEL should not actually be de-
ployed because it lacks hardware enforcement of append-only mes-
sages, it does provide a lower-bound estimate of actual performance,
and achieves a geometric mean of 87%. On each AppendWrite, it
fetches, checks, and increments an AppendAddr variable in shared
memory, and waits for the verifier if the message buffer is full. Be-
cause these operations are performed by software, it has higher
overhead than an actual hardware implementation of AppendWrite-
parch.

Model vs. Simulator: In Figure 4, we compare the performance
of two AppendWrite-parch implementations: our software-only
model (HQ-CFI-SFESTK-MoDEL-Train) and a simulation of our ac-
tual design (HQ-CFI-SFESTK-S1M-Train). Unlike our other exper-
iments, we use the smaller train SPEC dataset to allow the simu-
lator to complete execution within a reasonable amount of time,
and measure total simulated processor cycles across one run. We

ASPLOS 21, April 19-23, 2021, Virtual, USA

execute our experiments under ZSim [91], a microarchitectural
simulator with an out-of-order core model that is configured to
resemble our actual processor. All benchmarks run to completion
(maximum 760 X 10° instructions), but we omit NGINX because it
is I/O-focused and dominated by system calls.

Our numbers show geometric mean performances of 78% and
86%, respectively, for HQ-CFI-SFESTK-MoDEL-Train and HQ-CFI-
SFESTK-Sim-Train. Actual performance of microarchitecture-based
AppendWrite will be between these measurements, as HQ-CFI-
SFESTK-MODEL incurs shared memory overhead and waits for the
verifier if the buffer is full, whereas HQ-CFI-SFESTK-SIM measures
userspace cycles and excludes time spent in system calls.

On HQ-CFI-SFESTK-MODEL, we observe a -9% change in perfor-
mance between the ref and train SPEC inputs. Because ref is much
longer and executes a different workload, the overhead of each
AppendWrite instruction has less impact on benchmark execution.

5.3.2 CFl Designs. InFigure 5, we compare the performance of HQ-
CFI-SFESTK-MoDEL and HQ-CFI-RETPTR-MODEL against related
work. We omit measurements for benchmarks that encounter errors
or produce invalid output, but not if only false positives are emitted.

On SPEC, we measure geometric means of 88%, 55%, 94%, 49%,
and 96%, respectively, for HQ-CFI-SFESTK-MODEL, HQ-CFI-RETPTR-
MopbEL, Clang/LLVM CFI, CCFI, and CPI. However, the performance
of CPI and CCFI is likely skewed upwards, because we exhibit slow-
downs on similar benchmarks, but of our 14 slowest benchmarks,
CPI and CCFI crash on 5 and 9 benchmarks, respectively, and were
thus excluded from the geometric means for those designs. On NG-
INX, we observe similar trends, measuring 79%, 62%, 97%, 78%, and
96%, respectively. Overall, on our fastest design, HQ-CFI-SFESTK-
MODEL, we measure a geometric mean of 87.4% performance, or
14.4% overhead, across both SPEC and NGINX.

In general, these results match our expectations, as Clang/LLVM
CFI trades precision for performance, CCFI uses expensive cryp-
tography, and CPI relocates control-flow pointers to the safe store,
which imposes little overhead. Nevertheless, individual benchmarks
can differ; for example, HQ-CFI-SFESTK-MoDEL beats Clang/LLVM
CFI by +36% on mcf_s, and CPI by +7% on sphinx3, which we
credit to our optimizations. HQ-CFI-RETPTR-MODEL is typically
slower, with a difference of up to -72% on gcc_s, although other
benchmarks do remain unchanged or even increase slightly, such
as namd and 1bm_s. Frequent execution of recursive functions, or
functions with significant stack-allocated pointers, can cause this
performance discrepancy. Other benchmarks perform well under
all designs, because they lack significant indirect control-flow.

5.3.3 Discussion. Table 3 provides a qualitative overview of var-
ious considerations for deploying control-flow integrity, and the
trade-offs made by each design. It shows that if the precision of
pointer integrity with safe stack is acceptable, HQ-CFI-SFESTK-
MobeEL offers better correctness, similar performance, and includes
use-after-free detection, when compared to CPI. Alternatively, for
fully-precise pointer integrity, HQ-CFI-RETPTR-MoODEL offers better
correctness, significantly faster performance, and includes use-after-
free detection, when compared to CCFL. Otherwise, if performance
is critical, Clang/LLVM CFl is fastest and maintains program correct-
ness, but may emit false positives from unreliable type matching.

782

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

Table 6: Size of HERQULES, in approximate lines of code.

FPGA ‘ Kernel ‘ Compiler ‘ IPC Interfaces ‘ Runtime ‘ Verifier
1250 | 1100 | 3350 | 900 | 350 | 750

As aresearch prototype, HQ-CFI is not fully optimized. Potential
future improvements include modifying the kernel directly to elimi-
nate dynamic interception overhead (§3.3), eliding synchronization
for read-only system calls, and eliminating messages on block-level
memory operations that do not contain control-flow pointers.

5.4 Other Metrics

Our control-flow integrity case study shows that HERQULES achieves
scalable policy enforcement. We observe that across our SPEC and
NGINX benchmarks on a per-benchmark basis, AppendWrite is
used to transmit a median of 1.4 x 10° messages per second and
a geometric mean of 14 messages per second. The maximum is
53 x 10° messages per second by the h264ref benchmark, which
achieves 77% relative performance under HQ-CFI-SFESTK-MODEL.
For total messages, we measure a maximum of 4.76 X 10° messages
by the xalancbmk benchmark.

In terms of memory overhead, on a per-benchmark basis, the
verifier maintains a maximum of ~3 X 10° entries, with a median of
285 entries and an arithmetic mean of 221 x 10% entries. Each entry
is a 16-byte pointer-value pair. This includes 14 benchmarks with
zero entries, which lack control-flow pointers needing protection.

In Table 6, we show a breakdown of each HERQULES component
in terms of lines of code. We exclude autogenerated Verilog for our
FPGA and existing software-based primitives for our IPC interfaces.
Most components are fairly small, with the bulk of our compiler
implementation consisting of optimizations.

6 RELATED WORK

6.1 Interprocessor Communication

Many architectures include messaging primitives, which suffer
from various drawbacks. On x86, interprocessor interrupts are slow,
privileged, and have limited usage [19]. Intel has proposed enqueue
stores [7], which can only send a command and authenticated iden-
tifier to memory-mapped devices. Embedded ARM devices like the
Raspberry Pi typically provide a mailbox peripheral [72], which
connects processors (e.g., CPU-GPU) and not individual cores.

6.2 Hardware Extensions

Bespoke hardware extensions run the risk of design complexity
and over-specialization. Over the past decade, ARM and Intel have
implemented hardware bounds checking [20, 59] (MPX), mem-
ory isolation [6, 85] (MPK/PKU), coarse-grained control-flow in-
tegrity [2, 51, 94] (BTL, CET), pointer authentication [21] (PA), and
tagged memory [51] (MTE). However, their practical effectiveness
and usability are questionable. MPX was removed [54] after short-
comings were identified [80]. BTI and CET implement a weak form
of CFI that has been defeated (§6.3.1). MPK/PKU suffers from com-
patibility and scalability issues that has motivated development of
software workarounds [85].

HERQULES: Securing Programs via Hardware-Enforced Message Queues

ASPLOS 21, April 19-23, 2021, Virtual, USA

Relative Performance by CFI Design

100%
80%
60%
40%
20%

0%

4
H

[

E——

CCFl m HQ-CFl-RetPtr-Model

Prrrr——————

W

JETT——

S

%

Figure 5: Relative performance of various CFI designs, sorted on HQ-CFI-SFESTK-MODEL (left to right). Suffix ‘+’ denotes C++.

Few have seen broad uptake, with the exception of ARM’s pointer
authentication, which has been used for pointer integrity [66, 67,
75]. However, Apple’s design [75] is a cryptographic approach that
has lower precision than CCFI and cannot detect use-after-free,
due to the difficulty of hash revocation. To maximize compatibility,
it omits the address of control-flow pointers from hash computa-
tions, which allows replay attacks. As a workaround, it supports
a separate discriminator nonce, however, it uses a constant zero
discriminator for function pointers and C++ virtual table pointers.
It is also not externally accessible for development or testing, and
has been shown vulnerable [12, 13] to multiple flaws.

6.3 Control-Flow Integrity

6.3.1 Coarse-Grained CFl. Many existing CFI designs are coarse-
grained, which approximate control flow using a limited number
of equivalence classes. As a result, they have low overhead and are
widely-deployed, but are vulnerable to code-reuse attacks. Some use
just one class for all address-taken functions, including Microsoft’s
CFG [3] (MSCFG) and Intel CET’s Indirect Branch Tracking [2, 94].
MSCFG has been included since Windows 8.1 [99], though it had
a design flaw [17], and is to be replaced [87] with CET in future
Windows 10 releases. ARM’s BTI supports three [51] equivalence
classes based on assembly instruction type. Others create classes
based on callee arity [102] or type [113, 114], including modern
Clang/LLVM CFI [30]. Google Chrome and certain Android de-
vices [5, 103, 104] are built with modern Clang/LLVM CFI enabled,
but it has a high false-positive rate (§5.3.2).

6.3.2 Fine-Grained CFl. Fine-grained designs improve precision by
incorporating runtime context. However, path-sensitive approaches

suffer from exponential explosion; they must use hardware-accelerated

recording (e.g. Intel LBR [107] or PT [37, 45, 53, 71]), merge call
paths [79, 107], and/or limit checks to certain system calls [37, 45, 53,
71, 107]. Alternative approaches include pointer integrity (§6.3.3)
and object origin [58].

6.3.3 Pointer Integrity. Pointer integrity protects the values of
control-flow pointers, rather than partitioning program callers and
callees based on expected control-flow.

Code Pointer Integrity [62] (CPI) relocates backward-edge control-
flow pointers to a safe stack (§6.3.4), and forward-edge ones to a
safe pointer store. It also checks boundaries of relocated pointers

783

to prevent buffer overflows from corrupting the safe store. Ini-
tially, it used information hiding to protect relocated pointers, but
the safe store was defeated [40, 49] by disclosure attacks, and re-
placed [63] with software fault isolation, at the cost of increased
overhead. Their final design has moderate overhead but breaks
many programs (§5), does not implement use-after-free detection,
and requires recompilation of existing libraries.

Cryptographically Enforced CFI [74] (CCFI) stores an adjacent
message authentication code (MAC) hash for each control-flow
pointer, and checks the hash on every load of the pointer. The MAC
performs a single round of the Advanced Encryption Standard
(AES) block cipher, using hardware-accelerated instructions for
performance. To prevent forgery and replay attacks, the private key
is stored in eleven reserved XMM registers, and a random offset
is injected into each stack frame as a nonce. Their approach has
tremendous overhead (§5), uses a non-standard AES construction?,
breaks platform calling conventions, does not support use-after-free
detection, and emits numerous false positives.

6.3.4 Return Pointers. Some architectures, like x86, store return
pointers on the stack, which allows for corruption. Coarse-grained
CFI approaches (§6.3.1) may match call-return pairs, but are vulner-
able to code-reuse attacks. Instead, shadow stacks [24, 33, 43, 94]
place return pointers on a separate stack, ideally protected by hard-
ware with special otherwise-inaccessible pages. Software-based
approaches instead use information hiding, but Microsoft’s Re-
turn Flow Guard [16] was discontinued due to information dis-
closure attacks. Code Pointer Integrity [62] proposed a software
safe stack [63] instead, which stores all objects that statically may
overflow. It defeats some attacks [32], and has been adopted by
Clang/LLVM CFI [30], which added guard pages to detect contigu-
ous overflows. Nevertheless, it is still vulnerable [49] to disclosure
attacks (§6.4), and was thus disabled [105] for Google Chrome.

6.4 Information Hiding

Randomizing programs to hide information provides probabilistic
security. Runtime randomization of program content [29, 84] or
layout [14, 15, 56, 101] helps deter exploits and relocate sensitive
data. But, side-channel or other disclosure attacks [50, 92, 95, 97]
can defeat hiding.

The official AES-128 block cipher requires 10 rounds.

ASPLOS 21, April 19-23, 2021, Virtual, USA

7 CONCLUSION

We develop HERQULEs as a framework for efficiently enforcing
integrity-based execution policies. By adding a simple AppendWrite
IPC primitive to an FPGA-based accelerator or the microarchitec-
ture, we are able to maintain an append-only message log of pro-
gram events. We use bounded asynchronous validation to perform
policy checking asynchronously with program execution, while pre-
venting compromised programs from affecting externally-visible
side effects. Our control-flow integrity case study demonstrates
that our approach is more correct, effective, and performant than
other designs, and adds detection of use-after-free bugs on control-
flow pointers. In addition, HERQULES supports concurrent message
ordering and bidirectional communication, as well as other policies
like memory safety, data-flow integrity, memory tagging, etc.

ACKNOWLEDGMENTS

This work was supported by the CONIX Research Center, one of
six centers in JUMP, a Semiconductor Research Corporation (SRC)
program sponsored by DARPA, by the Department of the Navy,
Office of Naval Research under Grant No. N00014-17-1-2892, by the
National Science Foundation under Grant No. CCF-2028949, and
by a grant from the Alfred P. Sloan Foundation.

We would like to thank Intel Corporation for providing PAC
cards, the Parallel Data Lab and its sponsors for compute resource
access, Chris Fallin for helping design our microarchitecture-based
IPC primitive, Joseph Melber for implementing host memory writes
from the PAC card, Pratik Fegade for reviewing early drafts of this
paper, Saugata Ghose for providing SPEC CPU2017, and Maverick
Woo for providing feedback and managing our systems. We would
also like to thank our anonymous reviewers, artifact evaluators, and
our shepherd, Yannis Smaragdakis, for their feedback in improving
this paper.

A ARTIFACT APPENDIX
A.1 Abstract

The instructions below will execute experiments for HQ-CFI-SFESTK-
MobEkL, HQ-CFI-RETPTR-MODEL, and their baseline, as well as HQ-

CFI-SFESTK-SIM and its baseline, on the RIPE64, SPEC CPU2006,

SPEC CPU2017, and NGINX benchmarks. This will reproduce the

performance of HQ-CFI-SFESTK-S1M in Figure 4, the performance

of HQ-CFI-SFESTK-MODEL in Figure 5, and the RIPE results for

HQ-CFI-SFESTK-MODEL and HQ-CFI-RETPTR-MODEL in Table 5.

A.2 Artifact Check-List

e Program: SPEC CPU2006 v1.2, SPEC CPU2017 v1.0.5, NGINX v1.17.10,

and RIPE64.

Compilation: Build benchmarks using the pre-built modified Clang/LLVM

10.0.1 compiler and gold 1.16 linker.

e Transformations: Program instrumentation implemented using in-
cluded LLVM transformation passes.

e Binary: Yes, pre-built Clang 10.0.1 for Ubuntu 20.04/18.04, pre-built musl
1.2.1, and pre-built benchmark binaries.

e Run-time environment: Ubuntu 20.04 with kernel 5.4.53, and Ubuntu
18.04 with kernel 4.15.70. Root is needed to load kernel module and run
verifier.

784

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

e Hardware: For optional FPGA experiments, an Intel Programmable
Acceleration Card, using OPAE 1.4.0 and Intel Acceleration Stack for
Development 1.2.0 with Update 1.

e Execution: 350 mins for one run of CPU2006 + CPU2017 under HQ-
CFI-SFESTK-MODEL, and 309 mins for one run of CPU2006 + CPU2017
using its baseline. 1 min for each run of NGINX.

e Metrics: Relative performance (execution time for SPEC, throughput
for NGINX).

e Output: CSV file contains runtimes for each SPEC run, and throughput
for each NGINX run.

e Experiments: See below instructions and README.md.

e How much disk space required (approximately)?: One build of
CPU2006 + CPU2017: 7.2G.

e How much time is needed to prepare workflow?: If not using in-
cluded VMs, per compile of CPU2006 + CPU2017: 45 mins. Per compile
of NGINX: < 2 mins.

o How much time is needed to complete experiments?: See execution
above.

o Publicly available?: Yes.

e Code licenses (if publicly available)?: See SPEC open-source licenses.
NGINX is open-source. HQ-CFI is Apache.

e Archived (provide DOI)?: 10.5281/zenodo.4501773.

A.3 Description

A.3.1 How to Access. We provide virtual machines (VMs) that in-
clude our compiler toolchain, runtime libraries, and experiments.
Both VMs have a username/password of user. The model-vm con-
tains pre-built binaries for HQ-CFI-SFESTK-MODEL and its baseline,
whereas the sim-vm contains pre-built binaries for HQ-CFI-SFESTK-
Smm and its baseline.

A.3.2 Hardware Dependencies. Similar or equivalent: at least 16 GB
DDR4 memory, a Samsung 860 Pro solid-state drive, and an Intel
i9-9900k CPU at 5GHz.

A.3.3 Software Dependencies. For non-simulator benchmarks, use
Ubuntu 20.04. For simulator benchmarks, use Ubuntu 18.04 due to
a kernel incompatibility. Disable simultaneous multithreading, and
configure huge pages at boot-time, if not using our VMs.

A.3.4 Data Sets. See above for SPEC CPU2006/2017.

A.4 Experiment Workflow

A.4.1 Non-Simulator Experiments (model-vm). Move into the he
rqules/build directory. As root, insert the kernel module kernel
/hq.ko and run the verifier verifier/verifier. Run the below
experiments. After experiments are complete, exit the verifier and
unload the kernel module.

Our pre-built experiments are stored in the following locations:

e RIPE: /home/user/herqules/tests/ripe

o HQ-CFI-SFESTK-MODEL SPEC: /home/user/herqules/tests/
1lvm-test-suite/build_hq

o HQ-CFI-SFESTK-MODEL NGINX: /home/user/herqules/test
s/nginx

e Baseline SPEC: /home/user/herqules/tests/llvm-test-
suite/build_none

e Baseline NGINX: /home/user/herqules/tests/nginx_none

(1) RIPE: Disable ASLR with echo @ | sudo tee /proc/sys/ke
rnel/randomize_va_space, then execute ./ripe_test.py

http://doi.org/10.5281/zenodo.4501773

HERQULES: Securing Programs via Hardware-Enforced Message Queues

both 3 both. Results for HQ-CFI are printed as ‘Clang’, whereas
baseline results are printed as "GCC’.

(2) SPEC: Execute 1it External/SPEC —time-tests -j1, then
./scripts/combine.py tests/llvm-test-suite/build/
External. This will combine results into External/out.csv.

(3) NGINX: Execute ./root/sbin/nginx, and in a separate win-
dow, /home/user/herqules/tests/wrk/wrk -t1 http:
//localhost:8080. This will print total request throughput.

To run HQ-CFI-RETPTR-MODEL instead of HQ-CFI-SFESTK-MODEL,
follow the customization instructions below, rebuild affected bench-
marks, then follow the execution instructions above.

A.4.2 Simulation Experiments (sim-vm). Our pre-built experiments
are stored in the following locations:

o HQ-CFI-SFESTK-S1Mm SPEC: /home/user/herqules/tests/11
vm-test-suite/build

e Baseline SPEC: /home/user/herqules/tests/llvm-test-
suite/build_baseline

Copy the ./scripts/simulations/run_all.sh script to
each directory containing pre-built benchmarks, and modify the
script to provide paths to the ZSim binary and simulated processor
configuration file. Then, run each simulation using . /run_all.sh
argl arg2. argl is a name for the method (e.g., baseline, HQ-CFI-
SFESTK-SIM), and arg? is the number of experiments that will run
in parallel.

A.5 Evaluation and Expected Results

We have included a copy of our experiment data in data. x1sx.

A.5.1 Non-Simulator Experiments. Import each out.csv file (for
SPEC) or input the total number of requests (for NGINX) into the
‘Run #1° column of their respective sheets, then clear the columns
for ‘Run #2’ and ‘Run #3’. For HQ-CFI-SFESTK-MopEL and HQ-CFI-
RETPTR-MODEL, modify the ‘model-ref” sheet; for their baseline,
modify the ‘baseline-opt-ref” sheet. Switch back to the ‘benchmarks’
sheet, and the corresponding column should be within +5% of the
original value. Separately, for RIPE, directly compare with the ‘ripe’
sheet.

A.5.2 Simulator Experiments. Use the script located at . /script
s/simulations/parse_zsim_results.py and run ./parse_zsi
m_results.py argl arg2. argl is the path where the ZSim results
of baseline experiments are located, and arg? is the path where HQ-
CFI-SFESTK-SIM experiments are. After running the script, directly
compare with the ‘ss-simulator-train’ sheet.

A.6 Experiment Customization

To perform other experiments, e.g. for the FPGA, build a base-
line and instrumented version of each benchmark. To enable re-
turn pointer instrumentation (HQ-CFI-RETPTR), change the default
value of RunCFIRetAddr in 11vm/cfi-finalize.cpp and rebuild
the instrumentation pass. See scripts/envs. sh for full configura-
tion flags and README . md for full setup instructions. Note that the
FPGA may require a physical machine, if PCIe passthrough to a
VM is not supported.

785

ASPLOS 21, April 19-23, 2021, Virtual, USA

A.7 Manual Installation

If not using our VMs, the below instructions will install HQ-CFI
and build our experiments.

(1) Clone https://github.com/secure-foundations/herqules.

(2) Download the pre-built binaries for Clang/LLVM, musl, and the
FPGA bitstream (if needed).

(3) For simulator experiments, follow https://github.com/ddcc/zsim
and set up ZSim.

(4) Edit . /scripts/setup.sh, and set OPAE=1 if performing FPGA
experiments. Run the script as root.

(5) Execute steps 1a and 2 under ‘Standard Runtimes’ in the
README . md file, to configure the baseline environment.

(6) Execute step 1a under ‘Compiler (Clang/LLVM)’ in the
README . md file, to configure our modified Clang/LLVM com-
piler toolchain.

(7) Execute step 3 under ‘LLVM Test Suite / SPEC Benchmarks’ in
the README . md file, to fix various benchmark compatibility and
memory safety bugs using our patches.

(8) For non-simulator experiments, edit . /scripts/build. sh,
and run it. Otherwise, for simulator experiments, edit . /scri
pts/build_simulator.sh, and run it.

A.8 Methodology

Submission, reviewing and badging methodology:

e https://www.acm.org/publications/policies/artifact-review-
badging

o http://cTuning.org/ae/submission-20201122.html

e http://cTuning.org/ae/reviewing-20201122.html

REFERENCES

[1] 2010. Data Plane Development Kit. https://www.dpdk.org/

[2] 2016. Control-Flow Enforcement Technology Specification. https://softwa
re.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-
technology-preview.pdf

[3] 2018. Control Flow Guard - Win32 Apps. https://docs.microsoft.com/en-
us/windows/win32/secbp/control-flow-guard

[4] 2018. System V Application Binary Interface: AMD64 Architecture Processor
Supplement. https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-
1.0.pdf

[5] 2020. Control Flow Integrity | Android Open Source Project. https://source.a
ndroid.com/devices/tech/debug/cfi

[6] 2020. Intel® 64 and IA-32 Architectures Software Developer’s Manual. https:
//software.intel.com/content/www/us/en/develop/articles/intel- sdm.html

[7] 2020. Intel® Architecture Instruction Set Extensions and Future Features Pro-
gramming Reference. https://software.intel.com/sites/default/files/managed/c
5/15/architecture-instruction-set-extensions-programming-reference.pdf

[8] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In Proceedings of the 2005 ACM SIGSAC Conference on Computer and
Communications Security - CCS "05. ACM Press, 340-340. https://doi.org/10.1
145/1102120.1102165

[9] Sam Ainsworth and Timothy M. Jones. 2020. The Guardian Council: Parallel Pro-

grammable Hardware Security. In Proceedings of the Twenty-Fifth International

Conference on Architectural Support for Programming Languages and Operat-

ing Systems (ASPLOS °20). Association for Computing Machinery, Lausanne,

Switzerland, 1277-1293. https://doi.org/10.1145/3373376.3378463

Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. 2009. Baggy

Bounds Checking: An Efficient and Backwards-Compatible Defense against

out-of-Bounds Errors. In Proceedings of the 18th Conference on USENIX Security

Symposium (SSYM’09). USENIX Association, Montreal, Canada, 51-66. https:

//doi.org/10.5555/1855768.1855772

[11] B.Alpern, M. N. Wegman, and F. K. Zadeck. 1988. Detecting Equality of Variables

in Programs. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’88). Association for Computing
Machinery, New York, NY, USA, 1-11. https://doi.org/10.1145/73560.73561

[10

https://github.com/secure-foundations/herqules
https://github.com/ddcc/zsim
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.dpdk.org/
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://github.com/hjl-tools/x86-psABI/wiki/x86-64-psABI-1.0.pdf
https://source.android.com/devices/tech/debug/cfi
https://source.android.com/devices/tech/debug/cfi
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://software.intel.com/sites/default/files/managed/c5/15/architecture-instruction-set-extensions-programming-reference.pdf
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/3373376.3378463
https://doi.org/10.5555/1855768.1855772
https://doi.org/10.5555/1855768.1855772
https://doi.org/10.1145/73560.73561

ASPLOS 21, April 19-23, 2021, Virtual, USA

(12]

(13]

[14

jpry
&

[16

[17

[18

=
2

[20

[21

[22

[24

[25

[26

<
=

™
&

Brandon Azad. 2019. Project Zero: Examining Pointer Authentication on the
iPhone XS. https://googleprojectzero.blogspot.com/2019/02/examining-
pointer-authentication-on.html

Brandon Azad. 2020. iOS Kernel PAC, One Year Later. https://bazad.github.io/
presentations/BlackHat-USA-2020-iOS_Kernel PAC_One_Year_Later.pdf
Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. 2003. Address Obfuscation:
An Efficient Approach to Combat a Board Range of Memory Error Exploits. In
Proceedings of the 12th Conference on USENIX Security Symposium - Volume 12
(SSYM’03). USENIX Association, USA, 8. https://doi.org/10.5555/1251353.1251
361

Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. 2005. Efficient Techniques
for Comprehensive Protection from Memory Error Exploits. In Proceedings of the
14th Conference on USENIX Security Symposium - Volume 14 (SSYM’05). USENIX
Association, USA, 17. https://doi.org/10.5555/1251398.1251415

Joe Bialek. 2018. The Evolution of CFI Attacks and Defenses. https://github.com
/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_Offe
nsiveCon/The%20Evolution%200f%20CFI%20Attacks%20and%20Defenses.pdf
Andrea Biondo, Mauro Conti, and Daniele Lain. 2018. Back To The Epilogue:
Evading Control Flow Guard via Unaligned Targets. In Proceedings 2018 Network
and Distributed System Security Symposium. Internet Society, San Diego, CA.
https://doi.org/10.14722/ndss.2018.23318

Tyler Bletsch, Xuxian Jiang, Vince W. Freeh, and Zhenkai Liang. 2011. Jump-
Oriented Programming: A New Class of Code-Reuse Attack. In Proceedings
of the 6th ACM Symposium on Information, Computer and Communications
Security (ASIACCS 11, Vol. 38). Association for Computing Machinery, 30-30.
https://doi.org/10.1145/1966913.1966919

Daniel P. Bovet and Marco Cesati. 2006. Understanding the Linux Kernel: From
/O Ports to Process Management (3. ed., covers version 2.6 ed.). O’Reilly, Beijing.
Richard S Bracher. 2013. Introduction to Intel® Memory Protection Extensions.
https://www.intel.com/content/www/us/en/develop/articles/introduction-to-
intel-memory-protection-extensions.html

David Brash. 2016. Armv8-A Architecture: 2016 Additions. https://community.
arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm
v8-a-architecture-2016-additions

James Bucek, Klaus-Dieter Lange, and Joakim v. Kistowski. 2018. SPEC CPU2017:
Next-Generation Compute Benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering (ICPE ’18). Association for
Computing Machinery, Berlin, Germany, 41-42. https://doi.org/10.1145/3185
768.3185771

Nathan Burow, Scott A. Carr, Joseph Nash, Per Larsen, Michael Franz, Stefan
Brunthaler, and Mathias Payer. 2017. Control-Flow Integrity: Precision, Security,
and Performance. Comput. Surveys 50, 1 (April 2017), 16:1-16:33. https:
//doi.org/10.1145/3054924

Nathan Burow, Xinping Zhang, and Mathias Payer. 2019. SoK: Shining Light on
Shadow Stacks. In 2019 IEEE Symposium on Security and Privacy (SP). 985-999.
https://doi.org/10.1109/SP.2019.00076

Nicholas Carlini and David Wagner. 2014. ROP Is Still Dangerous: Breaking
Modern Defenses. In Proceedings of the 23rd USENIX Conference on Security
Symposium (SEC’14). USENIX Association, USA, 385-399. https://doi.org/10.5
555/2671225.2671250

Miguel Castro, Manuel Costa, and Tim Harris. 2006. Securing Software by
Enforcing Data-Flow Integrity. In Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI "06). USENIX Association, Berkeley,
CA, USA, 147-160. https://doi.org/10.5555/1298455.1298470

Stephen Checkoway, Lucas Davi, Alexandra Dmitrienko, Ahmad-Reza Sadeghi,
Hovav Shacham, and Marcel Winandy. 2010. Return-Oriented Programming
without Returns. In Proceedings of the 17th ACM Conference on Computer and
Communications Security (CCS ’10). Association for Computing Machinery,
Chicago, Illinois, USA, 559-572. https://doi.org/10.1145/1866307.1866370
Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B. Gib-
bons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael Ryan,
and Evangelos Vlachos. 2008. Flexible Hardware Acceleration for Instruction-
Grain Program Monitoring. In 2008 International Symposium on Computer Ar-
chitecture. 377-388. https://doi.org/10.1109/ISCA.2008.20

Frederick B. Cohen. 1993. Operating System Protection through Program Evo-
lution. Computers & Security 12, 6 (Oct. 1993), 565-584. https://doi.org/10.101
6/0167-4048(93)90054-9

Peter Collingbourne. 2015. Control Flow Integrity Design Documentation.
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html

Peter Collingbourne. 2016. Whole Program Devirtualization. Google, Inc.
https://reviews. llvm.org/D16795

Mauro Conti, Stephen Crane, Lucas Davi, Michael Franz, Per Larsen, Marco
Negro, Christopher Liebchen, Mohaned Qunaibit, and Ahmad-Reza Sadeghi.
2015. Losing Control: On the Effectiveness of Control-Flow Integrity under
Stack Attacks. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security - CCS '15. ACM Press, Denver, Colorado, USA,
952-963. https://doi.org/10.1145/2810103.2813671

786

[33]

[34

[35

[36

[37

[38

[39

[40

(41

[42
[43

[44

[45

[46

[47

[48

[49

[50

[51

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

Thurston H.Y. Dang, Petros Maniatis, and David Wagner. 2015. The Performance
Cost of Shadow Stacks and Stack Canaries. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security - ASIA CCS
’15. ACM Press, 555-566. https://doi.org/10.1145/2714576.2714635

Lucas Davi, Ahmad-Reza Sadeghi, Daniel Lehmann, and Fabian Monrose. 2014.
Stitching the Gadgets: On the Ineffectiveness of Coarse-Grained Control-Flow
Integrity Protection. In Proceedings of the 23rd USENIX Conference on Security
Symposium (SEC’14). USENIX Association, San Diego, CA, 401-416. https:
//doi.org/10.5555/2671225.2671251

Daniel Y. Deng, Daniel Lo, Greg Malysa, Skyler Schneider, and G. Edward Suh.
2010. Flexible and Efficient Instruction-Grained Run-Time Monitoring Using
On-Chip Reconfigurable Fabric. In 2010 43rd Annual IEEE/ACM International
Symposium on Microarchitecture. 137-148. https://doi.org/10.1109/MICRO.2010
17

Mathieu Desnoyers. 2008. Using the Linux Kernel Tracepoints. https://www.
kernel.org/doc/Documentation/trace/tracepoints.txt

Ren Ding, Chenxiong Qian, Chengyu Song, William Harris, Taesoo Kim, and
Wenke Lee. 2017. Efficient Protection of Path-Sensitive Control Security. In
Proceedings of the 26th USENIX Conference on Security Symposium (SEC’17).
USENIX Association, Vancouver, BC, Canada, 131-148. https://doi.org/10.555
5/3241189.3241201

Gregory J. Duck and Roland H. C. Yap. 2016. Heap Bounds Protection with
Low Fat Pointers. In Proceedings of the 25th International Conference on Compiler
Construction (CC 2016). ACM, New York, NY, USA, 132-142. https://doi.org/10
.1145/2892208.2892212

Izzat El Hajj, Alexander Merritt, Gerd Zellweger, Dejan Milojicic, Reto Acher-
mann, Paolo Faraboschi, Wen-mei Hwu, Timothy Roscoe, and Karsten Schwan.
2016. Space]MP: Programming with Multiple Virtual Address Spaces. In
Proceedings of the Twenty-First International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS ’16). Asso-
ciation for Computing Machinery, New York, NY, USA, 353-368. https:
//doi.org/10.1145/2872362.2872366

Isaac Evans, Sam Fingeret, Julian Gonzalez, Ulziibayar Otgonbaatar, Tiffany
Tang, Howard Shrobe, Stelios Sidiroglou-Douskos, Martin Rinard, and Hamed
Okhravi. 2015. Missing the Point(Er): On the Effectiveness of Code Pointer
Integrity. In 2015 IEEE Symposium on Security and Privacy. IEEE, 781-796. https:
//doi.org/10.1109/SP.2015.53

Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,
Hamed Okhravi, and Stelios Sidiroglou-Douskos. 2015. Control Jujutsu. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security - CCS ’15. ACM Press, 901-913. https://doi.org/10.1145/2810103.2813
646

Rich Felker. 2020. Musl Libc. https://musllibc.org/

Mike Frantzen and Mike Shuey. 2001. StackGhost: Hardware Facilitated Stack
Protection. In Proceedings of the 10th Conference on USENIX Security Symposium
- Volume 10 (SSYM’01). USENIX Association, Washington, D.C. https://doi.org/
10.5555/1251327.1251332

Sotiria Fytraki, Evangelos Vlachos, Onur Kocberber, Babak Falsafi, and Boris
Grot. 2014. FADE: A Programmable Filtering Accelerator for Instruction-Grain
Monitoring. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA). 108-119. https://doi.org/10.1109/HPCA.2014.68
35922

Xinyang Ge, Weidong Cui, and Trent Jaeger. 2017. GRIFFIN: Guarding Control
Flows Using Intel Processor Trace. ACM SIGARCH Computer Architecture News
45, 1 (April 2017), 585-598. https://doi.org/10.1145/3093337.3037716

Will Glozer. 2019. Wrk - a HTTP Benchmarking Tool. https://github.com/wg/
wrk

Enes Goktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portokalidis.
2014. Out of Control: Overcoming Control-Flow Integrity. In 2014 IEEE
Symposium on Security and Privacy. IEEE, San Jose, CA, 575-589. https:
//doi.org/10.1109/SP.2014.43

Enes Goktas, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. 2014. Size Does Matter: Why Using Gadget-Chain Length
to Prevent Code-Reuse Attacks Is Hard. In Proceedings of the 23rd USENIX
Conference on Security Symposium (SEC’14). USENIX Association, USA, 417-432.
https://doi.org/10.5555/2671225.2671252

Enes Goktas, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Geor-
gios Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining
Information Hiding (and What to Do about It). In Proceedings of the 25th USENIX
Conference on Security Symposium (SEC’16). USENIX Association, USA, 105-119.
https://doi.org/10.5555/3241094.3241104

Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida.
2017. ASLR on the Line: Practical Cache Attacks on the MMU. In NDSS. https:
//doi.org/10.14722/ndss.2017.23271

Matthew Gretton-Dann. 2018. Arm Architecture Armv8.5-A Announcement.
https://community.arm.com/developer/ip-products/processors/b/processors-
ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a

https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html
https://bazad.github.io/presentations/BlackHat-USA-2020-iOS_Kernel_PAC_One_Year_Later.pdf
https://bazad.github.io/presentations/BlackHat-USA-2020-iOS_Kernel_PAC_One_Year_Later.pdf
https://doi.org/10.5555/1251353.1251361
https://doi.org/10.5555/1251353.1251361
https://doi.org/10.5555/1251398.1251415
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://doi.org/10.14722/ndss.2018.23318
https://doi.org/10.1145/1966913.1966919
https://www.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://www.intel.com/content/www/us/en/develop/articles/introduction-to-intel-memory-protection-extensions.html
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/armv8-a-architecture-2016-additions
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3185768.3185771
https://doi.org/10.1145/3054924
https://doi.org/10.1145/3054924
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.5555/2671225.2671250
https://doi.org/10.5555/2671225.2671250
https://doi.org/10.5555/1298455.1298470
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1109/ISCA.2008.20
https://doi.org/10.1016/0167-4048(93)90054-9
https://doi.org/10.1016/0167-4048(93)90054-9
https://clang.llvm.org/docs/ControlFlowIntegrityDesign.html
https://reviews.llvm.org/D16795
https://doi.org/10.1145/2810103.2813671
https://doi.org/10.1145/2714576.2714635
https://doi.org/10.5555/2671225.2671251
https://doi.org/10.5555/2671225.2671251
https://doi.org/10.1109/MICRO.2010.17
https://doi.org/10.1109/MICRO.2010.17
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://www.kernel.org/doc/Documentation/trace/tracepoints.txt
https://doi.org/10.5555/3241189.3241201
https://doi.org/10.5555/3241189.3241201
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2892208.2892212
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1145/2872362.2872366
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1145/2810103.2813646
https://musl.libc.org/
https://doi.org/10.5555/1251327.1251332
https://doi.org/10.5555/1251327.1251332
https://doi.org/10.1109/HPCA.2014.6835922
https://doi.org/10.1109/HPCA.2014.6835922
https://doi.org/10.1145/3093337.3037716
https://github.com/wg/wrk
https://github.com/wg/wrk
https://doi.org/10.1109/SP.2014.43
https://doi.org/10.1109/SP.2014.43
https://doi.org/10.5555/2671225.2671252
https://doi.org/10.5555/3241094.3241104
https://doi.org/10.14722/ndss.2017.23271
https://doi.org/10.14722/ndss.2017.23271
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/arm-a-profile-architecture-2018-developments-armv85a

HERQULES: Securing Programs via Hardware-Enforced Message Queues

[52] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard Fellner, Clémentine Mau-

rice, and Stefan Mangard. 2017. KASLR Is Dead: Long Live KASLR. In Engi-
neering Secure Software and Systems (Lecture Notes in Computer Science), Eric
Bodden, Mathias Payer, and Elias Athanasopoulos (Eds.). Springer International
Publishing, Cham, 161-176. https://doi.org/10.1007/978-3-319-62105-0_11
Yufei Gu, Qingchuan Zhao, Yinqian Zhang, and Zhigiang Lin. 2017. PT-CFI:
Transparent Backward-Edge Control Flow Violation Detection Using Intel Pro-
cessor Trace. In Proceedings of the Seventh ACM on Conference on Data and Appli-
cation Security and Privacy (CODASPY ’17). Association for Computing Machin-
ery, Scottsdale, Arizona, USA, 173-184. https://doi.org/10.1145/3029806.3029830
Dave Hansen. 2018. X86: Remove Intel MPX. https://lore.kernel.org/patchwor
k/patch/1025952/

[55] JohnL.Henning. 2006. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH

Computer Architecture News 34, 4 (Sept. 2006), 1-17. https://doi.org/10.1145/11
86736.1186737

[56] Jason Hiser, Anh Nguyen-Tuong, Michele Co, Matthew Hall, and Jack W. David-

son. 2012. ILR: Where’d My Gadgets Go?. In 2012 IEEE Symposium on Security
and Privacy. 571-585. https://doi.org/10.1109/SP.2012.39

[57] Jim Keniston, Prasanna S Panchamukhi, and Masami Hiramatsu. 2005. Kernel

Probes (Kprobes). https://www.kernel.org/doc/Documentation/kprobes.txt
Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie
Yang. 2019. Origin-Sensitive Control Flow Integrity. In Proceedings of the 28th
USENIX Conference on Security Symposium (SEC’19). USENIX Association, Santa
Clara, CA, USA, 195-211. https://doi.org/10.5555/3361338.3361353

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No Need to Hide: Protecting Safe Regions on Commodity Hardware.
In Proceedings of the Twelfth European Conference on Computer Systems (Eu-
roSys ’17). Association for Computing Machinery, Belgrade, Serbia, 437-452.
https://doi.org/10.1145/3064176.3064217

Taddeus Kroes, Koen Koning, Erik van der Kouwe, Herbert Bos, and Cristiano
Giuffrida. 2018. Delta Pointers: Buffer Overflow Checks without the Checks. In
Proceedings of the Thirteenth European Conference on Computer Systems (EuroSys
’18). ACM Press, Porto, Portugal, 1-14. https://doi.org/10.1145/3190508.3190553
Volodymyr Kuznetsov. 2020. Re: Resend: Code-Pointer Integrity + Software
Fault Isolation.

Volodymyr Kuznetsov, Laszl6 Szekeres, Mathias Payer, George Candea, R. Sekar,
and Dawn Song. 2014. Code-Pointer Integrity. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation (OSDI’14). USENIX
Association, 147-163. https://doi.org/10.5555/2685048.2685061

Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, and
Dawn Song. 2015. Poster: Getting The Point(Er): On the Feasibility of Attacks
on Code-Pointer Integrity. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 2.

C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis Transformation. In International Symposium on Code Genera-
tion and Optimization, 2004. CGO 2004. 75-86. https://doi.org/10.1109/CGO.20
04.1281665

Thomas Lengauer and Robert Endre Tarjan. 1979. A Fast Algorithm for Finding
Dominators in a Flowgraph. ACM Transactions on Programming Languages and
Systems 1, 1 (Jan. 1979), 121-141. https://doi.org/10.1145/357062.357071

Hans Liljestrand, Thomas Nyman, Jan-Erik Ekberg, and N. Asokan. 2019. Au-
thenticated Call Stack. In Proceedings of the 56th Annual Design Automation
Conference 2019 (DAC ’19). ACM, New York, NY, USA, 223:1-223:2. https:
//doi.org/10.1145/3316781.3322469

Hans Liljestrand, Thomas Nyman, Kui Wang, Carlos Chinea Perez, Jan-Erik
Ekberg, and N. Asokan. 2019. PAC It up: Towards Pointer Integrity Using
ARM Pointer Authentication. In Proceedings of the 28th USENIX Conference
on Security Symposium (SEC’19). USENIX Association, USA, 177-194. https:
//doi.org/10.5555/3361338.3361352

Liu Ling, Neal Oliver, Chitlur Bhushan, Wang Qigang, Alvin Chen, Shen
Wenbo, Yu Zhihong, Arthur Sheiman, Ian McCallum, Joseph Grecco, Henry
Mitchel, Liu Dong, and Prabhat Gupta. 2009. High-Performance, Energy-
Efficient Platforms Using in-Socket FPGA Accelerators. In Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays (FPGA
’09). Association for Computing Machinery, Monterey, California, USA, 261-264.
https://doi.org/10.1145/1508128.1508172

Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from
User Space. In Proceedings of the 27th USENIX Conference on Security Symposium
(SEC’18). USENIX Association, Baltimore, MD, USA, 973-990. https://doi.org/
10.5555/3277203.3277276

James Litton, Anjo Vahldiek-Oberwagner, Eslam Elnikety, Deepak Garg, Bobby
Bhattacharjee, and Peter Druschel. 2016. Light-Weight Contexts: An OS Abstrac-
tion for Safety and Performance. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI '16). USENIX Association,

Berkeley, Calif. https://doi.org/10.5555/3026877.3026882
Yutao Liu, Peitao Shi, Xinran Wang, Haibo Chen, Binyu Zang, and Haibing

Guan. 2017. Transparent and Efficient CFI Enforcement with Intel Processor

ASPLOS 21, April 19-23, 2021, Virtual, USA

Trace. In 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA). 529-540. https://doi.org/10.1109/HPCA.2017.18

Rintel Lubomir. 2015. Mailbox: Enable BCM2835 Mailbox Support. https:
//patchwork.kernel.org/patch/6342841/

Enno Luebbers, Song Liu, and Michael Chu. 2017. Simplify Software Integration
for FPGA Accelerators with OPAE. https://01.org/sites/default/files/downloa
ds/opae/open-programmable-acceleration-engine-paper.pdf

Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Maziéres. 2015.
CCFIL: Cryptographically Enforced Control Flow Integrity. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security (CCS
’15). ACM, New York, NY, USA, 941-951. https://doi.org/10.1145/2810103.2813
676

John McCall. 2019. Pointer Authentication. https://github.com/apple/llvm-
project/blob/apple/master/clang/docs/PointerAuthentication.rst

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2009. SoftBound: Highly Compatible and Complete Spatial Memory Safety
for C. In Proceedings of the 30th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI *09). ACM, New York, NY, USA,
245-258. https://doi.org/10.1145/1542476.1542504

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
2010. CETS: Compiler Enforced Temporal Safety for C. In Proceedings of the
2010 International Symposium on Memory Management (ISMM ’10). ACM, New
York, NY, USA, 31-40. https://doi.org/10.1145/1806651.1806657

R. Nikhil. 2004. Bluespec System Verilog: Efficient, Correct RTL from High Level
Specifications. In Proceedings. Second ACM and IEEE International Conference
on Formal Methods and Models for Co-Design, 2004. MEMOCODE ’04. 69-70.
https://doi.org/10.1109/MEMCOD.2004.1459818

Ben Niu and Gang Tan. 2015. Per-Input Control-Flow Integrity. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security
(CCS ’15). Association for Computing Machinery, Denver, Colorado, USA, 914-
926. https://doi.org/10.1145/2810103.2813644

Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. 2018. Inte]l MPX Explained: A Cross-Layer Analysis of the Intel
MPX System Stack. Proceedings of the ACM on Measurement and Analysis of
Computing Systems 2, 2 (June 2018), 28:1-28:30. https://doi.org/10.1145/3224423
Neal Oliver, Rahul R. Sharma, Stephen Chang, Bhushan Chitlur, Elkin Garcia,
Joseph Grecco, Aaron Grier, Nelson Ijih, Yaping Liu, Pratik Marolia, Henry
Mitchel, Suchit Subhaschandra, Arthur Sheiman, Tim Whisonant, and Prabhat
Gupta. 2011. A Reconfigurable Computing System Based on a Cache-Coherent
Fabric. In 2011 International Conference on Reconfigurable Computing and FPGAs.
80-85. hittps://doi.org/10.1109/ReConFig.2011.4

Piotr Padlewski. 2017. Devirtualization in LLVM. In Proceedings Companion
of the 2017 ACM SIGPLAN International Conference on Systems, Programming,
Languages, and Applications: Software for Humanity (SPLASH Companion 2017).
Association for Computing Machinery, Vancouver, BC, Canada, 42-44. https:
//doi.org/10.1145/3135932.3135947

Piotr Padlewski, Krzysztof Pszeniczny, and Richard Smith. 2020. Modeling
the Invariance of Virtual Pointers in LLVM. arXiv:2003.04228 [cs] (Feb. 2020).
arXiv:2003.04228 [cs] http://arxiv.org/abs/2003.04228

Vasilis Pappas, Michalis Polychronakis, and Angelos D. Keromytis. 2012. Smash-
ing the Gadgets: Hindering Return-Oriented Programming Using In-Place Code
Randomization. In 2012 IEEE Symposium on Security and Privacy. 601-615.
https://doi.org/10.1109/SP.2012.41

Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, and Taesoo Kim. 2019.
Libmpk: Software Abstraction for Intel Memory Protection Keys (Intel MPK). In
Proceedings of the 2019 USENIX Conference on Usenix Annual Technical Conference
(USENIX ATC ’19). USENIX Association, Renton, WA, USA, 241-254. https:
//doi.org/10.5555/3358807.3358829

Sergej Proskurin, Marius Momeu, Seyedhamed Ghavamnia, Vasileios P. Kemerlis,
and Michalis Polychronakis. 2020. xMP: Selective Memory Protection for Kernel
and User Space. In 2020 IEEE Symposium on Security and Privacy (SP). 563-577.
https://doi.org/10.1109/SP40000.2020.00041

Hari Pulapaka. 2020. Understanding Hardware-Enforced Stack Protection. https:
//techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-
hardware-enforced- stack-protection/ba-p/1247815

G. Ramalingam. 1994. The Undecidability of Aliasing. ACM Transactions on
Programming Languages and Systems 16, 5 (Sept. 1994), 1467-1471. https:
//doi.org/10.1145/186025.186041

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. 1988. Global Value Numbers and
Redundant Computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL °88). Association for
Computing Machinery, New York, NY, USA, 12-27. https://doi.org/10.1145/73
560.73562

Hubert Rosier. 2019. RIPE64. National University of Singapore. https://github
.com/hrosier/ripe64

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-Core Systems. ACM SIGARCH Computer

https://doi.org/10.1007/978-3-319-62105-0_11
https://doi.org/10.1145/3029806.3029830
https://lore.kernel.org/patchwork/patch/1025952/
https://lore.kernel.org/patchwork/patch/1025952/
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1145/1186736.1186737
https://doi.org/10.1109/SP.2012.39
https://www.kernel.org/doc/Documentation/kprobes.txt
https://doi.org/10.5555/3361338.3361353
https://doi.org/10.1145/3064176.3064217
https://doi.org/10.1145/3190508.3190553
https://doi.org/10.5555/2685048.2685061
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/3316781.3322469
https://doi.org/10.1145/3316781.3322469
https://doi.org/10.5555/3361338.3361352
https://doi.org/10.5555/3361338.3361352
https://doi.org/10.1145/1508128.1508172
https://doi.org/10.5555/3277203.3277276
https://doi.org/10.5555/3277203.3277276
https://doi.org/10.5555/3026877.3026882
https://doi.org/10.1109/HPCA.2017.18
https://patchwork.kernel.org/patch/6342841/
https://patchwork.kernel.org/patch/6342841/
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2810103.2813676
https://github.com/apple/llvm-project/blob/apple/master/clang/docs/PointerAuthentication.rst
https://github.com/apple/llvm-project/blob/apple/master/clang/docs/PointerAuthentication.rst
https://doi.org/10.1145/1542476.1542504
https://doi.org/10.1145/1806651.1806657
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1145/2810103.2813644
https://doi.org/10.1145/3224423
https://doi.org/10.1109/ReConFig.2011.4
https://doi.org/10.1145/3135932.3135947
https://doi.org/10.1145/3135932.3135947
https://arxiv.org/abs/2003.04228
http://arxiv.org/abs/2003.04228
https://doi.org/10.1109/SP.2012.41
https://doi.org/10.5555/3358807.3358829
https://doi.org/10.5555/3358807.3358829
https://doi.org/10.1109/SP40000.2020.00041
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815
https://techcommunity.microsoft.com/t5/windows-kernel-internals/understanding-hardware-enforced-stack-protection/ba-p/1247815
https://doi.org/10.1145/186025.186041
https://doi.org/10.1145/186025.186041
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://github.com/hrosier/ripe64
https://github.com/hrosier/ripe64

ASPLOS 21, April 19-23, 2021, Virtual, USA

[92]

[93

)
s

[95

[96

[97

Architecture News 41, 3 (June 2013), 475-486. https://doi.org/10.1145/2508148.
2485963

Jeff Seibert, Hamed Okhravi, and Eric Soderstrom. 2014. Information Leaks
Without Memory Disclosures: Remote Side Channel Attacks on Diversified
Code. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security (CCS ’14). Association for Computing Machinery,
Scottsdale, Arizona, USA, 54-65. https://doi.org/10.1145/2660267.2660309
Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-
into-Libc without Function Calls (on the X86). In Proceedings of the 14th ACM
Conference on Computer and Communications Security (CCS "07). Association
for Computing Machinery, Alexandria, Virginia, USA, 552-561. https://doi.or
£/10.1145/1315245.1315313

Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis of
Processor Instruction Set Architecture for Enforcing Control-Flow Integrity. In
Proceedings of the 8th International Workshop on Hardware and Architectural Sup-
port for Security and Privacy (HASP °19). Association for Computing Machinery,
Phoenix, AZ, USA, 1-11. https://doi.org/10.1145/3337167.3337175

Kevin Z. Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko, Christopher
Liebchen, and Ahmad-Reza Sadeghi. 2013. Just-In-Time Code Reuse: On the
Effectiveness of Fine-Grained Address Space Layout Randomization. In 2013 IEEE
Symposium on Security and Privacy. 574-588. https://doi.org/10.1109/SP.2013.45
Oliver Stannard. 2019. Dead Virtual Function Elimination. Linaro. https:
//reviews.llvm.org/D63932

Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lach-
mund, and Thomas Walter. 2009. Breaking the Memory Secrecy Assump-
tion. In Proceedings of the Second European Workshop on System Security (EU-
ROSEC °09). Association for Computing Machinery, Nuremburg, Germany, 1-8.
https://doi.org/10.1145/1519144.1519145

Igor Sysoev. 2020. NGINX. Nginx, Inc.. https://www.nginx.com/

Jack Tang. 2015. Exploring Control Flow Guard in Windows 10. https:
//documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-
windows10.pdf

Ian Lance Taylor. 2020. Gold. https://sourceware.org/binutils/

The PaX Team. 2003. Address Space Layout Randomization. https://pax.grsecu
rity.net/docs/aslr.txt

Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Ulfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In Proceedings of the 23rd USENIX Security
Symposium - SEC '14. 941-955. https://doi.org/10.5555/2671225.2671285

Sami Tolvanen. 2018. Control Flow Integrity in the Android Kernel. https://se
curity.googleblog.com/2018/10/posted-by- sami-tolvanen-staff-software.html
Sami Tolvanen. 2019. Protecting against Code Reuse in the Linux Kernel with
Shadow Call Stack. https://security.googleblog.com/2019/10/protecting-
against-code-reuse-in-linux_30.html

788

Daming D. Chen, Wen Shih Lim, Mohammad Bakhshalipour, Phillip B. Gibbons, James C. Hoe, and Bryan Parno

[105] Vlad Tsyrklevich. 2018. 908597 - Deprecate SafeStack - Chromium. Google, Inc.

[106

[107

[108

[109

[110

[111

[112

[113

[114

]

https://bugs.chromium.org/p/chromium/issues/detail?id=908597

Jeffrey Tyhach, Mike Hutton, Sean Atsatt, Arifur Rahman, Brad Vest, David
Lewis, Martin Langhammer, Sergey Shumarayev, Tim Hoang, Allen Chan, Dong-
Myung Choi, Dan Oh, Hae-Chang Lee, Jack Chui, Ket Chiew Sia, Edwin Kok,
Wei-Yee Koay, and Boon-Jin Ang. 2015. Arria™ 10 Device Architecture. In 2015
IEEE Custom Integrated Circuits Conference (CICC). 1-8. https://doi.org/10.110
9/CICC.2015.7338368

Victor van der Veen, Dennis Andriesse, Enes Goktas, Ben Gras, Lionel Sambuc,
Asia Slowinska, Herbert Bos, and Cristiano Giuffrida. 2015. Practical Context-
Sensitive CFL In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS ’15). Association for Computing Machinery,
Denver, Colorado, USA, 927-940. https://doi.org/10.1145/2810103.2813673
Andras Varga and Rudolf Hornig. 2008. An Overview of the OMNeT++
Simulation Environment. In Proceedings of the 1st International Conference
on Simulation Tools and Techniques for Communications, Networks and Sys-
tems & Workshops (Simutools °08). ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering), Brussels, BEL, 1-
10. https://doi.org/10.5555/1416222.1416290

Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. 1993.
Efficient Software-Based Fault Isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principles - SOSP *93. ACM Press, 203-216.
https://doi.org/10.1145/168619.168635

John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter
Joosen. 2011. RIPE: Runtime Intrusion Prevention Evaluator. In Proceedings
of the 27th Annual Computer Security Applications Conference (ACSAC ’11).
Association for Computing Machinery, Orlando, Florida, USA, 41-50. https:
//doi.org/10.1145/2076732.2076739

Wei Xu, Sandeep Bhatkar, and R. Sekar. 2006. Taint-Enhanced Policy En-
forcement: A Practical Approach to Defeat a Wide Range of Attacks. In
Proceedings of the 15th Conference on USENIX Security Symposium - Volume
15 (USENIX-SS°06). USENIX Association, Vancouver, B.C., Canada. https:
//doi.org/10.5555/1267336.1267345

Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, Kevin W. Hamlen, and
Zhiqiang Lin. 2019. CONFIRM: Evaluating Compatibility and Relevance of
Control-Flow Integrity Protections for Modern Software. In Proceedings of the
28th USENIX Conference on Security Symposium (SEC’19). USENIX Association,
1805-1821. https://doi.org/10.5555/3361338.3361463

Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszl6 Szekeres, Stephen
McCamant, Dawn Song, and Wei Zou. 2013. Practical Control Flow Integrity
and Randomization for Binary Executables. In 2013 IEEE Symposium on Security
and Privacy. 559-573. https://doi.org/10.1109/SP.2013.44

Mingwei Zhang and R. Sekar. 2013. Control Flow Integrity for COTS Binaries.
In Proceedings of the 22nd USENIX Conference on Security (SEC’13). USENIX
Association, Washington, D.C., 337-352. https://doi.org/10.5555/2534766.2534
796

https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1145/2508148.2485963
https://doi.org/10.1145/2660267.2660309
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1109/SP.2013.45
https://reviews.llvm.org/D63932
https://reviews.llvm.org/D63932
https://doi.org/10.1145/1519144.1519145
https://www.nginx.com/
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://documents.trendmicro.com/assets/wp/exploring-control-flow-guard-in-windows10.pdf
https://sourceware.org/binutils/
https://pax.grsecurity.net/docs/aslr.txt
https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.5555/2671225.2671285
https://security.googleblog.com/2018/10/posted-by-sami-tolvanen-staff-software.html
https://security.googleblog.com/2018/10/posted-by-sami-tolvanen-staff-software.html
https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux_30.html
https://security.googleblog.com/2019/10/protecting-against-code-reuse-in-linux_30.html
https://bugs.chromium.org/p/chromium/issues/detail?id=908597
https://doi.org/10.1109/CICC.2015.7338368
https://doi.org/10.1109/CICC.2015.7338368
https://doi.org/10.1145/2810103.2813673
https://doi.org/10.5555/1416222.1416290
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/2076732.2076739
https://doi.org/10.1145/2076732.2076739
https://doi.org/10.5555/1267336.1267345
https://doi.org/10.5555/1267336.1267345
https://doi.org/10.5555/3361338.3361463
https://doi.org/10.1109/SP.2013.44
https://doi.org/10.5555/2534766.2534796
https://doi.org/10.5555/2534766.2534796

	Abstract
	1 Introduction
	2 HerQules Design Overview
	2.1 Threat Model
	2.2 Bounded Asynchronous Validation
	2.3 Instantiating The AppendWrite IPC Primitive

	3 Details on HerQules Components
	3.1 The AppendWrite IPC Primitive
	3.2 Compiler Instrumentation
	3.3 Kernel
	3.4 Verifier

	4 Execution Policies for HerQules
	4.1 Control-Flow Integrity Policy
	4.2 Memory-Safety Policy
	4.3 Other Policies

	5 Evaluation
	5.1 Correctness
	5.2 Effectiveness
	5.3 Performance
	5.4 Other Metrics

	6 Related Work
	6.1 Interprocessor Communication
	6.2 Hardware Extensions
	6.3 Control-Flow Integrity
	6.4 Information Hiding

	7 Conclusion
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Check-List
	A.3 Description
	A.4 Experiment Workflow
	A.5 Evaluation and Expected Results
	A.6 Experiment Customization
	A.7 Manual Installation
	A.8 Methodology

	References

